JPH11225881A - Heating cooking device - Google Patents

Heating cooking device

Info

Publication number
JPH11225881A
JPH11225881A JP3098598A JP3098598A JPH11225881A JP H11225881 A JPH11225881 A JP H11225881A JP 3098598 A JP3098598 A JP 3098598A JP 3098598 A JP3098598 A JP 3098598A JP H11225881 A JPH11225881 A JP H11225881A
Authority
JP
Japan
Prior art keywords
light
temperature
cooking device
heated
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3098598A
Other languages
Japanese (ja)
Inventor
Tadashi Miki
匡 三木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP3098598A priority Critical patent/JPH11225881A/en
Publication of JPH11225881A publication Critical patent/JPH11225881A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/06Control, e.g. of temperature, of power
    • H05B6/062Control, e.g. of temperature, of power for cooking plates or the like
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2213/00Aspects relating both to resistive heating and to induction heating, covered by H05B3/00 and H05B6/00
    • H05B2213/07Heating plates with temperature control means

Abstract

PROBLEM TO BE SOLVED: To accurately detect a temperature of an object to be heated without being affected by a radiation rate by converting a radiation rate of the object to be heated converted from an output of a light receiving means and converting a temperature of the object to be heated from a light received amount of an infrared ray sensor. SOLUTION: A computing control part 1 gives an instruction to a light emitting control circuit 4 to light a light emitting element, and light reflected in a pan bottom is received by a light receiving sensor 9, is converted into a voltage amount in a reflection detection circuit 6, and is input in the computing control part 1 to calculate a reflectance. The computing equation showing the correlation of a reflectance and an emissivity is set in the computing control part 1 in advance to convert to a emissivity using this computing equation. At the same time, infrared ray radiated from a pan bottom is received by an infrared ray sensor 8, is converted into a voltage amount in a radiation detection circuit 5, and is input in the computing control part 1. Next, temperature calculation equation and temperature calculation equation corresponding to the other emissivity are memorized in the computing control part 1 in advance to calculate a temperature of the pan bottom using this temperature calculation equation. The calculated temperature is compared with a set temperature in a heating control part 2 to increase or decrease a heating amount.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、加熱調理機器の温
度センサに関するものであり、電磁誘導式による調理器
の鍋温度検知や、電子レンジでの調理物の温度センサと
して応用することができる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a temperature sensor for a cooking appliance, and can be applied as a temperature sensor for a cooking pot using an electromagnetic induction system or as a temperature sensor for food in a microwave oven.

【0002】[0002]

【従来の技術】従来、加熱調理器では被加熱物である食
品の温度や鍋温度を温度センサにより検知することによ
り、調理の進行度合いを検知して加熱制御を行って最適
な調理具合に仕上げたり、調理物や調理器の温度が急に
上昇した場合の電源オフなどの安全対策を行っている。
2. Description of the Related Art Conventionally, in a cooking device, the temperature of a food to be heated or the temperature of a pan is detected by a temperature sensor, thereby detecting the degree of progress of cooking and performing heating control to finish to an optimum cooking condition. And take safety measures such as turning off the power when the temperature of cooked food or cooker suddenly rises.

【0003】こうした加熱調理器の温度センサとして
は、サーミスタなどの温度センサなどの熱伝導により雰
囲気温度を検出するセンサ構成が一般的であるが、放射
温度計として知られている様に、物体の発する赤外線を
瞬時に感知して温度を計測する焦電センサやサーモパイ
ルなどの赤外線センサによる放射温度方式を応用した構
成も提案されている。この赤外線センサ方式では、赤外
線が瞬時にセンサに到達するため、熱伝導により検知を
行う場合に比べ、応答性が非常に良い利点がある。
As a temperature sensor of such a heating cooker, a sensor configuration for detecting an ambient temperature by heat conduction such as a temperature sensor such as a thermistor is generally used. However, as is known as a radiation thermometer, the temperature of an object is measured. There has also been proposed a configuration in which a radiation temperature method using an infrared sensor such as a pyroelectric sensor or a thermopile for measuring a temperature by instantaneously detecting emitted infrared light is applied. In the infrared sensor method, since infrared rays reach the sensor instantaneously, there is an advantage that responsiveness is very good as compared with the case where detection is performed by heat conduction.

【0004】赤外線センサ方式における原理は、被加熱
物は温度が上昇するほど、より多くの赤外線を放出す
る。従って、この赤外線量を検出素子により、起電力の
発生量や抵抗値の変化量として検出する事により温度に
換算するものである。
The principle of the infrared sensor system is that the object to be heated emits more infrared rays as the temperature rises. Therefore, the amount of infrared rays is converted into a temperature by detecting the amount of the electromotive force or the amount of change in the resistance value by the detecting element.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、赤外線
センサ方式では、対象物からの赤外線の放射効率を示す
放射率の差が計測上の課題となる。一般には、被加熱物
の温度が同じでも放射率が高ければ放射される赤外線量
は多く、放射率が小さければ赤外線量は減少する。従っ
て、赤外線センサでは、基準量の赤外線量に比べて、温
度の低いために赤外線量が少ないのか、放射率が小さい
ため赤外線量が少ないのかを判別する方法がない。
However, in the infrared sensor system, a difference in emissivity indicating the efficiency of infrared radiation from an object is a measurement problem. Generally, even if the temperature of the object to be heated is the same, if the emissivity is high, the amount of emitted infrared light is large, and if the emissivity is small, the amount of infrared light decreases. Therefore, the infrared sensor has no method of determining whether the infrared ray amount is small due to the lower temperature or the infrared ray amount is small because the emissivity is smaller than the reference infrared ray amount.

