JP2002299029A - Induction cooker - Google Patents

Induction cooker

Info

Publication number
JP2002299029A
JP2002299029A JP2001095438A JP2001095438A JP2002299029A JP 2002299029 A JP2002299029 A JP 2002299029A JP 2001095438 A JP2001095438 A JP 2001095438A JP 2001095438 A JP2001095438 A JP 2001095438A JP 2002299029 A JP2002299029 A JP 2002299029A
Authority
JP
Japan
Prior art keywords
temperature
detected
heated
infrared
emissivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001095438A
Other languages
Japanese (ja)
Other versions
JP2002299029A5 (en
JP3990116B2 (en
Inventor
Satoshi Nomura
智 野村
Takashi Sato
隆志 佐藤
Koichi Kinoshita
広一 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Home Appliance Co Ltd
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Home Appliance Co Ltd
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Home Appliance Co Ltd, Mitsubishi Electric Corp filed Critical Mitsubishi Electric Home Appliance Co Ltd
Priority to JP2001095438A priority Critical patent/JP3990116B2/en
Publication of JP2002299029A publication Critical patent/JP2002299029A/en
Publication of JP2002299029A5 publication Critical patent/JP2002299029A5/ja
Application granted granted Critical
Publication of JP3990116B2 publication Critical patent/JP3990116B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/06Control, e.g. of temperature, of power
    • H05B6/062Control, e.g. of temperature, of power for cooking plates or the like
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2213/00Aspects relating both to resistive heating and to induction heating, covered by H05B3/00 and H05B6/00
    • H05B2213/07Heating plates with temperature control means

Abstract

PROBLEM TO BE SOLVED: To obtain emissivity of a heated material at a low cost and to provide an induction cooker, capable of detecting stain on the light-receiving part of an infrared sensor and noticing the stain. SOLUTION: The induction cooker comprises the infrared sensor for detecting infrared rays radiated from a heated material, a heat sensitive element thermally in contact with the heated material, an estimating means for estimating the emissivity of the infrared rays radiated from the heated material, based on the quantity of infrared rays detected by the infrared sensor and the temperature detected by the heat sensitive element, and a radiation temperature calculating means for calculating the radiation temperature of the heated material, based on the emissivity of the heated material estimated by the estimating means and the quantity of infrared rays detected by the infrared ray sensor.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、被加熱物の温度を
検出する機能を有する誘導加熱調理器に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an induction heating cooker having a function of detecting a temperature of an object to be heated.

【0002】[0002]

【従来の技術】図11は、例えば特開平11―2258
81号公報に開示されている従来の赤外線センサを用い
た加熱調理器のブロック構成図である。図において1は
例えば電磁誘導方式の加熱調理器、2は鍋、3は加熱調
理器1全体の制御や温度算出の演算などを行う演算制御
処理部、4は演算制御処理部3からの指示により鍋2の
加熱制御を行う加熱制御部、5は鍋2の底に光を照射す
るための発光素子、6は鍋2の底から反射してきた光を
受光する受光センサ、7は発光素子5の発光や消灯を制
御する発光制御部、8は受光センサ6の出力を検知する
ための反射検知部、9は鍋2の底から放射される赤外線
量を検知する赤外線センサ、10は赤外線センサ9から
の出力を検出するための放射検知部、11は一部もしく
は全てが赤外線を透過する材質によって構成された加熱
調理器1の天板である。
2. Description of the Related Art FIG.
It is a block diagram of a heating cooker using a conventional infrared sensor disclosed in Japanese Patent Publication No. 81. In the figure, reference numeral 1 denotes, for example, an electromagnetic induction heating cooker, 2 denotes a pan, 3 denotes an arithmetic control processing unit for performing overall control of the heating cooker 1 and calculation of temperature calculation, and 4 denotes an instruction from the arithmetic control processing unit 3. A heating control unit for controlling the heating of the pan 2, a light emitting element 5 for irradiating light to the bottom of the pan 2, a light receiving sensor 6 for receiving light reflected from the bottom of the pan 2, and a light emitting sensor 7 for the light emitting element 5. A light emission control unit for controlling light emission and extinguishing, 8 is a reflection detection unit for detecting the output of the light receiving sensor 6, 9 is an infrared sensor for detecting the amount of infrared light emitted from the bottom of the pan 2, and 10 is an infrared sensor. Is a top plate of the cooking device 1, which is partially or entirely made of a material that transmits infrared rays.

【0003】また、図12はある波長の赤外線に対する
反射率と放射率の関係を示したものであり、121はこ
の関係を示す特性曲線である。図より反射率Rが高いほ
ど放射率eは低く、反射率Rが低いほど放射率eは高
く、両者は略反比例の関係を示していることが分かる。
FIG. 12 shows the relationship between the reflectance and the emissivity for infrared rays of a certain wavelength, and 121 is a characteristic curve showing this relationship. It can be seen from the figure that the higher the reflectance R, the lower the emissivity e, and the lower the reflectance R, the higher the emissivity e.

【0004】また、図13は放射率eをパラメータにと
り、赤外線センサ9で受光される赤外線量Wと、これを
もとに放射検知部10及び演算制御処理部3で算出され
る被加熱物の換算温度Tとの関係を示したものである。
図において131、132、133はそれぞれ放射率e
が1.0、0.5、0.1の場合の赤外線量Wと換算温
度Tの関係を示した特性曲線である。放射率が低いほ
ど、同じ温度における赤外線の放射される割合は小さい
ので、図に示すように同じ赤外線量W0が検出された場
合には、被加熱物の温度は、放射率が低いほど高くなる
(T0<T1<T2)ことが分かる。
[0004] FIG. 13 shows the amount of infrared light W received by the infrared sensor 9 using the emissivity e as a parameter, and the amount of the object to be heated calculated by the radiation detection unit 10 and the arithmetic and control unit 3 based on this. This shows the relationship with the converted temperature T.
In the figure, 131, 132 and 133 are emissivity e, respectively.
7 is a characteristic curve showing the relationship between the amount of infrared light W and the converted temperature T when the values are 1.0, 0.5, and 0.1. The lower the emissivity is, the smaller the rate of infrared radiation at the same temperature is. Therefore, when the same amount of infrared light W0 is detected as shown in the figure, the temperature of the object to be heated increases as the emissivity decreases. (T0 <T1 <T2).

【0005】次に図11、12、13をもとに動作を説
明する。図11において、まず演算制御処理部3は発光
素子5を点灯させるように発光制御部7に指示する。こ
れにより発光素子5から発した光は鍋2の底を照射し、
底で反射された光は受光センサ6によって受光される。
この受光センサ6の出力は反射検知部8で電圧量に変換
され、演算制御処理部3に入力されて、反射率が算出さ
れる。ここで演算制御処理部3には、図12に示すよう
な反射率と放射率の関係を示す特性曲線121に対応し
た計算式、もしくはデータテーブルが記憶されている。
この計算式、もしくはデータテーブルに基づいて反射率
から放射率が算出される。
Next, the operation will be described with reference to FIGS. In FIG. 11, first, the arithmetic control processing unit 3 instructs the light emission control unit 7 to turn on the light emitting element 5. Thereby, the light emitted from the light emitting element 5 irradiates the bottom of the pan 2,
The light reflected at the bottom is received by the light receiving sensor 6.
The output of the light receiving sensor 6 is converted into a voltage amount by the reflection detecting unit 8, and is input to the arithmetic and control processing unit 3, where the reflectance is calculated. Here, the arithmetic control processing unit 3 stores a calculation formula or a data table corresponding to the characteristic curve 121 indicating the relationship between the reflectance and the emissivity as shown in FIG.
The emissivity is calculated from the reflectance based on this calculation formula or data table.

【0006】一方、鍋2の底から放射される赤外線は赤
外線センサ9によって受光され、放射検知部10によっ
て電圧量に変換され、演算制御処理部3に入力される。
演算制御処理部3には、上述の特性曲線121の他に、
図13に示すような赤外線量と放射率eとの関係から温
度を換算する計算式、もしくは換算データのテーブルが
記憶されている。この計算式、もしくは換算データテー
ブルに基づいて鍋2の底の温度が算出される。
On the other hand, infrared rays radiated from the bottom of the pan 2 are received by an infrared sensor 9, converted into a voltage amount by a radiation detection unit 10, and input to an arithmetic control processing unit 3.
In addition to the characteristic curve 121 described above, the arithmetic control processing unit 3
A calculation formula for converting the temperature from the relationship between the amount of infrared rays and the emissivity e as shown in FIG. 13 or a table of conversion data is stored. The temperature at the bottom of the pan 2 is calculated based on this formula or the conversion data table.

