JP4586650B2 - Temperature measurement module and temperature measurement method using the same - Google Patents

Temperature measurement module and temperature measurement method using the same Download PDF

Info

Publication number
JP4586650B2
JP4586650B2 JP2005190037A JP2005190037A JP4586650B2 JP 4586650 B2 JP4586650 B2 JP 4586650B2 JP 2005190037 A JP2005190037 A JP 2005190037A JP 2005190037 A JP2005190037 A JP 2005190037A JP 4586650 B2 JP4586650 B2 JP 4586650B2
Authority
JP
Japan
Prior art keywords
temperature
infrared
measured
detection means
detecting means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005190037A
Other languages
Japanese (ja)
Other versions
JP2007010421A (en
Inventor
朋宏 片岡
友将 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Corp filed Critical Omron Corp
Priority to JP2005190037A priority Critical patent/JP4586650B2/en
Publication of JP2007010421A publication Critical patent/JP2007010421A/en
Application granted granted Critical
Publication of JP4586650B2 publication Critical patent/JP4586650B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Radiation Pyrometers (AREA)

Description

本発明は温度測定モジュール、例えば、ガスコンロや電磁コンロで加熱される鍋等の温度を非接触で測定する温度測定モジュールおよびそれを用いた温度測定方法に関する。   The present invention relates to a temperature measurement module, for example, a temperature measurement module that measures the temperature of a pan or the like heated by a gas stove or electromagnetic stove in a non-contact manner, and a temperature measurement method using the same.

一般的に、コンロ等で加熱される鍋の温度を非接触で測定する方法としては、放射線強度測定法および2色測定法が挙げられる。前記放射線強度測定法は、赤外線検出手段の出力が被測定対象物の放射率に依存していることに着目し、既知の放射率と測定した放射強度とを用いて鍋の温度を検出する方法である。   Generally, methods for measuring the temperature of a pan heated with a stove or the like in a non-contact manner include a radiation intensity measurement method and a two-color measurement method. The radiation intensity measurement method focuses on the fact that the output of the infrared detection means depends on the emissivity of the object to be measured, and detects the pan temperature using the known emissivity and the measured radiation intensity. It is.

一方、2色測定法は放射率に依存しない方法であり、2つの波長域の赤外線強度を測定し、赤外線強度の比率に基づき、一定の関数関係に従って温度を計算して検出する方法である(特許文献1参照)、この方法によれば、アルマイト製鍋およびガラス製鍋のいずれの鍋の温度をも測定できるとされている。
なお、本発明が主に解決しようとする鍋等の温度は300℃以下であり、その温度帯域で被測定対象物から放射される放射線は主に赤外線領域である。よって、本発明においては被測定対象物から放射される放射線を赤外線として記述している。
特開2002−340339号公報
On the other hand, the two-color measurement method is a method that does not depend on emissivity, and is a method of measuring the infrared intensity in two wavelength regions and calculating and detecting the temperature according to a certain functional relationship based on the ratio of the infrared intensity ( According to this method, according to this method, it is said that the temperature of any pan of an alumite pan and a glass pan can be measured.
Note that the temperature of a pan or the like that the present invention is mainly intended to solve is 300 ° C. or less, and the radiation emitted from the object to be measured in that temperature band is mainly in the infrared region. Therefore, in this invention, the radiation radiated | emitted from a to-be-measured object is described as infrared rays.
JP 2002-340339 A

しかしながら、前者の放射線強度測定法は放射率の影響を受けやすく、放射率は鍋の材質毎に大きく異なる。このため、放射率を特定の数値に固定して計算すると、鍋の材質によっては検出温度のバラツキが大きくなる。この結果、鍋の材質が変化する度に前記鍋の材質に対応する放射率を入力する必要があり、煩雑であるので、実用的でない。   However, the former radiation intensity measurement method is easily affected by emissivity, and the emissivity varies greatly depending on the material of the pan. For this reason, if the emissivity is fixed to a specific numerical value, the variation in the detected temperature increases depending on the material of the pan. As a result, it is necessary to input an emissivity corresponding to the material of the pan every time the material of the pan changes, which is not practical because it is complicated.

一方、波長ごとの放射率を示す放射率スペクトルは被測定対象物固有のものであり、鍋の材質によって大きく異なる場合もある。このため、前記2色測定法のように特定の2種類の波長域を測定するだけでは、材質の異なる鍋の温度を正確に検出できないという問題点がある。   On the other hand, the emissivity spectrum indicating the emissivity for each wavelength is unique to the object to be measured, and may vary greatly depending on the material of the pan. For this reason, there is a problem that the temperature of the pans of different materials cannot be accurately detected only by measuring two specific wavelength ranges as in the two-color measurement method.

本発明は、前記問題点に鑑み、鍋等の被測定対象物の材質が異なっても、温度を非接触で正確に測定できる温度測定モジュールおよびそれを用いた温度測定方法を提供することを課題とする。   In view of the above problems, the present invention provides a temperature measurement module capable of accurately measuring a temperature in a non-contact manner even if the material of an object to be measured such as a pan is different, and a temperature measurement method using the same. And

本発明にかかる温度測定モジュールは、前記課題を解決すべく、被測定対象物が放射する赤外線の特定の波長域を測定する第1赤外線検出手段と、前記第1赤外線検出手段が測定する波長域よりも長い波長域を測定する第2赤外線検出手段と、前記第1赤外線検出手段および前記第2赤外線検出手段が測定した赤外線強度の比率に基づいて被測定対象物の温度を検出する第1温度検出手段と、前記第2赤外線検出手段が測定した赤外線強度に基づいて被測定対象物の温度を検出する第2温度検出手段と、前記第1温度検出手段および前記第2温度検出手段が出力した温度データを比較し、より高い温度データを出力する比較手段と、からなる構成としてある。   In order to solve the above-described problem, the temperature measurement module according to the present invention includes a first infrared detection unit that measures a specific wavelength range of infrared rays emitted from the measurement target, and a wavelength range that is measured by the first infrared detection unit. Second infrared detecting means for measuring a longer wavelength range, and a first temperature for detecting the temperature of the object to be measured based on the ratio of the infrared intensity measured by the first infrared detecting means and the second infrared detecting means. The detection means, the second temperature detection means for detecting the temperature of the object to be measured based on the infrared intensity measured by the second infrared detection means, the first temperature detection means and the second temperature detection means output Comparing means for comparing temperature data and outputting higher temperature data is provided.

