JP2006260940A - Heating cooker - Google Patents

Heating cooker Download PDF

Info

Publication number
JP2006260940A
JP2006260940A JP2005076790A JP2005076790A JP2006260940A JP 2006260940 A JP2006260940 A JP 2006260940A JP 2005076790 A JP2005076790 A JP 2005076790A JP 2005076790 A JP2005076790 A JP 2005076790A JP 2006260940 A JP2006260940 A JP 2006260940A
Authority
JP
Japan
Prior art keywords
pan
light
top plate
heating
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005076790A
Other languages
Japanese (ja)
Other versions
JP4650043B2 (en
Inventor
Katsunori Zaizen
克徳 財前
Motonari Hirota
泉生 弘田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2005076790A priority Critical patent/JP4650043B2/en
Publication of JP2006260940A publication Critical patent/JP2006260940A/en
Application granted granted Critical
Publication of JP4650043B2 publication Critical patent/JP4650043B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/06Control, e.g. of temperature, of power
    • H05B6/062Control, e.g. of temperature, of power for cooking plates or the like
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2213/00Aspects relating both to resistive heating and to induction heating, covered by H05B3/00 and H05B6/00
    • H05B2213/07Heating plates with temperature control means

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Induction Heating Cooking Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heating cooker measuring temperature of a bottom face of a pot with good precision, so as to have an excellent cooking property. <P>SOLUTION: The heating cooker is composed of: a heating means 13 heating the pot 11 put on a top plate 10; a temperature calculation means 24 calculating the temperature of the bottom face of the pot 11 from the output of an infrared-ray sensor 14 detecting the strength of infrared-ray irradiated from the bottom face of the pot; a light emitting means 19 making near-infrared-ray incident from an end face of the top plate 10; a radiation area 21 irradiating the near-infrared-ray arranged in a heating area 20 of the top plate 10; an irradiation rate conversion means 23 converting the radiation rate of the bottom face of the pot 11 depending on the output of a reflection sensor 22 detecting the strength of the reflection from the bottom face of the pot 11, arranged at an end face facing the light emitting means 19 of the top plate 10; and a control means 25 controlling the heating means 13 according to the heat defined as an output of the temperature calculation means 24. The temperature calculation means 24 is made to correct the temperature calculated from the output of the infrared-ray sensor 14 depending on the converted radiation rate. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、加熱調理器に関するもので、特に、トッププレートに載置した鍋の底の温度の検出方法に関するものである。   The present invention relates to a cooking device, and more particularly to a method for detecting the temperature of the bottom of a pan placed on a top plate.

従来のこの種の加熱調理器として、被加熱物である鍋を載置するトッププレート裏に接触させたサーミスタなどの感温素子で鍋の底の温度を間接的に検出しているものがある。また、鍋の底から放射される赤外線をトッププレート越しに赤外線センサで検出して非接触かつ直接に鍋底の温度を検知するものもある。この方式における鍋の底の放射率の違いを補正する手段としては、鍋底に向けて照射する発光手段を設け、発光手段からの照射光が鍋底で反射した光を受光手段により受光して反射率を測定し、この反射率から換算した放射率を使って赤外線センサの赤外線量を補正することにより放射率の違いによる影響をなくしているものもある(例えば、特許文献1参照)。   As a conventional cooking device of this type, there is one that indirectly detects the temperature of the bottom of the pan with a temperature sensitive element such as a thermistor that is in contact with the back of the top plate on which the pan to be heated is placed. . In addition, there is also a type of detecting the temperature of the pan bottom directly and non-contactingly by detecting infrared rays emitted from the bottom of the pan with an infrared sensor through the top plate. As a means for correcting the difference in the emissivity of the bottom of the pot in this method, a light emitting means for irradiating the bottom of the pot is provided, and the light reflected from the light emitting means is reflected by the light receiving means to reflect the reflectance. In some cases, the influence of the difference in emissivity is eliminated by correcting the amount of infrared rays of the infrared sensor using the emissivity converted from the reflectivity (see, for example, Patent Document 1).

また、温度勾配が安定した時の感温素子の出力と赤外線センサの出力から鍋底の赤外線放射率を算出して、赤外線センサの出力を補正するようにしたものもある(例えば、特許文献2参照)。   In addition, there is also an apparatus in which the infrared emissivity of the pan bottom is calculated from the output of the temperature sensing element when the temperature gradient is stabilized and the output of the infrared sensor, and the output of the infrared sensor is corrected (for example, see Patent Document 2). ).

一般的に誘導加熱方式の加熱調理器のトッププレートには、耐熱性を有しながら強度を高めるため特殊組成のガラスを再加熱してガラス中に微細結晶を析出させた結晶化ガラス(例えば、「リシア系セラミックス」Li2O−AL2O3−SiO2)が用いられているおり、0.5μm〜2.6μmの波長の光は80%以上透過し、3〜4μmの波長の光は30%程度透過し、4μmよりも長い波長、及び、0.5μmよりも短い波長の光はほとんど通さない。   In general, the top plate of an induction heating type cooking device is a crystallized glass in which fine crystals are precipitated by reheating a glass having a special composition in order to increase strength while having heat resistance (for example, "Lithia-based ceramics" Li2O-AL2O3-SiO2) is used, light having a wavelength of 0.5 μm to 2.6 μm is transmitted by 80% or more, and light having a wavelength of 3 to 4 μm is transmitted by approximately 30%. Light having a wavelength longer than 4 μm and a wavelength shorter than 0.5 μm hardly passes.

他方、調理時の鍋2の底面温度は、約30℃〜230℃であり、この温度における単位時間当たりの総放射エネルギー量(W/m2)はステファン・ボルツマンの法則より、1.1μm〜30μmの波長帯域にあり、そのピークは4ミクロン〜10ミクロンの波長にある。   On the other hand, the bottom temperature of the pan 2 during cooking is about 30 ° C. to 230 ° C., and the total amount of radiant energy per unit time (W / m 2) at this temperature is 1.1 μm to 30 μm from Stefan-Boltzmann's law. The peak is at a wavelength of 4 to 10 microns.

図6は、上記特許文献1に記載された従来の加熱調理器を示すものである。図6に示すように、演算制御部1は発光制御回路4を制御して発光素子7を点灯し、トッププレート10に載置された鍋11の底で反射した発光素子7からの光を受光センサ9で受光し反射検知回路6で電圧量に変換し演算制御部1に入力する。この入力電圧量と演算制御部1に記憶させてある反射率と放射率の相関関係を示す演算式により、鍋11の底の放射率を算出する。   FIG. 6 shows a conventional cooking device described in Patent Document 1. As shown in FIG. 6, the arithmetic control unit 1 controls the light emission control circuit 4 to turn on the light emitting element 7, and receives the light from the light emitting element 7 reflected from the bottom of the pan 11 placed on the top plate 10. Light is received by the sensor 9, converted into a voltage amount by the reflection detection circuit 6, and input to the arithmetic control unit 1. The emissivity of the bottom of the pan 11 is calculated by an arithmetic expression indicating the correlation between the input voltage amount and the reflectance and emissivity stored in the arithmetic control unit 1.

次に、赤外線センサ8で鍋11の底から放射される赤外線を受光し、放射検知回路5で電圧量に変換して演算制御部1に入力する。この入力電圧量と同じく演算制御部1に記憶させてある赤外線量と放射率εから温度に換算するための温度算出式により鍋11の底の温度を算出する構成としている。
特開平11−225881号公報 特開2003−249341号公報
Next, infrared rays radiated from the bottom of the pan 11 are received by the infrared sensor 8, converted into a voltage amount by the radiation detection circuit 5, and input to the arithmetic control unit 1. Like the input voltage amount, the temperature of the bottom of the pan 11 is calculated by a temperature calculation formula for converting the infrared ray amount and the emissivity ε stored in the arithmetic control unit 1 into a temperature.
Japanese Patent Laid-Open No. 11-225881 JP 2003-249341 A

加熱調理器は、鍋底面の材質、形状、寸法、表面状態、反り等、反射光強度を決めるパラメータが多く、また、調理のたびにあるいは、調理中にも使用者により載置される位置がずれるので、鍋を誘導加熱する加熱コイルの中心の1ケ所で反射光強度を検知する従来の方式では、「反射光強度が大きい、従って、放射率の低い鍋底」を、「反射光強度が小さい、従って、放射率の高い鍋底」と見誤るケースがまれに存在した。   The cooking device has many parameters that determine the intensity of reflected light, such as the material, shape, dimensions, surface condition, warpage, etc. of the pan bottom, and the position where it is placed by the user every time or during cooking. Therefore, in the conventional method of detecting the reflected light intensity at one center of the heating coil for induction heating of the pan, the “reflected light intensity is high, therefore, the bottom of the pan with low emissivity” and “reflected light intensity is low”. Therefore, there were rare cases where it was mistaken for “a pan bottom with a high emissivity”.

特に、図7の鍋の底面図に示すように、鍋底中心部に、使用できる加熱源(ガス、電気コンロ、電磁調理器、ラジエントヒータやハロゲンヒータを用いた赤外線加熱調理器)や、鍋の材質等に関する情報を刻印11bを施してある鍋の場合は、刻印11b部は凹凸と埋め込まれた黒色の着色文字のため反射率が低く、刻印11bの周辺部11cはSUS鏡面で他の部分の鍋底11aより反射率が高いという特性を有しているために、正しい鍋底の放射率を算出できないという課題を有していた。   In particular, as shown in the bottom view of the pan in FIG. 7, a heating source that can be used (gas, electric stove, electromagnetic cooker, infrared heating cooker using a radiant heater or halogen heater), In the case of a pan that has been engraved with information on the material, etc., the engraved portion 11b has a low reflectance due to the embossed and embedded black colored characters, and the peripheral portion 11c of the engraved portion 11b is a SUS mirror surface with other parts. Since the reflectance is higher than that of the pan bottom 11a, there is a problem in that the correct emissivity of the pan bottom cannot be calculated.

また、誘導加熱方式やラジエントヒータ式の加熱調理器では、トッププレートを介して投光及び受光を行うために、発光手段から照射される参照光(近赤外線)、及び、鍋底からの反射光の各々15%程はトッププレートで吸収され、比較的強い反射光の成分しか検知できないため、多様な反射率に関するパラメータを持つ鍋の種類や、調理シーンの全てには対応できないといった課題があった。   In addition, in an induction heating method or a radiant heater type cooking device, in order to project and receive light through the top plate, the reference light (near infrared light) emitted from the light emitting means and the reflected light from the pan bottom About 15% of each is absorbed by the top plate, and only a relatively strong reflected light component can be detected. Therefore, there is a problem that it is not possible to deal with all kinds of pans having various parameters related to reflectance and cooking scenes.

本発明は、前記従来の課題を解決するもので、使用のたびに鍋の載置位置がずれたり、鍋底に刻印や、ヘアライン加工、リング加工、打ち込み加工があったり、特殊な鍋底表面状態であっても、鍋底の反射率を正確に測定でき、これにより算出された放射率により、非接触で精度良く鍋底の温度を検出し、良好な調理加熱制御を実現できる加熱調理器を提供することを目的とする。   The present invention solves the above-mentioned conventional problems, and the mounting position of the pan is shifted every time it is used, and there is a stamping, hairline processing, ring processing, driving-in processing on the pan bottom, in a special pan bottom surface state Even if there is, it is possible to accurately measure the reflectance of the pan bottom, and to provide a cooking device capable of detecting the temperature of the pan bottom accurately and non-contactingly and realizing good cooking and heating control by the calculated emissivity. With the goal.