【0007】このように従来の赤外線センサ9を用いた
加熱調理器1は、被加熱物の放射率eを求めて、被加熱
物の温度を算出するように構成されているので、被加熱
物の温度を反射率の影響を受けることなく検出でき、ま
た、被加熱物の温度変化に対してほとんど時間的遅れを
生じることなく検出することができる。
As described above, the conventional cooking device 1 using the infrared sensor 9 is configured to calculate the temperature of the object to be heated by calculating the emissivity e of the object to be heated. Can be detected without being affected by the reflectivity, and can be detected with almost no time delay with respect to a change in the temperature of the object to be heated.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、このよ
うな従来の加熱調理器1の構成では、被加熱物の放射率
を取得するために、被加熱物に光を照射する発光素子
と、被加熱物からの反射光を受光する受光素子が必要で
あり、コストが高くなるという課題があった。また、赤
外線センサ9や発光素子、受光素子の光路が汚れて遮光
されると、被加熱物から放射される赤外線や反射率の検
出が不十分となり、正確な温度を検出できないという課
題もあった。
However, in such a configuration of the conventional heating cooker 1, in order to obtain the emissivity of the object to be heated, a light emitting element for irradiating light to the object to be heated, There is a problem that a light receiving element for receiving the reflected light from the object is required, and the cost is increased. In addition, if the optical paths of the infrared sensor 9, the light emitting element, and the light receiving element are contaminated and shielded from light, detection of infrared rays and reflectance radiated from the object to be heated becomes insufficient, and there is a problem that an accurate temperature cannot be detected. .

【0009】本発明は、このような課題を解決するため
になされたもので、被加熱物の放射率を低コストで得る
ことができる誘導加熱調理器を得ることを目的とする。
また、赤外線センサ9の受光部の汚れを検出し、報知で
きる誘導加熱調理器を得ることを目的とする。
The present invention has been made to solve such a problem, and an object of the present invention is to provide an induction heating cooker which can obtain the emissivity of an object to be heated at low cost.
It is another object of the present invention to obtain an induction heating cooker that can detect dirt on the light receiving unit of the infrared sensor 9 and notify the user of the dirt.

【0010】[0010]

【課題を解決するための手段】本発明に係る誘導加熱調
理器は、被加熱物から放射される赤外線を検出する赤外
線センサと、被加熱物と熱的に接触した感熱素子と、赤
外線センサにより検出された赤外線量と感熱素子により
検出された温度により、被加熱物から放射される赤外線
の放射率を推定する推定手段と、推定手段により推定さ
れた被加熱物の放射率と赤外線センサにより検出された
赤外線量から被加熱物の放射温度を算出する放射温度算
出手段とを備えるようにしたものである。
An induction heating cooker according to the present invention comprises an infrared sensor for detecting infrared rays emitted from an object to be heated, a thermosensitive element in thermal contact with the object to be heated, and an infrared sensor. Estimating means for estimating the emissivity of infrared light emitted from the object to be heated based on the detected amount of infrared light and the temperature detected by the thermosensitive element, and detecting the emissivity of the object to be heated estimated by the estimating means and the infrared sensor. And a radiation temperature calculating means for calculating a radiation temperature of the object to be heated from the obtained infrared ray amount.

【0011】また、推定手段による被加熱物に対する放
射率の推定は、感熱素子により検出された温度と赤外線
センサにより検出された赤外線量の変動が、所定時間以
上続いて所定範囲内に収まっている場合に実行されるよ
うにしたものである。
In the estimating means for estimating the emissivity of the object to be heated, the fluctuation of the temperature detected by the thermosensitive element and the amount of the infrared ray detected by the infrared sensor continue within a predetermined range for a predetermined time or more. It is to be executed in the case.

【0012】また、感熱素子による検出温度が、赤外線
センサにより検出された赤外線量と被加熱物の放射率と
から算出された放射温度に対し、所定時間以上続いて所
定温度差以上となる場合に、以後の前記被加熱物の温度
を感熱素子による検出温度とするようにしたものであ
る。
In addition, when the temperature detected by the thermosensitive element exceeds a radiation temperature calculated from the amount of infrared rays detected by the infrared sensor and the emissivity of the object to be heated for a predetermined time or more, and then becomes equal to or more than a predetermined temperature difference. The temperature of the object to be heated thereafter is set as the temperature detected by the thermosensitive element.

【0013】また、感熱素子による検出温度が、赤外線
センサにより検出された赤外線量と被加熱物の放射率と
から算出された放射温度に対し、所定時間以上続いて所
定温度差以上となる場合に、赤外線センサの入光状態の
確認を要求する、状態確認要求手段を設けるようにした
ものである。
In addition, when the temperature detected by the thermosensitive element exceeds the radiation temperature calculated from the amount of infrared rays detected by the infrared sensor and the emissivity of the object to be heated and continues for a predetermined time or more, and then exceeds a predetermined temperature difference. A state confirmation requesting means for requesting confirmation of a light incident state of the infrared sensor.

【0014】また、感熱素子による検出温度が、赤外線
センサにより検出された赤外線量と被加熱物の放射率と
から算出された放射温度より速く変動する場合に、以後
の被加熱物の温度を感熱素子による検出温度とするよう
にしたものである。
When the temperature detected by the heat-sensitive element fluctuates faster than the radiation temperature calculated from the amount of infrared rays detected by the infrared sensor and the emissivity of the object to be heated, the temperature of the object to be heated thereafter is changed to the heat-sensitive temperature. The temperature detected by the element is set.

【0015】さらにまた、感熱素子による検出温度が、
赤外線センサにより検出された赤外線量と被加熱物の放
射率とから算出された放射温度より速く変動する場合
に、赤外線センサの入光状態の確認を要求する、状態確
認要求手段を設けるようにしたものである。
Furthermore, the temperature detected by the thermosensitive element is
In the case where the radiation temperature changes faster than the radiation temperature calculated from the amount of infrared rays detected by the infrared sensor and the emissivity of the object to be heated, a state confirmation request means for requesting confirmation of the light incident state of the infrared sensor is provided. Things.

【0016】[0016]

【発明の実施の形態】実施の形態1.図1は本発明の実
施の形態1に係る誘導加熱調理器のブロック構成図であ
る。従来例と同一もしくは同一相当部分には同じ符号を
付けて表し、説明を省略する。図において12は天板1
1の裏面中央部に熱的に接触するように設けられたサー
ミスタなどの感熱素子、13は感熱素子12の出力を検
出するための感熱検知部、14は誘導加熱調理器1の加
熱/停止や出力調整、鍋温度推定等の操作入力を行う操
作部、15は加熱/停止状態や鍋温度等の表示を行う表
示部、16は放射検知部10を介して赤外線センサ9で
検出された赤外線量と感熱検知部13を介して感熱素子
12で検知された天板11の裏面温度から、天板11上
に載置された被加熱物である鍋2の温度を算出したり、
誘導加熱調理器1全体の制御を行うための温度検出制御
部、17は加熱コイルである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiment 1 FIG. 1 is a block diagram of an induction heating cooker according to Embodiment 1 of the present invention. The same or similar parts as those in the conventional example are denoted by the same reference numerals, and description thereof is omitted. In the figure, 12 is the top plate 1
1, a heat-sensitive element such as a thermistor provided so as to be in thermal contact with the center of the back surface; 13, a heat-sensitive detector for detecting the output of the heat-sensitive element 12; An operation unit for performing operation inputs such as output adjustment and estimation of a pan temperature, a display unit 15 for displaying a heating / stop state, a pan temperature, and the like, and an infrared light amount detected by the infrared sensor 9 via the radiation detection unit 10 From the back surface temperature of the top plate 11 detected by the thermosensitive element 12 via the heat sensing unit 13 and the temperature of the pan 2 that is the object to be heated placed on the top plate 11,
A temperature detection controller 17 for controlling the entire induction heating cooker 1 is a heating coil.

【0017】また、図2は温度検出制御部16の構成を
示すブロック構成図である。図において16aはCPU
等で構成される制御部、16bは制御部16aが実行す
る制御プログラムデータ、16cは制御部16aに周期
的に割り込み信号を出力するタイマ部、16dは時間を
カウントするためのタイマカウンタ、16eは感熱検知
部13から取り込んだ感熱データから算出した温度デー
タの現在値、最大値、最小値を格納する感熱素子検出温
度データ記憶部である。同様に16fは放射検知部10
から取り込んだ赤外線量データの現在値、最大値、最小
値を格納する赤外線量データ記憶部である。また16
g、16hはそれぞれ被加熱物放射率データ記憶部と放
射温度データ記憶部である。16iは感熱データと温度
との対応関係を記憶する感熱素子温度データテーブル、
16jは各放射率における赤外線量データと温度との対
応関係を記憶する赤外線量・温度データテーブル、16
kは被加熱物の検出温度を格納する検出温度記憶部であ
る。
FIG. 2 is a block diagram showing the configuration of the temperature detection control unit 16. As shown in FIG. In the figure, 16a is a CPU
A control unit 16b, control program data executed by the control unit 16a, a timer unit 16c for periodically outputting an interrupt signal to the control unit 16a, a timer counter 16d for counting time, and 16e a timer counter for counting time. This is a thermosensitive element detected temperature data storage unit that stores the current value, the maximum value, and the minimum value of the temperature data calculated from the thermal data acquired from the thermal sensor 13. Similarly, 16f is the radiation detecting unit 10
It is an infrared amount data storage unit for storing the current value, the maximum value, and the minimum value of the infrared amount data fetched from. 16
g and 16h are a heated object emissivity data storage unit and a radiation temperature data storage unit, respectively. 16i is a thermosensitive element temperature data table for storing the correspondence between thermosensitive data and temperature;
16j is an infrared amount / temperature data table for storing the correspondence between infrared amount data and temperature at each emissivity;
k is a detected temperature storage unit for storing the detected temperature of the object to be heated.

【0018】また、図3は鍋2の温度を算出するための
検出温度演算処理のフローチャート、図4は感熱素子の
検出温度と被加熱物の放射する赤外線量から被加熱物の
放射率を推定する方法を説明する説明図である。
FIG. 3 is a flowchart of a detected temperature calculation process for calculating the temperature of the pan 2, and FIG. 4 is a diagram for estimating the emissivity of the object to be heated from the detected temperature of the thermosensitive element and the amount of infrared rays emitted from the object to be heated. FIG. 4 is an explanatory diagram for explaining a method of performing the operation.

【0019】次に図1、2、3、4をもとに動作につい
て説明する。図1において、赤外線センサ9は鍋2の側
面から放射される赤外線を検知するように配されてい
る。温度検出制御部16は、操作部14から加熱指示が
入力されると表示部15に加熱状態になったことを表示
するとともに、加熱制御部4を介して加熱コイル17を
駆動し、この時の加熱コイル17の電流量を電流データ
として取り込む。また、放射検知部10を介して赤外線
センサ9により赤外線量を検出し、感熱検知部13を介
して感熱素子12により検出した感熱データから天板1
1裏面の温度を検出する。
Next, the operation will be described with reference to FIGS. In FIG. 1, an infrared sensor 9 is arranged to detect infrared rays emitted from the side surface of the pan 2. When a heating instruction is input from the operation unit 14, the temperature detection control unit 16 displays that the heating state has occurred on the display unit 15, and drives the heating coil 17 via the heating control unit 4. The current amount of the heating coil 17 is taken in as current data. In addition, the infrared ray amount is detected by the infrared sensor 9 via the radiation detecting unit 10, and the top plate 1 is detected from the heat-sensitive data detected by the heat-sensitive element 12 via the heat-sensitive detecting unit 13.
1. Detect the temperature of the back surface.

【0020】さらに温度検出制御部16は、これら検出
された赤外線量と天板11の裏面温度から鍋2の温度を
算出する検出温度演算処理を行い、鍋2の温度が操作部
14で推定した温度になるように加熱制御部4へ加熱指
示データを出力する。これら一連の制御動作は、温度検
出制御部16の演算制御部16aがタイマ部16cから
周期的に発生する割り込み信号により、制御プログラム
データ16bに基づき、操作部14、表示部15、感熱
検知部13、放射検知部10、加熱制御部4の間で適宜
データを交換しながら実行する。
Further, the temperature detection control unit 16 performs a detected temperature calculation process for calculating the temperature of the pan 2 from the detected infrared ray amount and the back surface temperature of the top plate 11, and the temperature of the pan 2 is estimated by the operation unit 14. The heating instruction data is output to the heating control unit 4 so as to reach the temperature. These series of control operations are performed by the operation control unit 16, the display unit 15, and the heat-sensitive detection unit 13 based on the control program data 16 b by the arithmetic control unit 16 a of the temperature detection control unit 16 using an interrupt signal periodically generated from the timer unit 16 c. , The radiation detection unit 10 and the heating control unit 4 while appropriately exchanging data.

【0021】ここで鍋2の温度を算出する検出温度演算
処理について、図2を参照にしながら図3のフローチャ
ートを説明する。演算制御部16aは操作部14から加
熱指示が入力されて加熱を開始する際、加熱制御部4に
小出力の加熱指示データを出力するとともに、加熱制御
部4より検出した加熱コイル17の電流データを得て、
天板11上に鍋等の被加熱物の有無を判定し、被加熱物
が無い場合にはステップ14に移行する(ステップ
1)。被加熱物を検出した場合には、感熱検知部13か
ら感熱データを取り込み、感熱素子温度データテーブル
16iを参照して感熱素子温度データに変換し、感熱素
子検出温度データ記憶部16eの現在値に格納する(ス
テップ2)。
Here, the detected temperature calculation processing for calculating the temperature of the pan 2 will be described with reference to FIG. When a heating instruction is input from the operation unit 14 and heating is started, the arithmetic control unit 16a outputs a small-output heating instruction data to the heating control unit 4, and outputs current data of the heating coil 17 detected by the heating control unit 4. Get
It is determined whether there is an object to be heated such as a pan on the top plate 11, and if there is no object to be heated, the process proceeds to step 14 (step 14).
1). When an object to be heated is detected, the thermal data is fetched from the thermal detector 13 and converted into thermal element temperature data with reference to the thermal element temperature data table 16i. It is stored (step 2).

【0022】次いで、被加熱物の放射率データが推定済
みか否か判定し、推定済みであればステップ11に移行
する(ステップ3)。一方、放射率データが推定済みで
ない場合には、感熱素子検出温度データ記憶部16eの
最大値、最小値データをステップ2で求めた現在値と比
較して更新する(ステップ4)。次いで、感熱素子温度
データ記憶部16eの最大値と最小値の差を求め、その
値を所定値と比較して感熱素子12の検出温度の変動が
大きいか否か判定し、大きい場合にはステップ10に移
行する(ステップ5)。検出温度の変動が小さいと判定
した場合には、放射検知部10から赤外線量データを取
り込み、赤外線量データ記憶部16fに現在値を格納す
るとともに、その最大値および最小値データを更新する
(ステップ6)。
Next, it is determined whether or not the emissivity data of the object to be heated has been estimated, and if it has been estimated, the process proceeds to step 11 (step 3). On the other hand, when the emissivity data has not been estimated, the maximum value and the minimum value data in the thermosensitive element detected temperature data storage section 16e are updated by comparing them with the current values obtained in Step 2 (Step 4). Next, the difference between the maximum value and the minimum value of the thermosensitive element temperature data storage unit 16e is obtained, and the value is compared with a predetermined value to determine whether the fluctuation of the detected temperature of the thermosensitive element 12 is large. The process proceeds to step 10 (step 5). If it is determined that the variation in the detected temperature is small, the infrared data is taken in from the radiation detection unit 10, the current value is stored in the infrared data storage unit 16f, and the maximum value and the minimum value data are updated (step). 6).

【0023】次いで、赤外線量データ記憶部の最大値と
最小値の差を求め、その値を所定値と比較して赤外線量
の変動が大きいか否かを判定し、大きい場合にはステッ
プ10に移行する(ステップ7)。赤外線量の変動が小
さいと判定した場合には、タイマカウンタ16dの値を
インクリメントして所定値Nと比較して(ステップ
8)、タイマカウンタ16dの値がNに一致した場合に
は、所定時間、感熱素子12により検出した天板11裏
面の温度と被加熱物の放射する赤外線量が安定していた
と判断し、被加熱物の温度を感熱検出温度として赤外線
量・温度データテーブル16jを参照して被加熱物の放
射率を推定する。
Next, the difference between the maximum value and the minimum value in the infrared data storage section is obtained, and the difference is compared with a predetermined value to determine whether or not the fluctuation of the infrared data is large. The process proceeds (step 7). If it is determined that the change in the amount of infrared rays is small, the value of the timer counter 16d is incremented and compared with a predetermined value N (step 8). It is determined that the temperature of the back surface of the top plate 11 detected by the heat-sensitive element 12 and the amount of infrared radiation emitted from the object to be heated are stable, and the temperature of the object to be heated is set as a heat-sensitive detection temperature, and the infrared amount / temperature data table 16j is referred to. To estimate the emissivity of the object to be heated.

【0024】ここで図4をもとに感熱素子の検出温度と
被加熱物の放射する赤外線量から被加熱物の放射率を推
定する方法について説明する。図において感熱素子検出
温度の現在値がTaで、放射検知部10で検出した赤外
線量の現在値がWaの場合、赤外線量・温度データテー
ブルでそれぞれ赤外線量と温度のデータがWa、Taに
近いデータを探し、近いデータが存在すれば最も近いデ
ータに対応する放射率eaを被加熱物の放射率として放
射率データ記憶部に格納し、近いデータが存在しなけれ
ば放射率の推定を行わない(ステップ9)。
Here, a method for estimating the emissivity of the object to be heated from the temperature detected by the thermosensitive element and the amount of infrared radiation emitted from the object to be heated will be described with reference to FIG. In the figure, when the current value of the temperature detected by the thermosensitive element is Ta and the current value of the amount of infrared light detected by the radiation detection unit 10 is Wa, the data of the amount of infrared light and the data of the temperature are close to Wa and Ta in the infrared amount / temperature data table, respectively. The emissivity ea corresponding to the closest data is stored in the emissivity data storage unit as the emissivity of the object to be heated, and the emissivity is not estimated if there is no close data. (Step 9).

【0025】この時、ステップ5で感熱素子12検出温
度の変動が大きかった場合や、ステップ7で赤外線量デ
ータの変動が大きかった場合には、タイマカウンタ、感
熱素子検出温度データ記憶部16eの最小値と最大値、
赤外線データ記憶部の最小値と最大値を初期化する(ス
テップ10)。次いで、放射率データが推定されている
か判定し(ステップ11)、推定されている場合には放
射率データと赤外線量データの現在値から赤外線量・温
度データテーブル16jを参照して被加熱物の放射温度
を求め、放射温度記憶部と検出温度記憶部に格納する
(ステップ12)。放射率データが推定されていなかっ
た場合には、感熱素子検出温度データの現在値を検出温
度記憶部に格納する(ステップ12)。また、ステップ
1で被加熱物が検出されなかった場合は、タイマカウン
タ16d、放射率データ記憶部16g、感熱素子検出温
度記憶部16e、赤外線量データ記憶部16f、検出温
度記憶部16kの内容をクリアして処理を終了する(ス
テップ13)。
At this time, if the fluctuation of the temperature detected by the thermosensitive element 12 is large in step 5 or if the fluctuation of the infrared ray amount data is large in step 7, the minimum value of the timer counter and the thermosensitive element detected temperature data storage section 16e is stored. Value and maximum value,
The minimum value and the maximum value of the infrared data storage unit are initialized (Step 10). Next, it is determined whether the emissivity data is estimated (step 11). If the emissivity data is estimated, the emissivity data and the current value of the infrared ray data are referred to the infrared ray quantity / temperature data table 16j to determine the heating target. The radiation temperature is obtained and stored in the radiation temperature storage unit and the detected temperature storage unit (step 12). If the emissivity data has not been estimated, the current value of the thermosensitive element detected temperature data is stored in the detected temperature storage unit (step 12). If the object to be heated is not detected in step 1, the contents of the timer counter 16d, the emissivity data storage unit 16g, the thermosensitive element detected temperature storage unit 16e, the infrared ray amount data storage unit 16f, and the detected temperature storage unit 16k are read. Clear and end the process (step 13).

【0026】なお、上述のステップ9における放射率デ
ータの推定は、赤外線量・温度データテーブル16jか
ら検出した赤外線量と感熱素子検出温度の組み合わせに
一番近いデータの組み合わせを抽出して、そのデータの
放射率を被加熱物の放射率としたが、複数の近傍データ
を抽出し、その距離から加重平均を取るなどして放射率
を求めるようにしてもよい。
The emissivity data is estimated in step 9 by extracting a combination of data closest to the combination of the detected infrared ray amount and the temperature of the thermosensitive element from the infrared ray amount / temperature data table 16j. Is used as the emissivity of the object to be heated. However, the emissivity may be obtained by extracting a plurality of neighboring data and taking a weighted average from the distance.

【0027】また、本実施の形態の説明では、鍋2の側
面から放射される赤外線を検知するように赤外線センサ
7を配置したが、これに限るものではない。例えば図5
に示すように鍋2の底から放射される赤外線を、赤外線
透過材を用いた天板11を介して検知するように構成し
てもよいし、これ以外の配置構成によって鍋2の表面か
ら放射される赤外線を検知するようにしてもよい。さら
にまた、本実施の形態の説明では、感熱素子12が鍋2
と天板11を介して、間接的に熱的接触を保つ場合につ
いて説明したが、直接的に熱的接触を保つようにしても
かまわない。
In the description of the present embodiment, the infrared sensor 7 is arranged so as to detect infrared rays emitted from the side surface of the pot 2, but the present invention is not limited to this. For example, FIG.
May be configured to detect infrared rays radiated from the bottom of the pan 2 through the top plate 11 using an infrared transmitting material, or may be radiated from the surface of the pan 2 by another arrangement. The detected infrared rays may be detected. Furthermore, in the description of the present embodiment, the thermosensitive element 12 is
Although the case where the thermal contact is maintained indirectly through the and the top plate 11 has been described, the thermal contact may be directly maintained.

【0028】以上のように、感熱素子12による天板1
1裏面の温度検出と、赤外線センサ9による被加熱物か
ら放射された赤外線量の検出を同時に行い、被加熱物の
放射率を推定し、この放射率と検出した赤外線量から被
加熱物の温度を検出するように構成したので、発光素子
や受光素子が不要となり、低コストで構成できる。さら
に、赤外線センサ9受光部の汚れ等により赤外線量が正
常に検出できなくなり、放射率データが推定されない場
合についても、感熱素子12で検出した天板11裏面の
温度を被加熱物の検出温度とするようにしたので、安定
した温度検出ができるようになる。
As described above, the top plate 1 by the heat-sensitive element 12
1 Simultaneous detection of the temperature of the back surface and detection of the amount of infrared light radiated from the object to be heated by the infrared sensor 9 to estimate the emissivity of the object to be heated, and the temperature of the object to be heated from the emissivity and the detected amount of infrared light , The light emitting element and the light receiving element are not required, and the configuration can be performed at low cost. Further, even when the amount of infrared light cannot be normally detected due to contamination of the light receiving portion of the infrared sensor 9 and emissivity data cannot be estimated, the temperature of the back surface of the top plate 11 detected by the thermosensitive element 12 is determined by the detected temperature of the object to be heated. As a result, stable temperature detection can be performed.

【0029】実施形態2.本実施の形態は、実施の形態
1の構成において、赤外線センサ9の受光部の汚れを検
知し、これを使用者に報知する手段に関するものであ
る。以下、図をもとに本実施の形態について説明する。
Embodiment 2 The present embodiment relates to a means for detecting dirt on the light receiving portion of the infrared sensor 9 and notifying the user of the same in the configuration of the first embodiment. Hereinafter, the present embodiment will be described with reference to the drawings.

【0030】図6は、本実施の形態に係る誘導加熱調理
器1のブロック構成図である。図において従来例、もし
くは実施の形態1と同一あるいは同一相当部分には同じ
符号を付し、説明を省略する。16xは温度検出制御部
16内に設けられ、赤外線センサ9受光部に異常を検出
した場合に設定される放射温度不可フラグである。15
aは表示部15内に設けられ、受光状態に異常を検出し
た場合に点灯させられる赤外線センサ9受光部の状態確
認要求のLEDである。14aは操作部14内に設けら
れ、入力があると放射温度不可フラグ16xをクリアし
て赤外線センサ9受光部状態確認要求のLED15aを
消灯する赤外線センサ9異常リセット入力である。
FIG. 6 is a block diagram of the induction heating cooker 1 according to the present embodiment. In the figure, the same reference numerals are given to the same or corresponding parts as in the conventional example or the first embodiment, and the description is omitted. Reference numeral 16x denotes a radiation temperature disable flag provided in the temperature detection control unit 16 and set when an abnormality is detected in the light receiving unit of the infrared sensor 9. Fifteen
Reference numeral a denotes an LED provided in the display unit 15 and turned on when an abnormality is detected in the light receiving state, for requesting a state confirmation of the light receiving unit of the infrared sensor 9. Reference numeral 14a denotes an infrared sensor 9 abnormality reset input which is provided in the operation unit 14 and clears the radiation temperature disable flag 16x and turns off the LED 15a of the infrared sensor 9 light receiving unit state confirmation request when an input is made.

【0031】図7は赤外線センサ受光部の汚れをパラメ
ータとしてある放射率eaにおける受光された赤外線量
と被加熱物の温度との関係を示した特性図である。図に
おいて71は赤外センサ9の受光部が汚れてない正常な
場合の受光赤外線量と被加熱物の温度との関係を示す特
性曲線であり、感熱素子12による検出温度Taと赤外
線センサ9による検出赤外線量Waで被加熱物の放射率
データeaが推定されたものである。
FIG. 7 is a characteristic diagram showing the relationship between the amount of infrared rays received at a certain emissivity ea and the temperature of the object to be heated, using dirt on the infrared sensor light receiving portion as a parameter. In the figure, reference numeral 71 denotes a characteristic curve showing the relationship between the amount of received infrared rays and the temperature of the object to be heated in a normal case where the light receiving portion of the infrared sensor 9 is not contaminated. The emissivity data ea of the object to be heated is estimated based on the detected infrared light amount Wa.

【0032】また、72は赤外線センサ9受光部が油煙
や噴きこぼれにより一部汚れた場合の受光赤外線量と被
加熱物温度との関係を示す特性曲線、73は赤外線セン
サ9受光部がほぼ汚れに覆われてしまった場合の受光赤
外線量と被加熱物の温度との関係を示す特性曲線であ
る。被加熱物の温度がTbになった場合に、赤外線セン
サ9受光部が正常な場合(特性曲線71の場合)には、
検出赤外線量はWb、一部汚れている場合(特性曲線7
2の場合)には、検出赤外線量はWc、汚れが甚だしい
場合(特性曲線73の場合)には、検出赤外線量はWa
となり、放射率データeaと赤外線量から換算される放
射温度は、それぞれ、Tb、Tc、Taとなり、赤外線
センサ9受光部の汚れがひどいほど、検出した放射温度
の誤差が大きくなることが分かる。
Numeral 72 is a characteristic curve showing the relationship between the amount of infrared light received and the temperature of the object to be heated when the light receiving portion of the infrared sensor 9 is partially contaminated by oily smoke or spills. 7 is a characteristic curve showing the relationship between the amount of received infrared rays and the temperature of the object to be heated when the object is covered with the infrared ray. When the temperature of the object to be heated reaches Tb and the light receiving portion of the infrared sensor 9 is normal (in the case of the characteristic curve 71),
The amount of detected infrared rays is Wb, and when the part is dirty (characteristic curve 7
2), the detected infrared ray amount is Wc, and when the dirt is severe (in the case of the characteristic curve 73), the detected infrared ray amount is Wa.
The radiation temperatures converted from the emissivity data ea and the amount of infrared radiation are Tb, Tc, and Ta, respectively. It can be seen that the error in the detected radiation temperature increases as the light receiving portion of the infrared sensor 9 becomes more dirty.

【0033】また、図8は赤外線センサ9受光部の汚れ
を検出する際の処理動作の一例を示すフローチャートで
ある。以下、図6、7を参照にしながら、図8のフロー
チャートに基づき(赤外線センサ9の受光部の汚れを検
知し、これを使用者に報知する手段の)動作について説
明する。この処理は温度検出制御部16で周期的に実行
されるものとし、被加熱物の放射率の推定は実施の形態
1における図3のフローチャートと同様にして推定され
るものとする。
FIG. 8 is a flowchart showing an example of a processing operation when detecting contamination of the light receiving portion of the infrared sensor 9. The operation of the means for detecting the dirt on the light receiving portion of the infrared sensor 9 and notifying the user of the dirt will be described below with reference to FIGS. This process is periodically performed by the temperature detection control unit 16, and the emissivity of the object to be heated is estimated in the same manner as in the flowchart of FIG. 3 in the first embodiment.

【0034】最初に、天板11上に鍋2等の被加熱物の
有無を判定し、被加熱物が無い場合にはステップ84に
移行する(ステップ81)。被加熱物を検出した場合に
は、感熱検知部13からの感熱データを取り込んで感熱
素子12温度を検出し、放射検知部10から赤外線量デ
ータを取り込んで被加熱物放射率データから放射温度に
換算する(ステップ82)。次いで、検出した感熱素子
12温度と放射温度の差を求め、所定値以上の差が生じ
ているか否か判定する(ステップ83)。検出温度差が
小さい場合にはタイマカウンタ16dをクリアし(ステ
ップ84)、検出温度差が大きい場合にはタイマカウン
タ16dをインクリメントし、検出温度差が大きい状態
が所定時間以上継続しているか否か判定し(ステップ8
5)、続いていた場合には赤外線センサ9受光部が汚れ
たものと判断して放射温度不可フラグ16xをセットす
るとともに、赤外線センサ9受光部の確認要求LED1
5aの点灯信号を表示部15に出力する(ステップ8
6)。放射温度不可フラグ16xが設定されているか判
定し(ステップ87)、設定されていない場合には放射
温度を被加熱物の検出温度とし(ステップ88)、設定
されていれば感熱素子12温度を被加熱物の検出温度と
する(ステップ89)。
First, the presence or absence of an object to be heated such as the pan 2 on the top plate 11 is determined. If there is no object to be heated, the process proceeds to step 84 (step 81). When an object to be heated is detected, the heat sensing data from the heat sensing unit 13 is taken in to detect the temperature of the thermosensitive element 12, the infrared ray amount data is taken in from the radiation detecting unit 10, and the radiation temperature is obtained from the emissivity data of the object to be heated. Conversion is performed (step 82). Next, a difference between the detected temperature of the thermosensitive element 12 and the radiation temperature is obtained, and it is determined whether or not a difference equal to or more than a predetermined value has occurred (step 83). If the detected temperature difference is small, the timer counter 16d is cleared (step 84), and if the detected temperature difference is large, the timer counter 16d is incremented to determine whether the state where the detected temperature difference is large has continued for a predetermined time or more. Judgment (Step 8
5) If it has continued, it is determined that the infrared sensor 9 light receiving section is dirty, the radiation temperature impossible flag 16x is set, and the confirmation request LED 1 of the infrared sensor 9 light receiving section is set.
The lighting signal of 5a is output to the display unit 15 (step 8).
6). It is determined whether the radiation temperature impossible flag 16x is set (step 87). If the flag is not set, the radiation temperature is set as the detected temperature of the object to be heated (step 88). The detected temperature of the heated object is set (step 89).

【0035】以上のように、感熱素子12で検出した天
板11裏面の温度と、赤外線センサ9で検出した赤外線
量と被加熱物の放射率から算出した放射温度との差が続
いて大きくなった場合には、赤外線センサ9が正常に検
出できなくなったと判定して表示部を介して使用者に報
知するため、赤外線センサ9受光部が汚れを確実に検出
し、赤外線の検出を正常に保つことができる。また、赤
外線センサ9受光部の汚れを検出した場合には感熱素子
12による温度検出に切り替えるため、被加熱物の検出
温度に大きな誤差が生じることはない。
As described above, the difference between the temperature of the back surface of the top plate 11 detected by the thermal element 12 and the radiation temperature calculated from the amount of infrared rays detected by the infrared sensor 9 and the emissivity of the object to be heated continues to increase. In this case, it is determined that the infrared sensor 9 cannot be normally detected, and the user is notified via the display unit. Therefore, the light receiving unit of the infrared sensor 9 reliably detects dirt and keeps the detection of infrared light normal. be able to. Further, when contamination of the light receiving portion of the infrared sensor 9 is detected, the detection is switched to the temperature detection by the thermosensitive element 12, so that a large error does not occur in the detected temperature of the object to be heated.

【0036】実施形態3.本発明の実施の形態3は、赤
外線センサ9受光部の汚れを検出するもう一つの手段を
備える誘導加熱調理器1であり、そのブロック構成は実
施の形態2で示した図6と同じである。図9は鍋2の温
度とその検出温度の時間的な変化の例を示す図である。
図において91は鍋2の温度の時間的な変化を示す特性
曲線、92は赤外線センサ9の受光部が正常な場合に検
出する放射温度検出値の時間的な変化を示す特性曲線で
あり、鍋2の温度の変動に対してほとんど時間遅れなく
検出できる。93は天板11裏面に設けた感熱素子12
による検出温度の時間的な変化を示す特性曲線であり、
天板11の熱伝導等の時間的な遅れが生じている。94
は赤外線センサ9受光部に汚れが付着した場合の放射温
度検出値の時間的な変化を示す特性曲線であり、その付
着物が鍋2からの輻射熱である赤外線で加熱され、その
温度上昇を検出している。
Embodiment 3 FIG. Third Embodiment A third embodiment of the present invention is an induction heating cooker 1 provided with another means for detecting dirt on the light receiving section of the infrared sensor 9, and its block configuration is the same as that of the second embodiment shown in FIG. . FIG. 9 is a diagram showing an example of a temporal change in the temperature of the pan 2 and the detected temperature.
In the drawing, reference numeral 91 denotes a characteristic curve indicating a temporal change of the temperature of the pan 2, and 92 denotes a characteristic curve indicating a temporal change of a radiation temperature detection value detected when the light receiving portion of the infrared sensor 9 is normal. 2 can be detected with little time delay with respect to the temperature fluctuation. 93 is a thermosensitive element 12 provided on the back of the top plate 11
Is a characteristic curve showing the change over time of the detected temperature due to
A time delay such as heat conduction of the top plate 11 occurs. 94
Is a characteristic curve showing a temporal change of a radiation temperature detection value when dirt adheres to the light receiving portion of the infrared sensor 9, and the adhered substance is heated by infrared rays which are radiant heat from the pan 2, and the temperature rise is detected are doing.

【0037】以下、赤外線センサ9受光部の汚れを検出
処理の動作につき、図9を参照にしながら図10のフロ
ーチャートに基づいて説明する。最初に、天板11上に
鍋2等の被加熱物の有無を判定し(ステップ101)、
被加熱物を検出した場合には、感熱検知部13からの感
熱データを取り込んで感熱素子12温度を検出し、放射
検知部10から赤外線量データを取り込んで被加熱物放
射率データから放射温度に換算する(ステップ10
2)。
The operation of the process for detecting the dirt on the light receiving portion of the infrared sensor 9 will be described below with reference to FIG. 9 and based on the flowchart of FIG. First, it is determined whether there is an object to be heated such as the pan 2 on the top plate 11 (step 101).
When an object to be heated is detected, the heat sensing data from the heat sensing unit 13 is taken in to detect the temperature of the thermosensitive element 12, the infrared ray amount data is taken in from the radiation detecting unit 10, and the radiation temperature is obtained from the emissivity data of the object to be heated. Convert (Step 10
2).

【0038】次いで、検出した感熱素子12温度と放射
温度の差を求め、感熱素子12温度の方が放射温度より
所定値以上の高く検出しているか否か判定し(ステップ
103)、高く検出している場合には放射温度検出値が
上昇中か否か判定する(ステップ104)。上昇中であ
ればタイマカウンタ16dをインクリメントして継続時
間を判定し(ステップ105)、所定時間以上継続して
いた場合には放射温度検出値の方が感熱素子温度より遅
れて鍋の温度上昇に追従しており、赤外線センサ9受光
部に汚れが付着していると判断して放射温度不可フラグ
16xをセットするとともに、赤外線センサ9受光部の
確認要求LEDの点灯信号を表示部に出力する(ステッ
プ106)。被加熱物が検出されない場合、感熱素子1
2温度の方が放射温度より高くなかった場合、あるいは
放射温度検出値が下降中であった場合には継続時間を判
定するためのタイマカウンタ16dをクリアする(ステ
ップ107)。次いで、放射温度不可フラグ16xが設
定されているか判定し(ステップ108)、設定されて
いない場合には放射温度を被加熱物の検出温度とし(ス
テップ109)、設定されていれば感熱素子12温度を
被加熱物の検出温度とする(ステップ110)。
Next, the difference between the detected temperature of the thermosensitive element 12 and the radiation temperature is determined, and it is determined whether or not the temperature of the thermosensitive element 12 is higher than the radiation temperature by a predetermined value or more (step 103). If so, it is determined whether the radiation temperature detection value is increasing (step 104). If the temperature is rising, the timer counter 16d is incremented to determine the continuation time (step 105). If the continuation time is longer than the predetermined time, the radiation temperature detection value is delayed from the temperature of the thermosensitive element and the temperature of the pot is raised. It is determined that dirt is attached to the infrared sensor 9 light receiving unit, the radiation temperature disable flag 16x is set, and a lighting signal of the confirmation request LED of the infrared sensor 9 light receiving unit is output to the display unit ( Step 106). When the object to be heated is not detected, the thermal element 1
If the two temperatures are not higher than the radiation temperature, or if the radiation temperature detection value is falling, the timer counter 16d for determining the duration is cleared (step 107). Next, it is determined whether or not the radiation temperature impossible flag 16x is set (step 108). If the flag is not set, the radiation temperature is set as the detected temperature of the object to be heated (step 109). Is the detected temperature of the object to be heated (step 110).

【0039】以上のように、感熱素子12で検出した天
板11裏面の温度と、赤外線センサ9で検出した赤外線
量と被加熱物の放射率から算出した放射温度と変動速度
を比較し、赤外線センサ9による温度検出が感熱素子1
2による温度検出より被加熱物の温度変化に対し応答が
遅いことを検出し、赤外線センサ9が正常に検出できな
くなったと判定して表示を行うため、赤外線センサ9受
光部が汚れを確実に検出して、使用者に報知することが
できる。また、赤外線センサ9受光部の汚れを検出した
場合には感熱素子12による温度検出に切り替えるた
め、被加熱物の検出温度に大きな誤差が生じることはな
い。
As described above, the temperature of the back surface of the top plate 11 detected by the thermosensitive element 12, the amount of infrared light detected by the infrared sensor 9, and the radiation temperature calculated from the emissivity of the object to be heated are compared with the fluctuation speed. The temperature detection by the sensor 9 is the thermal element 1
2 detects that the response to the temperature change of the object to be heated is slower than the temperature detection, and determines that the infrared sensor 9 has not been able to detect normally. Then, the user can be notified. Further, when contamination of the light receiving portion of the infrared sensor 9 is detected, the detection is switched to the temperature detection by the thermosensitive element 12, so that a large error does not occur in the detected temperature of the object to be heated.

【0040】なお、上記実施の形態1〜3では、被加熱
物の感熱素子12温度と放射温度の何れかを、赤外線セ
ンサ12受光部の汚れ状態に応じて被加熱物の検出温度
としたが、感熱素子12検出温度と放射温度の高い方の
温度を被加熱物の検出温度としてもよい。
In the first to third embodiments, one of the temperature of the heat-sensitive element 12 and the temperature of the radiation of the object to be heated is determined as the temperature of the object to be heated according to the state of contamination of the light receiving portion of the infrared sensor 12. Alternatively, the higher of the detected temperature of the thermosensitive element 12 and the radiation temperature may be set as the detected temperature of the object to be heated.

【0041】[0041]

【発明の効果】以上のように、本発明によれば、被加熱
物から放射される赤外線量を赤外線センサで検出し、天
板11裏面の温度を感熱素子12で検出することによ
り、被加熱物の放射率を推定し、時間遅れなく温度検出
することを可能にするとともに、赤外線センサ9受光部
が汚れた場合にも誤差の小さい誘導加熱調理器1を得る
ことができる。
As described above, according to the present invention, the amount of infrared radiation radiated from the object to be heated is detected by the infrared sensor, and the temperature of the back surface of the top plate 11 is detected by the thermosensitive element 12, whereby the object to be heated is detected. It is possible to estimate the emissivity of the object, detect the temperature without time delay, and obtain the induction heating cooker 1 with a small error even when the light receiving portion of the infrared sensor 9 becomes dirty.

【0042】また、被加熱物の放射率の推定を検出した
赤外線量および感熱素子12温度が安定した時点で行う
ようにしたので、精度の高い放射温度を得ることができ
る効果がある。
Further, since the estimation of the emissivity of the object to be heated is performed at the time when the detected infrared ray amount and the temperature of the thermosensitive element 12 are stabilized, there is an effect that a highly accurate radiation temperature can be obtained.

【0043】また、被加熱物の放射温度より天板11裏
面の感熱素子12温度が継続的に高い場合には、以後の
被加熱物の検出温度を感熱素子12温度としたので、赤
外線センサ9受光部が汚れた場合にも安定した温度検出
が可能である。
When the temperature of the heat-sensitive element 12 on the back surface of the top plate 11 is continuously higher than the radiation temperature of the object to be heated, the detected temperature of the object to be heated is regarded as the temperature of the heat-sensitive element 12. Stable temperature detection is possible even when the light receiving unit becomes dirty.

【0044】また、被加熱物の放射温度より天板11裏
面の感熱素子12温度が継続的に高い場合には、赤外線
センサ9の受光状態確認要求を報知するようにしたの
で、赤外線センサ9の受光状態を正常に保つことができ
る。
When the temperature of the thermosensitive element 12 on the back surface of the top plate 11 is continuously higher than the radiation temperature of the object to be heated, a request to confirm the light receiving state of the infrared sensor 9 is issued. The light receiving state can be kept normal.

【0045】また、被加熱物の放射温度より天板11裏
面の感熱素子12温度の応答速度が速い場合には、以後
の被加熱物の検出温度を感熱素子12温度としたので、
赤外線センサ9受光部が汚れた場合にも安定した温度検
出が可能である。
When the response speed of the temperature of the thermosensitive element 12 on the back surface of the top plate 11 is faster than the radiation temperature of the article to be heated, the detected temperature of the article to be heated thereafter is defined as the temperature of the thermosensitive element 12.
Stable temperature detection is possible even when the light receiving portion of the infrared sensor 9 becomes dirty.

【0046】さらにまた、被加熱物の放射温度より天板
11裏面の感熱素子12温度の応答速度が速い場合に
は、赤外線センサ9部の受光状態確認要求を報知するよ
うにしたので、赤外線センサ9の受光状態を正常に保つ
ことができる。
Further, when the response speed of the temperature of the thermosensitive element 12 on the back surface of the top plate 11 is faster than the radiation temperature of the object to be heated, the request for confirming the light receiving state of the infrared sensor 9 is notified. 9 can be normally maintained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施の形態1に係る誘導加熱調理器
1のブロック構成図である。
FIG. 1 is a block configuration diagram of an induction heating cooker 1 according to Embodiment 1 of the present invention.

【図2】 本発明の実施の形態1に係る誘導加熱調理器
1の温度検出制御部の構成例を示すブロック構成図であ
る。
FIG. 2 is a block diagram illustrating a configuration example of a temperature detection control unit of the induction heating cooker 1 according to Embodiment 1 of the present invention.

【図3】 本発明の実施の形態1に係る誘導加熱調理器
1の被加熱物の温度を検出する検出温度演算処理のフロ
ーチャートである。
FIG. 3 is a flowchart of a detected temperature calculation process for detecting a temperature of a heated object of the induction heating cooker 1 according to Embodiment 1 of the present invention.

【図4】 放射率をパラメータにとって赤外線量と換算
温度との関係を示した特性図である。
FIG. 4 is a characteristic diagram showing the relationship between the amount of infrared rays and the converted temperature using the emissivity as a parameter.

【図5】 本発明の実施の形態1に係る誘導加熱調理器
1の赤外線センサもう一つの配置例を示したブロック構
成図である。
FIG. 5 is a block diagram showing another arrangement example of the infrared sensor of the induction heating cooker 1 according to Embodiment 1 of the present invention.

【図6】 本発明の実施の形態2に係る誘導加熱調理器
1のブロック構成図である。
FIG. 6 is a block diagram of an induction heating cooker 1 according to Embodiment 2 of the present invention.

【図7】 赤外線センサ受光部の汚れ状態毎に赤外線量
と換算温度との関係を示した特性図である。
FIG. 7 is a characteristic diagram showing the relationship between the amount of infrared rays and the converted temperature for each contamination state of the infrared sensor light receiving unit.

【図8】 本発明の実施の形態2に係る誘導加熱調理器
1における赤外線センサの受光状態を判定する赤外線セ
ンサ汚れ検出処理1のフローチャートである。
FIG. 8 is a flowchart of an infrared sensor dirt detection process 1 for determining a light receiving state of the infrared sensor in the induction heating cooker 1 according to Embodiment 2 of the present invention.

【図9】 被加熱物の温度変化と感熱素子検出温度、放
射温度の変化を示した特性図である。
FIG. 9 is a characteristic diagram showing a change in temperature of an object to be heated, a change in detected temperature of a thermosensitive element, and a change in radiation temperature.

【図10】 本発明の実施の形態3に係る誘導加熱調理
器1において赤外線センサの受光状態を判定する赤外線
センサ汚れ検出処理のもう一つのフローチャートであ
る。
FIG. 10 is another flowchart of the infrared sensor dirt detection processing for determining the light receiving state of the infrared sensor in the induction heating cooker 1 according to Embodiment 3 of the present invention.

【図11】 従来の加熱調理器の温度検出の構成を示す
ブロック図である。
FIG. 11 is a block diagram showing a configuration of temperature detection of a conventional cooking device.

【図12】 放射率と反射率の関係を示した特性図であ
る。
FIG. 12 is a characteristic diagram showing a relationship between emissivity and reflectance.

【図13】 放射率をパラメータにとって赤外線量と換
算温度との関係を示した特性図である。
FIG. 13 is a characteristic diagram showing the relationship between the amount of infrared rays and the converted temperature using the emissivity as a parameter.

【符号の説明】[Explanation of symbols]

1 加熱調理器、2 鍋、3 演算制御処理部、4 加
熱制御部、5 発光素子、6 受光センサ、7 発光制
御部、8 反射検知部、9 赤外線センサ、10 放射
検知部、11 天板、12 感熱素子、13 感熱検知
部、14 操作部、14a 異常リセット入力、15
表示部、15a 状態確認要求のLED、16 温度検
出制御部、16a 演算制御部、16b 制御プログラ
ムデータ、16c タイマ部、16d タイマカウン
タ、16e 感熱素子検出温度データ記憶部、16f
赤外線データ記憶部、16g放射率データ記憶部、16
h 放射温度データ記憶部、16i 感熱素子温度デー
タテーブル、16j 赤外線量・温度データテーブル、
16k 検出温度記憶部、16x 放射温度不可フラ
グ、17 加熱コイル
DESCRIPTION OF SYMBOLS 1 Cooking device, 2 pots, 3 arithmetic control processing parts, 4 heating control parts, 5 light emitting elements, 6 light receiving sensors, 7 light emitting control parts, 8 reflection detection parts, 9 infrared sensors, 10 radiation detection parts, 11 top plates 12 Thermal element, 13 Thermal detector, 14 Operation section, 14a Abnormal reset input, 15
Display unit, 15a LED for status confirmation request, 16 temperature detection control unit, 16a operation control unit, 16b control program data, 16c timer unit, 16d timer counter, 16e thermosensitive element detected temperature data storage unit, 16f
Infrared data storage, 16g emissivity data storage, 16
h radiation temperature data storage section, 16i thermosensitive element temperature data table, 16j infrared ray quantity / temperature data table,
16k detection temperature storage unit, 16x radiation temperature disable flag, 17 heating coil

───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐藤 隆志 埼玉県大里郡花園町大字小前田1728番地1 三菱電機ホーム機器株式会社内 (72)発明者 木下 広一 埼玉県大里郡花園町大字小前田1728番地1 三菱電機ホーム機器株式会社内 Fターム(参考) 2G066 AC05 AC16 BB15 BC15 CA15 CB05 3K051 AB02 AC33 AC42 AD24 AD28 CD07 CD38 CD40 CD44 3L086 AA01 CB05 CB17 DA20  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Takashi Sato 1728-1, Koeda, Oaza, Hanazono-cho, Osato-gun, Saitama Prefecture Inside Mitsubishi Electric Home Equipment Co., Ltd. Mitsubishi Electric Home Equipment Co., Ltd. F term (reference) 2G066 AC05 AC16 BB15 BC15 CA15 CB05 3K051 AB02 AC33 AC42 AD24 AD28 CD07 CD38 CD40 CD44 3L086 AA01 CB05 CB17 DA20

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 被加熱物から放射される赤外線を検出す
る赤外線センサと、該被加熱物と熱的に接触した感熱素
子と、前記赤外線センサにより検出された赤外線量と前
記感熱素子により検出された温度により、前記被加熱物
から放射される赤外線の放射率を推定する推定手段と、
該推定手段により推定された前記被加熱物の放射率と前
記赤外線センサにより検出された赤外線量から前記被加
熱物の放射温度を算出する放射温度算出手段とを備えた
ことを特徴とする誘導加熱調理器。
1. An infrared sensor for detecting infrared rays emitted from an object to be heated, a thermosensitive element in thermal contact with the object to be heated, an infrared ray amount detected by the infrared sensor, and an infrared ray detected by the thermosensitive element. Estimating means for estimating the emissivity of infrared rays radiated from the object to be heated,
Induction heating means for calculating a radiation temperature of the object to be heated from the emissivity of the object to be heated estimated by the estimating means and the amount of infrared rays detected by the infrared sensor. Cooking device.
【請求項2】 前記推定手段による前記被加熱物に対す
る放射率の推定は、前記感熱素子により検出された温度
と前記赤外線センサにより検出された赤外線量の変動
が、所定時間以上続いて所定範囲内に収まっている場合
に実行されることを特徴とする請求項1記載の誘導加熱
調理器。
2. The estimating means for estimating the emissivity for the object to be heated is characterized in that the fluctuations in the temperature detected by the thermosensitive element and the amount of infrared light detected by the infrared sensor continue for a predetermined time or more and fall within a predetermined range. The induction heating cooker according to claim 1, wherein the induction heating cooker is executed when the temperature is within the range.
【請求項3】 前記感熱素子による検出温度が、前記赤
外線センサにより検出された赤外線量と前記被加熱物の
放射率とから算出された放射温度に対し、所定時間以上
続いて所定温度差以上となる場合に、以後の前記被加熱
物の温度を前記感熱素子による検出温度とすることを特
徴とする請求項1または2記載の誘導加熱調理器。
3. The temperature detected by the thermosensitive element is equal to or greater than a predetermined temperature difference for a predetermined time, and then equal to or greater than a predetermined temperature difference with respect to a radiation temperature calculated from an amount of infrared rays detected by the infrared sensor and an emissivity of the object to be heated. 3. The induction heating cooker according to claim 1, wherein, in the case, the temperature of the object to be heated thereafter is set as a temperature detected by the thermosensitive element. 4.
【請求項4】 前記感熱素子による検出温度が、前記赤
外線センサにより検出された赤外線量と前記被加熱物の
放射率とから算出された放射温度に対し、所定時間以上
続いて所定温度差以上となる場合に、前記赤外線センサ
の入光状態の確認を要求する、状態確認要求手段を設け
たことを特徴とする請求項1または2記載の誘導加熱調
理器。
4. The method according to claim 1, wherein the temperature detected by the thermosensitive element is a predetermined temperature difference and then a predetermined temperature difference or more with respect to a radiation temperature calculated from the amount of infrared rays detected by the infrared sensor and the emissivity of the object to be heated. The induction heating cooker according to claim 1, further comprising a state confirmation request unit that requests confirmation of a light incident state of the infrared sensor in a case where the condition is satisfied.
【請求項5】 前記感熱素子による検出温度が、前記赤
外線センサにより検出された赤外線量と前記被加熱物の
放射率とから算出された放射温度より速く変動する場合
に、以後の前記被加熱物の温度を前記感熱素子による検
出温度とするようにしたことを特徴とする請求項1また
は2記載の誘導加熱調理器。
5. When the temperature detected by the thermosensitive element fluctuates faster than the radiation temperature calculated from the amount of infrared rays detected by the infrared sensor and the emissivity of the object to be heated, The induction heating cooker according to claim 1, wherein the temperature is set as a temperature detected by the thermosensitive element.
【請求項6】 前記感熱素子による検出温度が、前記赤
外線センサにより検出された赤外線量と前記被加熱物の
放射率とから算出された放射温度より速く変動する場合
に、前記赤外線センサの入光状態の確認を要求する、状
態確認要求手段を設けたことを特徴とする請求項1また
は2記載の誘導加熱調理器。
6. When the temperature detected by the heat-sensitive element fluctuates faster than the radiation temperature calculated from the amount of infrared light detected by the infrared sensor and the emissivity of the object to be heated, light is incident on the infrared sensor. 3. The induction heating cooker according to claim 1, further comprising a state confirmation requesting means for requesting a state confirmation.
JP2001095438A 2001-03-29 2001-03-29 Induction heating cooker Expired - Lifetime JP3990116B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001095438A JP3990116B2 (en) 2001-03-29 2001-03-29 Induction heating cooker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001095438A JP3990116B2 (en) 2001-03-29 2001-03-29 Induction heating cooker

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006300221A Division JP2007059412A (en) 2006-11-06 2006-11-06 Induction heating cooking device

Publications (3)

Publication Number Publication Date
JP2002299029A true JP2002299029A (en) 2002-10-11
JP2002299029A5 JP2002299029A5 (en) 2006-08-24
JP3990116B2 JP3990116B2 (en) 2007-10-10

Family

ID=18949490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001095438A Expired - Lifetime JP3990116B2 (en) 2001-03-29 2001-03-29 Induction heating cooker

Country Status (1)

Country Link
JP (1) JP3990116B2 (en)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005203211A (en) * 2004-01-15 2005-07-28 Mitsubishi Electric Corp Electric heating cooker
WO2005072012A1 (en) * 2004-01-27 2005-08-04 Matsushita Electric Industrial Co., Ltd. Induction cooking heater
JP2005216585A (en) * 2004-01-28 2005-08-11 Matsushita Electric Ind Co Ltd Induction heating cooker
JP2005317305A (en) * 2004-04-28 2005-11-10 Mitsubishi Electric Corp Heating cooker
JP2006004765A (en) * 2004-06-17 2006-01-05 Toshiba Corp Induction heating cooker
JP2007010421A (en) * 2005-06-29 2007-01-18 Omron Corp Temperature measurement module and temperature measuring method using the same
JP2007103085A (en) * 2005-09-30 2007-04-19 Toshiba Corp Heating cooker
JP2007299707A (en) * 2006-05-08 2007-11-15 Matsushita Electric Ind Co Ltd Induction heating cooker
JP2008016203A (en) * 2006-07-03 2008-01-24 Matsushita Electric Ind Co Ltd Induction heating cooker
JP2008041471A (en) * 2006-08-08 2008-02-21 Matsushita Electric Ind Co Ltd Induction heating device
JP2008060088A (en) * 2007-11-19 2008-03-13 Matsushita Electric Ind Co Ltd Induction-heating cooking oven
WO2008120447A1 (en) * 2007-03-12 2008-10-09 Panasonic Corporation Induction cooking device
WO2008120449A1 (en) * 2007-03-12 2008-10-09 Panasonic Corporation Induction cooking device
JP2009048885A (en) * 2007-08-21 2009-03-05 Panasonic Corp Induction heating cooker
JP2009070830A (en) * 2008-11-28 2009-04-02 Panasonic Corp Induction heating cooking oven
JP2010113882A (en) * 2008-11-05 2010-05-20 Mitsubishi Electric Corp Heating cooker
JP2010113879A (en) * 2008-11-05 2010-05-20 Mitsubishi Electric Corp Induction heating cooking appliance
JP2010170784A (en) * 2009-01-21 2010-08-05 Mitsubishi Electric Corp Heating cooker
JP2010170879A (en) * 2009-01-23 2010-08-05 Mitsubishi Electric Corp Induction cooker
JP2010262774A (en) * 2009-04-30 2010-11-18 Mitsubishi Electric Corp Induction cooking device
JP2010267433A (en) * 2009-05-13 2010-11-25 Mitsubishi Electric Corp Electromagnetic cooker
JP2010277791A (en) * 2009-05-27 2010-12-09 Mitsubishi Electric Corp Induction heating cooker
JP2010277976A (en) * 2009-06-01 2010-12-09 Mitsubishi Electric Corp Cooker
JP2011023188A (en) * 2009-07-15 2011-02-03 Mitsubishi Electric Corp Induction heating cooker
JP2011071040A (en) * 2009-09-28 2011-04-07 Mitsubishi Electric Corp Induction heating cooker
JP2011078537A (en) * 2009-10-06 2011-04-21 Agp Corp Food service cart and service tray
JP2011253781A (en) * 2010-06-04 2011-12-15 Mitsubishi Electric Corp Heat cooking device
CN102401699A (en) * 2010-09-17 2012-04-04 三菱综合材料株式会社 Temperature sensor
WO2015018892A1 (en) * 2013-08-09 2015-02-12 Miele & Cie. Kg Cooking device and method for operating the cooking device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5653465B2 (en) * 2013-02-06 2015-01-14 三菱電機株式会社 Cooker

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005203211A (en) * 2004-01-15 2005-07-28 Mitsubishi Electric Corp Electric heating cooker
CN100466869C (en) * 2004-01-27 2009-03-04 松下电器产业株式会社 Induction heating cooker
WO2005072012A1 (en) * 2004-01-27 2005-08-04 Matsushita Electric Industrial Co., Ltd. Induction cooking heater
JP2005216501A (en) * 2004-01-27 2005-08-11 Matsushita Electric Ind Co Ltd Induction heating cooker
US7102109B2 (en) 2004-01-27 2006-09-05 Matsushita Electric Industrial Co., Ltd. Induction cooking heater
JP4617676B2 (en) * 2004-01-27 2011-01-26 パナソニック株式会社 Induction heating cooker
JP2005216585A (en) * 2004-01-28 2005-08-11 Matsushita Electric Ind Co Ltd Induction heating cooker
JP4492135B2 (en) * 2004-01-28 2010-06-30 パナソニック株式会社 Induction heating cooker
KR100681112B1 (en) * 2004-04-28 2007-02-08 미츠비시덴키 가부시키가이샤 Heating appliance for cooking
KR100743349B1 (en) * 2004-04-28 2007-07-26 미츠비시덴키 가부시키가이샤 Heating appliance for cooking
JP2005317305A (en) * 2004-04-28 2005-11-10 Mitsubishi Electric Corp Heating cooker
JP2006004765A (en) * 2004-06-17 2006-01-05 Toshiba Corp Induction heating cooker
JP4693367B2 (en) * 2004-06-17 2011-06-01 株式会社東芝 Cooker
JP4586650B2 (en) * 2005-06-29 2010-11-24 オムロン株式会社 Temperature measurement module and temperature measurement method using the same
JP2007010421A (en) * 2005-06-29 2007-01-18 Omron Corp Temperature measurement module and temperature measuring method using the same
JP2007103085A (en) * 2005-09-30 2007-04-19 Toshiba Corp Heating cooker
JP2007299707A (en) * 2006-05-08 2007-11-15 Matsushita Electric Ind Co Ltd Induction heating cooker
JP2008016203A (en) * 2006-07-03 2008-01-24 Matsushita Electric Ind Co Ltd Induction heating cooker
JP2008041471A (en) * 2006-08-08 2008-02-21 Matsushita Electric Ind Co Ltd Induction heating device
US8729434B2 (en) 2007-03-12 2014-05-20 Panasonic Corporation Induction cooking device
WO2008120449A1 (en) * 2007-03-12 2008-10-09 Panasonic Corporation Induction cooking device
JP5065378B2 (en) * 2007-03-12 2012-10-31 パナソニック株式会社 Induction heating cooker
WO2008120447A1 (en) * 2007-03-12 2008-10-09 Panasonic Corporation Induction cooking device
JPWO2008120447A1 (en) * 2007-03-12 2010-07-15 パナソニック株式会社 Induction heating cooker
JP2009048885A (en) * 2007-08-21 2009-03-05 Panasonic Corp Induction heating cooker
JP2008060088A (en) * 2007-11-19 2008-03-13 Matsushita Electric Ind Co Ltd Induction-heating cooking oven
JP4497196B2 (en) * 2007-11-19 2010-07-07 パナソニック株式会社 Induction heating cooker
JP2010113882A (en) * 2008-11-05 2010-05-20 Mitsubishi Electric Corp Heating cooker
JP2010113879A (en) * 2008-11-05 2010-05-20 Mitsubishi Electric Corp Induction heating cooking appliance
JP4492746B2 (en) * 2008-11-28 2010-06-30 パナソニック株式会社 Induction heating cooker
JP2009070830A (en) * 2008-11-28 2009-04-02 Panasonic Corp Induction heating cooking oven
JP2010170784A (en) * 2009-01-21 2010-08-05 Mitsubishi Electric Corp Heating cooker
JP2010170879A (en) * 2009-01-23 2010-08-05 Mitsubishi Electric Corp Induction cooker
JP2010262774A (en) * 2009-04-30 2010-11-18 Mitsubishi Electric Corp Induction cooking device
JP2010267433A (en) * 2009-05-13 2010-11-25 Mitsubishi Electric Corp Electromagnetic cooker
JP2010277791A (en) * 2009-05-27 2010-12-09 Mitsubishi Electric Corp Induction heating cooker
JP2010277976A (en) * 2009-06-01 2010-12-09 Mitsubishi Electric Corp Cooker
JP2011023188A (en) * 2009-07-15 2011-02-03 Mitsubishi Electric Corp Induction heating cooker
JP2011071040A (en) * 2009-09-28 2011-04-07 Mitsubishi Electric Corp Induction heating cooker
JP2011078537A (en) * 2009-10-06 2011-04-21 Agp Corp Food service cart and service tray
JP2011253781A (en) * 2010-06-04 2011-12-15 Mitsubishi Electric Corp Heat cooking device
CN102401699A (en) * 2010-09-17 2012-04-04 三菱综合材料株式会社 Temperature sensor
WO2015018892A1 (en) * 2013-08-09 2015-02-12 Miele & Cie. Kg Cooking device and method for operating the cooking device

Also Published As

Publication number Publication date
JP3990116B2 (en) 2007-10-10

Similar Documents

Publication Publication Date Title
JP2002299029A (en) Induction cooker
EP1094688B1 (en) Cooktop control and monitoring system including detecting properties of a utensil through a solid-surface cooktop
CA2523054C (en) Induction heating cooker
US8581159B2 (en) Control method for a cooktop and cooktop for carrying out said method
JP2003092177A (en) Induction heating cooker
JP4123036B2 (en) Cooker
JP2002075624A (en) Induction heating cooker
JP4530097B2 (en) Cooking apparatus and program thereof
JP2006318925A (en) Heating cooker
JPH11225881A (en) Heating cooking device
JP2003264055A (en) Heating cooker
JP2004111055A (en) Heating cooker
JP4311413B2 (en) Induction heating device
JP2007059412A (en) Induction heating cooking device
JP2003347028A (en) Cooking device
JP5011851B2 (en) Induction heating cooker
JP2007250556A (en) Heating cooker
JP2003249341A (en) Induction heating cooker
JP4998062B2 (en) Induction heating cooker
JP5052567B2 (en) Induction heating cooker
JP2004241218A (en) Induction heating cooker
JP5619229B2 (en) Cooker
JP4687168B2 (en) Induction heating cooker
JP2010170784A (en) Heating cooker
JP2011253761A (en) Induction heating cooking device

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040806

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060711

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060719

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20060726

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20060828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070717

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070719

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3990116

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130727

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term