JPS58128327A - オレフインの製法 - Google Patents

オレフインの製法

Info

Publication number
JPS58128327A
JPS58128327A JP58003612A JP361283A JPS58128327A JP S58128327 A JPS58128327 A JP S58128327A JP 58003612 A JP58003612 A JP 58003612A JP 361283 A JP361283 A JP 361283A JP S58128327 A JPS58128327 A JP S58128327A
Authority
JP
Japan
Prior art keywords
ruthenium
hydrogen
hydrocarbons
olefins
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58003612A
Other languages
English (en)
Inventor
ハンス・ハイナ−・ライヒ
クヌ−ト・ビツトラ−
ヴエルナ−・オステルタ−ク
ゲルト・エルトウル
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Publication of JPS58128327A publication Critical patent/JPS58128327A/ja
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C11/00Aliphatic unsaturated hydrocarbons
    • C07C11/02Alkenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/04Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen
    • C07C1/0425Catalysts; their physical properties
    • C07C1/043Catalysts; their physical properties characterised by the composition
    • C07C1/0435Catalysts; their physical properties characterised by the composition containing a metal of group 8 or a compound thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/02Boron or aluminium; Oxides or hydroxides thereof
    • C07C2521/04Alumina
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • C07C2521/08Silica
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/10Magnesium; Oxides or hydroxides thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/16Clays or other mineral silicates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals
    • C07C2523/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals of the platinum group metals
    • C07C2523/46Ruthenium, rhodium, osmium or iridium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals
    • C07C2523/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36
    • C07C2523/56Platinum group metals
    • C07C2523/60Platinum group metals with zinc, cadmium or mercury
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals
    • C07C2523/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36
    • C07C2523/56Platinum group metals
    • C07C2523/63Platinum group metals with rare earths or actinides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals
    • C07C2523/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36
    • C07C2523/56Platinum group metals
    • C07C2523/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tatalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/652Chromium, molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals
    • C07C2523/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36
    • C07C2523/56Platinum group metals
    • C07C2523/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tatalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/656Manganese, technetium or rhenium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • C07C2529/10Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing iron group metals, noble metals or copper
    • C07C2529/12Noble metals
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/20C2-C4 olefins