前記従来の課題を解決するために、本発明の加熱調理器は、鍋を載置するトッププレートと、前記鍋を加熱する加熱手段と、前記鍋の底面から放射される赤外線強度を検知する赤外線センサと、前記赤外線センサの出力から前記鍋の底面の温度を算出する温度算出手段と、前記トッププレートの端面から近赤外線を入射する発光手段と、前記トッププレートの加熱領域内に設けられ前記近赤外線を放射する放射領域と、前記トッププレートの前記発光手段と対向する端面に設けられ前記鍋の底面からの反射光の強度を検知する反射センサと、前記反射センサの出力から前記鍋の底面の放射率を換算する放射率換算手段と、前記温度算出手段の出力と設定された火力に応じて前記加熱手段に供給する電力量を制御する制御手段とを備え、前記温度算出手段は、換算された前記放射率に基づき、前記赤外線センサの出力から算出された温度を補正するようにしたもので、鍋の底の広い範囲に渡って反射光を検出して、鍋の底面の温度を精度良く測定することができるので、加熱調理性能に優れた加熱調理器を提供できる。   In order to solve the above-described conventional problems, a heating cooker according to the present invention includes a top plate on which a pan is placed, a heating unit that heats the pan, and an infrared ray that detects infrared intensity emitted from the bottom surface of the pan. A sensor, a temperature calculating means for calculating the temperature of the bottom surface of the pan from the output of the infrared sensor, a light emitting means for injecting near infrared light from an end face of the top plate, and a heating means provided in the heating area of the top plate. A radiation area that emits infrared light; a reflection sensor that is provided on an end surface of the top plate that faces the light-emitting means; and that detects the intensity of reflected light from the bottom surface of the pan; Emissivity conversion means for converting emissivity; and control means for controlling the amount of power supplied to the heating means in accordance with the output of the temperature calculation means and a set thermal power, and the temperature The calculating means corrects the temperature calculated from the output of the infrared sensor based on the converted emissivity, detects reflected light over a wide range of the bottom of the pan, Since the temperature of the bottom surface can be accurately measured, a cooking device having excellent cooking performance can be provided.

又、本発明の加熱調理器は、鍋を載置するトッププレートと、前記鍋を加熱する加熱手段と、前記鍋の底面から放射される赤外線強度を検知する赤外線センサと、前記赤外線センサの出力から前記鍋の底面の温度を算出する温度算出手段と、前記トッププレートに当接または接着した光導入部と、前記光導入部から前記トッププレートへ入射する近赤外線を発光する発光手段と、前記トッププレートの加熱領域内に設けられ前記近赤外線を放射する放射領域と、前記発光手段と対向する位置に設けられ前記鍋の底面からの反射光を射出する光導出部と、前記光導出部から射出された前記反射光の強度を検知する反射センサと、前記反射センサの出力から前記鍋の底面の放射率を換算する放射率換算手段と、前記温度算出手段の出力と設定された火力に応じて前記加熱手段に供給する電力量を制御する制御手段とを備え、前記温度算出手段は、換算された前記放射率に基づき、前記赤外線センサの出力から算出された温度を補正するようにしたもので、近赤外線がトッププレート内を全反射により伝幡し、光量を増加させることができるので、反射光強度が上げられ、鍋底面の温度を精度良く測定することができ、それにより良好な調理加熱制御ができる加熱調理器を提供することができる。   The cooking device of the present invention includes a top plate for placing a pan, a heating means for heating the pan, an infrared sensor for detecting infrared intensity emitted from the bottom of the pan, and an output of the infrared sensor. Temperature calculating means for calculating the temperature of the bottom surface of the pan from, a light introducing part abutting or adhered to the top plate, a light emitting means for emitting near infrared light incident on the top plate from the light introducing part, From a radiation region that radiates the near infrared ray provided in a heating region of a top plate, a light derivation unit that emits reflected light from the bottom surface of the pan provided at a position facing the light emitting means, and the light derivation unit A reflection sensor for detecting the intensity of the reflected light emitted, an emissivity conversion means for converting the emissivity of the bottom surface of the pan from the output of the reflection sensor, and an output of the temperature calculation means. Control means for controlling the amount of electric power supplied to the heating means according to thermal power, and the temperature calculating means corrects the temperature calculated from the output of the infrared sensor based on the converted emissivity. The near-infrared light is transmitted through the top plate by total reflection and the amount of light can be increased, increasing the reflected light intensity and measuring the temperature at the bottom of the pan with high accuracy. It is possible to provide a heating cooker capable of good cooking heating control.

又、本発明の加熱調理器は、鍋を載置するトッププレートと、前記鍋を加熱する加熱手段と、前記鍋の底面から放射される赤外線強度を検知する赤外線センサと、前記赤外線センサの出力から前記鍋の底面の温度を算出する温度算出手段と、前記トッププレートに当接または接着した光拡散導光体と、前記拡散導光体の下面に設けた反射層と、前記光拡散導光体と前記反射層との境界面へ照射する近赤外線を発光する発光手段と、前記トッププレートの加熱領域内に設けられ前記近赤外線を放射する放射領域と、前記発光手段と対向する位置に設けられ前記鍋の底面からの反射光を射出する光導出部と、前記光導出部から射出された前記反射光の強度を検知する反射センサと、前記反射センサの出力から前記鍋の底面の放射率を換算する放射率換算手段と、前記温度算出手段の出力と設定された火力に応じて前記加熱手段に供給する電力量を制御する制御手段とを備え、前記温度算出手段は、換算された前記放射率に基づき、前記赤外線センサの出力から算出された温度を補正するようにしたもので、反射光の検出感度が上がり、より精度良く反射率を測定して鍋の底面の温度を精度良く測定することができる。   The cooking device of the present invention includes a top plate for placing a pan, a heating means for heating the pan, an infrared sensor for detecting infrared intensity emitted from the bottom of the pan, and an output of the infrared sensor. Temperature calculating means for calculating the temperature of the bottom surface of the pan, a light diffusing light guide that contacts or adheres to the top plate, a reflective layer provided on the bottom surface of the diffusing light guide, and the light diffusing light guide A light emitting means for emitting near-infrared rays to irradiate a boundary surface between the body and the reflective layer, a radiation area for emitting near-infrared rays provided in a heating area of the top plate, and a position facing the light emitting means. A light deriving unit for emitting reflected light from the bottom surface of the pan, a reflection sensor for detecting the intensity of the reflected light emitted from the light deriving unit, and an emissivity of the bottom surface of the pan from the output of the reflection sensor Convert radiation A conversion means; and a control means for controlling the amount of power supplied to the heating means in accordance with the output of the temperature calculation means and a set thermal power, the temperature calculation means based on the converted emissivity, The temperature calculated from the output of the infrared sensor is corrected, the detection sensitivity of the reflected light is increased, and the reflectance can be measured with higher accuracy, and the temperature of the bottom surface of the pan can be measured with higher accuracy.

本発明の加熱調理器は、鍋の底面の放射率を精度良く推定して、非接触で応答性の良い鍋の底面の高精度の温度測定ができるので、加熱調理性能に優れたものである。   The heating cooker of the present invention is excellent in heating cooking performance because it can accurately estimate the emissivity of the bottom of the pan and measure the temperature of the bottom of the pan that is non-contact and responsive, with high accuracy. .

第1の発明は、鍋を載置するトッププレートと、前記鍋を加熱する加熱手段と、前記鍋の底面から放射される赤外線強度を検知する赤外線センサと、前記赤外線センサの出力から前記鍋の底面の温度を算出する温度算出手段と、前記トッププレートの端面から近赤外線を入射する発光手段と、前記トッププレートの加熱領域内に設けられ前記近赤外線を放射する放射領域と、前記トッププレートの前記発光手段と対向する端面に設けられ前記鍋の底面からの反射光の強度を検知する反射センサと、前記反射センサの出力から前記鍋の底面の放射率を換算する放射率換算手段と、前記温度算出手段の出力と設定された火力に応じて前記加熱手段に供給する電力量を制御する制御手段とを備え、前記温度算出手段は、換算された前記放射率に基づき、前記赤外線センサの出力から算出された温度を補正するようにしたもので、鍋の底の広い範囲に渡って反射光を検出して、鍋の底面の温度を精度良く測定することができるので、加熱調理性能に優れた加熱調理器を提供できる。   1st invention is the top plate which mounts a pan, the heating means which heats the said pan, the infrared sensor which detects the infrared intensity radiated | emitted from the bottom face of the said pan, and the output of the said infrared sensor WHEREIN: A temperature calculating means for calculating the temperature of the bottom surface, a light emitting means for injecting near-infrared rays from an end face of the top plate, a radiation area for radiating the near-infrared rays provided in a heating area of the top plate, and the top plate A reflection sensor that is provided on an end surface facing the light emitting means and detects the intensity of reflected light from the bottom surface of the pan; an emissivity conversion unit that converts the emissivity of the bottom surface of the pan from the output of the reflection sensor; Control means for controlling the amount of power supplied to the heating means in accordance with the output of the temperature calculation means and the set thermal power, the temperature calculation means based on the converted emissivity. The temperature calculated from the output of the infrared sensor is corrected so that the reflected light can be detected over a wide range of the bottom of the pan and the temperature of the bottom of the pan can be accurately measured. A cooking device having excellent cooking performance can be provided.

第2の発明は、鍋を載置するトッププレートと、前記鍋を加熱する加熱手段と、前記鍋の底面から放射される赤外線強度を検知する赤外線センサと、前記赤外線センサの出力から前記鍋の底面の温度を算出する温度算出手段と、前記トッププレートに当接または接着した光導入部と、前記光導入部から前記トッププレートへ入射する近赤外線を発光する発光手段と、前記トッププレートの加熱領域内に設けられ前記近赤外線を放射する放射領域と、前記発光手段と対向する位置に設けられ前記鍋の底面からの反射光を射出する光導出部と、前記光導出部から射出された前記反射光の強度を検知する反射センサと、前記反射センサの出力から前記鍋の底面の放射率を換算する放射率換算手段と、前記温度算出手段の出力と設定された火力に応じて前記加熱手段に供給する電力量を制御する制御手段とを備え、前記温度算出手段は、換算された前記放射率に基づき、前記赤外線センサの出力から算出された温度を補正するようにしたもので、近赤外線がトッププレート内を全反射により伝幡し、光量を増加させることができるので、反射光強度が上げられ、鍋底面の温度を精度良く測定することができ、それにより良好な調理加熱制御ができる加熱調理器を提供することができる。   According to a second aspect of the present invention, there is provided a top plate for placing the pan, a heating means for heating the pan, an infrared sensor for detecting infrared intensity emitted from the bottom surface of the pan, and an output of the infrared sensor from the pan of the pan. A temperature calculating means for calculating the temperature of the bottom surface; a light introducing portion that contacts or adheres to the top plate; a light emitting means that emits near-infrared light incident on the top plate from the light introducing portion; and heating the top plate A radiation region that emits near-infrared rays provided in a region, a light derivation unit that emits reflected light from a bottom surface of the pan provided at a position facing the light emitting means, and the light emitted from the light derivation unit According to a reflection sensor for detecting the intensity of reflected light, emissivity conversion means for converting the emissivity of the bottom surface of the pan from the output of the reflection sensor, and the output of the temperature calculation means and the set thermal power Control means for controlling the amount of power supplied to the heating means, and the temperature calculating means corrects the temperature calculated from the output of the infrared sensor based on the converted emissivity. Because near infrared rays are transmitted through the top plate by total reflection and the amount of light can be increased, the reflected light intensity can be increased and the temperature at the bottom of the pan can be measured with high accuracy. A heating cooker that can be controlled can be provided.