本発明によれば、金属光沢面を有する被測定対象物のように放射率が低い場合には、実際の温度よりも低い温度データを出力する赤外線強度に基づいた温度検出方法を利用せず、2つの波長域の赤外線強度の比率に基づいて検出した高い温度データを選択する。
一方、非金属光沢面を有する被測定対象物のように短波長の波長域の赤外線強度が大きくない場合には、実際の温度よりも低い温度データを出力する2つの波長域の赤外線強度比率に基づいた温度検出方法を利用せず、安定した大きな放射率が得られる長波長の波長域における赤外線強度に基づいて検出した温度データを選択する。
したがって、第1,第2温度検出手段が出力する2つの温度データのうち、より高い温度データを常に選択して出力することにより、温度をより正確に検出できる温度測定モジュールが得られる。
According to the present invention, when the emissivity is low, such as an object to be measured having a metallic glossy surface, without using a temperature detection method based on infrared intensity that outputs temperature data lower than the actual temperature, High temperature data detected based on the ratio of the infrared intensity in the two wavelength regions is selected.
On the other hand, when the infrared intensity in the short wavelength region is not large like the object to be measured having a non-metallic glossy surface, the infrared intensity ratio of the two wavelength regions that outputs temperature data lower than the actual temperature is set. The temperature data detected based on the infrared intensity in the long wavelength range where a stable and large emissivity can be obtained without using the temperature detection method based on the temperature is selected.
Therefore, by always selecting and outputting higher temperature data from the two temperature data output by the first and second temperature detection means, a temperature measurement module capable of detecting the temperature more accurately is obtained.

本発明にかかる他の測定モジュールとしては、被測定対象物が放射する赤外線の特定の波長域を測定する第1赤外線検出手段と、前記第1赤外線検出手段が測定する波長域よりも長い波長域を測定する第2赤外線検出手段と、前記第1,第2赤外線検出手段の周囲温度を測定する参照温度検出手段と、前記第1赤外線検出手段および前記第2赤外線検出手段が測定した赤外線強度の比率に基づいて被測定対象物の温度を検出する第1温度検出手段と、前記第2赤外線検出手段が測定した赤外線強度に基づいて被測定対象物の温度を検出する第2温度検出手段と、前記参照温度検出手段の測定データに基づいて前記周囲温度を検出する第3温度検出手段と、第1温度検出手段および第3温度検出手段の温度データを合算する第1加算手段と、第2温度検出手段および第3温度検出手段の温度データを合算する第2加算手段と、前記第1加算手段および前記第2加算手段がそれぞれ出力した温度データを比較し、より高い温度データを出力する比較手段と、からなる構成としてもよい。   Other measurement modules according to the present invention include a first infrared detection means for measuring a specific wavelength range of infrared rays emitted from the measurement object, and a wavelength range longer than the wavelength range measured by the first infrared detection means. The second infrared detecting means for measuring the reference temperature detecting means for measuring the ambient temperature of the first and second infrared detecting means, the infrared intensity measured by the first infrared detecting means and the second infrared detecting means. First temperature detecting means for detecting the temperature of the measurement object based on the ratio; second temperature detection means for detecting the temperature of the measurement object based on the infrared intensity measured by the second infrared detection means; A third temperature detecting means for detecting the ambient temperature based on the measurement data of the reference temperature detecting means; a first adding means for adding the temperature data of the first temperature detecting means and the third temperature detecting means; The second adding means for adding the temperature data of the temperature detecting means and the third temperature detecting means and the temperature data output by the first adding means and the second adding means are compared, and a comparison is made to output higher temperature data. It is good also as a structure which consists of a means.

本発明によれば、前述の効果に加え、周囲温度を加算することにより、より一層精度の高い温度測定が可能となる。   According to the present invention, in addition to the above-described effects, the temperature can be measured with higher accuracy by adding the ambient temperature.

本発明にかかる実施形態としては、第1赤外線検出手段の測定波長域が3.0μm〜4.2μmであってもよく、また、第2赤外線検出手段の測定波長域が8.0μm〜13μmであってもよい。
本実施形態によれば、前述の効果に加え、いわゆる大気の窓と呼ばれる波長域で測定するので、ガス炎や熱気等による外乱を回避でき、精度の高い温度測定が可能となる。
As an embodiment according to the present invention, the measurement wavelength range of the first infrared detection means may be 3.0 μm to 4.2 μm, and the measurement wavelength range of the second infrared detection means is 8.0 μm to 13 μm. There may be.
According to the present embodiment, in addition to the above-described effects, measurement is performed in a wavelength region called a so-called atmospheric window, so that disturbance due to a gas flame, hot air, or the like can be avoided, and highly accurate temperature measurement is possible.

本発明にかかる温度測定方法は、被測定対象物が放射する赤外線の特定の波長域を第1赤外線検出手段で測定するとともに、前記第1赤外線検出手段が測定する波長域よりも長い波長域を第2赤外線検出手段で測定した後、前記第1赤外線検出手段および前記第2赤外線検出手段が測定した赤外線強度の比率に基づいて第1温度検出手段で被測定対象物の温度を検出するとともに、前記第2赤外線検出手段が測定した赤外線強度に基づいて第2温度検出手段で被測定対象物の温度を検出し、ついで、前記第1温度検出手段および前記第2温度検出手段が出力した温度データを比較手段で比較し、より高い温度データを出力する工程からなる。   In the temperature measuring method according to the present invention, the specific wavelength range of the infrared ray emitted from the object to be measured is measured by the first infrared detecting means, and the wavelength range longer than the wavelength range measured by the first infrared detecting means is selected. After measuring with the second infrared detection means, the first temperature detection means detects the temperature of the object to be measured based on the ratio of the infrared intensity measured by the first infrared detection means and the second infrared detection means, and Based on the infrared intensity measured by the second infrared detecting means, the temperature of the measurement object is detected by the second temperature detecting means, and then the temperature data output by the first temperature detecting means and the second temperature detecting means. Are compared by the comparison means, and higher temperature data is output.