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。

Description

【発明の詳細な説明】 本発明は、まず酸化炭素と水素とをルテニウム触媒に接
触反r6Eせて炭化水素とし刀)つ引続き得られた炭化
水素を水蒸気の存在下に熱分解することにより、オレフ
ィン特にエチレンを製造する方法に関する。
ベンジン留分(ナフサ)、ケロシン又はガス油等の石油
留分を管型分解炉内で水蒸気の存在下に熱分解(管分解
)することによりエチレン及びプロピレン等のオレフィ
ンを製造することは公知である〔2ウルマンズ・エンシ
クロペディー・デア・テヒニツシエン・ヘミ−(Ull
mans Kncyklopidieder tech
nischen Ohemio )”、第3版、補遺(
1970年)、44〜5o頁参照〕。しかしながら、将
来受入の停滞、更にまた石油不足、ひいては管分解によ
ってオレフィンを製造するために原料として使用される
石油留分の節約か強いられることを考慮すべきであるの
で、石油留分の代りに、化石化した炭素担体としての石
炭をベースとして産出することができる炭化水素装入混
合物を使用するオレフィン製造法を見出す必要性が生じ
る。
まず石炭力)ら酸化炭素/水素混合物、いわゆる合成ガ
スを製造し力)っ引続き得られた合成ガスを、主として
周期律系の第8属の金属力)ら成る不均一系触媒に触接
させて反応させることにより、石炭から出発して炭化水
素混合物を製造することは既に公知である。この場合に
は、飽和及び不飽和炭化水素並びに酸素含有炭化水素化
合物から成る混合物を得ることかできる。
しかしなから、このフィッシャー−トロプシュ合成とも
称される方法は、選択性が低く力)っ熱効率が比較的低
いために、管分解によるオレフィン製造のための装入物
質として使用するだめの炭化水素を製造するためには不
十分である。すなわち、この装入物質は、可能な限り高
いオレフィン収率を達成するためには、高配分の@鎖状
炭化水素を有すべきである。更に、管分解のために装入
物質として使用される炭化水素の分子量は、工業設備で
容易な商値可能性を保証するためには、約700〜10
00の上限を上回るべきでない。同時に、この種の炭化
水素を製造する際には酸素含有化合物の形成をできるだ
け回避すべきである。それというのも、フィッシャー−
トロプシュ合成において通常観察されるアルコール、ア
ルデヒド、ケトン、エステル、酸のような有機化合物の
キューポラ生成物が煩雑な後処理あるいはまた環境問題
、例えは費用の力)力)る廃水処理を必要とする力)ら
である。
酸化炭素と水素との接触反応によって炭化水素を製造す
る際のもう1つの重要な要求は、好まし力)らぬ副生成
物のメタン及び二酸化炭素の形成をできるだけ抑制する
ことである。
ところで、間接的に加熱される背型分解炉内で水蒸気の
存在下に炭化水素を熱分解することによりオレフィンを
製造するための有利な方法が見出された、該方法は熱分
解のために、ルテニウム担体触媒に接触させて酸化炭素
と水素とを反応させることにより製造した炭化水素を使
用することを特徴とする。
本発明方法によれは、酸化炭素と水素との反応により、
70%より多くか直鎖状炭化水素力)ら成り力)つ同時
に十分に低い分子量を有し、従って熱分解によりオレフ
ィンを得るための装入物質として使用する際に容易に調
量することができる炭化水素を得ることかできる。ナフ
サの熱分解によるオレフィンの製法に比較すると、本発
明方法によれは40%高いエチレン収率を達成すること
かできる。
本発明方法のもう1つの利点は、ルテニウム担体触媒に
接触させる二酸化炭素と水素との接触反応の際にはCO
2、酸素含有化合物及びメタン等の好まし力)らぬ副生
成物が極く少量し力)形成されるにすぎない点にある。
このことは驚異的であった。
 5− それというのも、ベルシュテッド(F、Be1lstθ
at )著、Nカールスルーエ大学の学位論文〃(19
71年)及びヴアンナイス(M、A、Vannice 
)著、′カタリチツク・レビュー(0atalytic
 Review ) “第14巻(2)、172頁、第
9図から、触媒としての金属ルテニウムは酸化炭素と水
素との反応においては著しく強度にメタン形成を惹起す
る、例えば140”Cでメタン形成に関する選択性は2
4%以下である、力)つ金属ルテニウムは元素の周期律
系の第8副属の金属の内では最も高活性のメタン化触媒
であることが公知になっているカ)らである。
更に、従来は細分された金属ルテニウムは担体不含の形
が促進剤によってもまた担体によってもその作用効果を
改善することができない最適なルテニウム触媒であると
児なされていた〔例えはピッチラー(H,Pichle
r )著、′アドヴアンス・イン・カタリーシス(Ad
vances in Catalysis )“、第4
巻(1952年)、291頁参照〕。従って、本発明に
基づき酸化炭素と水素との反応のためにルテニウム担体
触媒を使用すると、メタン形成が極めて強度に減少せし
められかつルテニウム担体触媒か同時に直鎖状高級炭化
水素の形成に蘭して高い活性度を有することは意想外な
ことであった。
本発明に基づく炭化水素を得るための酸化炭素と水素と
の反応のためには、ルテニウム担体触媒を使用する。担
体材料としては、例えばシリカゲル、二酸化チタン、二
酸化ナトリウム、酸化アルミニウム、天然産珪酸塩、活
性炭又はゼオライト又はそれらの混合物が該当する。担
体材料としては、シリカゲルを使用するのが有利である
。ルテニウム担体触媒は、担体触媒に対して一般に0.
01〜40重量%、有利には0.1〜20重量%、特に
1〜5重量%のルテニウム含量を有する。他の添加物を
有しないルテニウム担体触媒を使用することかできる。
し力)シながら、ルテニウムの他に助触媒として更にマ
グネシウム、亜鉛、マンガン、プラセオジム、チタン、
モリブデン又はタングステン又はそれらの混合物を含有
する担体触媒を使用するのが有利なこともある。担体触
媒の助触媒の含量は、担体触媒に対して一般に0.01
〜20重量%、有利には0.1〜10重量%、特に1〜
5重量%である。
触媒活性物質は担体材料に例えば浸漬、沈降、イオン交
換あるいはまたプラズマ噴射により施すことができる。
この際、ルテニウムは有利にはルテニウム化合物の形で
、例えばルテニウム−錯体、−塩及び/又は−酸化物と
して施す、この場合塩化物、臭素化物、沃素化物、硝酸
塩又はカルボン酸塩を使用するのが有利である。助触媒
を施すためには、例えば相応する金風の酸化物及び有利