第3の発明は、特に、第1又は第2の発明のトッププレートの、放射領域、近赤外線が入射する部位及び、反射光が射出する部位以外の上下両面に防汚及び反射用の材料をコーティングしたもので、反射光の検出感度が上がり、より精度良く反射率を測定して鍋の底面の温度を精度良く測定することができる。   In particular, the third invention is provided with antifouling and reflective materials on both the upper and lower surfaces of the top plate of the first or second invention other than the radiation region, the portion where the near infrared ray is incident, and the portion where the reflected light is emitted. With the coating, the detection sensitivity of reflected light is increased, and the reflectance can be measured more accurately, and the temperature of the bottom surface of the pan can be accurately measured.

第4の発明は、特に、第1又は第2の発明のトッププレートの、放射領域、近赤外線が入射する部位及び、反射光が射出する部位以外の上下両面に防汚及び反射用の金属を蒸着または印刷したもので、反射光の検出感度がさらに上がり、より精度良く反射率を測定して、鍋の底面の温度を精度良く測定することができる。   In the fourth invention, in particular, a metal for antifouling and reflection is provided on both the upper and lower surfaces of the top plate of the first or second invention other than the radiation region, the portion where the near infrared ray is incident, and the portion where the reflected light is emitted. By vapor deposition or printing, the detection sensitivity of reflected light further increases, the reflectance can be measured with higher accuracy, and the temperature of the bottom surface of the pan can be measured with higher accuracy.

第5の発明は、鍋を載置するトッププレートと、前記鍋を加熱する加熱手段と、前記鍋の底面から放射される赤外線強度を検知する赤外線センサと、前記赤外線センサの出力から前記鍋の底面の温度を算出する温度算出手段と、前記トッププレートに当接または接着した光拡散導光体と、前記拡散導光体の下面に設けた反射層と、前記光拡散導光体と前記反射層との境界面へ照射する近赤外線を発光する発光手段と、前記トッププレートの加熱領域内に設けられ前記近赤外線を放射する放射領域と、前記発光手段と対向する位置に設けられ前記鍋の底面からの反射光を射出する光導出部と、前記光導出部から射出された前記反射光の強度を検知する反射センサと、前記反射センサの出力から前記鍋の底面の放射率を換算する放射率換算手段と、前記温度算出手段の出力と設定された火力に応じて前記加熱手段に供給する電力量を制御する制御手段とを備え、前記温度算出手段は、換算された前記放射率に基づき、前記赤外線センサの出力から算出された温度を補正するようにしたもので、反射光の検出感度が上がり、より精度良く反射率を測定して、鍋の底面の温度を精度良く測定することができる。   5th invention is the top plate which mounts a pan, the heating means which heats the said pan, the infrared sensor which detects the infrared intensity radiated | emitted from the bottom face of the said pan, and the output of the said infrared sensor WHEREIN: Temperature calculating means for calculating the temperature of the bottom surface, a light diffusion light guide that is in contact with or adhered to the top plate, a reflective layer provided on the lower surface of the diffusion light guide, the light diffusion light guide and the reflection A light emitting means for emitting near infrared rays to irradiate the boundary surface with the layer, a radiation area for emitting near infrared rays provided in the heating area of the top plate, and a position of the pan provided at a position facing the light emitting means. A light deriving unit for emitting reflected light from the bottom surface, a reflection sensor for detecting the intensity of the reflected light emitted from the light deriving unit, and radiation for converting the emissivity of the bottom surface of the pan from the output of the reflection sensor Rate conversion means and Control means for controlling the amount of power supplied to the heating means in accordance with the output of the temperature calculation means and the set thermal power, the temperature calculation means based on the converted emissivity of the infrared sensor The temperature calculated from the output is corrected, the detection sensitivity of the reflected light is increased, the reflectance is measured with higher accuracy, and the temperature of the bottom surface of the pan can be measured with higher accuracy.

第6及び第7の発明は、特に、第1〜5の発明のいずれか一つの発明のトッププレートの、放射領域と、近赤外線が入射する部位及び反射光が射出する部位を囲む領域の境界部に、空気孔あるいは、屈折率を低く調整した円柱を結晶のように整然と並べたフォトニックバンドギャップを設けたもので、経路両端での光の損失が低減され、より精度良く反射率を測定して、鍋の底面の温度を精度良く測定することができる。   In particular, the sixth and seventh inventions are the boundary between the radiation region and the region surrounding the region where the near infrared ray is incident and the region where the reflected light is emitted, of the top plate of any one of the first to fifth inventions. This is a photonic band gap in which air holes or cylinders adjusted to have a low refractive index are arranged like a crystal in order to reduce the loss of light at both ends of the path and measure the reflectivity more accurately. Thus, the temperature of the bottom surface of the pan can be measured with high accuracy.

以下、本発明の実施の形態について図面を参照しながら説明する。なお、この実施の形態により本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, this invention is not limited by this embodiment.

(実施の形態1)
図1(1)は、本発明の第1の実施の形態における加熱調理器の構成を示すブロック図、(2)は、同加熱調理器の平面図である。図2は、同加熱調理器の鍋底の反射率と反射センサの出力の関係を示したグラフ図である。
(Embodiment 1)
FIG. 1 (1) is a block diagram showing a configuration of a heating cooker according to the first embodiment of the present invention, and (2) is a plan view of the heating cooker. FIG. 2 is a graph showing the relationship between the reflectance of the pan bottom of the cooking device and the output of the reflection sensor.

図1において、本実施の形態における加熱調理器は、調理物を加熱調理する鍋(被加熱物)11が載置されるトッププレート10と、加熱コイル12と、加熱コイル12に高周波電流を供給し、鍋11を誘導加熱する加熱手段13と、トッププレート10の下面に配され鍋11の底面から放射される赤外線の強度を検知する赤外線センサ14と、トッププレート10の端面から近赤外線を入射する発光手段19と、このトッププレート10上の図柄(図示せず)で示された加熱領域20内において近赤外線を上方へ放射する放射領域21と、トッププレート10の前記発光手段19と対向する端面に設けられ鍋11底面からの反射光を含んだ近赤外線強度を検知する反射センサ22と、この反射センサ22の出力から鍋11の底面の放射率を換算する放射率換算手段23と、この換算された放射率、及び前記赤外線センサ14の出力から鍋11の底面の温度を算出する温度算出手段24と、この温度算出手段24の出力に応じて前記加熱コイル12へ供給する電力量を変化させるように前記加熱手段13を制御する制御手段25と、タッチパネル方式の操作部26を備えている。   In FIG. 1, the heating cooker in the present embodiment supplies a high-frequency current to a top plate 10 on which a pan (to-be-heated object) 11 for cooking cooking is placed, a heating coil 12, and the heating coil 12. Then, the heating means 13 for induction heating the pan 11, the infrared sensor 14 that is arranged on the lower surface of the top plate 10 to detect the intensity of infrared rays emitted from the bottom surface of the pan 11, and the near infrared ray is incident from the end surface of the top plate 10. A light emitting means 19 that radiates near infrared rays upward in a heating area 20 indicated by a pattern (not shown) on the top plate 10, and the light emitting means 19 on the top plate 10. A reflection sensor 22 provided on the end face for detecting near-infrared intensity including reflected light from the bottom surface of the pan 11, and the emissivity of the bottom surface of the pan 11 from the output of the reflection sensor 22. The emissivity conversion means 23 for calculating, the temperature calculation means 24 for calculating the temperature of the bottom surface of the pan 11 from the converted emissivity and the output of the infrared sensor 14, and the output according to the output of the temperature calculation means 24 A control means 25 for controlling the heating means 13 so as to change the amount of power supplied to the heating coil 12 and a touch panel type operation unit 26 are provided.

なお、発光手段19は、加熱調理器の周囲の背景光と区別するため高周波数(キャリア周波数30kHz〜600kHz)で変調する変調手段27で駆動され、反射センサ22の出力は検波手段28で検波される。また、発光手段19及び反射センサ22とトッププレート10両端面との間には光を効率よく入射出するための光カプラ29、30が装着され、赤外線センサ14と加熱コイル12との間には電磁波による干渉を低減させるためのシールド板31が設けてある。   The light emitting means 19 is driven by a modulation means 27 that modulates at a high frequency (carrier frequency 30 kHz to 600 kHz) to distinguish it from the background light around the cooking device, and the output of the reflection sensor 22 is detected by the detection means 28. The Further, optical couplers 29 and 30 for efficiently emitting light are mounted between the light emitting means 19 and the reflection sensor 22 and both end faces of the top plate 10, and between the infrared sensor 14 and the heating coil 12. A shield plate 31 for reducing interference due to electromagnetic waves is provided.

以上のように構成された加熱調理器について、以下その動作、作用を説明する。   About the cooking-by-heating machine comprised as mentioned above, the operation | movement and an effect | action are demonstrated below.

まず、使用者が加熱領域20上に調理物を入れた鍋11を載置し、操作部26内の「入/切」キー26aを操作して“加熱モード”にすると、発光手段19がトッププレート10の端面から所定の波長の近赤外線をトッププレート10内に入射する。   First, when the user places the pan 11 with the food on the heating area 20 and operates the “ON / OFF” key 26 a in the operation unit 26 to enter the “heating mode”, the light emitting means 19 is at the top. Near infrared rays having a predetermined wavelength are incident on the top plate 10 from the end face of the plate 10.

入射した近赤外線はトッププレート10の中を直進する。そして、この光の一部は放射領域21より外部に放射する。このとき、放射領域21は直方体であるトッププレート10の一辺で、且つ、平面であり、その他の辺には光反射層32を設けてあるため放射領域21(発光面)からの光の放射は平行となりほとんど拡散しない。   The incident near infrared ray travels straight through the top plate 10. A part of this light is emitted from the radiation region 21 to the outside. At this time, the radiation region 21 is one side of the top plate 10 which is a rectangular parallelepiped and is a plane, and the light reflection layer 32 is provided on the other side, so that the radiation of light from the radiation region 21 (light emitting surface) is emitted. Parallel and hardly diffuse.

このため鍋11の底面に対して均一な照射光を得ることができる。光反射層32は、トッププレート10の表面を研磨するなどの機械的手段、または表面をエッチングするなどの化学的手段により、表面に極微細な凹凸等を設ける、あるいは、再結晶下の工程でイオン注入等により表面部の屈折率を低く調整することにより形成される。赤外線センサ14の視野部に相当するトッププレート10の下面の中央部のφ20mmの範囲には光反射層32を設けていない。そして、鍋11の底面からの反射光は放射領域21より、再び、トッププレート10に入射して、トッププレート10を伝幡する。   For this reason, uniform irradiation light can be obtained with respect to the bottom surface of the pan 11. The light reflecting layer 32 is provided with extremely fine irregularities on the surface by mechanical means such as polishing the surface of the top plate 10 or chemical means such as etching the surface, or in a process under recrystallization. It is formed by adjusting the refractive index of the surface portion to be low by ion implantation or the like. The light reflecting layer 32 is not provided in the range of φ20 mm at the center of the lower surface of the top plate 10 corresponding to the visual field of the infrared sensor 14. Then, the reflected light from the bottom surface of the pan 11 enters the top plate 10 again from the radiation region 21 and propagates through the top plate 10.