【0006】放射温度計などの赤外線センサ方式では、
この課題に対して、予め調べて置いた放射率εをユーザ
が入力したり、対象物の基準温度での赤外線量で補正し
たり、放射率εは一定のままで計測温度は相対温度とし
て利用するなどの方法が取られていた。
In an infrared sensor system such as a radiation thermometer,
To solve this problem, the user inputs the emissivity ε that has been checked in advance, corrects it with the amount of infrared rays at the reference temperature of the object, and uses the measured temperature as a relative temperature while the emissivity ε remains constant. And other methods were taken.

【0007】しかし、測定する対象が余り変わらない監
視用などの用途ではこうした方法が使えるが、放射率は
対象物の色や材質、表面状態などにより様々に変わるた
め、調理のたびに被加熱物が千差万別に変わるような加
熱調理器では、こうした方法では実用にならなかった。
かといって、放射率を補正せずに、赤外線量から温度へ
の換算を行えば、検知温度は全くズレてしまうといった
問題が発生する。
[0007] However, such a method can be used in applications such as monitoring where the object to be measured does not change much, but the emissivity changes variously depending on the color, material and surface condition of the object. However, such a method has not been practical in a heating cooker that varies in every way.
However, if the conversion from the amount of infrared rays to the temperature is performed without correcting the emissivity, there arises a problem that the detected temperature is completely shifted.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するため
に本発明は、赤外線センサにより調理物や鍋などの被加
熱物の温度を計測する加熱調理器において、前記被加熱
物に対して投光する発光手段と、前記被加熱物からの反
射光を受光する受光手段を備え、前記受光手段の出力か
ら換算された前記被加熱物の放射率、及び前記赤外線セ
ンサの受光量から前記被加熱物の温度を換算してなるも
のである。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention relates to a heating cooker for measuring the temperature of a heated object such as a cooking object or a pan using an infrared sensor. A light emitting unit that emits light; and a light receiving unit that receives light reflected from the object to be heated. The emissivity of the object to be heated converted from the output of the light receiving unit and the amount of light received by the infrared sensor are used to determine whether the object is heated. It is obtained by converting the temperature of an object.

【0009】[0009]

【発明の実施の形態】請求項1記載の発明では、発光手
段から被加熱物で反射した反射光を受光手段で検出する
ことにより、被加熱物の温度測定部位の反射率を測定
し、予めプログラム等しておいた反射率と放射率の換算
式により被加熱物の放射率を随時測定し、この放射率を
用いて赤外線センサの検知温度を補正することにより、
被加熱物の放射率に影響されない正確な温度検知を行う
ものである。即ち、本願発明は、酸化金属表面など熱が
透過しない物質のときに、物質の放射率εと反射率Rの
間に、ε=1―Rの関係が成立すること(参考文献「赤
外線工学」久野治義著、電子情報通信学会編)に着眼し
たものであり、本願発明の対象の如く、取換え可能で、
かつ鍋底等の形状が比較的同一な部分の温度検出に上記
関係を利用し、従来為し得なかった迅速かつ正確な温度
検出を可能としたものである。
According to the first aspect of the present invention, the reflectance of the temperature measuring portion of the object to be heated is measured by detecting the light reflected by the object to be heated from the light emitting means by the light receiving means. By measuring the emissivity of the object to be heated from time to time using the reflectance and emissivity conversion formula that was programmed, and using this emissivity to correct the detection temperature of the infrared sensor,
This is to perform accurate temperature detection that is not affected by the emissivity of the object to be heated. That is, according to the present invention, when a substance that does not transmit heat, such as a metal oxide surface, a relation of ε = 1−R is established between the emissivity ε and the reflectance R of the substance (reference document “Infrared Engineering”). Haruyoshi Kuno, edited by the Institute of Electronics, Information and Communication Engineers).
In addition, the above-described relationship is used for temperature detection of a portion having a relatively identical shape such as a pan bottom, thereby enabling quick and accurate temperature detection that could not be performed conventionally.

【0010】請求項2記載の発明では、反射光の波長と
して、600nm〜1000nmの波長を利用すること
により、被加熱物の色や外光などの影響を低減でき、L
EDなどの光源を使って反射率の測定できる方式となっ
ているものである。
According to the second aspect of the present invention, by using a wavelength of 600 nm to 1000 nm as the wavelength of the reflected light, the influence of the color of the object to be heated and external light can be reduced.
This is a method in which the reflectance can be measured using a light source such as an ED.

【0011】請求項3記載の発明では、反射光の波長域
として、第2の発明よりも更に波長の長い1000nm
〜2000nmの近赤外の波長を利用することにより、
被加熱物の色や外光などの影響を更に低減でき、より正
確な反射率の測定ができる方式となっているものであ
る。
According to the third aspect of the invention, the reflected light has a wavelength range of 1000 nm longer than that of the second aspect of the invention.
By utilizing near infrared wavelengths of ~ 2000 nm,
In this method, the influence of the color of the object to be heated and external light can be further reduced, and the reflectance can be measured more accurately.

【0012】請求項4記載の発明では、反射光の波長と
して、第3の発明よりも更に赤外線センサの波長に近い
2000nm以上の赤外線の波長領域を利用することに
より、赤外線センサの受光する赤外線波長域の放射率と
非常に相関の高い換算のできる方式になっているもので
ある。
According to the fourth aspect of the present invention, the wavelength of the infrared light received by the infrared sensor is used as the wavelength of the reflected light by using an infrared wavelength range of 2000 nm or more closer to the wavelength of the infrared sensor than the third invention. It is a method that can perform conversion with a very high correlation with the emissivity of the area.

【0013】請求項5記載の発明では、反射率の測定波
長の分光手段として、フォトトランジスタなどの受光セ
ンサ自体の受光感度波長域を使って分光することによ
り、簡易な構成で波長域の限定ができ、反射率の測定が
可能になっているものである。
According to the fifth aspect of the present invention, the spectral range is measured using a light receiving sensitivity wavelength range of the light receiving sensor itself such as a phototransistor as a spectroscopic means of the wavelength for measuring the reflectance, thereby limiting the wavelength range with a simple configuration. It is possible to measure the reflectance.

【0014】請求項6記載の発明では、反射率の測定波
長の分光手段として、発光手段にLEDまたはレーザな
どの狭波長域の光源を使用することにより、簡易な構成
で波長域の限定ができ、反射率の測定が可能になってい
るものである。
According to the sixth aspect of the present invention, the wavelength range can be limited with a simple configuration by using a light source having a narrow wavelength range such as an LED or a laser as the light emitting means as the spectral range measuring means for the reflectance measurement wavelength. And the reflectance can be measured.

【0015】請求項7記載の発明では、反射率の測定波
長の分光手段として、一定波長域の波長を通過させる光
学的なバンドパスフィルタを使用することにより、より
正確な波長域の限定ができ、正確な反射率の測定が可能
になっているものである。
According to the seventh aspect of the present invention, by using an optical band-pass filter that passes a wavelength in a certain wavelength range as a spectral means for measuring the wavelength of the reflectance, a more accurate wavelength range can be defined. In this case, it is possible to accurately measure the reflectance.

【0016】[0016]

【実施例】以下に本発明の一実施例について説明する。
図1は、本発明の一実施例の構成を示すブロック図であ
り、本実施例では、電磁誘導式の調理器において鍋底温
度を検知する場合の構成例を示す。図1の1は、加熱調
理器全体の制御や温度算出の演算などを行う演算制御部
であり、マイクロコンピュータとその周辺回路から構成
される。2は演算制御部1からの指示により鍋を加熱量
の制御を行う加熱制御部であり、3はユーザからの温度
設定値や調理コースの入力操作や現在の鍋温度表示など
を行う操作表示部である。7は鍋10の反射率を検知す
るための光源であり、9は鍋底から反射してきた光を受
光する受光センサである。また、4は光源7の発光や消
灯を制御する発光制御回路であり、6は受光センサ9の
出力を検知するための反射検知回路である。8は鍋底か
らの放射される赤外線量を検知する赤外線センサであ
り、5は赤外線センサ8からの出力を検出するための放
射検知回路である。10は加熱調理器のトッププレート
であり、赤外線を透過する材質や検知部に赤外線透過材
をはめ込んだものを使用する。
An embodiment of the present invention will be described below.
FIG. 1 is a block diagram showing a configuration of one embodiment of the present invention. In this embodiment, an example of a configuration in a case of detecting a pot bottom temperature in an electromagnetic induction type cooking device is shown. Reference numeral 1 in FIG. 1 denotes an arithmetic and control unit for controlling the entire heating cooker and calculating the temperature and the like, and includes a microcomputer and its peripheral circuits. Reference numeral 2 denotes a heating control unit for controlling the amount of heating of the pot in accordance with an instruction from the arithmetic control unit 1. Reference numeral 3 denotes an operation display unit for inputting a temperature setting value or a cooking course from a user and displaying the current pot temperature. It is. Reference numeral 7 denotes a light source for detecting the reflectance of the pot 10, and reference numeral 9 denotes a light receiving sensor that receives light reflected from the bottom of the pot. Reference numeral 4 denotes a light emission control circuit for controlling light emission and extinguishing of the light source 7, and reference numeral 6 denotes a reflection detection circuit for detecting an output of the light receiving sensor 9. Reference numeral 8 denotes an infrared sensor for detecting the amount of infrared radiation emitted from the bottom of the pot, and reference numeral 5 denotes a radiation detection circuit for detecting an output from the infrared sensor 8. Reference numeral 10 denotes a top plate of the heating cooker, which is made of a material that transmits infrared rays or one in which an infrared transmitting material is fitted in a detection unit.

【0017】また、図2は、赤外線センサ8で受光する
赤外線総量Wと、それを基に放射検知回路5および演算
制御部1で算出される換算温度Tの関係の一例を示す模
式図である。図2の21は放射率ε=1.0の場合の関係
式を示し、同様に22、23は放射率ε=0.5およびε
=0.1の場合の関係式を示している。放射率εが低い
程、同じ温度における放射割合は小さいため、同じ赤外
線総量Wが検出される場合には、対象物質の温度は放射
率εが低い程T0→T1→T2のように高いと解釈でき
ることになる。
FIG. 2 is a schematic diagram showing an example of the relationship between the total amount W of infrared light received by the infrared sensor 8 and the converted temperature T calculated by the radiation detection circuit 5 and the arithmetic and control unit 1 based on the total amount W. . 2 indicates a relational expression when emissivity ε = 1.0, and similarly, 22 and 23 indicate emissivity ε = 0.5 and ε.
The relational expression when = 0.1 is shown. The lower the emissivity ε, the lower the emissivity at the same temperature. Therefore, if the same total infrared ray W is detected, the lower the emissivity ε, the higher the temperature of the target substance is interpreted as T0 → T1 → T2. You can do it.