には塩及び/又は錯体が該当する。
酸化炭素と水素との接触反応の際にルテニウム担体触媒
の活性が低下すれは、該触媒は有利に再生により再活性
化される。この活性化は例えば使用済みの担体触媒を有
機溶剤例えはトルエンと接触だせることにより行なうこ
とができる。担体触媒のもう1つの再生法は、使用済み
担体触媒を高温例えは150〜400°C1有利には1
80〜380°Cの温度で酸素と不活性ガス例えば窒素
との混合物で廃ガス中に二酸化炭素がもはや検出されな
くなるまで処理すること力)ら成る。担体触媒は一般に
その使用前ないし再生後の再使用前に水素で還元処理に
力)ける。
ルテニウム担体触媒に接触させる酸化炭素と水素との接
触反応は、一般に温度120〜450°C1有利には1
50〜400″CS特に160〜380°C及び圧力1
0〜350バール、有利には50〜200バール、特に
60〜150バールを適用する。
接触反応のためには、酸化炭素と水素とを一般に5:l
−1:10、有利には2:1〜5:11特に1.1:l
〜1 : 2.2のモル比で使用する。酸化炭素/水素
混合物を約1:l−1:2のモル比で使用するのが符に
有利である。
本発明では、ルテニウム担体触媒に接触ぎせて酸化炭素
と水素とを反応だせることにより製造した炭化水素を、
該炭化水素を間接的に加熱される管型分解炉(スチーム
クラッカー〕内で水蒸気の存在下に熱分解することによ
りオレフィン特にエチレンを製造するために使用する。
一般に、熱分解における装入炭化水素に対する水蒸気の
重量比は0.1〜1、有利には0.2〜0.8、特に0
.3〜0.7である。管型分解炉の分解管内での炭化水
素の滞留時間は有利には0.05〜1秒、特に0.1〜
0.5秒である。炭化水素の熱分解の際に得られる分解
ガスに関しては、一般に分解炉力)らの分解ガスの出口
温度は700″C以上、有利には750″C以上、特に
800〜900”Cに維持すべきである。
得られた分解ガスは有利には即座に冷却すべきである。
この冷却は熱い分解ガス中に直接液状炭化水素又は水を
噴射することにより行なうことができる。し力)しなが
ら、分解ガスを分解ガス冷却器を貫流させ、該冷却器内
で液状熱担体、有利には水との間接的熱交換において冷
却する形式で分解ガスの間接的冷却を行なうのが一般的
である。
次に実施例で本発明を説明する。
実施例 l カサ密度4459/l及びブルナウア−(Brunna
uer )、エミツト(Emmett )及びテラー(
Te1ler )に基づく比表面積(JAO860、3
09頁、1938年参照)156 n? / fを有゛
する耐水性シリカゲル(4闘のストランドブレス成形体
) 240 Fに、完全脱塩した水28〇−中の塩化マ
グネシウム水和物91.29の溶液を那えた。このマグ
ネシウム塩を30分以内で70°C及び20 mmHg
でシリカゲル担体材料に塗布しかつ引続き大気圧下で8
0”Cで2時間力)つ次いで!60°Cで3時間乾燥し
た。最後に、860“Cで130分間焼成し力)つ次い
で冷却した。得られた材料に完全脱塩した水24〇−中
のRu01336 tの浴液を含浸させ、力)つ湿潤し
た材料を70°C及び20 mmHgで脱水した。80
°C及び160°Cで夫々2.5時間乾燥した後、得ら
れた触媒を背型反応器中200″C1大気圧で水素9o
z/hで還元した。得られた担体触媒は、ルテニウム含
量4.8 重量%及びマグネシウム含量4.5重量%を
有していた。
この担体触媒80−を、内部ガス循環系(5yatθm
Berty )を有するオートクレーブ中に充填しかつ
260°C及び100バールで、co/u、モル比1−
2の合成ガスを連続的に供給した。廃ガス300 N7
/hをオートクレープ力)ら取出し力)つ凝縮可能な炭
化水素20.02 y / hをオートクレープ力)ら
回収した。オートクレーブ循環ガスはメタン1.56容
量%及びco20.1容量%未満を含有していた。オー
トクレーブ排出物の水相中の酸素含有化合物の割合は2
重量%未満であった。
オートクレーブ中での接触反応において得られた炭化水
素混合物9001を水蒸気と混合した後(水蒸気対炭化
水素混合物の重量比0.48 : 1 )実験室圧管型
分解炉内で熱分解した。分解炉力)ら排出される分解ガ
スの出口温度は813°Cであった。
分解炉力)ら得られた炭化水素生成物混合物の組成は以
下の表にまとめられている。
比較例 実施例1の後半に記載と同様に実施したが、但しこの場
合にはオートクレーブ中での接触反応によって得られた
炭化水素混合物の代りに軽ベンジン(ナフサ)(沸点範
囲45〜158℃) 900 fを、通常大規模なエチ
レンプラントで使用されると同様に使用した。分解炉力
)ら得られた炭化水素生成物混合物の組成は以下の表に
まとめられている。
実施例1に示す如く、本発明に基づいて得られた炭化水
素混合物を分解した場合には、表から明ら〃)なように
、装入物質としてナフサを使用した場合に比較して、4
0%よりも高いエチレン収率が得られた。
表 OH,10,6613,8811,430、H,4,7
94,084,40 02H,34,6424,5532,5202H,0,
280,2B      0.240、H,1,020
,560,82 0、H616,5314,4514,870、H,0,
360,440,28 0、H,o          O,200,8B  
    0.200、Hs          3.5
2    4.91     3.671.3−0.H
,5,053,565,2713一 実施例 2 実施例1記載と同様に操作したか、但しこの場合はオー
トクレーブに00/H,モル比1 : l (実施例1
の1:2の代りにンの合成ガスを供給した。
凝縮可能な炭化水素11.80 f / hが得られた
。オートクレーブ循環ガスはOO2及びメタン不含であ
った。オートクレーブ排出物の水相中には、有機化合物
2重量%未満か溶解していた。炭化水素混合物9002
の熱分解で得られた炭化水素生成物混合の組成は表に記
載されている。
特許出願人 パスフ ァクチェンゲゼルシャフト代理人
弁理士 1)  代   蒸   治第1頁の続き 0発 明 者 クヌート・ピットラ− ドイツ連邦共和国6720シユバイ ア・カルデイナールーヴエンデ ルーシュトラーセ54 0発 明 者 ヴエルナー・オスチルターフドイツ連邦
共和国6718グリュン シュタット・オーバアラー−ベ ルゲルーヴ工−り2 0発 明 者 ゲルト・エルトウル ドイツ連邦共和国6800マンハイ ム・マルフエンヴ工−り2 233−