この反射光の一部と発光手段19から直進してきた伝幡光の一部と合成された光の強度を反射センサ22で検出し、検波手段28で検波して出力する。そして、放射率換算手段23がこの検波手段28の出力から、まず鍋11の底面の反射率を換算表あるいは関係式を用いて換算する。キルヒホフの法則によれば、物質の表面に到達する単位入射エネルギーのうち、固有放射率εは0<ε<1の定数で、その物質の放射の吸収率に等しい。また、不透明な(透過率α=0)物体に関しては、
放射率ε(λ)+反射率R(λ)=1 −−−−−−−−−(1)
の関係が成立する。従って、換算した反射率Rを1から引いて放射率を求めることができる。こうして算出された放射率を入力して、温度算出手段24は赤外線センサ14の出力から算出した温度値を補正演算してから出力する。
The intensity of the light combined with a part of the reflected light and a part of the transmitted light traveling straight from the light emitting means 19 is detected by the reflection sensor 22, detected by the detecting means 28 and output. Then, the emissivity conversion means 23 first converts the reflectance of the bottom surface of the pan 11 from the output of the detection means 28 using a conversion table or a relational expression. According to Kirchhoff's law, of the unit incident energy that reaches the surface of a substance, the intrinsic emissivity ε is a constant of 0 <ε <1, which is equal to the absorption rate of the substance's radiation. For opaque objects (transmittance α = 0),
Emissivity ε (λ) + reflectivity R (λ) = 1 −−−−−−−−−− (1)
The relationship is established. Therefore, the emissivity can be obtained by subtracting the converted reflectance R from 1. The emissivity calculated in this way is input, and the temperature calculation unit 24 corrects the temperature value calculated from the output of the infrared sensor 14 and outputs the corrected value.

次に、使用者が、操作部26のupキー(右矢印)、及び、downキー(左矢印)を押して設定した所望の火力となるように、制御手段25が加熱手段13を制御して加熱コイル12に所定の高周波電力を供給する。加熱コイル12に高周波電流が供給されると、加熱コイル12から誘導磁界が発せられ、トッププレート10に載置された鍋11が誘導加熱される。この熱によって鍋11の温度が上昇し、鍋11内の調理物が調理される。   Next, the control means 25 controls the heating means 13 so as to achieve the desired heating power set by the user pressing the up key (right arrow) and the down key (left arrow) of the operation unit 26, and heating is performed. A predetermined high frequency power is supplied to the coil 12. When a high frequency current is supplied to the heating coil 12, an induction magnetic field is generated from the heating coil 12, and the pan 11 placed on the top plate 10 is induction heated. The temperature of the pan 11 rises due to this heat, and the food in the pan 11 is cooked.

赤外線センサ14は、受光した赤外線のエネルギーに比例した電圧を出力するので、鍋11の温度が上昇すると、鍋11の底面からの赤外線放射強度も強くなり、赤外線センサ14が受光する赤外線エネルギー量が増え、赤外線センサ14の出力信号電圧も大きくなり、算出した温度値も大きくなる。   Since the infrared sensor 14 outputs a voltage proportional to the received infrared energy, when the temperature of the pan 11 rises, the infrared radiation intensity from the bottom surface of the pan 11 increases, and the amount of infrared energy received by the infrared sensor 14 increases. As a result, the output signal voltage of the infrared sensor 14 increases and the calculated temperature value also increases.

制御手段25は、温度算出手段24の出力する温度値を入力し、予め定められた所定の値(過昇防止温度、あるいは、沸騰温度等)以下なら加熱手段13へ加熱を指示し続ける。「入/切」キー26aで“加熱モード”が停止された場合と、温度算出手段24の出力する温度値が上記の所定値を越えた場合は、加熱手段13に加熱停止を指示することで、安全に加熱調理が行われる。   The control means 25 receives the temperature value output from the temperature calculation means 24, and continues to instruct the heating means 13 to perform heating if it is below a predetermined value (such as an over-rise prevention temperature or a boiling temperature). When the “heating mode” is stopped by the “ON / OFF” key 26a, and when the temperature value output from the temperature calculating means 24 exceeds the predetermined value, the heating means 13 is instructed to stop heating. The cooking is done safely.

以上のように、本実施の形態によれば、鍋11を載置するトッププレート10の端面から入射する発光手段19と、このトッププレート10の加熱領域20内に設けた近赤外線を放射する放射領域21と、トッププレート10の発光手段19と対向する端面に設け鍋11の底面からの反射光強度を検知する反射センサ22と、この反射センサ22の出力から鍋11の底面の放射率を換算する放射率換算手段23と、この換算された放射率、及び前記赤外線センサ14の出力から鍋11の底面の温度を算出する温度算出手段24を設けることにより、鍋11の底の正確な反射率が測定可能となり、この反射率から赤外線センサ14の視野部の放射率を精度良く推定することができる。広い放射領域21上の鍋11の底からの反射を測定することで、鍋11の底の形状や表面状態の影響を無くせ、トッププレートを介しても安定した測定を行うことができる。従って、鍋11の底の非接触で高度な温度測定が可能となり、微妙な火加減ができる加熱調理器としている。   As described above, according to the present embodiment, the light emitting means 19 that is incident from the end face of the top plate 10 on which the pan 11 is placed and the radiation that radiates near infrared rays provided in the heating region 20 of the top plate 10. A reflection sensor 22 provided on the end face of the region 21 facing the light emitting means 19 of the top plate 10 and detecting the reflected light intensity from the bottom surface of the pan 11, and the emissivity of the bottom surface of the pan 11 is converted from the output of the reflection sensor 22. By providing the emissivity conversion means 23 that performs the calculation and the temperature calculation means 24 that calculates the temperature of the bottom surface of the pan 11 from the converted emissivity and the output of the infrared sensor 14, the accurate reflectance of the bottom of the pan 11 is provided. Can be measured, and the emissivity of the field of view of the infrared sensor 14 can be accurately estimated from the reflectance. By measuring the reflection from the bottom of the pan 11 on the wide radiation area 21, the influence of the shape and surface state of the pan 11 can be eliminated, and stable measurement can be performed even through the top plate. Therefore, a high temperature measurement is possible without contact with the bottom of the pan 11, and the cooking device is capable of delicate heating.

また、本実施の形態によれば、放射領域21(発光面)から鍋11の底面に対して均一な照射光を照射することができ、鍋11の底面の広い範囲の反射光を検出するため、反射光量の鍋11までの距離に対する依存性も少なく、鍋11の底表面からの拡散反射成分も正反射成分も併せて検出できる。従って、鍋11の材質や刻印や黒色文字入れ、打ち込み等の表面状態によっては乱反射をおこしても正しい反射率を測定することができる。   Moreover, according to this Embodiment, since uniform irradiation light can be irradiated with respect to the bottom face of the pan 11 from the radiation | emission area | region 21 (light emission surface), in order to detect the reflected light of the wide range of the bottom face of the pan 11 The dependency of the amount of reflected light on the distance to the pan 11 is small, and the diffuse reflection component and the regular reflection component from the bottom surface of the pan 11 can be detected together. Therefore, the correct reflectance can be measured even if irregular reflection is caused depending on the material of the pot 11, the surface state such as engraving, black lettering, and driving.

また、本実施の形態では放射領域21の広さをφ90mm程度としているが、刻印の最大径(約60mm)より大きく、鍋11の最小外径(約150mm)より小さい値であれば良い。放射領域21上に鍋11が載置されていない状態では、入射した近赤外線の一部が放射領域21より外部上方へ放射されるため、反射センサ22で検知する光強度は非常に小さな値となる。一方、鍋11が載置されている状態では、鍋11の底が反射層の役目をするため放射領域21より外部へ放射されることはない。従って、鍋11の底の反射率に応じた光強度の変化(図2)を反射センサ22で検知することができる。   In the present embodiment, the width of the radiation region 21 is about φ90 mm, but may be a value larger than the maximum diameter (about 60 mm) of the stamp and smaller than the minimum outer diameter (about 150 mm) of the pan 11. In a state where the pan 11 is not placed on the radiation area 21, a part of the incident near infrared rays is radiated outward from the radiation area 21, so that the light intensity detected by the reflection sensor 22 is a very small value. Become. On the other hand, in the state where the pan 11 is placed, the bottom of the pan 11 serves as a reflection layer, so that it is not radiated from the radiation region 21 to the outside. Therefore, a change in light intensity according to the reflectance of the bottom of the pan 11 (FIG. 2) can be detected by the reflection sensor 22.

また、本実施の形態では、放射領域21に反射防止(AR)コーティングを施している。あるいは、結晶化熱処理の工程で、屈折率が段階的に変わるように熱処理しておくことで空気中へ近赤外線が放射しやすいようにすることもできる。   In the present embodiment, the radiation area 21 is provided with an antireflection (AR) coating. Alternatively, near infrared rays can be easily radiated into the air by heat treatment so that the refractive index changes stepwise in the crystallization heat treatment step.

また、本実施の形態例では、赤外線センサ14に、主な用途として光通信、放射温度計に使用されるPINフォトダイオード(測定波長帯域0.9〜2.6μm)を、発光手段19にリモコン用(波長帯域0.6〜0.9μm)に市販されているフォトダイオードを、反射センサ22に同じくリモコン用に市販されているフォトトランジスタを用いている。従って、赤外線センサ14により、鍋11の底の赤外線の自己放射を測定する波長帯域とは異なる波長帯において反射率を測定しているので、反射率の測定に鍋11の底からの赤外線の自己放射が影響することはない。式(1)に示すように、もし物体の放射率が波長の関数であるならば、放射率に波長依存性を示す。しかし、図2のグラフ図に示すように、一般的に家庭で使用される鍋11の赤外線センサ14の測定波長帯域での反射率と、本実施の形態における反射センサ22の検知出力との間には良好な相関関係があり、反射センサ22の検知出力から赤外線センサ14の測定波長帯域での放射率への換算を容易に行うことができる。   In this embodiment, the infrared sensor 14 is provided with a PIN photodiode (measurement wavelength band of 0.9 to 2.6 μm) used for optical communication and a radiation thermometer as a main application, and the light emitting means 19 is provided with a remote controller. A photodiode commercially available for use (wavelength band of 0.6 to 0.9 μm) is used, and a phototransistor also commercially available for remote control is used for the reflection sensor 22. Therefore, since the reflectance is measured by the infrared sensor 14 in a wavelength band different from the wavelength band in which the infrared self-emission at the bottom of the pan 11 is measured, the infrared self from the bottom of the pan 11 is measured for the reflectance. Radiation has no effect. As shown in equation (1), if the emissivity of an object is a function of wavelength, the emissivity is wavelength dependent. However, as shown in the graph of FIG. 2, between the reflectance in the measurement wavelength band of the infrared sensor 14 of the pan 11 generally used at home and the detection output of the reflection sensor 22 in the present embodiment. Have a good correlation, and conversion from the detection output of the reflection sensor 22 to the emissivity in the measurement wavelength band of the infrared sensor 14 can be easily performed.

(実施の形態2)
図3は、本発明の第2の実施の形態における加熱調理器の要部断面図を示すものである。なお、上記第1の実施の形態における加熱調理器と同一部分については、同一符号を付してその説明を省略する。
(Embodiment 2)
FIG. 3 shows a cross-sectional view of a main part of a heating cooker according to the second embodiment of the present invention. In addition, about the same part as the heating cooker in the said 1st Embodiment, the same code | symbol is attached | subjected and the description is abbreviate | omitted.