【0018】また、図3は、ある波長での放射率εと反
射率Rの相関の一例を表す模式図を示す。受光センサ9
の指向性や感度特性などの実験上の条件により、厳密に
はε=1―Rにはならない場合があるが、図3に示すよ
うに反射率Rが高い程放射率εは低く、反射率Rが低い
ほど放射率εは高い傾向を示す。
FIG. 3 is a schematic diagram showing an example of the correlation between the emissivity ε and the reflectance R at a certain wavelength. Light receiving sensor 9
Strictly, ε = 1−R may not be obtained depending on experimental conditions such as the directivity and sensitivity characteristics of the light emitting element. However, as shown in FIG. The emissivity ε tends to increase as R decreases.

【0019】これらの図2及び図3のグラフは演算制御
部1に演算式または換算テーブルの形で記憶し、放射率
の算出や温度の算出に使用する。
The graphs of FIGS. 2 and 3 are stored in the arithmetic and control unit 1 in the form of an arithmetic expression or a conversion table, and are used for emissivity calculation and temperature calculation.

【0020】以上の内容を使って、図1のブロック図の
概略動作を説明する。演算制御部1は発光制御回路4に
指示し発光素子を点灯し、鍋底で反射した光を受光セン
サ9で受光し反射検知回路6で電圧量に変換し、演算制
御部1に入力して反射率を算出する。演算制御部1に
は、図3の反射率と放射率の相関関係を示す演算式31
が予め設定されており、この演算式を使って放射率εに
換算する。同時に、赤外線センサ8で鍋底から放射され
る赤外線を受光し、放射検知回路5で電圧量に変換して
演算制御部1に入力する。次に、演算制御部1には予め
図2に示すような赤外線量と放射率εから温度に換算す
るための温度算出式21〜23及び他の放射率εに対応
した温度算出式を記憶させておき、この温度算出式によ
り鍋底温度を算出する。算出された温度Tは表示操作部
3でユーザ表示を行ったり、加熱制御部2で設定温度と
比較して加熱量の増減などを行う。
Using the above description, the schematic operation of the block diagram of FIG. 1 will be described. The arithmetic control unit 1 instructs the light emission control circuit 4 to turn on the light emitting element, receives the light reflected on the bottom of the pot by the light receiving sensor 9, converts it into a voltage amount by the reflection detection circuit 6, and inputs the voltage to the arithmetic control unit 1 for reflection Calculate the rate. The arithmetic control unit 1 has an arithmetic expression 31 showing the correlation between the reflectance and the emissivity in FIG.
Is set in advance, and is converted into the emissivity ε using this equation. At the same time, the infrared sensor 8 receives infrared rays emitted from the bottom of the pot, converts the infrared rays into a voltage amount by the radiation detection circuit 5, and inputs the voltage to the arithmetic and control unit 1. Next, the arithmetic and control unit 1 stores in advance temperature calculation formulas 21 to 23 for converting the infrared ray amount and the emissivity ε into a temperature as shown in FIG. 2 and other temperature calculation formulas corresponding to the emissivity ε. In advance, the pan bottom temperature is calculated using this temperature calculation formula. The calculated temperature T is displayed by the user on the display operation unit 3, or the heating control unit 2 compares the set temperature with the set temperature to increase or decrease the heating amount.

【0021】最後に、反射率を検知する波長の選出方法
について説明する。図4には、物質の放射率と波長との
関係を示す放射率の波長特性の一例を表す模式図を示
す。図4に示すように、波長により放射率の大きく替わ
る波長特性を有する物質は選択放射体と呼ばれる。物質
の赤外線放射は対象物質の温度が数百度程度の場合に
は、図4の領域IVに示す領域に相当する大体3マイクロ
メートル付近以上の波長の赤外線の占める割合が多い。
従って、反射率から放射率を補正するには、赤外線セン
サが実際に受光する領域IVでの放射率を知る必要があ
る。つまり、波長特性の全く異なる波長領域での放射率
を調べても相関は小さくなる。それならば直接に領域IV
の反射率で測定すれば良いが、この領域は対象物質の放
射する赤外線を受けるため、つまり対象物質の温度自体
の影響で反射率が正確に測定できない。
Finally, a method of selecting a wavelength for detecting the reflectance will be described. FIG. 4 is a schematic diagram illustrating an example of the wavelength characteristic of the emissivity indicating the relationship between the emissivity of the substance and the wavelength. As shown in FIG. 4, a substance having a wavelength characteristic whose emissivity largely changes depending on the wavelength is called a selective radiator. When the temperature of the target substance is about several hundred degrees, the infrared radiation of the substance has a large proportion of infrared rays having a wavelength of about 3 micrometers or more, which corresponds to the region indicated by region IV in FIG.
Therefore, in order to correct the emissivity from the reflectance, it is necessary to know the emissivity in the region IV where the infrared sensor actually receives light. That is, even if the emissivity in a wavelength region having completely different wavelength characteristics is examined, the correlation becomes small. Then directly to Region IV
However, since this region receives infrared rays radiated by the target substance, that is, the reflectivity cannot be measured accurately due to the temperature itself of the target substance.