Claims (6)

    【特許請求の範囲】
  1. (1)間接的に加熱される管型分解炉内で水蒸気の存在
    下に炭化水素を熱分解することによりオレフィンを教造
    する方法において、熱分解のために、ルテニウム担体触
    媒に接触だせて酸化炭素と水素とを反応させることによ
    り製造した炭化水素を使用することを特徴とするオレフ
    ィンの製法。
  2. (2)ルテニウム担体触媒かルテニウム含坩0.ol〜
    40重量%を有する、特許請求の範囲第1項記載の方法
  3. (3)担体触媒かルテニウムの他に助触媒として更にマ
    グネシウム、亜鉛、マンガン、プラセオジム、チタン、
    モリブデン及び/又はタングステンを特徴する特許請求
    の範囲第1頓又は第2項記載の方法。
  4. (4)担体材料としてシリカゲル、酸化アルミニウム、
    天然珪酸塩及び/又はゼオライトを特徴する特許請求の
    範囲第1項〜第3項のいずれ力11項に1  一 記載の方法。
  5. (5)酸化炭素と水素とをモル比5:1〜1:10で反
    応させる、特許請求の範囲第1項〜第4項のいずれ力)
    1項に記載の方法。
  6. (6)酸化炭素と水素との接触反応を温度120〜45
    0“C及び圧力10〜350バールで実施する、特許請
    求の範囲第1項〜第5項のいずれ力)1項に記載の方法
JP58003612A 1982-01-19 1983-01-14 オレフインの製法 Pending JPS58128327A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19823201457 DE3201457A1 (de) 1982-01-19 1982-01-19 Verfahren zur herstellung von olefinen
DE32014570 1982-01-19

Publications (1)

Publication Number Publication Date
JPS58128327A true JPS58128327A (ja) 1983-07-30

Family

ID=6153361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58003612A Pending JPS58128327A (ja) 1982-01-19 1983-01-14 オレフインの製法

Country Status (5)

Country Link
EP (1) EP0084151A1 (ja)
JP (1) JPS58128327A (ja)
AU (1) AU1056783A (ja)
DE (1) DE3201457A1 (ja)
ZA (1) ZA83313B (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5910526A (ja) * 1982-07-09 1984-01-20 Res Assoc Petroleum Alternat Dev<Rapad> 炭化水素類の製造方法
JP2006517254A (ja) * 2003-01-31 2006-07-20 サソル・テクノロジイ・(ピイティワイ)・リミテッド 低級オレフィンの調製のため使用可能な供給原料の調製方法および組成
JP2015515473A (ja) * 2012-04-02 2015-05-28 サウジ アラビアン オイル カンパニー 重質芳香族からのキシレンおよび軽質オレフィンの生成プロセス
WO2020116478A1 (ja) * 2018-12-03 2020-06-11 古河電気工業株式会社 炭化水素の製造装置および炭化水素の製造方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4579986A (en) * 1984-04-18 1986-04-01 Shell Oil Company Process for the preparation of hydrocarbons
CA2104044C (en) * 1992-08-25 2004-11-02 Johan W. Gosselink Process for the preparation of lower olefins
EP0584879B1 (en) * 1992-08-25 1997-10-29 Shell Internationale Researchmaatschappij B.V. Process for the preparation of lower olefins
MY134898A (en) 2002-01-25 2007-12-31 Sheel Internationale Res Mij B V Method for the preparation of lower olefines by steam cracking