本実施の形態における加熱調理器は、図3に示すように、鍋11を載置するトッププレート10に当接または接着した光導入部35と、この光導入部35からトッププレート10へ入射する近赤外線を発光する発光手段36と、このトッププレート10の加熱領域20内に設けられこの近赤外線を放射する放射領域21と、光反射層32と、前記発光手段36と対向する位置に設け鍋11の底面からの反射光を射出する光導出部37と、この射出光強度を検知する反射センサ38と、この反射センサ38の出力から鍋11の底面の放射率を換算する放射率換算手段23を備えている。   As shown in FIG. 3, the heating cooker according to the present embodiment is incident on the top plate 10 from the light introducing portion 35 that is in contact with or bonded to the top plate 10 on which the pan 11 is placed. A light emitting means 36 that emits near infrared rays, a radiation area 21 that is provided in the heating region 20 of the top plate 10 and emits near infrared rays, a light reflecting layer 32, and a pan provided at a position facing the light emitting means 36. A light deriving unit 37 that emits reflected light from the bottom surface of 11, a reflection sensor 38 that detects the intensity of the emitted light, and an emissivity conversion means 23 that converts the emissivity of the bottom surface of the pan 11 from the output of the reflection sensor 38. It has.

以上のように構成された加熱調理器について、以下その動作、作用を説明する。   About the cooking-by-heating machine comprised as mentioned above, the operation | movement and an effect | action are demonstrated below.

まず、使用者が加熱領域20上に調理物を入れた鍋11を載置し、操作部26内の「入/切」キー26aを操作して“加熱モード”にすると、発光手段36が光導入部35から所定の波長の赤外線をトッププレート10内に入射する。入射した近赤外線はトッププレート10の中を全反射を繰り返しながら伝幡する。そして、図3(2)に示すように、鍋11が載置されていない状態では、この光の大部分は放射領域21の上面より外部に放射され、反射センサ38では検出されない。一方、図3(1)に示すように、鍋11が載置されている状態では、入射した近赤外線は放射領域21から鍋11底面へ均一に照射される。   First, when the user places the pan 11 with the food on the heating area 20 and operates the “ON / OFF” key 26 a in the operation unit 26 to enter the “heating mode”, the light emitting means 36 emits light. Infrared light having a predetermined wavelength enters the top plate 10 from the introducing portion 35. Incident near infrared rays propagate through the top plate 10 while repeating total reflection. As shown in FIG. 3 (2), in the state where the pan 11 is not placed, most of this light is radiated to the outside from the upper surface of the radiation region 21 and is not detected by the reflection sensor 38. On the other hand, as shown in FIG. 3 (1), in the state where the pan 11 is placed, the incident near-infrared rays are uniformly irradiated from the radiation region 21 to the bottom surface of the pan 11.

鍋11の底面からの反射光は放射領域21より、再び、トッププレート10に入射して、全反射を繰り返しながらトッププレート10を伝幡する(ここで、キルヒホフの法則によれば、鍋11底面の固有放射率εは0より大きく、1より小さい定数で、放射の吸収率に等しいので、鍋11の底面からの反射光強度は鍋11の底面の放射率に反比例する)。この伝幡光の強度を反射センサ22で検出し、検波手段28で検波して出力する。   Reflected light from the bottom surface of the pan 11 enters the top plate 10 again from the radiation region 21 and propagates through the top plate 10 while repeating total reflection (here, according to Kirchhoff's law, the bottom surface of the pan 11 Is a constant larger than 0 and smaller than 1 and is equal to the absorption rate of radiation, so that the reflected light intensity from the bottom surface of the pan 11 is inversely proportional to the emissivity of the bottom surface of the pan 11). The intensity of the transmitted light is detected by the reflection sensor 22, detected by the detection means 28, and output.

放射率換算手段23がまずこの検波手段28の出力から鍋11の底面の反射率Rを換算し、1から反射率Rを引くことで放射率を求める。この算出された放射率を入力して、温度算出手段24は、赤外線センサ14の出力から算出した温度値を補正演算してから出力する。   The emissivity conversion means 23 first converts the reflectance R of the bottom surface of the pan 11 from the output of the detection means 28, and subtracts the reflectance R from 1 to obtain the emissivity. The calculated emissivity is input, and the temperature calculation unit 24 corrects the temperature value calculated from the output of the infrared sensor 14 and outputs the corrected value.

以上のように、本実施の形態においては、鍋11を載置するトッププレート10に当接または接着した光導入部35と、この光導入部35からトッププレート10へ入射する近赤外線を発光する発光手段36と、このトッププレート10の加熱領域20内に設けられこの近赤外線を放射する放射領域21と、光反射層32と、前記発光手段36と対向する位置に設け鍋11の底面からの反射光を射出する光導出部37と、この射出光強度を検知する反射センサ38と、この反射センサ38の出力から鍋11の底面の放射率を換算する放射率換算手段23を設けることにより、鍋11の底の正確な反射率が測定可能となり、この反射率から赤外線センサ14の視野部の放射率を精度良く推定することができる。   As described above, in the present embodiment, the light introducing portion 35 that is in contact with or bonded to the top plate 10 on which the pan 11 is placed, and the near-infrared light incident on the top plate 10 from the light introducing portion 35 is emitted. The light emitting means 36, the radiation area 21 that is provided in the heating area 20 of the top plate 10 and emits near infrared rays, the light reflecting layer 32, and the light emitting means 36 are provided at positions facing the light emitting means 36 from the bottom surface of the pan 11. By providing a light derivation unit 37 that emits reflected light, a reflection sensor 38 that detects the intensity of the emitted light, and an emissivity conversion means 23 that converts the emissivity of the bottom surface of the pan 11 from the output of the reflection sensor 38. The accurate reflectance of the bottom of the pan 11 can be measured, and the emissivity of the field of view of the infrared sensor 14 can be accurately estimated from this reflectance.

以上のように、広い放射領域21上の鍋11の底からの反射を測定することで、鍋11の底の形状や表面状態の影響を無くし、トッププレート10を介しても安定した測定を行うことができる。従って、鍋11の底の非接触で高度な温度測定が可能となり、微妙な火加減ができる加熱調理器を提供することができる。   As described above, by measuring the reflection from the bottom of the pan 11 on the wide radiation area 21, the influence of the shape and surface state of the bottom of the pan 11 is eliminated, and stable measurement is performed even through the top plate 10. be able to. Therefore, it is possible to provide a cooking device capable of performing advanced temperature measurement without contact with the bottom of the pan 11 and capable of delicate heating and cooling.

また、本実施の形態では発光手段36をフォトダイオード、反射センサ38をフォトトランジスタとし、いずれもリモコン用に市販されている波長帯域0.6〜0.9μmのものを用いているので、安価に構成することができる。   In the present embodiment, the light emitting means 36 is a photodiode, the reflection sensor 38 is a phototransistor, and both have a wavelength band of 0.6 to 0.9 μm that is commercially available for remote control. Can be configured.

また、本実施の形態では、光反射層32は強化ガラスの再結晶工程でイオン注入等により表面部のみ屈折率を低く調整することにより形成しており、入射された近赤外線はトッププレート10内を屈折率界面における全反射により伝幡するため、反射時のエネルギーロスが非常に少ない。優秀な金属表面反射でも通常10%〜15%程度のロスをともなうので、透過率が約85%のトッププレート10内を3回も反射を繰り返しながら伝幡すると光のエネルギーは半分以下になってしまうが、屈折率界面における全反射ではそのようなことは生じず、導光体としての光効率はかなり高いものとなる。   Further, in the present embodiment, the light reflecting layer 32 is formed by adjusting the refractive index of only the surface portion by ion implantation or the like in the tempered glass recrystallization step, and the incident near infrared rays are generated in the top plate 10. Is transmitted by total reflection at the refractive index interface, so that there is very little energy loss during reflection. Even an excellent metal surface reflection usually has a loss of about 10% to 15%. Therefore, if the light is transmitted through the top plate 10 having a transmittance of about 85% while repeating the reflection three times, the light energy is reduced to less than half. However, this does not occur in total reflection at the refractive index interface, and the light efficiency as the light guide is considerably high.

また、本実施の形態では、光導入部35及び光導出部37はトッププレート10と同じ屈折率(約1.54)の材質を用い、トッププレート10に当接、または、光学接着剤により接着しているので、入射及び射出時のエネルギーロスも少なくできる。   In the present embodiment, the light introduction part 35 and the light lead-out part 37 are made of a material having the same refractive index (about 1.54) as that of the top plate 10 and are in contact with the top plate 10 or bonded with an optical adhesive. Therefore, energy loss at the time of incidence and emission can be reduced.

また、本実施の形態ではトッププレート10の上面の放射領域21、下面の赤外線センサ14の視野部と光導入部35及び光導出部37以外の上下面に、防汚・反射用の材質をコーディングしている。それにより、プレート表面が汚れにくくなり、調味料や食品等がこぼれた場合でもふき取りやすくなる。さらに、波長帯域0.9〜2.6μmにおける平均透過率を85%以上、波長帯域0.6〜0.9μmにおける平均透過率を5%未満となるように調整することにより、トッププレート10の下面の赤外線センサ14の視野部にも防汚、且つ、反射用の材質をコーディングを施すこともできる。また、放射領域21には、反射防止コーティングや、屈折率を段階的に制御しておくことで空気中へ近赤外線が放射しやすいようにすることもできる。   Further, in the present embodiment, antifouling / reflective materials are coded on the radiation area 21 on the upper surface of the top plate 10, and on the upper and lower surfaces of the infrared sensor 14 on the lower surface and on the upper and lower surfaces other than the light introducing portion 35 and the light guiding portion 37. is doing. As a result, the surface of the plate is less likely to get dirty, and even if seasonings, foods, etc. are spilled, it becomes easier to wipe off. Furthermore, by adjusting the average transmittance in the wavelength band of 0.9 to 2.6 μm to 85% or more and the average transmittance in the wavelength band of 0.6 to 0.9 μm to be less than 5%, the top plate 10 The field of view of the infrared sensor 14 on the lower surface can also be coated with antifouling and reflective material. Further, the radiation region 21 can be made easy to radiate near infrared rays into the air by controlling the antireflection coating or the refractive index stepwise.

また、トッププレート10の上面の放射領域21、下面の赤外線センサ14の視野部と光導入部35及び光導出部37以外の上下面に防汚・反射用に蒸着法により2μm以下の厚みの金属皮膜を形成するようにすれば、トッププレート10の表面が汚れにくくなり、調味料や食品等がこぼれた場合でもふき取りやすくなる。さらに、膜材質を変えることにより様々な色調を発色させることができ、また、緻密構造を有しているため、化学的耐久性に優れ、2μm以下の非常に薄い膜であっても、正反射率が高く、可視光に対する高い遮光能力を有するため、加熱調理器の内部構造を隠蔽することができ、非常に優れた機能を有するトッププレート10とすることができる。   Further, a metal having a thickness of 2 μm or less by an evaporation method for antifouling and reflection on the upper and lower surfaces of the radiation area 21 on the upper surface of the top plate 10, the visual field portion of the infrared sensor 14 on the lower surface and the light introducing portion 35 and the light guiding portion 37 If a film is formed, the surface of the top plate 10 is less likely to become dirty, and even if seasonings, foods, etc. are spilled, it is easy to wipe off. Furthermore, by changing the material of the film, various colors can be developed, and because it has a dense structure, it has excellent chemical durability, even if it is a very thin film of 2 μm or less. Since the rate is high and it has a high light shielding ability with respect to visible light, the internal structure of the cooking device can be concealed, and the top plate 10 having a very excellent function can be obtained.