本発明によれば、金属光沢面を有する被測定対象物のように全波長域において放射率が低い場合には、実際の温度よりも低い温度データを出力する原因となる赤外線強度を利用せず、2つの赤外線放射強度の比率に基づいて検出した高い温度データを選択する。
一方、非金属光沢面を有する被測定対象物のように、放射率スペクトルが被測定対象物の材質によって特徴的であり、2つの波長域間で安定しない場合には、安定した高い放射率を確保できる長波長の波長域における赤外線強度に基づいて検出した高い温度データを選択する。
したがって、第1,第2温度検出手段が出力する2つの温度データのうち、より高い温度データを常に選択して出力することにより、温度をより正確に検出できる温度測定方法が得られる。
According to the present invention, when the emissivity is low in the entire wavelength range as in the measurement object having a metallic glossy surface, the infrared intensity that causes the output of temperature data lower than the actual temperature is not used. High temperature data detected based on the ratio of the two infrared radiation intensities is selected.
On the other hand, when the emissivity spectrum is characteristic of the material of the object to be measured, such as the object to be measured having a non-metallic glossy surface, and is not stable between the two wavelength ranges, a stable high emissivity is obtained. High temperature data detected based on infrared intensity in a long wavelength range that can be secured is selected.
Therefore, a temperature measurement method capable of detecting the temperature more accurately is obtained by always selecting and outputting higher temperature data from the two temperature data output by the first and second temperature detection means.

本発明にかかる他の温度測定方法は、被測定対象物が放射する赤外線の特定の波長域を第1赤外線検出手段で測定し、前記第1赤外線検出手段が測定する波長域よりも長い波長域を第2赤外線検出手段で測定するとともに、前記第1,第2赤外線検出手段の周囲温度を参照温度検出手段で測定した後、前記第1赤外線検出手段および前記第2赤外線検出手段が測定した赤外線強度の比率に基づいて第1温度検出手段で被測定対象物の温度を検出し、前記第2赤外線検出手段が測定した赤外線強度に基づいて第2温度検出手段で被測定対象物の温度を検出するとともに、前記参照温度検出手段の測定データに基づいて前記周囲温度を第3温度検出手段で検出し、ついで、第1温度検出手段および第3温度検出手段の温度データを第1加算手段で合算するとともに、第2温度検出手段および第3温度検出手段の温度データを第2加算手段で合算し、最後に、前記第1加算手段および前記第2加算手段がそれぞれ出力した温度データを比較し、より高い温度データを比較手段が出力する工程からなるものである。   In another temperature measurement method according to the present invention, a specific wavelength range of infrared rays emitted from an object to be measured is measured by first infrared detection means, and a wavelength range longer than the wavelength range measured by the first infrared detection means. Is measured by the second infrared detecting means, and the ambient temperature of the first and second infrared detecting means is measured by the reference temperature detecting means, and then the infrared rays measured by the first infrared detecting means and the second infrared detecting means are measured. The temperature of the object to be measured is detected by the first temperature detecting means based on the intensity ratio, and the temperature of the object to be measured is detected by the second temperature detecting means based on the infrared intensity measured by the second infrared detecting means. In addition, the ambient temperature is detected by the third temperature detecting means based on the measurement data of the reference temperature detecting means, and the temperature data of the first temperature detecting means and the third temperature detecting means is then detected by the first adding means. And the temperature data of the second temperature detection means and the third temperature detection means are added together by the second addition means, and finally, the temperature data output from the first addition means and the second addition means are compared. The comparison means outputs a higher temperature data.

本発明によれば、前述の効果に加え、周囲温度を加算することにより、より一層精度の高い温度測定が可能となる。   According to the present invention, in addition to the above-described effects, the temperature can be measured with higher accuracy by adding the ambient temperature.

本発明にかかる実施形態としては、第1赤外線検出手段の測定波長域が3.0μm〜4.2μmであってもよく、また、第2赤外線検出手段の測定波長域が8.0μm〜13μmであってもよい。
本実施形態によれば、前述の効果に加え、いわゆる大気の窓と呼ばれる波長域で測定するので、ガス炎や熱気等による外乱を回避でき、精度の高い温度測定が可能になるという効果がある。
As an embodiment according to the present invention, the measurement wavelength range of the first infrared detection means may be 3.0 μm to 4.2 μm, and the measurement wavelength range of the second infrared detection means is 8.0 μm to 13 μm. There may be.
According to the present embodiment, in addition to the above-described effects, measurement is performed in a wavelength range called a so-called atmospheric window, so that disturbance due to gas flame, hot air, etc. can be avoided, and highly accurate temperature measurement is possible. .

本発明にかかる実施形態を図1ないし図12の添付図面に従って説明する。
第1実施形態にかかる温度測定モジュール10は、図1および図2に示すように、センサ部20と、アナログ回路部30と、デジタル回路部40とで構成されている。
Embodiments according to the present invention will be described with reference to the accompanying drawings of FIGS.
As shown in FIGS. 1 and 2, the temperature measurement module 10 according to the first embodiment includes a sensor unit 20, an analog circuit unit 30, and a digital circuit unit 40.

前記センサ部20は、図1に示すように、1つのハウジング21内に第1赤外線センサ22、第2赤外線センサ23および参照温度センサ24を配置してある。環境変化に対するセンサ間の特性のバラツキ、および、製造コストを低減するためである。前記第1,第2赤外線センサ22,23としては、例えば、フォトダイオード、サーモパイル等が挙げられ、前記ハウジング21の第1,第2フィルタ25,26を通過した赤外線の強度をそれぞれ検出する。前記第1,第2赤外線センサ22,23自体は、被測定対象物と第1,第2赤外線センサ22,23との温度差に見合ったエネルギーを赤外光で受け取り、それに見合った電圧を出力する。   As shown in FIG. 1, the sensor unit 20 includes a first infrared sensor 22, a second infrared sensor 23, and a reference temperature sensor 24 in one housing 21. This is to reduce variations in characteristics between sensors with respect to environmental changes and to reduce manufacturing costs. Examples of the first and second infrared sensors 22 and 23 include a photodiode, a thermopile, and the like. The first and second infrared sensors 22 and 23 themselves receive energy corresponding to the temperature difference between the object to be measured and the first and second infrared sensors 22 and 23 with infrared light, and output a voltage corresponding to the energy. To do.

前記第1フィルタ25は3.0μmないし4.2μmの波長域、好ましくは3.5μmないし4.0μmの波長域の赤外線だけを通過させるためのものである。また、前記第1フィルタ26は8.0μmないし13μmの波長域、好ましくは8.0μmないし12.0μmの波長域の赤外線だけを通過させるためのものである。前述のような波長域を選択するのは次の理由によるものである。
すなわち、ガス炎、および、ガス炎の周辺に位置する熱気中のHOやCOは赤外線を放射するが、図4に示すように、放射エネルギーを検出できない、いわゆる大気の窓といわれる波長域がある。そこで、ガス炎や熱気による外乱の影響を回避し、測定精度を向上させるために前述のような大気の窓と呼ばれる波長域を選定した。
The first filter 25 is for passing only infrared rays having a wavelength range of 3.0 μm to 4.2 μm, preferably 3.5 μm to 4.0 μm. The first filter 26 passes only infrared rays having a wavelength range of 8.0 μm to 13 μm, preferably 8.0 μm to 12.0 μm. The wavelength range as described above is selected for the following reason.
That is, although the gas flame and H 2 O and CO 2 in the hot air located around the gas flame radiate infrared rays, as shown in FIG. 4, a wavelength called a so-called atmospheric window in which radiant energy cannot be detected. There is a zone. Therefore, in order to avoid the influence of disturbance due to gas flame and hot air and improve the measurement accuracy, the wavelength range called the atmospheric window as described above was selected.

前記第1,第2フィルタ25,26としては、例えば、シリコンウエハや石英の表面に真空蒸着で干渉膜を形成したものが挙げられる。また、前記シリコンウエハ等の表裏面に異なる干渉膜をそれぞれ形成することにより、バンドパスフィルタを形成してもよい。さらに、別体のショートパスフィルタとロングパスフィルタとを組み合わせたものをバンドパスフィルタとして使用してもよい。   Examples of the first and second filters 25 and 26 include those in which an interference film is formed on the surface of a silicon wafer or quartz by vacuum deposition. Further, a band-pass filter may be formed by forming different interference films on the front and back surfaces of the silicon wafer or the like. Further, a combination of a separate short pass filter and a long pass filter may be used as the band pass filter.

参照温度センサ24は、第1,第2赤外線センサ22,23自体の温度に見合ったエネルギーを検出し、これを第1,第2赤外線センサ22,23の検出結果に加算することにより、被測定対象物の温度をより正確に検出するためのものである。前記参照温度センサ24としては、例えば、サーミスタが使用される。   The reference temperature sensor 24 detects energy corresponding to the temperature of the first and second infrared sensors 22 and 23 themselves, and adds this to the detection results of the first and second infrared sensors 22 and 23, thereby measuring This is for more accurately detecting the temperature of the object. As the reference temperature sensor 24, for example, a thermistor is used.

前記アナログ回路部30は、前記第1,第2赤外線センサ22,23および参照温度センサ24が検出した信号を増幅器31,32,33でそれぞれ増幅するとともに、センサ毎の特性のバラツキを調整可能としてある。そして、アナログ切替手段34を設けることにより、センサ毎の出力データを個々にデジタル回路部40に出力し、回路の簡素化を図っている。   The analog circuit section 30 amplifies the signals detected by the first and second infrared sensors 22 and 23 and the reference temperature sensor 24 by amplifiers 31, 32 and 33, respectively, and can adjust the variation in characteristics of each sensor. is there. And by providing the analog switching means 34, the output data for every sensor are individually output to the digital circuit part 40, and the circuit is simplified.

前記デジタル回路部40は増幅されたアナログ信号をA/D変換器41でデジタル信号に変換した後、図示しないバッファに格納しておき、第1,第2赤外線センサ22,23および参照センサ24からのデータが揃った時点で、第1,第2,第3温度検出手段42,43,44に前記バッファに格納されたデータをそれぞれ出力する。特に、図3に示すように、第1温度検出手段42に第1赤外線センサ22および第2赤外線センサ23が検出した赤外線強度をそれぞれ入力し、両方の赤外線強度の比率および温度相関関数(図8A)に基づいて温度を計算し、計算結果を第1加算手段に出力する。   The digital circuit unit 40 converts the amplified analog signal into a digital signal by the A / D converter 41, and then stores it in a buffer (not shown), from the first and second infrared sensors 22, 23 and the reference sensor 24. When the data are collected, the data stored in the buffer is output to the first, second and third temperature detecting means 42, 43 and 44, respectively. In particular, as shown in FIG. 3, the infrared intensity detected by the first infrared sensor 22 and the second infrared sensor 23 is input to the first temperature detecting means 42, respectively, and the ratio of both infrared intensity and the temperature correlation function (FIG. 8A). ) To calculate the temperature, and output the calculation result to the first adding means.

前記第2温度検出手段43は、図3に示すように、第2赤外線センサ23が検出した赤外線強度と温度相関関数(図8B)とに基づいて温度を計算し、計算結果を第2加算手段46に出力する。さらに、第3温度検出手段44は、参照温度センサ24の出力と温度相関関数とに基づいて温度を計算し、計算結果を第1,第2加算手段45,46にそれぞれ出力する。   As shown in FIG. 3, the second temperature detection means 43 calculates the temperature based on the infrared intensity detected by the second infrared sensor 23 and the temperature correlation function (FIG. 8B), and the calculation result is the second addition means. Output to 46. Further, the third temperature detection means 44 calculates the temperature based on the output of the reference temperature sensor 24 and the temperature correlation function, and outputs the calculation results to the first and second addition means 45 and 46, respectively.

第1加算手段45は第1温度検出手段42および第3温度検出手段44から入力された温度データを合算し、その結果を比較手段47に出力する。同様に、第2加算手段46は第2温度検出手段43および第3温度検出手段44から入力された温度データを合算し、その結果を比較手段47に出力する。   The first adding means 45 adds the temperature data input from the first temperature detecting means 42 and the third temperature detecting means 44 and outputs the result to the comparing means 47. Similarly, the second addition means 46 adds the temperature data input from the second temperature detection means 43 and the third temperature detection means 44 and outputs the result to the comparison means 47.

前記比較手段47では、第1,第2加算手段45,46から出力された温度データを比較し、より高い温度データを測定温度として出力する。   The comparison means 47 compares the temperature data output from the first and second addition means 45 and 46 and outputs higher temperature data as the measured temperature.

本実施形態のように、第1,第2加算手段45,46から出力された温度データのうち、高い温度データを選択して出力するのは以下の理由による。
すなわち、被測定対象物がステンレスやアルミニウムのような金属光沢面である場合には、放射率は非常に低い(図5参照)。例えば、ステンレスが150℃で加熱されている場合におけるステンレス鍋の放射率は0.1〜0.2程度と低い。このため、放射率0.85程度を想定した放射線強度測定法により、赤外線強度と温度との相関関係に基づいて温度を計算すれば、ステンレス鍋が実際に加熱されている温度よりも常に低い温度をステンレス鍋の温度として第2温度検出手段が出力する(図9B)。
The reason why the high temperature data is selected and output from the temperature data output from the first and second addition means 45 and 46 as in the present embodiment is as follows.
That is, when the object to be measured is a metallic gloss surface such as stainless steel or aluminum, the emissivity is very low (see FIG. 5). For example, when the stainless steel is heated at 150 ° C., the emissivity of the stainless steel pan is as low as about 0.1 to 0.2. Therefore, if the temperature is calculated based on the correlation between the infrared intensity and the temperature by the radiation intensity measurement method assuming an emissivity of about 0.85, the temperature is always lower than the temperature at which the stainless steel pan is actually heated. Is output by the second temperature detection means (FIG. 9B).

これに対し、いわゆる2色測定法は放射率を基準とせず、異なる波長域における赤外線放射強度の比率に基づいて処理する方法である。図5から明なように、ステンレスの波長域3.0μm〜4.2μmの放射率および波長域8.0〜13μmの放射率が安定している。さらに、波長域3.0μm〜4.2μmの放射率が波長域8.0〜13μmの放射率よりも約1.6倍程、大きい。このため、いわゆる2色測定法によれば、実際の温度に近く、かつ、放射線強度測定法よりも常に大きな温度データを得ることができる(図9A)。この結果、より大きな温度データを選択することにより、金属光沢面を有するステンレス鍋の温度を正確に検出できる。   On the other hand, the so-called two-color measurement method is a method of processing based on the ratio of the infrared radiation intensity in different wavelength ranges without using the emissivity as a reference. As is clear from FIG. 5, the emissivity of the stainless steel in the wavelength range of 3.0 μm to 4.2 μm and the emissivity of the wavelength range of 8.0 to 13 μm are stable. Furthermore, the emissivity in the wavelength range of 3.0 μm to 4.2 μm is about 1.6 times larger than the emissivity in the wavelength range of 8.0 to 13 μm. For this reason, according to the so-called two-color measurement method, it is possible to obtain temperature data that is close to the actual temperature and always larger than the radiation intensity measurement method (FIG. 9A). As a result, by selecting larger temperature data, the temperature of the stainless steel pan having the metallic gloss surface can be accurately detected.

一方、図6,7に示すように、アルマイト、ホーロー、焼付け塗装1,2のような非金属光沢面を有する鍋は8.0〜13μmの広い波長域における放射率が大きく、かつ、安定している。このため、8.0〜13μmの波長域における赤外線強度から放射強度測定法に基づいて温度を検出すれば、非金属光沢面を有する鍋の温度を正確に検出できる。
しかし、前記アルマイト等の鍋は、波長域3.0μm〜4.2μmの放射率が波長域8.0〜13μmの放射率と同等あるいは小さい。このため、波長域3.0μm〜4.2μmの放射率が波長域8.0〜13μmの放射率よりも約1.6倍程、大きいことを想定した2色測定法に基づいて鍋の温度を検出しても、放射強度測定法よりも大きな温度データは得られない。
On the other hand, as shown in FIGS. 6 and 7, a pan having a non-metallic glossy surface such as anodized, enamel, and baked paint 1 and 2 has a large emissivity in a wide wavelength range of 8.0 to 13 μm and is stable. ing. For this reason, if the temperature is detected based on the radiation intensity measurement method from the infrared intensity in the wavelength range of 8.0 to 13 μm, the temperature of the pan having the nonmetallic glossy surface can be accurately detected.
However, in the pan such as alumite, the emissivity in the wavelength range of 3.0 μm to 4.2 μm is equal to or smaller than the emissivity in the wavelength range of 8.0 to 13 μm. For this reason, the temperature of the pan is based on a two-color measurement method that assumes that the emissivity in the wavelength range of 3.0 μm to 4.2 μm is about 1.6 times larger than the emissivity of the wavelength range of 8.0 to 13 μm. Even if detected, temperature data larger than that of the radiation intensity measurement method cannot be obtained.

したがって、被測定対象物がステンレス等の金属光沢面を有する鍋、あるいは、アルマイト等の非金属光沢面を有する鍋であっても、第1,第2温度検出手段42,43がそれぞれ検出する温度データのうち、より高い温度データを比較手段47が選択すれば、鍋の材質に関係なく、常に正確な温度を検出できる温度測定モジュールおよび温度測定方法が得られる。   Therefore, even if the object to be measured is a pan having a metallic gloss surface such as stainless steel, or a pan having a non-metallic gloss surface such as anodized, the temperatures detected by the first and second temperature detecting means 42 and 43, respectively. If the comparison means 47 selects higher temperature data among the data, a temperature measurement module and a temperature measurement method that can always detect an accurate temperature regardless of the material of the pan can be obtained.

次に、本願発明にかかる温度測定モジュールによる実施例について説明する。
測定装置としては、図10および図11に示すように、図示しない開放空間内に、本願発明にかかる温度測定モジュール10を後述するサンプル50の中央に距離80mmで対向するように配置した。
Next, the Example by the temperature measurement module concerning this invention is described.
As a measuring apparatus, as shown in FIGS. 10 and 11, the temperature measuring module 10 according to the present invention is arranged in an open space (not shown) so as to face the center of a sample 50 described later at a distance of 80 mm.

前記温度測定モジュール10は、図1に示すように、第1フィルタに波長域3.0μm〜4.2μmのバンドパスフィルタ25、第2フィルタに波長域8.0μm〜13.0μmのバンドパスフィルタ26を使用した。また、第1,第2赤外線センサ22,23にサーネーモパイル、参照温度センサ24にサーミスタを使用した。   As shown in FIG. 1, the temperature measurement module 10 includes a bandpass filter 25 having a wavelength range of 3.0 μm to 4.2 μm as a first filter and a bandpass filter having a wavelength range of 8.0 μm to 13.0 μm as a second filter. 26 was used. Further, a saner pile is used for the first and second infrared sensors 22 and 23 and a thermistor is used for the reference temperature sensor 24.

被測定対象物である前記サンプル50は、各種鍋の鍋底から巾約80mm、長さ約80mmの大きさに切り取った板状材である。鍋の種類としては、ステンレス鍋、アルミ鍋、ホーロー鍋、焼付け塗装鍋1、アルマイト鍋、焼付け塗装鍋2である。   The sample 50, which is an object to be measured, is a plate-like material cut out from the bottom of various pans to a size of about 80 mm wide and about 80 mm long. The types of pots are stainless steel pot, aluminum pot, enamel pot, baking paint pot 1, anodized pot, baking paint pot 2.

特に、前記焼付け塗装鍋1は、ケイ素を骨格する縮合体であるシリコーン樹脂に無機質フィラーおよびセラミック粉末を添加した塗料を塗布して焼付けたものである。また、前記焼付け塗装鍋2は、純シリコーン樹脂塗料を塗布して焼付けたものである。   In particular, the baking finish pan 1 is obtained by applying and baking a paint obtained by adding an inorganic filler and ceramic powder to a silicone resin that is a condensate having a silicon skeleton. In addition, the baking coating pan 2 is one that is baked by applying a pure silicone resin paint.

そして、前記サンプル50は、巾150mm、長さ150mm、厚さ3mmのアルミ板からなるヒータブロック51の表面にネジ52で固定され、かつ、銀フィラーを添加したエポキシ樹脂で接着一体化されている。前記ヒータブロック51は、巾150mm、長さ150mm、厚さ3.0mmのステンレス板からなる板状発熱体53の表面にネジ54で固定されている。前記板状発熱体53の裏面には温度が均一に分布するようにニクロム線が張り巡らされている。なお、板状発熱体53としてセラミックヒータを代用してもよい。   The sample 50 is fixed by screws 52 to the surface of a heater block 51 made of an aluminum plate having a width of 150 mm, a length of 150 mm, and a thickness of 3 mm, and is bonded and integrated with an epoxy resin to which a silver filler is added. . The heater block 51 is fixed to the surface of a plate-like heating element 53 made of a stainless steel plate having a width of 150 mm, a length of 150 mm, and a thickness of 3.0 mm with screws 54. Nichrome wire is stretched around the back surface of the plate-shaped heating element 53 so that the temperature is uniformly distributed. A ceramic heater may be substituted for the plate-like heating element 53.

そして、前記サンプル50を温度100℃、150℃、200℃および250℃に加熱し、前記温度測定モジュール10で赤外線放射強度を測定,処理した。測定結果を図12の図表に示す。   The sample 50 was heated to temperatures of 100 ° C., 150 ° C., 200 ° C. and 250 ° C., and the infrared radiation intensity was measured and processed by the temperature measurement module 10. The measurement results are shown in the chart of FIG.

図12から明なように、金属光沢表面を有するステンレス鍋およびアルミ鍋の場合には、被測定対象物の温度と比較手段から出力された出力温度とが良く対応していることが判る。
また、金属光沢表面を有しないホーロー鍋、焼付け塗装鍋1、アルマイト鍋、焼付け塗装鍋2の場合にも、被測定対象物の温度と比較手段から出力された出力温度とが良く対応していることが判る。
したがって、被測定対象物の温度と比較手段の出力温度とを比較した結果、参照温度加算後の第1,第2温度検出手段のうち、比較手段がより高い温度を選択すれば、被測定対象物の温度に近似することを確認できた。
As is clear from FIG. 12, in the case of a stainless steel pan and an aluminum pan having a metallic gloss surface, it can be seen that the temperature of the object to be measured corresponds well with the output temperature output from the comparison means.
In addition, even in the case of enamel pans, baking pans 1, anodized pans, and baking pans 2 that do not have a metallic luster surface, the temperature of the object to be measured and the output temperature output from the comparison means correspond well. I understand that.
Therefore, as a result of comparing the temperature of the object to be measured with the output temperature of the comparison means, if the comparison means selects a higher temperature among the first and second temperature detection means after adding the reference temperature, the object to be measured It was confirmed to approximate the temperature of the object.

なお、加算手段は必ずしも2つ設ける必要はなく、1つの加算手段で温度補正を行ってもよい。
また、参照温度センサの温度データに基づく温度補正は、比較手段が加算手段に温度データを出力した後、前記加算手段において参照温度センサに基づく温度データを加算してもよい。
Note that two addition means are not necessarily provided, and temperature correction may be performed by one addition means.
Further, the temperature correction based on the temperature data of the reference temperature sensor may be performed by adding the temperature data based on the reference temperature sensor in the adding means after the comparing means outputs the temperature data to the adding means.

本願発明にかかる温度測定モジュールおよび温度測定方法は、ガスコンロ等で加熱される鍋の温度測定に限らず、非接触で測定することを必要とする他の技術分野においても適用できる。   The temperature measurement module and the temperature measurement method according to the present invention are not limited to the temperature measurement of a pan heated by a gas stove or the like, but can be applied to other technical fields that require non-contact measurement.

本発明にかかる温度測定モジュールの実施形態を示す概略説明図である。It is a schematic explanatory drawing which shows embodiment of the temperature measurement module concerning this invention. 図1で示した温度測定モジュールのブロック図である。It is a block diagram of the temperature measurement module shown in FIG. 処理手順を示す説明図である。It is explanatory drawing which shows a process sequence. 熱気の放射特性を示すグラフ図である。It is a graph which shows the radiation characteristic of hot air. 図5A,5Bは、ステンレスおよびアルミニウムの放射率スペクトルを示すグラフ図である。5A and 5B are graphs showing emissivity spectra of stainless steel and aluminum. 図6A,6Bは、アルマイトおよびホーローの放射率スペクトルを示すグラフ図である。6A and 6B are graphs showing emissivity spectra of alumite and enamel. 図7A,7Bは、焼付け塗装1および焼付け塗装2の放射率スペクトルを示すグラフ図である。7A and 7B are graphs showing emissivity spectra of the baking coating 1 and the baking coating 2. 図8A,8Bは、第1,第2温度検出手段の温度相関関係をそれぞれ示すグラフ図である。8A and 8B are graphs respectively showing the temperature correlation between the first and second temperature detecting means. 図9A,9Bは、材質が異なる場合の第1,第2温度検出手段の温度相関関係を示すグラフ図である。9A and 9B are graphs showing the temperature correlation of the first and second temperature detecting means when the materials are different. 図10A,10Bは、実施例の測定装置を示す分解斜視図および分解正面図である。10A and 10B are an exploded perspective view and an exploded front view showing the measuring apparatus of the embodiment. 図11A,11Bは、実施例の測定装置を示す斜視図および正面図である。11A and 11B are a perspective view and a front view showing the measuring apparatus of the embodiment. 実施例の測定結果を示す図表である。It is a graph which shows the measurement result of an Example.

符号の説明Explanation of symbols

10:温度測定モジュール
20:センサ部
21:ハウジング
22:第1赤外線センサ
23:第2赤外線センサ
24:参照温度センサ
25:第1フィルタ
26:第2フィルタ
30:アナログ回路部
40:デジタル回路部
41:A/D変換器
42:第1温度検出手段
43:第2温度検出手段
44:第3温度検出手段
45:第1加算手段
46:第2加算手段
47:比較手段
50:サンプル
51:ヒータブロック
53:板状発熱体
DESCRIPTION OF SYMBOLS 10: Temperature measurement module 20: Sensor part 21: Housing 22: 1st infrared sensor 23: 2nd infrared sensor 24: Reference temperature sensor 25: 1st filter 26: 2nd filter 30: Analog circuit part 40: Digital circuit part 41 : A / D converter 42: First temperature detection means 43: Second temperature detection means 44: Third temperature detection means 45: First addition means 46: Second addition means 47: Comparison means 50: Sample 51: Heater block 53: Plate-like heating element

Claims (8)

被測定対象物が放射する赤外線の特定の波長域を測定する第1赤外線検出手段と、
前記第1赤外線検出手段が測定する波長域よりも長い波長域を測定する第2赤外線検出手段と、
前記第1赤外線検出手段および前記第2赤外線検出手段が測定した赤外線強度の比率に基づいて被測定対象物の温度を検出する第1温度検出手段と、
前記第2赤外線検出手段が測定した赤外線強度に基づいて被測定対象物の温度を検出する第2温度検出手段と、
前記第1温度検出手段および前記第2温度検出手段が出力した温度データを比較し、より高い温度データを出力する比較手段と、
からなることを特徴とする温度測定モジュール。
First infrared detecting means for measuring a specific wavelength range of infrared rays emitted from the measurement object;
Second infrared detection means for measuring a wavelength range longer than the wavelength range measured by the first infrared detection means;
First temperature detecting means for detecting the temperature of the object to be measured based on the ratio of the infrared intensity measured by the first infrared detecting means and the second infrared detecting means;
Second temperature detection means for detecting the temperature of the object to be measured based on the infrared intensity measured by the second infrared detection means;
Comparing means for comparing the temperature data output by the first temperature detecting means and the second temperature detecting means and outputting higher temperature data;
A temperature measurement module comprising:
被測定対象物が放射する赤外線の特定の波長域を測定する第1赤外線検出手段と、
前記第1赤外線検出手段が測定する波長域よりも長い波長域を測定する第2赤外線検出手段と、
前記第1,第2赤外線検出手段の周囲温度を測定する参照温度検出手段と、
前記第1赤外線検出手段および前記第2赤外線検出手段が測定した赤外線強度の比率に基づいて被測定対象物の温度を検出する第1温度検出手段と、
前記第2赤外線検出手段が測定した赤外線強度に基づいて被測定対象物の温度を検出する第2温度検出手段と、
前記参照温度検出手段の測定データに基づいて前記周囲温度を検出する第3温度検出手段と、
第1温度検出手段および第3温度検出手段の温度データを合算する第1加算手段と、
第2温度検出手段および第3温度検出手段の温度データを合算する第2加算手段と、
前記第1加算手段および前記第2加算手段がそれぞれ出力した温度データを比較し、より高い温度データを出力する比較手段と、
からなることを特徴とする温度測定モジュール。
First infrared detecting means for measuring a specific wavelength range of infrared rays emitted from the measurement object;
Second infrared detection means for measuring a wavelength range longer than the wavelength range measured by the first infrared detection means;
Reference temperature detection means for measuring the ambient temperature of the first and second infrared detection means;
First temperature detecting means for detecting the temperature of the object to be measured based on the ratio of the infrared intensity measured by the first infrared detecting means and the second infrared detecting means;
Second temperature detection means for detecting the temperature of the object to be measured based on the infrared intensity measured by the second infrared detection means;
Third temperature detecting means for detecting the ambient temperature based on measurement data of the reference temperature detecting means;
First addition means for adding the temperature data of the first temperature detection means and the third temperature detection means;
Second addition means for adding the temperature data of the second temperature detection means and the third temperature detection means;
Comparing means for comparing the temperature data output by the first adding means and the second adding means, respectively, and outputting higher temperature data;
A temperature measurement module comprising:
第1赤外線検出手段の測定波長域が、3.0μm〜4.2μmであることを特徴とする請求項1または2に記載の温度測定モジュール。   The temperature measurement module according to claim 1 or 2, wherein the measurement wavelength range of the first infrared detection means is 3.0 µm to 4.2 µm. 第2赤外線検出手段の測定波長域が、8.0μm〜13μmであることを特徴とする請求項1ないし3のいずれか1項に記載の温度測定モジュール。   4. The temperature measurement module according to claim 1, wherein a measurement wavelength region of the second infrared detection means is 8.0 μm to 13 μm. 被測定対象物が放射する赤外線の特定の波長域を第1赤外線検出手段で測定するとともに、前記第1赤外線検出手段が測定する波長域よりも長い波長域を第2赤外線検出手段で測定した後、
前記第1赤外線検出手段および前記第2赤外線検出手段が測定した赤外線強度の比率に基づいて第1温度検出手段で被測定対象物の温度を検出するとともに、前記第2赤外線検出手段が測定した赤外線強度に基づいて第2温度検出手段で被測定対象物の温度を検出し、
ついで、前記第1温度検出手段および前記第2温度検出手段が出力した温度データを比較手段で比較し、より高い温度データを出力することを特徴とする温度測定方法。
After measuring the specific wavelength range of the infrared ray radiated by the measurement object with the first infrared detection means, and measuring the wavelength range longer than the wavelength range measured with the first infrared detection means with the second infrared detection means ,
The temperature of the object to be measured is detected by the first temperature detecting means based on the ratio of the infrared intensity measured by the first infrared detecting means and the second infrared detecting means, and the infrared measured by the second infrared detecting means Based on the intensity, the temperature of the object to be measured is detected by the second temperature detecting means,
Next, the temperature data output by the first temperature detection means and the second temperature detection means are compared by a comparison means, and higher temperature data is output.
被測定対象物が放射する赤外線の特定の波長域を第1赤外線検出手段で測定し、前記第1赤外線検出手段が測定する波長域よりも長い波長域を第2赤外線検出手段で測定するとともに、前記第1,第2赤外線検出手段の周囲温度を参照温度検出手段で測定した後、
前記第1赤外線検出手段および前記第2赤外線検出手段が測定した赤外線強度の比率に基づいて第1温度検出手段で被測定対象物の温度を検出し、前記第2赤外線検出手段が測定した赤外線強度に基づいて第2温度検出手段で被測定対象物の温度を検出するとともに、前記参照温度検出手段の測定データに基づいて前記周囲温度を第3温度検出手段で検出し、
ついで、第1温度検出手段および第3温度検出手段の温度データを第1加算手段で合算するとともに、第2温度検出手段および第3温度検出手段の温度データを第2加算手段で合算し、
最後に、前記第1加算手段および前記第2加算手段がそれぞれ出力した温度データを比較し、より高い温度データを比較手段が出力することを特徴とする温度測定方法。
A specific wavelength range of infrared rays emitted from the measurement object is measured by the first infrared detection means, and a wavelength range longer than the wavelength range measured by the first infrared detection means is measured by the second infrared detection means, After measuring the ambient temperature of the first and second infrared detecting means with reference temperature detecting means,
Infrared intensity measured by the second infrared detecting means by detecting the temperature of the object to be measured by the first temperature detecting means based on the ratio of the infrared intensity measured by the first infrared detecting means and the second infrared detecting means. And the second temperature detecting means detects the temperature of the object to be measured, and the ambient temperature is detected by the third temperature detecting means based on the measurement data of the reference temperature detecting means,
Next, the temperature data of the first temperature detection means and the third temperature detection means are summed by the first addition means, and the temperature data of the second temperature detection means and the third temperature detection means are summed by the second addition means,
Finally, the temperature measurement method characterized in that the temperature data output by the first addition means and the second addition means are compared, and the comparison means outputs higher temperature data.
第1赤外線検出手段の測定波長域が、3.0μm〜4.2μmであることを特徴とする請求項5または6に記載の温度測定方法。   The temperature measuring method according to claim 5 or 6, wherein the measurement wavelength range of the first infrared detecting means is 3.0 µm to 4.2 µm. 第2赤外線検出手段の測定波長域が、8.0μm〜13μmであることを特徴とする請求項5ないし7のいずれか1項に記載の温度測定方法。
The temperature measuring method according to any one of claims 5 to 7, wherein a measurement wavelength region of the second infrared detecting means is 8.0 µm to 13 µm.
JP2005190037A 2005-06-29 2005-06-29 Temperature measurement module and temperature measurement method using the same Active JP4586650B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005190037A JP4586650B2 (en) 2005-06-29 2005-06-29 Temperature measurement module and temperature measurement method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005190037A JP4586650B2 (en) 2005-06-29 2005-06-29 Temperature measurement module and temperature measurement method using the same

Publications (2)

Publication Number Publication Date
JP2007010421A JP2007010421A (en) 2007-01-18
JP4586650B2 true JP4586650B2 (en) 2010-11-24

Family

ID=37749143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005190037A Active JP4586650B2 (en) 2005-06-29 2005-06-29 Temperature measurement module and temperature measurement method using the same

Country Status (1)

Country Link
JP (1) JP4586650B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4989264B2 (en) * 2007-03-16 2012-08-01 大阪瓦斯株式会社 Temperature detection device for cooking device
JP4989265B2 (en) * 2007-03-16 2012-08-01 大阪瓦斯株式会社 Temperature detection device for cooking device
JP5107081B2 (en) * 2008-02-08 2012-12-26 大阪瓦斯株式会社 Temperature detection device for cooking device
JP5074972B2 (en) * 2008-03-24 2012-11-14 大阪瓦斯株式会社 Temperature detection device for cooking device
WO2010023788A1 (en) * 2008-08-26 2010-03-04 パナソニック株式会社 Imaging device
JP4799603B2 (en) * 2008-11-05 2011-10-26 三菱電機株式会社 Cooker
JP5270405B2 (en) * 2009-03-06 2013-08-21 大阪瓦斯株式会社 Temperature detection device
CN102367957B (en) * 2011-09-28 2013-10-02 南京创能电力科技开发有限公司 Integrated intelligent flame detection device
KR101504926B1 (en) 2014-03-27 2015-03-31 현대제철 주식회사 Method for measuring temperature of infrared thermometer
JP6602335B2 (en) 2017-04-14 2019-11-06 シャープ株式会社 Infrared detection system, method and program
JP7061761B2 (en) * 2019-06-03 2022-05-02 シャープ株式会社 Infrared detector

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001281064A (en) * 2000-03-31 2001-10-10 Shibaura Mechatronics Corp Calibration method of monochromatic radiation thermometer
JP2002299029A (en) * 2001-03-29 2002-10-11 Mitsubishi Electric Corp Induction cooker
JP2002340339A (en) * 2001-03-16 2002-11-27 Osaka Gas Co Ltd Cooking stove
JP2002340686A (en) * 2001-05-11 2002-11-27 Matsushita Electric Ind Co Ltd Temperature measuring device and heater

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001281064A (en) * 2000-03-31 2001-10-10 Shibaura Mechatronics Corp Calibration method of monochromatic radiation thermometer
JP2002340339A (en) * 2001-03-16 2002-11-27 Osaka Gas Co Ltd Cooking stove
JP2002299029A (en) * 2001-03-29 2002-10-11 Mitsubishi Electric Corp Induction cooker
JP2002340686A (en) * 2001-05-11 2002-11-27 Matsushita Electric Ind Co Ltd Temperature measuring device and heater

Also Published As

Publication number Publication date
JP2007010421A (en) 2007-01-18

Similar Documents

Publication Publication Date Title
JP4586650B2 (en) Temperature measurement module and temperature measurement method using the same
JP3393648B2 (en) Temperature compensation sensor module
US10215643B2 (en) Dual waveband temperature detector
US10436647B2 (en) Non-contact temperature measurement sensor
US9846083B2 (en) Ambient temperature measurement sensor
JP2006318925A (en) Heating cooker
JP2004095313A (en) Induction heating cooker
JP2004095315A (en) Induction heating cooker
JP2007250556A (en) Heating cooker
US20230152161A1 (en) Enhanced cooker hood with sensors for remote temperature measurement and presence detection
Clausen Spectral emissivity of surface blackbody calibrators
WO2002075264A1 (en) Temperature measuring method and apparatus and semiconductor heat treatment apparatus
El Bakali et al. A fast and versatile method for spectral emissivity measurement at high temperatures
CN114034394A (en) Infrared polarization detection system for measuring metal temperature and emissivity in high-temperature furnace
Siroux et al. A periodic technique for emissivity measurements of insulating materials at moderate temperature
Hughett et al. Image processing software for real time quantitative infrared thermography
JPH0456145A (en) Measuring device for substrate temperature in plasma
Hanssen et al. Validation of the infrared emittance characterization of materials through intercomparison of direct and indirect methods
JPH0425729A (en) Temperature measuring instrument
Hanssen et al. Comparison of direct and indirect methods of spectral infrared emittance measurement
Taubert et al. Radiometric characterization of a high temperature blackbody in the visible and near infrared
JP2632086B2 (en) Radiation thermometry and radiation thermometer used for the temperature measurement
TWI393868B (en) Device and method for emissivity measurement
Dubas Noncontact thermal pyrometry for condensed materials
RU2456557C1 (en) Method of measuring temperature

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100810

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100823

R150 Certificate of patent or registration of utility model

Ref document number: 4586650

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 3