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1643672A1 (de) * 1967-10-07 1971-07-01 Basf Ag Verfahren zur Herstellung von Olefin-Kohlenwasserstoffen durch thermische Spaltung
CA1062285A (en) * 1974-04-24 1979-09-11 Mobil Oil Corporation Conversion of synthesis gas to hydrocarbon mixtures
DE2527316A1 (de) * 1975-06-19 1976-12-30 Continental Oil Co Verfahren zur herstellung von aethan und/oder aethylen
NL7712952A (en) * 1977-11-24 1979-05-28 Shell Int Research Ethylene prodn. from carbon mon:oxide and hydrogen - by catalytic reaction of the feed stream and pyrolysis of the gaseous reaction prod.
ZA783466B (en) * 1978-06-16 1981-07-29 Johnson Matthey Co Ltd Hydrocarbon synthesis

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5910526A (ja) * 1982-07-09 1984-01-20 Res Assoc Petroleum Alternat Dev<Rapad> 炭化水素類の製造方法
JPH0319211B2 (ja) * 1982-07-09 1991-03-14 Shinnenryoyu Kaihatsu Gijutsu Kenkyu Kumiai
JP2006517254A (ja) * 2003-01-31 2006-07-20 サソル・テクノロジイ・(ピイティワイ)・リミテッド 低級オレフィンの調製のため使用可能な供給原料の調製方法および組成
JP2015515473A (ja) * 2012-04-02 2015-05-28 サウジ アラビアン オイル カンパニー 重質芳香族からのキシレンおよび軽質オレフィンの生成プロセス
WO2020116478A1 (ja) * 2018-12-03 2020-06-11 古河電気工業株式会社 炭化水素の製造装置および炭化水素の製造方法
JPWO2020116478A1 (ja) * 2018-12-03 2021-10-21 古河電気工業株式会社 炭化水素の製造装置および炭化水素の製造方法

Also Published As

Publication number Publication date
ZA83313B (en) 1983-11-30
EP0084151A1 (de) 1983-07-27
DE3201457A1 (de) 1983-07-28
AU1056783A (en) 1983-07-28

Similar Documents

Publication Publication Date Title
US3515514A (en) Production of hydrogen containing gases
RU2562459C2 (ru) Способ получения легких олефинов из синтез-газа
JP5518727B2 (ja) 連続的な2段階反応を利用した合成ガスからの軽質オレフィンの製造方法
US4256654A (en) Conversion of hydrogen and carbon monoxide into C1 -C4 range hydrocarbons
US4686313A (en) Low nitrogen iron-containing Fischer-Tropsch catalyst and conversion of synthesis gas therewith
US4654458A (en) Conversion of a lower alkane
US4983560A (en) Modified zeolite catalysts
JPS61167628A (ja) 炭化水素の製造方法
JPS58128327A (ja) オレフインの製法
JPH02298347A (ja) アルキル芳香族化合物の水素化脱アルキル化用触媒及び方法
US2434631A (en) Hydrolysis of acetone autocondensation products
JPS5840147A (ja) 合成ガス転化触媒及びその製法
JPS58219944A (ja) コバルトを含有する担体触媒及びその製法
DK161056B (da) Fremgangsmaade til fremstilling af en katalysator til syntesegasomdannelse og fremgangsmaade til fremstilling af carbonhydrider under anvendelse af denne katalysator
EP3023479A1 (en) Process for the deoxygenation of alcohols and use thereof
US4477592A (en) Catalyst for skeletal isomerization
JPS6055081A (ja) 芳香族炭化水素混合物の製造方法
JPH10174871A (ja) 合成ガス製造触媒及び合成ガスの製造方法
JPS61143332A (ja) 含酸素化合物の合成法
JPS5913482B2 (ja) アルデヒドよりオレフインを製造する方法
JPH0237329B2 (ja)
US2376987A (en) Preparation of butadiene
JP2644336B2 (ja) ジメチルエーテルの製造方法
JPS5867785A (ja) 炭化水素の製造方法
JPH0475903B2 (ja)