なお、2μm以下の厚みのため表皮効果により体積抵抗率が高くなるため、誘導加熱を受けにくいが、所定の形状のマスクパターンで覆って蒸着することにより、うず電流を流れにくくして、さらに、誘導加熱を受けにくい構成とすることもできる。   Since the volume resistivity is increased due to the skin effect due to the thickness of 2 μm or less, it is difficult to receive induction heating, but by covering and vapor-depositing with a mask pattern of a predetermined shape, it is difficult to flow eddy current, It can also be set as the structure which is hard to receive induction heating.

また、トッププレート10の放射領域21の対向する下面に、反射ドット(図示せず)を形成することにより、入射・伝幡してきた近赤外線が反射ドットに当たり、進行方向が変わり鍋11底面へ照射されやすく、鍋11底面からの反射光も反射センサ38の方向へ進む易くすることができる。反射ドットの作り方には印刷法やインジェクション(射出成形)法などいくつかあるが、ここでは印刷法について説明する。反射ドットはチタン白(TiO2)や沈降性硫酸バリウム(BaSO4)など光学的に吸収がなく反射率の高い顔料とアクリル系バインダーを練り合わせた反射インクをスクリーン印刷法により、グラデーションパターンにしたがってトッププレート10の裏面に塗布する。反射ドットの寸法は光導出部37に近くなるに従って大きくして、より均一な照射光となるようにする。   Moreover, by forming a reflective dot (not shown) on the lower surface of the top plate 10 opposite to the radiation area 21, incident near infrared rays hit the reflective dot, the traveling direction changes, and the bottom surface of the pan 11 is irradiated. Therefore, the reflected light from the bottom surface of the pan 11 can easily travel in the direction of the reflection sensor 38. There are several ways to make reflective dots, such as a printing method and an injection (injection molding) method. Here, the printing method will be described. The reflective dot is a top plate 10 according to a gradation pattern by screen printing using a reflective ink prepared by kneading a pigment having high optical reflectance and an optically non-absorbing pigment such as titanium white (TiO2) or precipitated barium sulfate (BaSO4). Apply to the back of the. The size of the reflective dot is increased as it gets closer to the light deriving portion 37 so that the irradiation light becomes more uniform.

(実施の形態3)
図4は、本発明の第3の実施の形態における加熱調理器の要部断面図を示すものである。なお、上記実施の形態における加熱調理器と同一部分については、同一符号を付してその説明を省略する。
(Embodiment 3)
FIG. 4 shows a cross-sectional view of a main part of a heating cooker according to the third embodiment of the present invention. In addition, about the same part as the heating cooker in the said embodiment, the same code | symbol is attached | subjected and the description is abbreviate | omitted.

本実施の形態における加熱調理器の鍋11の底面の温度検出手段は、図4に示すように、鍋11を載置するトッププレートに当接または接着した光拡散導光体40と、光拡散導光体40の下面にもうけた反射シート41と、この光拡散導光体40と反射シート41との境界面に近赤外線を発光する発光手段36と、トッププレート10の加熱領域20内に設けられ近赤外線を放射する放射領域21と、前記発光手段36と対向する位置に設けられ鍋11の底面からの反射光を射出する光導出部37と、光導出部37からの射出光の強度を検知する反射センサ38と、この反射センサ38の出力から鍋11の底面の放射率を換算する放射率換算手段23で構成されている。   As shown in FIG. 4, the temperature detection means of the bottom surface of the pan 11 of the heating cooker in the present embodiment includes a light diffusion light guide 40 that is in contact with or bonded to a top plate on which the pan 11 is placed, and a light diffusion. A reflection sheet 41 provided on the lower surface of the light guide 40, a light emitting means 36 that emits near infrared light on the boundary surface between the light diffusion light guide 40 and the reflection sheet 41, and a heating area 20 of the top plate 10. A radiation region 21 that emits near infrared rays, a light derivation unit 37 that is provided at a position facing the light emitting means 36 and emits reflected light from the bottom surface of the pan 11, and an intensity of light emitted from the light derivation unit 37. A reflection sensor 38 to be detected and an emissivity conversion means 23 for converting the emissivity of the bottom surface of the pan 11 from the output of the reflection sensor 38.

以上のように構成された加熱調理器について、以下その動作、作用を説明する。   About the cooking-by-heating machine comprised as mentioned above, the operation | movement and an effect | action are demonstrated below.

まず、使用者が加熱領域20上に調理物を入れた鍋11を載置し、操作部26内の「入/切」キー26aを操作して“加熱モード”にすると、発光手段36が光拡散導光体40と反射シート41の境界面へ向けて所定の波長の赤外線を照射する。図4(1)に示すように、鍋11がトッププレート10に載置されている状態では、前記境界面で全反射した近赤外線は、放射領域21から鍋11の底面へ均一に照射される。鍋11の底面からの反射光は放射領域21より、再び、トッププレート10に入射して、全反射を繰り返しながらトッププレート10内を伝幡し光導出部37に至る。この伝幡光の強度を反射センサ22で検出し、検波手段28で検波して出力する。放射率換算手段23はまずこの検波手段28の出力から鍋11の底面の反射率Rを換算し、1から反射率Rを引くことで放射率を求める。   First, when the user places the pan 11 with the food on the heating area 20 and operates the “ON / OFF” key 26 a in the operation unit 26 to enter the “heating mode”, the light emitting means 36 emits light. Infrared rays having a predetermined wavelength are irradiated toward the boundary surface between the diffusion light guide 40 and the reflection sheet 41. As shown in FIG. 4 (1), in the state where the pan 11 is placed on the top plate 10, the near-infrared rays totally reflected at the boundary surface are uniformly irradiated from the radiation region 21 to the bottom surface of the pan 11. . Reflected light from the bottom surface of the pan 11 enters the top plate 10 again from the radiation region 21, propagates through the top plate 10 while repeating total reflection, and reaches the light outlet 37. The intensity of the transmitted light is detected by the reflection sensor 22, detected by the detection means 28, and output. The emissivity conversion means 23 first converts the reflectance R of the bottom surface of the pan 11 from the output of the detection means 28 and subtracts the reflectance R from 1 to obtain the emissivity.

この算出された放射率を入力して、温度算出手段24は赤外線センサ14の出力から算出した温度値を補正演算してから出力する。一方、鍋11から自己放射される赤外線は、特に赤外線センサ14の視野部内では、光拡散導光体40及び反射シート41に正対する方向で進む。全反射角より小さい成分の光は透過するため、鍋11から放射された赤外線は、殆ど反射されずに赤外線センサ14で検出することができる。また、図4(2)に示すように、鍋11が載置されていない状態では、光拡散導光体40と反射シート41の境界面で全反射した近赤外線の大部分は放射領域21上面より外部に放射され、反射センサ38では検出されない。   The calculated emissivity is input, and the temperature calculation means 24 corrects the temperature value calculated from the output of the infrared sensor 14 and outputs the corrected value. On the other hand, the infrared rays self-radiated from the pan 11 proceed in a direction facing the light diffusing light guide 40 and the reflection sheet 41, particularly in the field of view of the infrared sensor 14. Since light having a component smaller than the total reflection angle is transmitted, the infrared light emitted from the pan 11 can be detected by the infrared sensor 14 with almost no reflection. In addition, as shown in FIG. 4B, in the state where the pan 11 is not placed, most of the near infrared rays totally reflected by the boundary surface between the light diffusing light guide 40 and the reflection sheet 41 are the upper surface of the radiation region 21. It is emitted to the outside and is not detected by the reflection sensor 38.

以上のように、本実施の形態によれば、鍋11を載置するトッププレート10に当接または接着した光拡散導光体40と、光拡散導光体40の下面にもうけた反射シート41と、この光拡散導光体40と反射シート41との境界面に近赤外線を発光する発光手段36と、トッププレート10の加熱領域20内に設けた近赤外線の放射領域21と、前記発光手段36と対向する位置に設け鍋11の底面からの反射光を射出する光導出部37と、この射出光強度を検知する反射センサ38と、この反射センサ38の出力から鍋11の底面の放射率を換算する放射率換算手段23を設けることにより、鍋11の底の正確な反射率が測定可能となり、この反射率から赤外線センサ14の視野部の放射率を精度良く推定することができる。広い放射領域上の鍋11の底からの反射を測定することで、鍋11の底の形状や表面状態の影響を無くし、トッププレート10を介しても安定した温度測定を行うことができる。従って、鍋11の底の非接触で高度な温度測定が可能となり、微妙な火加減ができる加熱調理器を提供することができる。   As described above, according to the present embodiment, the light diffusing light guide 40 in contact with or adhering to the top plate 10 on which the pan 11 is placed, and the reflection sheet 41 provided on the lower surface of the light diffusing light guide 40. A light emitting means 36 that emits near-infrared light on the boundary surface between the light diffusing light guide 40 and the reflection sheet 41, a near-infrared radiation area 21 provided in the heating area 20 of the top plate 10, and the light emitting means. A light deriving unit 37 that emits reflected light from the bottom surface of the pan 11, a reflection sensor 38 that detects the intensity of the emitted light, and an emissivity of the bottom surface of the pan 11 from the output of the reflection sensor 38. By providing the emissivity conversion means 23 for converting the above, it becomes possible to measure the accurate reflectance of the bottom of the pan 11, and the emissivity of the field of view of the infrared sensor 14 can be accurately estimated from this reflectance. By measuring the reflection from the bottom of the pan 11 on a wide radiation area, the influence of the shape and surface state of the bottom of the pan 11 is eliminated, and stable temperature measurement can be performed even through the top plate 10. Therefore, it is possible to provide a cooking device capable of performing advanced temperature measurement without contact with the bottom of the pan 11 and capable of delicate heating and cooling.

また、本実施の形態においても、発光手段36をフォトダイオード、反射センサ38をフォトトランジスタとし、いずれもリモコン用に市販されている波長帯域0.6〜0.9μmのものを用いているので、安価に構成することができる。   Also in this embodiment, the light emitting means 36 is a photodiode, the reflection sensor 38 is a phototransistor, and both have a wavelength band of 0.6 to 0.9 μm commercially available for remote control. It can be configured at low cost.

(実施の形態4)
図5は、本発明の第4の実施の形態における加熱調理器の要部断面図とトッププレートの部分平面図である。なお、上記実施の形態における加熱調理器と同一部分については、同一符号を付してその説明を省略する。
(Embodiment 4)
FIG. 5: is principal part sectional drawing of the heating cooker in the 4th Embodiment of this invention, and the partial top view of a top plate. In addition, about the same part as the heating cooker in the said embodiment, the same code | symbol is attached | subjected and the description is abbreviate | omitted.