【0022】このような状況において、どの波長を反射
率の測定波長に選べば良いかの手段としては、次の手段
が考えられる。1つは、鍋色や室内の蛍光灯からの外光
などの影響の大きい可視光領域Iを避け、領域IIに相当
する近赤外波長の反射率から放射率を推定し補正を行う
方法である。領域IIでは、対象物中の水分や対象物自体
の材質による吸収が比較的小さく、反射率がばらつく要
因を低減できる。この領域IIの受光素子としては、シリ
コン組成の受光素子やインジウムガリウム砒素インガリ
の組成の受光素子がある。特に、これらの受光素子や発
光素子は、一般の家電機器のリモコンや光通信用のデバ
イスとして広く普及しているデバイスの流用が可能なた
め、商業的な効果も期待できる。
In such a situation, the following means can be considered as means for selecting which wavelength should be selected as the wavelength for measuring the reflectance. One method is to avoid the visible light region I, which is greatly affected by pot color or external light from indoor fluorescent lamps, and to estimate and correct the emissivity from the near-infrared wavelength reflectance corresponding to region II. is there. In the region II, the absorption due to the moisture in the object or the material of the object itself is relatively small, and the factor that causes the reflectance to vary can be reduced. Examples of the light receiving element in the region II include a light receiving element having a silicon composition and a light receiving element having a composition of indium gallium arsenide ingari. In particular, since these light receiving elements and light emitting elements can be diverted to devices widely used as remote controllers for general home appliances and optical communication devices, commercial effects can be expected.

【0023】もう1つの方法は、対象領域である領域IV
では、より近い領域IIIの反射率から補正する方法であ
る。この領域IIIでは、領域IVに近い放射率を有する
上、この領域の赤外線は数千度の物質からでないと殆ど
放射されないため、対象物自体の放射する赤外線量の影
響を受けにくくなり、反射率を正確に測れる。
Another method is to use a target area IV
Then, it is a method of correcting from the reflectance of the closer region III. In this region III, it has an emissivity close to that of region IV, and since infrared light in this region is hardly emitted unless it is from a substance of several thousand degrees, it is hardly affected by the amount of infrared light emitted by the object itself, and the reflectance is high. Can be measured accurately.

【0024】なお、本実施例では鍋温度を測定する構成
を示したが、本発明の方法は電子レンジの上部に設置し
て調理食品の温度検知を行う方法も可能である。特に、
本方法は温度計測とほぼリアルタイムに放射率εを算出
するため、予めεが設定できない場合や色々な対象物を
移動させながら温度検知を行う場合に特に効果がある。
In this embodiment, the configuration for measuring the temperature of the pot is described. However, the method of the present invention may be a method in which the temperature of the cooked food is detected by installing the device on the microwave oven. Especially,
Since this method calculates emissivity ε almost in real time with temperature measurement, it is particularly effective when ε cannot be set in advance or when temperature detection is performed while moving various objects.

【0025】また、反射率を検知するための光源9から
の影響が発生する場合には、発光制御回路より、変調し
て赤外線センサの検知停止時間の間に発光するなどの時
分割で発光することにより反射センサの影響が出ないよ
うにする方法も可能である。
When an influence from the light source 9 for detecting the reflectance is generated, the light emission control circuit modulates the light and emits light in a time-sharing manner such as emitting light during the detection stop time of the infrared sensor. Thus, a method of preventing the influence of the reflection sensor from appearing is also possible.

【0026】更に、本願発明の構成は、調理分野のみな
らず、生産ラインにおける塗装工程における温度制御や
自動販売機の珈琲缶等の温度制御等への応用も考えられ
るものであり、被加熱物が取り換え可能であり、且つ取
り換えた被加熱物の反射面の形状が比較的同様な形状で
あれば、本願発明を応用することは容易である。
Further, the configuration of the present invention can be applied not only to the cooking field, but also to temperature control in a painting process in a production line, temperature control of coffee cans of a vending machine, and the like. Is replaceable, and if the shape of the reflection surface of the replaced object to be heated is relatively similar, it is easy to apply the present invention.

【0027】[0027]

【発明の効果】以上のように、請求項1記載の発明は、
赤外線センサにより調理物や鍋などの被加熱物の温度を
計測する加熱調理器において、前記被加熱物に対して投
光する発光手段と、前記被加熱物からの反射光を受光す
る受光手段を備え、前記受光手段の出力から換算された
前記被加熱物の放射率、及び前記赤外線センサの受光量
から前記被加熱物の温度を換算してなることにより、被
加熱物の放射率に影響されない正確な温度検知が可能な
温度検知センサを備えた加熱調理器を実現することが可
能となるものである。
As described above, the first aspect of the present invention provides
In a heating cooker that measures the temperature of an object to be heated such as a cooking object or a pan by an infrared sensor, a light emitting unit that emits light to the object to be heated and a light receiving unit that receives light reflected from the object to be heated are provided. The emissivity of the object to be heated converted from the output of the light receiving means, and the temperature of the object to be heated is converted from the amount of light received by the infrared sensor, so that the emissivity of the object to be heated is not affected. It is possible to realize a heating cooker provided with a temperature detection sensor capable of accurately detecting temperature.

【0028】また、請求項2記載の発明は、反射光の波
長として、600nm〜1000nmの波長を利用する
ことにより、被加熱物の色や外光などの影響を低減で
き、LEDなどの光源を使って反射率の測定できる方式
となっており、より正確な温度検知が可能な温度検知セ
ンサを備えた加熱調理器を実現することが可能となるも
のである。
According to the second aspect of the present invention, by using a wavelength of 600 nm to 1000 nm as the wavelength of the reflected light, it is possible to reduce the influence of the color of the object to be heated and external light, etc. It is a method that can measure the reflectance by using a temperature sensor, and it is possible to realize a heating cooker provided with a temperature detection sensor capable of more accurate temperature detection.

【0029】また、請求項3記載の発明は、反射光の波
長域として、第2の発明よりも更に波長の長い1000
nm〜2000nmの近赤外の波長を利用することによ
り、被加熱物の色や外光などの影響を更に低減でき、よ
り正確な反射率の測定ができる方式となっており、更に
正確な温度検知が可能な温度検知センサを備えた加熱調
理器を実現することが可能となるものである。
According to a third aspect of the present invention, the wavelength range of the reflected light is 1000, which has a longer wavelength than the second aspect.
The use of near-infrared wavelengths of from nm to 2,000 nm makes it possible to further reduce the influence of the color of the object to be heated and external light, and to measure the reflectance more accurately. It is possible to realize a heating cooker provided with a temperature detection sensor capable of detection.

【0030】また、請求項4記載の発明は、反射光の波
長として、第3の発明よりも更に赤外線センサの波長に
近い2000nm以上の赤外線の波長領域を利用するこ
とにより、赤外線センサの受光する赤外線波長域の放射
率と非常に相関の高い換算のできる方式になっており、
より正確な温度検知が可能な温度検知センサを備えた加
熱調理器を実現することが可能となるものである。
According to a fourth aspect of the present invention, the infrared light is received by the infrared sensor by using a wavelength region of 2,000 nm or more closer to the wavelength of the infrared sensor than the third invention as the wavelength of the reflected light. It is a method that can convert very high correlation with the emissivity in the infrared wavelength range,
It is possible to realize a cooking device provided with a temperature detection sensor capable of more accurate temperature detection.

【0031】また、請求項5記載の発明は、反射率の測
定波長の分光手段として、フォトトランジスタなどの受
光センサ自体の受光感度波長域を使って分光することに
より、簡易な構成で波長域の限定ができ、正確な反射率
から放射率への換算が可能な可能な温度検知センサを備
えた加熱調理器を実現することが可能となるものであ
る。
According to a fifth aspect of the present invention, the light is spectrally separated by using the light receiving sensitivity wavelength range of the light receiving sensor itself such as a phototransistor as a spectral means for measuring the reflectance measurement wavelength. It is possible to realize a heating cooker provided with a temperature detection sensor capable of being limited and capable of accurately converting reflectance to emissivity.

【0032】また、請求項6記載の発明は、反射率の測
定波長の分光手段として、発光手段にLEDまたはレー
ザなどの狭波長域の光源を使用することにより、簡易な
構成で波長域の限定ができ、正確な反射率から放射率へ
の換算が可能な可能な温度検知センサを備えた加熱調理
器を実現することが可能となるものである。
Further, the invention according to claim 6 uses a light source having a narrow wavelength range, such as an LED or a laser, as a light emitting means as a spectral wavelength measuring means of the reflectance, thereby limiting the wavelength range with a simple configuration. This makes it possible to realize a heating cooker provided with a temperature detection sensor capable of accurately converting reflectance to emissivity.

【0033】また、請求項7記載の発明は、反射率の測
定波長の分光手段として、一定波長域の波長を通過させ
る光学的なバンドパスフィルタを使用することにより、
より正確な波長域の限定ができ、より正確な反射率から
放射率への換算が可能な可能な温度検知センサを備えた
加熱調理器を実現することが可能となるものである。
According to a seventh aspect of the present invention, an optical band-pass filter that passes a wavelength in a certain wavelength range is used as a spectral unit for measuring a wavelength of reflectance.
It is possible to realize a heating cooker provided with a temperature detection sensor capable of more accurately limiting the wavelength range and capable of converting the reflectance into the emissivity more accurately.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例を示す加熱調理器のブロック
FIG. 1 is a block diagram of a cooking device showing one embodiment of the present invention.

【図2】受光赤外線量と換算温度Tの関係を放射率毎に
示した特性図
FIG. 2 is a characteristic diagram showing a relationship between a received infrared ray amount and a converted temperature T for each emissivity.

【図3】ある波長での放射率と反射率の関係を示した特
性図
FIG. 3 is a characteristic diagram showing a relationship between emissivity and reflectance at a certain wavelength.

【図4】ある物質の放射率の波長特性を示した特性図FIG. 4 is a characteristic diagram showing a wavelength characteristic of an emissivity of a certain substance.

【符号の説明】[Explanation of symbols]

1…演算制御部 2…加熱制御部 3…表示操作部 4…発光制御回路 5…放射検知回路 6…反射検知回路 7…光源 8…赤外線センサ 9…受光センサ 10…トッププレート 11…被加熱物 REFERENCE SIGNS LIST 1 arithmetic operation control unit 2 heating control unit 3 display operation unit 4 light emission control circuit 5 radiation detection circuit 6 reflection detection circuit 7 light source 8 infrared sensor 9 light receiving sensor 10 top plate 11 object to be heated

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI F24C 7/02 330 F24C 7/02 330A H05B 6/12 335 H05B 6/12 335 6/68 320 6/68 320Q ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI F24C 7/02 330 F24C 7/02 330A H05B 6/12 335 H05B 6/12 335 6/68 320 6/68 320Q

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 赤外線センサにより調理物や鍋などの被
加熱物の温度を計測する加熱調理器において、前記被加
熱物に対して投光する発光手段と、前記被加熱物からの
反射光を受光する受光手段を備え、前記受光手段の出力
から換算された前記被加熱物の放射率、及び前記赤外線
センサの受光量から前記被加熱物の温度を換算してなる
加熱調理器。
1. A heating cooker for measuring the temperature of an object to be heated such as a cooking object or a pan using an infrared sensor, wherein a light emitting means for projecting light onto the object to be heated, and a reflected light from the object to be heated. A heating cooker comprising a light receiving means for receiving light, wherein the temperature of the heated object is converted from the emissivity of the heated object converted from the output of the light receiving means and the amount of light received by the infrared sensor.
【請求項2】 反射率の測定波長として、受光手段の素
子としてシリコン組成の受光素子が利用できる600n
mから1000nm波長域を使用する請求項1記載の加
熱調理器。
2. A light receiving element having a silicon composition can be used as an element of the light receiving means for measuring a reflectance of 600 n.
The cooking device according to claim 1, wherein a wavelength range from m to 1000 nm is used.
【請求項3】 反射率の測定波長として、1000nm
から2000nm波長域を使用する請求項1記載の加熱
調理器。
3. The wavelength for measuring the reflectance is 1000 nm.
The heating cooker according to claim 1, wherein a wavelength range from 2,000 to 2,000 nm is used.
【請求項4】 反射率の測定波長として、2000nm
以上の波長域を使用する請求項1記載の加熱調理器。
4. The wavelength for measuring the reflectance is 2000 nm.
The cooking device according to claim 1, wherein the above-mentioned wavelength range is used.
【請求項5】 反射率の測定波長の分光手段として、受
光素子の受光感度波長域を使って分光する請求項1記載
の加熱調理器。
5. The cooking device according to claim 1, wherein the light is spectrally separated using a light-receiving sensitivity wavelength range of the light-receiving element as the spectral means for measuring the reflectance measurement wavelength.
【請求項6】 反射率の測定波長の分光手段として、発
光手段にLEDまたはレーザなどの狭波長域の光源を使
用することにより分光する請求項1記載の加熱調理器。
6. The cooking device according to claim 1, wherein the light is dispersed by using a light source having a narrow wavelength range such as an LED or a laser as a light emitting means as the spectral means for measuring the reflectance measurement wavelength.
【請求項7】 反射率の測定波長の分光手段として、一
定波長域の波長を通過させる光学的なバンドパスフィル
タを使用することにより分光する請求項1記載の加熱調
理器。
7. The cooking device according to claim 1, wherein the light is split by using an optical band-pass filter that passes a wavelength in a certain wavelength range as a spectroscopic means for measuring a reflectance measurement wavelength.
【請求項8】 赤外線センサが焦電センサである請求項
1記載の加熱調理器。
8. The cooking device according to claim 1, wherein the infrared sensor is a pyroelectric sensor.
【請求項9】 赤外線センサがサーモパイルである請求
項1記載の加熱調理器。
9. The cooking device according to claim 1, wherein the infrared sensor is a thermopile.
【請求項10】 加熱調理器が電磁誘導方式の調理器で
あり、被加熱物が調理鍋である請求項1記載の加熱調理
器。
10. The cooking device according to claim 1, wherein the cooking device is an electromagnetic induction type cooking device, and the object to be heated is a cooking pot.
【請求項11】 加熱調理器が電子レンジである請求項
1記載の加熱調理器。
11. The cooking device according to claim 1, wherein the cooking device is a microwave oven.
JP3098598A 1998-02-13 1998-02-13 Heating cooking device Pending JPH11225881A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3098598A JPH11225881A (en) 1998-02-13 1998-02-13 Heating cooking device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3098598A JPH11225881A (en) 1998-02-13 1998-02-13 Heating cooking device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2003004478A Division JP2003243141A (en) 2003-01-10 2003-01-10 Cooker

Publications (1)

Publication Number Publication Date
JPH11225881A true JPH11225881A (en) 1999-08-24

Family

ID=12318930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3098598A Pending JPH11225881A (en) 1998-02-13 1998-02-13 Heating cooking device

Country Status (1)

Country Link
JP (1) JPH11225881A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006004765A (en) * 2004-06-17 2006-01-05 Toshiba Corp Induction heating cooker
JP2006221950A (en) * 2005-02-10 2006-08-24 Matsushita Electric Ind Co Ltd Cooker
JP2006260940A (en) * 2005-03-17 2006-09-28 Matsushita Electric Ind Co Ltd Heating cooker
JP2006294286A (en) * 2005-04-06 2006-10-26 Matsushita Electric Ind Co Ltd Heating cooker
JP2007042484A (en) * 2005-08-04 2007-02-15 Matsushita Electric Ind Co Ltd Cooking heater
JP2007103085A (en) * 2005-09-30 2007-04-19 Toshiba Corp Heating cooker
JP2007115515A (en) * 2005-10-20 2007-05-10 Matsushita Electric Ind Co Ltd Induction heating cooking device
JP2008258181A (en) * 2008-07-31 2008-10-23 Matsushita Electric Ind Co Ltd Induction heating cooker
WO2009022475A1 (en) 2007-08-13 2009-02-19 Panasonic Corporation Induction heating cooker
JP2009170432A (en) * 2009-04-28 2009-07-30 Panasonic Corp Induction-heating cooking device
JP2009170433A (en) * 2009-04-28 2009-07-30 Panasonic Corp Induction-heating cooker
JP2009277668A (en) * 2009-08-19 2009-11-26 Panasonic Corp Cooking apparatus
JP2010175442A (en) * 2009-01-30 2010-08-12 Nippon Ceramic Co Ltd Thermopile type infrared detector
JP2010277787A (en) * 2009-05-27 2010-12-09 Mitsubishi Electric Corp Cooker
JP2014053221A (en) * 2012-09-10 2014-03-20 Hitachi Appliances Inc Induction heating cooker
JP2014152966A (en) * 2013-02-06 2014-08-25 Mitsubishi Electric Corp Heating cooker
JP2019052843A (en) * 2016-02-18 2019-04-04 マイヤー インテレクチュアル プロパティーズ リミテッド User interface for cooking system
JP2019518560A (en) * 2016-07-25 2019-07-04 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Food blender and blending method
JP2020034173A (en) * 2018-08-27 2020-03-05 リンナイ株式会社 Heating cooker

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006004765A (en) * 2004-06-17 2006-01-05 Toshiba Corp Induction heating cooker
JP4693367B2 (en) * 2004-06-17 2011-06-01 株式会社東芝 Cooker
JP2006221950A (en) * 2005-02-10 2006-08-24 Matsushita Electric Ind Co Ltd Cooker
JP4613628B2 (en) * 2005-02-10 2011-01-19 パナソニック株式会社 Cooker
JP2006260940A (en) * 2005-03-17 2006-09-28 Matsushita Electric Ind Co Ltd Heating cooker
JP4650043B2 (en) * 2005-03-17 2011-03-16 パナソニック株式会社 Cooker
JP4552735B2 (en) * 2005-04-06 2010-09-29 パナソニック株式会社 Cooker
JP2006294286A (en) * 2005-04-06 2006-10-26 Matsushita Electric Ind Co Ltd Heating cooker
JP2007042484A (en) * 2005-08-04 2007-02-15 Matsushita Electric Ind Co Ltd Cooking heater
JP2007103085A (en) * 2005-09-30 2007-04-19 Toshiba Corp Heating cooker
JP2007115515A (en) * 2005-10-20 2007-05-10 Matsushita Electric Ind Co Ltd Induction heating cooking device
WO2009022475A1 (en) 2007-08-13 2009-02-19 Panasonic Corporation Induction heating cooker
US8212192B2 (en) 2007-08-13 2012-07-03 Panasonic Corporation Induction heating cooker
JP4535177B2 (en) * 2008-07-31 2010-09-01 パナソニック株式会社 Induction heating cooker
JP2008258181A (en) * 2008-07-31 2008-10-23 Matsushita Electric Ind Co Ltd Induction heating cooker
JP2010175442A (en) * 2009-01-30 2010-08-12 Nippon Ceramic Co Ltd Thermopile type infrared detector
JP2009170433A (en) * 2009-04-28 2009-07-30 Panasonic Corp Induction-heating cooker
JP2009170432A (en) * 2009-04-28 2009-07-30 Panasonic Corp Induction-heating cooking device
JP2010277787A (en) * 2009-05-27 2010-12-09 Mitsubishi Electric Corp Cooker
JP4614008B2 (en) * 2009-08-19 2011-01-19 パナソニック株式会社 Cooker
JP2009277668A (en) * 2009-08-19 2009-11-26 Panasonic Corp Cooking apparatus
JP2014053221A (en) * 2012-09-10 2014-03-20 Hitachi Appliances Inc Induction heating cooker
JP2014152966A (en) * 2013-02-06 2014-08-25 Mitsubishi Electric Corp Heating cooker
JP2019052843A (en) * 2016-02-18 2019-04-04 マイヤー インテレクチュアル プロパティーズ リミテッド User interface for cooking system
JP2019518560A (en) * 2016-07-25 2019-07-04 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Food blender and blending method
JP2020034173A (en) * 2018-08-27 2020-03-05 リンナイ株式会社 Heating cooker

Similar Documents

Publication Publication Date Title
JPH11225881A (en) Heating cooking device
JP4123036B2 (en) Cooker
US6140617A (en) Cooktop control and monitoring system including detecting properties of a utensil through a solid-surface cooktop
US6118105A (en) Monitoring and control system for monitoring the boil state of contents of a cooking utensil
US20110198342A1 (en) Induction heating cooker
JP2002299029A (en) Induction cooker
JP2009295456A (en) Induction cooker
CN102711301B (en) Induction heating cooker
JP2003130366A (en) Heating cooker
JP2003317920A (en) Induction heating cooking device
JP2003347028A (en) Cooking device
JP2003249341A (en) Induction heating cooker
JP5341385B2 (en) Induction heating cooker
CN110848746A (en) Control method of gas stove and gas stove
JP2003243141A (en) Cooker
JP4178966B2 (en) Cooker
JP5459080B2 (en) Induction heating cooker
JP4443947B2 (en) Induction heating cooker
CN103687120B (en) Induction heating cooking instrument
JP2004241220A (en) Induction heating cooking device
JP5135386B2 (en) Induction heating cooker
JP5674894B2 (en) Induction heating cooker
JPH0650543A (en) High frequency heating device
CN110848754A (en) Control method of gas stove and gas stove
JP4301097B2 (en) Induction heating cooker

Legal Events

Date Code Title Description
A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040116

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20040402

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050620