本実施の形態における加熱調理器の鍋11の底面の温度検出手段は、図5に示すように、鍋11を載置するトッププレート10に当接または接着した光導入部35と、この光導入部35からトッププレート10へ入射する近赤外線を発光する発光手段36と、このトッププレート10の加熱領域20内に設けられこの近赤外線を放射する放射領域21と、光反射層32と、前記発光手段36と対向する位置に設けられ鍋11の底面からの反射光を射出する光導出部37と、トッププレート10の放射領域21及び光導入・出部35、37を囲む領域の端面、及び、外周部に空気孔を結晶のように整然と並べたフォトニックバンドギャップ43と、光導出部37からの射出光の強度を検知する反射センサ38と、この反射センサ38の出力から鍋11の底面の放射率を換算する放射率換算手段23で構成している。   As shown in FIG. 5, the temperature detecting means of the bottom surface of the pan 11 of the heating cooker in the present embodiment includes a light introducing portion 35 that contacts or adheres to the top plate 10 on which the pan 11 is placed, and this light introducing portion. A light emitting means 36 for emitting near infrared rays incident on the top plate 10 from the portion 35, a radiation region 21 provided in the heating region 20 of the top plate 10 for emitting near infrared rays, the light reflecting layer 32, and the light emission. A light deriving portion 37 that is provided at a position facing the means 36 and emits reflected light from the bottom surface of the pan 11; an end surface of a region surrounding the radiation region 21 and the light introducing / exiting portions 35 and 37 of the top plate 10; and From the photonic band gap 43 in which air holes are regularly arranged like a crystal on the outer periphery, a reflection sensor 38 for detecting the intensity of light emitted from the light derivation unit 37, and the output of the reflection sensor 38 It is constituted by emissivity conversion means 23 for converting the emissivity of the bottom surface 11.

以上のように構成された加熱調理器について、以下その動作、作用を説明する。   About the cooking-by-heating machine comprised as mentioned above, the operation | movement and an effect | action are demonstrated below.

まず、使用者が加熱領域20上に調理物を入れた鍋11を載置し、操作部26内の「入/切」キー26aを操作して“加熱モード”にすると、発光手段36が光導入部35から所定の波長の赤外線をトッププレート10内に入射する。入射した近赤外線はトッププレート10の中を全反射を繰り返しながら伝幡する。鍋11が載置されていない状態では、この光の大部分は放射領域21上面より外部に放射され、反射センサ38では検出されない。   First, when the user places the pan 11 with the food on the heating area 20 and operates the “ON / OFF” key 26 a in the operation unit 26 to enter the “heating mode”, the light emitting means 36 emits light. Infrared light having a predetermined wavelength enters the top plate 10 from the introducing portion 35. Incident near infrared rays propagate through the top plate 10 while repeating total reflection. In a state where the pan 11 is not placed, most of the light is radiated to the outside from the upper surface of the radiation region 21 and is not detected by the reflection sensor 38.

一方、図5(1)に示すように、鍋11が載置されている状態では、入射した近赤外線は放射領域21から鍋11の底面に均一に照射される。鍋11の底面からの反射光は放射領域21より、再び、トッププレート10に入射して、全反射を繰り返しながらトッププレート10を伝幡し光導出部37に至る。この伝幡光の強度を反射センサ22で検出し、検波手段28で検波して出力する。放射率換算手段23がまずこの検波手段28の出力から鍋11底面の反射率Rを換算し、1から反射率Rを引くことで放射率を求める。   On the other hand, as shown in FIG. 5 (1), in the state where the pan 11 is placed, the incident near-infrared rays are uniformly irradiated from the radiation region 21 to the bottom surface of the pan 11. Reflected light from the bottom surface of the pan 11 enters the top plate 10 again from the radiation region 21, propagates through the top plate 10 while repeating total reflection, and reaches the light outlet 37. The intensity of the transmitted light is detected by the reflection sensor 22, detected by the detection means 28, and output. The emissivity conversion means 23 first converts the reflectance R of the bottom surface of the pan 11 from the output of the detection means 28, and subtracts the reflectance R from 1 to obtain the emissivity.

この算出された放射率を入力して、温度算出手段24は赤外線センサ14の出力から算出した温度値を補正演算してから出力する。また、図5(2)に示すように、フォトニックバンドギャップ43を外周部に設けているので、反射センサ38の方向以外の断面方向へ進む近赤外線もフォトニックバンドギャップ43で全反射され、反射センサ38の方向へ戻るため、反射センサ38での受光量が増加し、検出感度が向上する。   The calculated emissivity is input, and the temperature calculation means 24 corrects the temperature value calculated from the output of the infrared sensor 14 and outputs the corrected value. Further, as shown in FIG. 5 (2), since the photonic band gap 43 is provided on the outer peripheral portion, near infrared rays traveling in the cross-sectional direction other than the direction of the reflection sensor 38 are also totally reflected by the photonic band gap 43. Since it returns to the direction of the reflection sensor 38, the amount of light received by the reflection sensor 38 increases, and the detection sensitivity is improved.

以上のように、本実施の形態によれば、鍋11を載置するトッププレート10に当接または接着した光導入部35と、この光導入部35からトッププレート10へ入射する近赤外線を発光する発光手段36と、このトッププレート10の加熱領域20内に設けたこの近赤外線の放射領域21と、光反射層32と、前記発光手段36と対向する位置に設け鍋11の底面からの反射光を射出する光導出部37と、トッププレート10の放射領域21及び光導入・出部35、37を囲む領域の端面、及び、外周部に空気孔を結晶のように整然と並べたフォトニックバンドギャップ43と、射出光強度を検知する反射センサ38と、この反射センサ38の出力から鍋11の底面の放射率を換算する放射率換算手段23を設けることにより、鍋11の底の正確な反射率が測定可能となり、この反射率から赤外線センサ14の視野部の放射率を精度良く推定することができる。   As described above, according to the present embodiment, the light introducing portion 35 that is in contact with or bonded to the top plate 10 on which the pan 11 is placed, and the near infrared ray that is incident on the top plate 10 from the light introducing portion 35 is emitted. The light emitting means 36 that performs this, the near-infrared radiation area 21 provided in the heating area 20 of the top plate 10, the light reflecting layer 32, and the reflection from the bottom surface of the pan 11 that is provided at a position facing the light emitting means 36. A photonic band in which air holes are neatly arranged like a crystal in a light deriving portion 37 that emits light, an end surface of a region surrounding the radiation region 21 and the light introducing / exiting portions 35 and 37 of the top plate 10, and an outer peripheral portion. By providing the gap 43, the reflection sensor 38 for detecting the intensity of the emitted light, and the emissivity conversion means 23 for converting the emissivity of the bottom surface of the pan 11 from the output of the reflection sensor 38, the bottom of the pan 11 is provided. The exact reflectance becomes measurable, the emissivity of the field of view of the infrared sensor 14 can be accurately estimated from this reflectance.

以上のように、広い放射領域21上の鍋11の底からの反射を測定することで、鍋11の底の形状や表面状態の影響を無くし、トッププレート10を介しても安定した測定を行うことができる。従って、鍋11の底の非接触で高度な温度測定が可能となり、微妙な火加減ができる加熱調理器を提供することができる。   As described above, by measuring the reflection from the bottom of the pan 11 on the wide radiation area 21, the influence of the shape and surface state of the bottom of the pan 11 is eliminated, and stable measurement is performed even through the top plate 10. be able to. Therefore, it is possible to provide a cooking device capable of performing advanced temperature measurement without contact with the bottom of the pan 11 and capable of delicate heating and cooling.

なお、上記実施の形態では、空気孔を結晶のように整然と並べたフォトニックバンドギャップを用いたが、強化ガラスの再結晶工程でイオン注入等により屈折率を低く調整した円柱を結晶のように整然と並べたフォトニックバンドギャップを用いてもよく、入射された近赤外線はフォトニックバンドギャップの屈折率界面における全反射により伝幡するため、反射時のエネルギーロスが非常に少なく、強度を低下させることなく、導光体としての光効率をかなり高いものとすることができる。   In the above embodiment, a photonic band gap in which air holes are arranged in an orderly manner like a crystal is used, but a cylinder whose refractive index is adjusted to be low by ion implantation or the like in a recrystallization process of tempered glass is like a crystal. Orderly arranged photonic band gaps may be used, and incident near infrared rays are propagated by total reflection at the refractive index interface of the photonic band gap, so there is very little energy loss during reflection, reducing the intensity The light efficiency as a light guide can be made considerably high.

以上のように、本発明にかかる加熱調理器は、非接触で鍋の底の温度を精度よく検出し加熱調理性能に優れたもので、加熱調理器に限らず、放射温度計を搭載した様々な機器にも適用できる。   As described above, the cooking device according to the present invention is a non-contact type that accurately detects the temperature of the bottom of the pan and has excellent cooking performance, and is not limited to the cooking device. It can be applied to various devices.

(1)本発明の実施の形態1における加熱調理器の構成を示すブロック図(2)同加熱調理器の平面図(1) Block diagram showing the configuration of the cooking device according to Embodiment 1 of the present invention (2) Plan view of the cooking device 鍋の底の反射率と反射センサの出力の関係を示すグラフA graph showing the relationship between the reflectance of the bottom of the pan and the output of the reflection sensor (1)本発明の実施の形態2における加熱調理器の鍋が載置された状態を示す要部断面図(2)同加熱調理器の鍋が載置されていない状態を示す要部断面図(1) Main part sectional drawing which shows the state in which the pan of the heating cooker in Embodiment 2 of this invention was mounted (2) Main part sectional drawing which shows the state in which the pan of the same heating cooker is not mounted (1)本発明の実施の形態3における加熱調理器の鍋が載置された状態を示す要部断面図(2)同加熱調理器の鍋が載置されていない状態を示す要部断面図(1) principal part sectional view showing the state where the pan of the heating cooker in Embodiment 3 of the present invention was placed (2) principal part sectional view showing the state where the pan of the heating cooker is not placed (1)本発明の実施の形態4における加熱調理器の要部断面図(2)同加熱調理器のトッププレートの部分平面図(1) Main part sectional drawing of the heating cooker in Embodiment 4 of this invention (2) Partial top view of the top plate of the heating cooker 従来の加熱調理器の構成を示すブロック図Block diagram showing the configuration of a conventional cooking device 鍋の底面図Bottom view of pan

符号の説明Explanation of symbols

10 トッププレート
11 鍋
13 加熱手段
14 赤外線センサ
19 発光手段
20 加熱領域
21 放射領域
22 反射センサ
23 放射率換算手段
24 温度算出手段
25 制御手段
35 光導入部
37 光導出部
40 光拡散導光板
41 反射シート(反射層)
43 フォトニックバンドギャップ
DESCRIPTION OF SYMBOLS 10 Top plate 11 Pan 13 Heating means 14 Infrared sensor 19 Light emission means 20 Heating area 21 Radiation area 22 Reflection sensor 23 Emissivity conversion means 24 Temperature calculation means 25 Control means 35 Light introduction part 37 Light extraction part 40 Light diffusion light guide plate 41 Reflection Sheet (reflection layer)
43 photonic band gap

Claims (7)

鍋を載置するトッププレートと、前記鍋を加熱する加熱手段と、前記鍋の底面から放射される赤外線強度を検知する赤外線センサと、前記赤外線センサの出力から前記鍋の底面の温度を算出する温度算出手段と、前記トッププレートの端面から近赤外線を入射する発光手段と、前記トッププレートの加熱領域内に設けられ前記近赤外線を放射する放射領域と、前記トッププレートの前記発光手段と対向する端面に設けられ前記鍋の底面からの反射光の強度を検知する反射センサと、前記反射センサの出力から前記鍋の底面の放射率を換算する放射率換算手段と、前記温度算出手段の出力と設定された火力に応じて前記加熱手段に供給する電力量を制御する制御手段とを備え、前記温度算出手段は、換算された前記放射率に基づき、前記赤外線センサの出力から算出された温度を補正するようにした加熱調理器。 A top plate on which the pan is placed, heating means for heating the pan, an infrared sensor for detecting the infrared intensity emitted from the bottom surface of the pan, and the temperature of the bottom surface of the pan are calculated from the output of the infrared sensor. Temperature calculating means, light emitting means for injecting near infrared rays from the end face of the top plate, radiation area provided in the heating area of the top plate for emitting the near infrared rays, and the light emitting means of the top plate are opposed to the light emitting means. A reflection sensor that is provided on the end face and detects the intensity of reflected light from the bottom surface of the pan; an emissivity conversion unit that converts the emissivity of the bottom surface of the pan from the output of the reflection sensor; and an output of the temperature calculation unit. Control means for controlling the amount of electric power supplied to the heating means in accordance with the set thermal power, the temperature calculating means based on the converted emissivity, the infrared Heating cooker so as to correct the temperature calculated from the output of the capacitor. 鍋を載置するトッププレートと、前記鍋を加熱する加熱手段と、前記鍋の底面から放射される赤外線強度を検知する赤外線センサと、前記赤外線センサの出力から前記鍋の底面の温度を算出する温度算出手段と、前記トッププレートに当接または接着した光導入部と、前記光導入部から前記トッププレートへ入射する近赤外線を発光する発光手段と、前記トッププレートの加熱領域内に設けられ前記近赤外線を放射する放射領域と、前記発光手段と対向する位置に設けられ前記鍋の底面からの反射光を射出する光導出部と、前記光導出部から射出された前記反射光の強度を検知する反射センサと、前記反射センサの出力から前記鍋の底面の放射率を換算する放射率換算手段と、前記温度算出手段の出力と設定された火力に応じて前記加熱手段に供給する電力量を制御する制御手段とを備え、前記温度算出手段は、換算された前記放射率に基づき、前記赤外線センサの出力から算出された温度を補正するようにした加熱調理器。 A top plate on which the pan is placed, heating means for heating the pan, an infrared sensor for detecting the infrared intensity emitted from the bottom surface of the pan, and the temperature of the bottom surface of the pan are calculated from the output of the infrared sensor. A temperature calculating means; a light introducing portion abutting or adhering to the top plate; a light emitting means for emitting near infrared light incident on the top plate from the light introducing portion; and a heating area of the top plate, A radiation region that emits near infrared rays, a light derivation unit that emits reflected light from the bottom surface of the pan provided at a position facing the light emitting means, and detects the intensity of the reflected light emitted from the light derivation unit A reflection sensor, an emissivity conversion means for converting the emissivity of the bottom surface of the pan from the output of the reflection sensor, and the heating means according to the output of the temperature calculation means and the set thermal power And control means for controlling the amount of power supplied, the temperature calculation section, based on the conversion by said emissivity, heating cooker so as to correct the temperature calculated from the output of the infrared sensor. トッププレートの、放射領域、近赤外線が入射する部位及び、反射光が射出する部位以外の上下両面に防汚及び反射用の材料をコーティングした請求項1又は2に記載の加熱調理器。 The cooking device according to claim 1 or 2, wherein antifouling and reflecting materials are coated on both the upper and lower surfaces of the top plate other than the radiation region, the portion where the near infrared ray is incident, and the portion where the reflected light is emitted. トッププレートの、放射領域、近赤外線が入射する部位及び、反射光が射出する部位以外の上下両面に防汚及び反射用の金属を蒸着または印刷した請求項1又は2に記載の加熱調理器。 The cooking device according to claim 1 or 2, wherein an antifouling and reflecting metal is vapor deposited or printed on both the upper and lower surfaces of the top plate other than the radiation region, the portion where the near infrared ray is incident, and the portion where the reflected light is emitted. 鍋を載置するトッププレートと、前記鍋を加熱する加熱手段と、前記鍋の底面から放射される赤外線強度を検知する赤外線センサと、前記赤外線センサの出力から前記鍋の底面の温度を算出する温度算出手段と、前記トッププレートに当接または接着した光拡散導光体と、前記拡散導光体の下面に設けた反射層と、前記光拡散導光体と前記反射層との境界面へ照射する近赤外線を発光する発光手段と、前記トッププレートの加熱領域内に設けられ前記近赤外線を放射する放射領域と、前記発光手段と対向する位置に設けられ前記鍋の底面からの反射光を射出する光導出部と、前記光導出部から射出された前記反射光の強度を検知する反射センサと、前記反射センサの出力から前記鍋の底面の放射率を換算する放射率換算手段と、前記温度算出手段の出力と設定された火力に応じて前記加熱手段に供給する電力量を制御する制御手段とを備え、前記温度算出手段は、換算された前記放射率に基づき、前記赤外線センサの出力から算出された温度を補正するようにした加熱調理器。 A top plate on which the pan is placed, heating means for heating the pan, an infrared sensor for detecting the infrared intensity emitted from the bottom surface of the pan, and the temperature of the bottom surface of the pan are calculated from the output of the infrared sensor. To a boundary surface between the temperature diffusing light guide and the reflective layer, a temperature calculating means, a light diffusing light guide in contact with or adhering to the top plate, a reflective layer provided on the lower surface of the diffusing light guide Light emitting means for emitting near infrared rays to irradiate, a radiation area for emitting near infrared rays provided in the heating area of the top plate, and reflected light from the bottom surface of the pan provided at a position facing the light emitting means. A light deriving unit for emitting, a reflection sensor for detecting the intensity of the reflected light emitted from the light deriving unit, an emissivity conversion means for converting the emissivity of the bottom surface of the pan from the output of the reflection sensor, Temperature calculation Control means for controlling the amount of power supplied to the heating means according to the output of the stage and the set thermal power, and the temperature calculation means is calculated from the output of the infrared sensor based on the converted emissivity A cooker designed to compensate for the temperature. トッププレートの、放射領域と、近赤外線が入射する部位及び反射光が射出する部位を囲む領域の境界部に、空気孔を結晶のように整然と並べたフォトニックバンドギャップを設けた請求項1〜5のいずれか1項に記載の加熱調理器。 A photonic band gap in which air holes are arranged in an orderly manner like a crystal is provided at a boundary portion between a radiation region and a region surrounding a region where a near infrared ray is incident and a region where reflected light is emitted. The heating cooker according to any one of 5. トッププレートの、放射領域と、近赤外線が入射する部位及び反射光が射出する部位を囲む領域の境界部に、屈折率を低く調整した円柱を結晶のように整然と並べたフォトニックバンドギャップを設けた請求項1〜5のいずれか1項に記載の加熱調理器。 A photonic band gap in which cylinders adjusted to have a low refractive index are neatly arranged like a crystal at the boundary between the radiation area of the top plate and the area surrounding the part where the near infrared ray is incident and the part where the reflected light is emitted. The cooking device according to any one of claims 1 to 5.
JP2005076790A 2005-03-17 2005-03-17 Cooker Expired - Fee Related JP4650043B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005076790A JP4650043B2 (en) 2005-03-17 2005-03-17 Cooker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005076790A JP4650043B2 (en) 2005-03-17 2005-03-17 Cooker

Publications (2)

Publication Number Publication Date
JP2006260940A true JP2006260940A (en) 2006-09-28
JP4650043B2 JP4650043B2 (en) 2011-03-16

Family

ID=37099939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005076790A Expired - Fee Related JP4650043B2 (en) 2005-03-17 2005-03-17 Cooker

Country Status (1)

Country Link
JP (1) JP4650043B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008277097A (en) * 2007-04-27 2008-11-13 Matsushita Electric Ind Co Ltd Heating cooker
JP2009153770A (en) * 2007-12-27 2009-07-16 Panasonic Corp Cooker
JP2014053221A (en) * 2012-09-10 2014-03-20 Hitachi Appliances Inc Induction heating cooker
JP2014063742A (en) * 2013-10-28 2014-04-10 Mitsubishi Electric Corp Induction heating cooker
JP2017008152A (en) * 2015-06-18 2017-01-12 パナソニックIpマネジメント株式会社 Ink and electromagnetic induction heating cooker using the same
WO2019048972A1 (en) * 2017-09-06 2019-03-14 BSH Hausgeräte GmbH Hob apparatus
CN110346405A (en) * 2018-04-03 2019-10-18 青岛海尔智能技术研发有限公司 A kind of gas-cooker anti-dry detection method, detection device and gas-cooker
CN110848749A (en) * 2018-08-21 2020-02-28 青岛海尔智能技术研发有限公司 Gas stove

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11225881A (en) * 1998-02-13 1999-08-24 Matsushita Electric Ind Co Ltd Heating cooking device
JP2002075624A (en) * 2000-08-31 2002-03-15 Matsushita Electric Ind Co Ltd Induction heating cooker

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11225881A (en) * 1998-02-13 1999-08-24 Matsushita Electric Ind Co Ltd Heating cooking device
JP2002075624A (en) * 2000-08-31 2002-03-15 Matsushita Electric Ind Co Ltd Induction heating cooker

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008277097A (en) * 2007-04-27 2008-11-13 Matsushita Electric Ind Co Ltd Heating cooker
JP2009153770A (en) * 2007-12-27 2009-07-16 Panasonic Corp Cooker
JP2014053221A (en) * 2012-09-10 2014-03-20 Hitachi Appliances Inc Induction heating cooker
JP2014063742A (en) * 2013-10-28 2014-04-10 Mitsubishi Electric Corp Induction heating cooker
JP2017008152A (en) * 2015-06-18 2017-01-12 パナソニックIpマネジメント株式会社 Ink and electromagnetic induction heating cooker using the same
WO2019048972A1 (en) * 2017-09-06 2019-03-14 BSH Hausgeräte GmbH Hob apparatus
CN110346405A (en) * 2018-04-03 2019-10-18 青岛海尔智能技术研发有限公司 A kind of gas-cooker anti-dry detection method, detection device and gas-cooker
CN110346405B (en) * 2018-04-03 2023-05-26 青岛海尔智能技术研发有限公司 Gas stove dry combustion preventing detection method, detection device and gas stove
CN110848749A (en) * 2018-08-21 2020-02-28 青岛海尔智能技术研发有限公司 Gas stove

Also Published As

Publication number Publication date
JP4650043B2 (en) 2011-03-16

Similar Documents

Publication Publication Date Title
JP4650043B2 (en) Cooker
JP4552735B2 (en) Cooker
JP4613628B2 (en) Cooker
JP2002075624A (en) Induction heating cooker
JP4123036B2 (en) Cooker
JP2017135107A (en) Cooker with glass ceramic cooking plate
JP5728413B2 (en) Induction heating cooker
JP5537505B2 (en) Induction heating cooker
JP2008277097A (en) Heating cooker
JP2007115420A (en) Induction heating cooker
JP2003347028A (en) Cooking device
JP4752386B2 (en) Cooker
JP5274513B2 (en) Induction heating cooker
JP4894209B2 (en) Cooker
JP5459080B2 (en) Induction heating cooker
JP5401564B2 (en) Induction heating cooker
JP4443947B2 (en) Induction heating cooker
JP2010244999A (en) Induction heating cooker
JP4614008B2 (en) Cooker
JP4989690B2 (en) Induction heating cooker
JP4151639B2 (en) Induction heating cooker
JP2016091868A (en) Induction heating cooker
JP3733892B2 (en) Electromagnetic cooker
JP5735080B2 (en) Induction heating cooker
JP5891151B2 (en) Induction heating cooker

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080215

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20080312

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101116

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101129

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees