JP4989265B2 - Temperature detection device for cooking device - Google Patents

Temperature detection device for cooking device Download PDF

Info

Publication number
JP4989265B2
JP4989265B2 JP2007069334A JP2007069334A JP4989265B2 JP 4989265 B2 JP4989265 B2 JP 4989265B2 JP 2007069334 A JP2007069334 A JP 2007069334A JP 2007069334 A JP2007069334 A JP 2007069334A JP 4989265 B2 JP4989265 B2 JP 4989265B2
Authority
JP
Japan
Prior art keywords
temperature
wavelength
range
emissivity
cooking container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007069334A
Other languages
Japanese (ja)
Other versions
JP2008232469A (en
Inventor
章 宮藤
克彦 福井
健一郎 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mikuni Corp
Osaka Gas Co Ltd
Original Assignee
Mikuni Corp
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mikuni Corp, Osaka Gas Co Ltd filed Critical Mikuni Corp
Priority to JP2007069334A priority Critical patent/JP4989265B2/en
Publication of JP2008232469A publication Critical patent/JP2008232469A/en
Application granted granted Critical
Publication of JP4989265B2 publication Critical patent/JP4989265B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/06Control, e.g. of temperature, of power
    • H05B6/062Control, e.g. of temperature, of power for cooking plates or the like
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2213/00Aspects relating both to resistive heating and to induction heating, covered by H05B3/00 and H05B6/00
    • H05B2213/07Heating plates with temperature control means

Description

本発明は、調理用容器を加熱する加熱手段と、前記調理用容器から放射された赤外線における複数の波長域夫々についての赤外線強度を検出する赤外線強度検出手段と、その赤外線強度検出手段にて検出される前記複数の波長域夫々についての赤外線強度に基づいて前記調理用容器の温度を検出する温度検出手段とを備えた加熱調理器用の温度検出装置に関する。   The present invention is detected by a heating means for heating a cooking container, an infrared intensity detection means for detecting the infrared intensity for each of a plurality of wavelength ranges in the infrared rays emitted from the cooking container, and the infrared intensity detection means. The present invention relates to a temperature detection device for a heating cooker comprising temperature detection means for detecting the temperature of the cooking container based on infrared intensity for each of the plurality of wavelength ranges.

上記加熱調理器用の温度検出装置において、従来では、加熱調理器としてガスバーナや電磁式加熱器等の加熱手段を備えたコンロに適用したものとして、次のように構成されたものがあった。
すなわち、前記赤外線強度検出手段が、赤外線波長領域における異なる2つの波長域、具体的には、3.5μm以上且つ4.0μm以下の範囲内の波長域、及び、8μm以上且つ10μm以下の範囲内の波長域の赤外線の赤外線強度を検出するように構成され、前記温度検出手段が、前記2つの波長域における赤外線強度の比を求め、その赤外線強度の比と、予め記憶している赤外線強度の比と温度との関係とから調理用容器の温度を検出するように構成して、その検出された調理用容器の温度に基づいて、調理用容器の温度制御を行ったり、調理用容器における過度の温度上昇を回避させるために加熱手段の加熱作動を緊急停止させる等の処理を行えるようにしたものがあった(例えば、特許文献1参照。)。
In the above-described temperature detection device for a heating cooker, conventionally, there has been one configured as follows as applied to a stove provided with heating means such as a gas burner or an electromagnetic heater as a heating cooker.
That is, the infrared intensity detection means has two different wavelength ranges in the infrared wavelength region, specifically, a wavelength range in the range of 3.5 μm to 4.0 μm, and a range of 8 μm to 10 μm. The temperature detecting means obtains a ratio of the infrared intensities in the two wavelength ranges, and the ratio of the infrared intensities and the stored infrared intensities in advance. The temperature of the cooking container is detected from the relationship between the ratio and the temperature, and the temperature of the cooking container is controlled based on the detected temperature of the cooking container, or the cooking container is excessively heated. In order to avoid an increase in the temperature, there has been a method that can perform a process such as an emergency stop of the heating operation of the heating means (see, for example, Patent Document 1).

説明を加えると、上述したような異なる2つの波長域における赤外線強度の比と赤外線を放射している調理用容器の温度との変化特性が、常温から約300℃程度の温度範囲内においては、調理用容器の材質の差にかかわらず略同じ特性であることを前提として、このような温度と赤外線強度との関係を用いて調理用容器の温度を検出するようにしたものである。   When the explanation is added, the change characteristic between the ratio of the infrared intensity in the two different wavelength ranges as described above and the temperature of the cooking container emitting infrared rays is within a temperature range from room temperature to about 300 ° C. The temperature of the cooking container is detected using such a relationship between the temperature and the infrared intensity on the premise that the characteristics are substantially the same regardless of the difference in the material of the cooking container.

特開2002−340339号公報JP 2002-340339 A

しかしながら、本出願人が鋭意研究を行った結果、調理用容器として利用される材質の多くのものは、上記したような特性を有するが、一部の材質のものについては、上述したように予め記憶している赤外線強度の比と温度との特性を示すデータを用いて調理用容器の温度を計測した場合に、計測結果が実際の温度とは大きく異なるものが存在することを実験により知見するに至った。   However, as a result of intensive studies by the present applicant, many of the materials used as cooking containers have the characteristics described above, but some of the materials are preliminarily used as described above. When measuring the temperature of the cooking container using the data indicating the ratio between the infrared intensity ratio and the temperature stored, it is found through experiments that the measurement result is significantly different from the actual temperature. It came to.

本出願人による実験結果について説明を加えると、図2に、本出願人が計測した物体表面温度が200℃である物体の赤外波長領域における種々の材質についての波長の変化に対する放射率の変化を表す放射特性を示している。そして、この計測結果から以下に説明するようなことが判明した。
すなわち、黒体、金属の表面に黒色塗装した調理用容器、金属の表面に銀色塗装した調理用容器、及び、ステンレス板を用いた調理用容器等では、波長の変化にかかわらず放射率の変化が無いか又は少ない状態となるものであるが、金属の表面にシリコン系有機耐熱塗料を塗布した調理用容器やアルミ板の表面をアルマイト処理した調理用容器では、波長が変化すると、放射率が長めの波長領域では放射率の変化が無いか又は少ない状態となるのに対して、短かめの波長領域においては波長の変化に対する放射率の変化が大きく変化する状態になるという放射特性である、言い換えると、波長の変化に対する放射率の変化が小さい放射率均平範囲及び波長の変化に対する放射率の変化が大きい放射率変動範囲を有する放射特性であることが判明した。
The experimental results by the applicant will be described. FIG. 2 shows the change in emissivity with respect to the change in wavelength for various materials in the infrared wavelength region of the object whose object surface temperature measured by the applicant is 200 ° C. The radiation characteristic showing is shown. And it became clear from this measurement result that it explained below.
That is, the emissivity changes regardless of the change in wavelength in black bodies, cooking containers with a black coating on the metal surface, cooking containers with a silver coating on the metal surface, and cooking containers using a stainless steel plate. In a cooking container in which a silicon-based organic heat-resistant paint is applied to the surface of a metal or a cooking container in which the surface of an aluminum plate is anodized, if the wavelength changes, the emissivity increases. In other words, there is no or little change in emissivity in the longer wavelength region, whereas in the shorter wavelength region, the change in emissivity with respect to the change in wavelength becomes a state that changes greatly. The radiation characteristics have an emissivity leveling range in which the change in emissivity with respect to a change in wavelength is small and an emissivity fluctuation range in which the change in emissivity with a change in wavelength is large. It was.

そして、上述したように、2つの波長域における赤外線強度の比と赤外線を放射している調理用容器の温度との変化特性がどのような材質の調理用容器であっても略同じであることを前提として温度を検出するようにした上記従来構成による温度検出の構成では、波長の変化に対する放射率の変化が小さい放射率均平範囲及び波長の変化に対する放射率の変化が大きい放射率変動範囲を有する放射特性の放射率変動型の調理用容器を計測対象とする場合には、検出される温度が調理用容器の実際の温度とが大きくずれた値になってしまい、調理用容器の温度を検出することができないおそれがあり、調理用容器の温度に基づく制御等を良好に行うことができない不利があった。   As described above, the change characteristics of the ratio of the infrared intensity in the two wavelength ranges and the temperature of the cooking container that emits infrared light are substantially the same regardless of the material of the cooking container. In the temperature detection configuration according to the above-described conventional configuration that detects the temperature on the premise of emissivity, the emissivity leveling range in which the change in emissivity with respect to the change in wavelength is small and the emissivity fluctuation range in which the change in emissivity with respect to the change in wavelength is large If the measurement target is an emissivity variation type cooking container having a radiation characteristic, the detected temperature is greatly deviated from the actual temperature of the cooking container, and the temperature of the cooking container There is a possibility that it cannot be detected, and there is a disadvantage that control based on the temperature of the cooking container cannot be performed satisfactorily.

本発明の目的は、調理用容器として放射率変動型の調理用容器を用いる場合であっても、極力誤差を少なくした状態で調理用容器の温度を検出することが可能となる加熱調理器用の温度検出装置を提供する点にある。   An object of the present invention is for a heating cooker that can detect the temperature of a cooking container with as little error as possible even when an emissivity-variable cooking container is used as the cooking container. The object is to provide a temperature detection device.

本発明に係る加熱調理器用の温度検出装置は、調理用容器を加熱する加熱手段と、前記調理用容器から放射された赤外線における複数の波長域夫々についての赤外線強度を検出する赤外線強度検出手段と、その赤外線強度検出手段にて検出される前記複数の波長域夫々についての赤外線強度に基づいて前記調理用容器の温度を検出する温度検出手段とを備えたものであって、その第1特徴構成は、
前記赤外線強度検出手段が、
前記複数の波長域についての赤外線強度として、
波長の変化に対する放射率の変化が小さい放射率均平範囲及び波長の変化に対する放射率の変化が大きい放射率変動範囲を有する放射特性の放射率変動型の調理用容器に対応させて、前記放射率変動範囲に設定した第1温度計測用の波長域についての赤外線強度、前記放射率均平範囲に設定した第1温度計測用の波長域についての赤外線強度、前記放射率均平範囲に異なる波長域として設定した2種の第2温度計測用の波長域についての赤外線強度、及び、前記放射率均平範囲に設定した温度判定用の波長域についての赤外線強度の夫々を検出するように構成され、
前記温度検出手段が、
2種の前記第1温度計測用の波長域の夫々について検出される一対の赤外線強度の比に基づいて第1予測温度を求め、かつ、2種の前記第2温度計測用の波長域の夫々について検出される一対の赤外線強度の比に基づいて第2予測温度を求めて、前記第1予測温度と前記第2予測温度との差が許容範囲内にあるときは、前記第1予測温度及び前記第2予測温度に基づいて前記調理用容器の温度を判定し、前記第1予測温度と前記第2予測温度との差が前記許容範囲を外れているときは、前記温度判定用の波長域について検出される赤外線強度に基づいて前記調理用容器の温度を判定するように構成されている点にある。
A temperature detecting device for a heating cooker according to the present invention includes a heating means for heating a cooking container, and an infrared intensity detecting means for detecting infrared intensity for each of a plurality of wavelength ranges in infrared rays emitted from the cooking container. And a temperature detecting means for detecting the temperature of the cooking container based on the infrared intensity for each of the plurality of wavelength ranges detected by the infrared intensity detecting means. Is
The infrared intensity detecting means is
As the infrared intensity for the plurality of wavelength ranges,
The radiation corresponding to an emissivity variation type cooking container having an emissivity characteristic having an emissivity leveling range with a small change in emissivity with respect to a change in wavelength and an emissivity variation range with a large change in emissivity with respect to a change in wavelength. Infrared intensity for the first temperature measurement wavelength range set in the rate variation range, Infrared intensity for the first temperature measurement wavelength range set in the emissivity level range, and a wavelength that is different from the emissivity level range It is configured to detect each of the infrared intensity for the two types of wavelength ranges for measuring the second temperature set as the area and the infrared intensity for the wavelength range for temperature determination set in the emissivity average range. ,
The temperature detecting means is
A first predicted temperature is obtained based on a ratio of a pair of infrared intensities detected for each of the two types of wavelength regions for the first temperature measurement, and each of the two types of wavelength regions for the second temperature measurement is used. The second predicted temperature is obtained based on the ratio of the pair of infrared intensities detected for the first predicted temperature and when the difference between the first predicted temperature and the second predicted temperature is within an allowable range, the first predicted temperature and When the temperature of the cooking container is determined based on the second predicted temperature, and the difference between the first predicted temperature and the second predicted temperature is outside the allowable range, the wavelength region for temperature determination It is in the point comprised so that the temperature of the said container for cooking may be determined based on the infrared intensity detected about.

第1特徴構成によれば、前記赤外線強度検出手段により、波長の変化に対する放射率の変化が小さい放射率均平範囲及び波長の変化に対する放射率の変化が大きい放射率変動範囲を有する放射特性の放射率変動型の調理用容器に対応させて、前記放射率変動範囲に設定した第1温度計測用の波長域についての赤外線強度、前記放射率均平範囲に設定した第1温度計測用の波長域についての赤外線強度、前記放射率均平範囲に異なる波長域として設定した2種の第2温度計測用の波長域についての赤外線強度、及び、前記放射率均平範囲に設定した温度判定用の波長域についての赤外線強度の夫々を検出するのである。   According to the first characteristic configuration, the infrared intensity detection means has an emissivity level range in which the change in emissivity with respect to the change in wavelength is small and an emissivity fluctuation range in which the change in emissivity with respect to the change in wavelength is large. Corresponding to the emissivity variation type cooking container, the infrared intensity for the first temperature measurement wavelength range set in the emissivity variation range, the first temperature measurement wavelength set in the emissivity average range Infrared intensity for the region, infrared intensity for the two wavelength ranges for the second temperature measurement set as different wavelength ranges in the emissivity average range, and for temperature determination set in the emissivity average range Each of the infrared intensities in the wavelength range is detected.

説明を加えると、図2に示すように、金属の表面にシリコン系有機耐熱塗料を塗布した調理用容器やアルミ板の表面をアルマイト処理した調理用容器等においては、波長が変化すると、放射率が長めの波長領域では放射率の変化が無いか又は少ない状態となるのに対して、短かめの波長領域においては波長の変化に対する放射率の変化が大きく変化する状態になるという放射特性となっているが、このような放射率変動型の調理用容器を対象とする場合であれば、前記長めの波長領域が波長の変化に対する放射率の変化が小さい放射率均平範囲に対応し、前記短かめの波長領域が波長の変化に対する放射率の変化が大きい放射率変動範囲に対応するのであり、夫々の波長領域に対応させて、前記放射率変動範囲に第1温度計測用の波長域を設定し、前記放射率均平範囲に第1温度計測用の波長域を設定し、前記放射率均平範囲に異なる波長域として2種の第2温度計測用の波長域を設定して、各波長域にて夫々赤外線強度を検出することになる。   In addition, as shown in FIG. 2, in a cooking container in which a silicon-based organic heat-resistant paint is applied to the surface of a metal or a cooking container in which the surface of an aluminum plate is anodized, However, there is no or little change in the emissivity in the longer wavelength region, whereas in the shorter wavelength region, the radiation characteristic is such that the change in emissivity with respect to the change in wavelength is greatly changed. However, if the emissivity variation type cooking container is used, the longer wavelength region corresponds to an emissivity average range in which the change in emissivity with respect to the change in wavelength is small, and The kame wavelength range corresponds to an emissivity fluctuation range in which the change in emissivity with respect to the change in wavelength is large, and the wavelength range for the first temperature measurement is set in the emissivity fluctuation range in correspondence with each wavelength range. Then, a wavelength range for the first temperature measurement is set in the emissivity average range, and two types of wavelength ranges for the second temperature measurement are set as different wavelength ranges in the emissivity average range. Infrared intensity is detected in each region.

そうすると、前記放射率変動範囲及び前記放射率均平範囲に各別に設定される2種の第1温度計測用の波長域夫々について検出される一対の赤外線強度の比と調理用容器の温度との変化特性と、前記放射率均平範囲に異なる波長域として設定される2種の前記第2温度計測用の波長域の夫々について検出される一対の赤外線強度の比と調理用容器の温度との変化特性とは、夫々異なる関係になる。   Then, the ratio of the pair of infrared intensities detected for each of the two types of wavelength ranges for the first temperature measurement separately set in the emissivity fluctuation range and the emissivity flattening range and the temperature of the cooking container A change characteristic, a ratio of a pair of infrared intensities detected for each of the two wavelength ranges for the second temperature measurement set as different wavelength ranges in the emissivity level range, and a temperature of the cooking container The change characteristics are different from each other.

ちなみに、図7に2種の第1温度計測用の波長域夫々について検出される一対の赤外線強度の比と調理用容器の温度との変化特性の本出願人の計測結果を示しており、図8に2種の第2温度計測用の波長域夫々について検出される一対の赤外線強度の比と調理用容器の温度との変化特性の本出願人の計測結果を示している。   Incidentally, FIG. 7 shows the measurement results of the applicant of the change characteristics between the ratio of the pair of infrared intensity detected for each of the two types of wavelength ranges for the first temperature measurement and the temperature of the cooking container. FIG. 8 shows the measurement results of the applicant of the change characteristics between the ratio of the pair of infrared intensities detected for each of the two types of wavelength ranges for the second temperature measurement and the temperature of the cooking container.

一方、調理用容器としては、放射率変動型の調理用容器以外に、波長の変化に対する放射率の変化が無い又は変化が少ない放射特性の放射率均平型の調理用容器も存在するが、この放射率均平型の調理用容器では、前記放射率変動範囲及び前記放射率均平範囲の夫々おいて放射率の変化が無い又は変化が少ないので、前記2種の第1温度計測用の波長域夫々について検出される一対の赤外線強度の比と、前記放射率均平範囲に異なる波長域として設定される2種の前記第2温度計測用の波長域の夫々について検出される一対の赤外線強度の比は、調理用容器の温度の変化に対して同じか又は略同じ特性になる。   On the other hand, as the cooking container, in addition to the emissivity variation type cooking container, there is also an emissivity flat type cooking container having a radiation characteristic with no or little change in the emissivity with respect to the change in wavelength, In this emissivity flat type cooking container, there is no change in emissivity or little change in each of the emissivity fluctuation range and the emissivity flat range, and therefore, the two types of first temperature measurement containers are used. A ratio of a pair of infrared intensities detected for each wavelength region and a pair of infrared rays detected for each of the two types of wavelength regions for the second temperature measurement set as different wavelength regions in the emissivity average range The intensity ratio will be the same or substantially the same characteristics with respect to changes in the temperature of the cooking container.

そこで、例えば、異なる波長域の赤外線強度の比と温度との変化特性として、放射率変動型の調理用容器あるいは放射率均平型の調理用容器のいずれかの特性に基づいて設定しておき、その赤外線強度の比と温度との変化特性を用いて、2種の前記第1温度計測用の波長域の夫々について検出される一対の赤外線強度の比に基づいて第1予測温度を求め、2種の前記第2温度計測用の波長域の夫々について検出される一対の赤外線強度の比に基づいて第2予測温度とを夫々求めて、それらの第1予測温度と第2予測温度とを対比することで、放射率変動型の調理用容器であるか、放射率均平型の調理用容器であるかを判定することが可能となる。   Therefore, for example, the change characteristic between the ratio of the infrared intensity in different wavelength ranges and the temperature is set based on the characteristics of either the emissivity fluctuation type cooking container or the emissivity flat type cooking container. The first predicted temperature is determined based on the ratio of the pair of infrared intensities detected for each of the two types of wavelength regions for the first temperature measurement using the infrared intensity ratio and the change characteristic of the temperature, A second predicted temperature is obtained based on a ratio of a pair of infrared intensities detected for each of the two types of wavelength ranges for the second temperature measurement, and the first predicted temperature and the second predicted temperature are obtained. By comparison, it is possible to determine whether it is an emissivity variation type cooking container or an emissivity flat type cooking container.

つまり、第1予測温度と第2予測温度とが予め設定した許容範囲内にあるときは、調理用容器が放射率均平型の調理用容器であり、許容範囲を超えているときは、放射率変動型の調理用容器であることが判る。そして、調理用容器が前記放射率均平型の調理用容器であれば、調理用容器の温度の変化に対する波長毎の赤外線強度の変化等の放射特性は予め計測しておくことができ、それらの第1予測温度及び第2予測温度から調理用容器の温度を判定することができる。   That is, when the first predicted temperature and the second predicted temperature are within a preset allowable range, the cooking container is an emissivity-uniform cooking container, and when it exceeds the allowable range, radiation is performed. It turns out that it is a rate-variable cooking container. And, if the cooking container is the emissivity flat type cooking container, radiation characteristics such as a change in infrared intensity for each wavelength with respect to a change in the temperature of the cooking container can be measured in advance. The temperature of the cooking container can be determined from the first predicted temperature and the second predicted temperature.

一方、第1予測温度と第2予測温度とが許容範囲を超えているときは、調理用容器が放射率変動型の調理用容器であるが、この場合には、前記温度判定用の波長域について検出される赤外線強度に基づいて前記調理用容器の温度を判定するのである。
説明を加えると、本出願人は、実験結果により、図2に示すように、金属の表面にシリコン系有機耐熱塗料を塗布した調理用容器等の放射率変動型の調理用容器においては、放射率均平範囲では、放射率が0.9程度の高い値で波長が変化しても略同じ値になっていることを見出した。このように放射率が略一定で高い値であるときは、前記温度判定用の波長域において調理用容器の実際の温度と赤外線強度とを計測した結果、それらの相関関係は略一定であり、それらの相関関係を記憶しておき、別の調理用容器について同じ波長域で赤外線強度を計測して、その赤外線強度と記憶している相関関係とから温度を求めると、例えば、許容温度内の少ない誤差であることが判明した。
そこで、例えば、上記したような相関関係等を用いることにより、前記温度判定用の波長域の赤外線強度から調理用容器の温度を判定することができるのである。
On the other hand, when the first predicted temperature and the second predicted temperature exceed the allowable range, the cooking container is an emissivity fluctuation type cooking container, but in this case, the temperature determination wavelength region The temperature of the cooking container is determined on the basis of the infrared intensity detected.
In addition, as shown in FIG. 2, the applicant has shown that, in an emissivity-variable cooking container such as a cooking container in which a silicon-based organic heat-resistant paint is applied to a metal surface, as shown in FIG. In the rate flat range, it was found that the emissivity is a high value of about 0.9, and the value is substantially the same even if the wavelength is changed. Thus, when the emissivity is substantially constant and high value, as a result of measuring the actual temperature and infrared intensity of the cooking container in the wavelength region for temperature determination, their correlation is substantially constant, Store those correlations, measure the infrared intensity in the same wavelength range for another cooking container, and obtain the temperature from the stored infrared correlation and the correlation, for example, within the allowable temperature It turned out to be a small error.
Therefore, for example, the temperature of the cooking container can be determined from the infrared intensity in the wavelength region for temperature determination by using the correlation as described above.

従って、調理用容器として放射率変動型の調理用容器を用いる場合であっても、極力誤差を少なくした状態で調理用容器の温度を検出することが可能となる加熱調理器用の温度検出装置を提供できるに至った。   Therefore, a temperature detection device for a heating cooker that can detect the temperature of a cooking container with as little error as possible even when an emissivity variable cooking container is used as the cooking container. I was able to provide it.

本発明の第2特徴構成は、第1特徴構成に加えて、前記放射率変動範囲に設定した第1温度計測用の波長域が、波長の変化に対する放射率の変化が無い又は変化が少ない放射特性の放射率均平型の調理用容器については放射する赤外線強度の温度変化に対する変化が前記2種の前記第2温度計測用の波長域よりも大きい波長域に対応するように定められ、
前記温度検出手段が、
前記第1予測温度と前記第2予測温度との差が前記許容範囲内にあるときは、前記第1予測温度を前記調理用容器の温度として判定するように構成されている点にある。
In the second feature configuration of the present invention, in addition to the first feature configuration, the wavelength range for the first temperature measurement set in the emissivity variation range is a radiation with no or little change in emissivity with respect to a change in wavelength. For the emissivity flat type cooking container of the characteristic, the change with respect to the temperature change of the radiated infrared intensity corresponds to a wavelength range larger than the wavelength range for the two types of the second temperature measurement,
The temperature detecting means is
When the difference between the first predicted temperature and the second predicted temperature is within the allowable range, the first predicted temperature is determined as the temperature of the cooking container.

第2特徴構成によれば、前記第1予測温度と前記第2予測温度との差が許容範囲内にあるときは、調理用容器として、各複数の波長域の夫々において放射率の変化が無い又は変化が少ない放射率均平型の調理用容器であることが想定されるので、その場合は、前記第1予測温度を前記調理用容器の温度として判定するようにしている。   According to the second feature configuration, when the difference between the first predicted temperature and the second predicted temperature is within an allowable range, there is no change in emissivity in each of a plurality of wavelength ranges as a cooking container. Or since it is assumed that it is an emissivity flat type cooking container with little change, in that case, the first predicted temperature is determined as the temperature of the cooking container.

そして、前記放射率変動範囲に設定した第1温度計測用の波長域では、放射率均平型の調理用容器が放射する赤外線強度の温度変化に対する変化が、前記2種の前記第2温度計測用の波長域よりも大きいので、前記第1予測温度を求めるための一対の赤外線強度の比の方が、前記第2予測温度を求めるための一対の赤外線強度の比よりも、調理用容器の温度の変化に対する変化率が大きくなる。つまり、調理用容器の温度として、第1予測温度の方が第2予測温度に較べてより適正な温度として用いることができる。そこで、前記第1予測温度と前記第2予測温度との差が許容範囲内にあるときは、第1予測温度を調理用容器の温度として判定するようにしているのである。   And in the wavelength range for the first temperature measurement set in the emissivity fluctuation range, the change of the infrared intensity radiated by the emissivity flat type cooking container with respect to the temperature change is the two types of the second temperature measurement. The ratio of the pair of infrared intensities for determining the first predicted temperature is larger than the ratio of the pair of infrared intensities for determining the second predicted temperature. The rate of change with respect to changes in temperature increases. That is, as the temperature of the cooking container, the first predicted temperature can be used as a more appropriate temperature than the second predicted temperature. Therefore, when the difference between the first predicted temperature and the second predicted temperature is within an allowable range, the first predicted temperature is determined as the temperature of the cooking container.

従って、放射率均平型の調理用容器について、極力正確に調理用容器の温度を検出することが可能となる。   Therefore, it becomes possible to detect the temperature of the cooking container as accurately as possible for the emissivity-flat cooking container.

本発明の第3特徴構成は、第1特徴構成又は第2特徴構成に加えて、前記赤外線強度検出手段が、前記放射率変動範囲に設定される前記第1温度計測用の波長域として、3.1μm以上且つ4.2μm以下の範囲内から選択された波長域が設定され、且つ、前記放射率均平範囲に設定される前記2種の第2温度計測用の波長域並びに前記温度判定用の波長域として、8.0μm以上且つ20.0μm以下の範囲内から選択された波長域が設定され、それら複数の波長域夫々の赤外線強度を検出するように構成されている点にある。   According to a third feature configuration of the present invention, in addition to the first feature configuration or the second feature configuration, the infrared intensity detection means has a wavelength range for the first temperature measurement set in the emissivity fluctuation range as 3 A wavelength range selected from a range of not less than 1 μm and not more than 4.2 μm is set, and the two wavelength ranges for the second temperature measurement set in the emissivity level range and the temperature determination As a wavelength range, a wavelength range selected from a range of 8.0 μm or more and 20.0 μm or less is set, and the infrared intensity of each of the plurality of wavelength ranges is detected.

第3特徴構成によれば、前記第1温度計測用の波長域が、3.1μm以上且つ4.2μm以下の範囲内から選択され、前記2種の第2温度計測用の波長域並びに前記温度判定用の波長域として、8.0μm以上且つ20.0μm以下の範囲内から選択されて夫々設定されることになる。   According to the third characteristic configuration, the wavelength range for the first temperature measurement is selected from a range of 3.1 μm or more and 4.2 μm or less, and the two types of the second temperature measurement wavelength range and the temperature are selected. The wavelength range for determination is selected and set from the range of 8.0 μm or more and 20.0 μm or less.

すなわち、調理用容器を例えばバーナで形成される火炎により加熱する加熱調理器であれば、調理用容器から放射される赤外線の赤外線強度を赤外線強度検出手段により火炎を介して検出する場合、その火炎には、CO2やH2Oが気体の状態で存在する。そして、そのコンロにおける実際の火炎は、CO2やH2Oの発光に伴う高輝度の赤外線を発しているため、その発光は、調理用容器から放射される赤外線の赤外線強度検出手段におけるノイズ発生の原因となる。そして、CO2やH2Oは、2.4μm以上且つ3.1μm以下の範囲内、及び、4.2μm以上且つ8.0μm以下の範囲内において赤外線を発光するので、それらの範囲外であれば、火炎の赤外線発光に伴うノイズの影響が除去できることより極力正確な温度検出が可能となる。 That is, if the cooking container is a heating cooker that is heated by, for example, a flame formed of a burner, when the infrared intensity of infrared rays emitted from the cooking container is detected via the flame by the infrared intensity detection means, the flame CO 2 and H 2 O exist in a gas state. And since the actual flame in the stove emits high-intensity infrared rays due to the emission of CO 2 and H 2 O, the emission is caused by noise generation in the infrared intensity detection means of infrared rays emitted from the cooking container. Cause. CO 2 and H 2 O emit infrared rays in the range of 2.4 μm to 3.1 μm and in the range of 4.2 μm to 8.0 μm, so if they are out of these ranges In this case, it is possible to detect the temperature as accurately as possible because the influence of noise accompanying the infrared emission of the flame can be removed.

本発明の第4特徴構成は、第1特徴構成〜第3特徴構成のいずれかに加えて、前記赤外線強度検出手段が、前記放射率均平範囲に設定した前記温度判定用の波長域についての赤外線強度として、前記2種の第2温度計測用の波長域のうちのいずれか1つの波長域についての赤外線強度を検出するように構成されている点にある。   According to a fourth feature configuration of the present invention, in addition to any one of the first feature configuration to the third feature configuration, the infrared intensity detection unit is configured to perform the temperature determination wavelength range set in the emissivity level range. The infrared intensity is configured to detect the infrared intensity in any one of the two wavelength ranges for the second temperature measurement.

第4特徴構成によれば、前記赤外線強度検出手段は、前記温度判定用の波長域についての赤外線強度として、前記2種の第2温度計測用の波長域のうちのいずれか1つの波長域についての赤外線強度を兼用する構成としているので、それらを異なる波長域に各別に設定するものに較べて、赤外線を受光するための受光手段や特定の波長域の赤外線を通過させるための光学フィルター等の個数が少なくなり簡素な構成にすることができる。   According to the fourth feature configuration, the infrared intensity detecting means is configured to detect either one of the two wavelength ranges for the second temperature measurement as the infrared intensity for the temperature determination wavelength range. Compared to those that are set separately for different wavelength ranges, such as a light receiving means for receiving infrared rays and an optical filter for passing infrared rays of a specific wavelength range, etc. The number can be reduced and a simple configuration can be achieved.

以下、本発明に係る加熱調理器用の温度検出装置を加熱調理器としてのコンロに適用した場合の実施形態を図面に基づいて説明する。
図1に示すように、加熱調理器としてのコンロは、円形の加熱用の開口1aを有する平板状の天板1、開口1aの上方に離間させて加熱対象物調理用の鍋等の調理用容器Nを載置可能な五徳2、その五徳2上に載置される調理用容器Nを加熱する加熱手段としてのガス燃焼式のバーナ30、そのバーナ30の作動を制御する燃焼制御部3等を備えて構成されている。
DESCRIPTION OF EMBODIMENTS Hereinafter, an embodiment in which a temperature detection device for a heating cooker according to the present invention is applied to a stove as a heating cooker will be described with reference to the drawings.
As shown in FIG. 1, the stove as a heating cooker is used for cooking a flat top plate 1 having a circular heating opening 1a, a cooking pot such as a cooking pot for cooking an object to be heated above the opening 1a. Gotoku 2 on which container N can be placed, gas combustion burner 30 as a heating means for heating cooking container N placed on Gotoku 2, combustion control unit 3 for controlling the operation of burner 30, and the like It is configured with.

前記バーナ30は、ブンゼン燃焼式の内炎式バーナであり、燃料供給路5を通じて供給される燃料ガスGを噴出するガスノズル31、そのガスノズル31から燃料ガスGが噴出されると共に、その燃料ガスGの噴出に伴う吸引作用により燃焼用空気が供給される混合管32、及び、内周部に混合気を噴出する複数の炎口33を備えて、前記混合管32から混合気が供給される環状のバーナ本体34等を備えて構成され、前記バーナ30は、前記開口1aの下方に位置させて設けている。   The burner 30 is a Bunsen combustion type internal flame type burner. The gas nozzle 31 ejects the fuel gas G supplied through the fuel supply passage 5, the fuel gas G is ejected from the gas nozzle 31, and the fuel gas G An annular gas pipe is provided with a mixture tube 32 to which combustion air is supplied by the suction action associated with the jetting of the gas and a plurality of flame ports 33 for jetting the gas mixture to the inner periphery, and the gas mixture is supplied from the mixture tube 32. The burner body 34 is provided, and the burner 30 is provided below the opening 1a.

このバーナ30においては、混合管32からバーナ本体34内に供給された燃料ガスGと空気との混合気が炎口33からバーナ本体34の中心に向けて略水平方向に噴出され、その噴出された燃料ガスGと空気との混合気が燃焼して、火炎Fが前記開口1aを通って上向きに形成される。   In the burner 30, the mixture of the fuel gas G and air supplied from the mixing pipe 32 into the burner body 34 is ejected in a substantially horizontal direction from the flame port 33 toward the center of the burner body 34, and is ejected. The mixture of the fuel gas G and air burns, and a flame F is formed upward through the opening 1a.

前記燃料供給路5には、前記ガスノズル31への燃料ガスGの供給を断続する燃料供給断続弁6と、ガスノズル31への燃料ガスGの供給量を調節する燃料供給量調節弁7とが設けられ、バーナ30のバーナ本体34内の下方には、開口1aを介して落下した煮零れ等を受けるための汁受皿8が設けられる。   The fuel supply path 5 is provided with a fuel supply intermittent valve 6 for intermittently supplying the fuel gas G to the gas nozzle 31 and a fuel supply amount adjusting valve 7 for adjusting the supply amount of the fuel gas G to the gas nozzle 31. In the lower part of the burner body 34 of the burner 30, there is provided a juice receiving tray 8 for receiving boiled food that has fallen through the opening 1 a.

さらに、このコンロには、天板の下方側に位置し且つ汁受皿8の中央部に位置して調理用容器から放射された赤外線の強度を検出する赤外線強度検出手段としての赤外線強度検出部40と、その赤外線強度検出部40により検出された赤外線の強度に基づいて調理用容器の温度を検出する温度検出手段としての温度検出部50とを備えた温度検出装置が設けられている。   Further, the stove has an infrared intensity detecting unit 40 as an infrared intensity detecting means that is located below the top plate and is located in the center of the soup pan 8 and detects the intensity of infrared rays emitted from the cooking container. And a temperature detecting unit 50 as temperature detecting means for detecting the temperature of the cooking container based on the intensity of infrared rays detected by the infrared intensity detecting unit 40 is provided.

そして、前記赤外線強度検出部40が、調理用容器から放射される赤外線における異なる複数の波長域夫々についての赤外線強度を検出するように構成され、前記温度検出部50が、赤外線強度検出部40にて検出される複数の波長域夫々についての赤外線強度の関係に基づいて、調理用容器の温度を検出するように構成されている。さらに、赤外線強度検出部40は、赤外線の波長範囲のうちのバーナ30の火炎からの放射強度が強い範囲外に設定された波長域の赤外線強度を検出するように構成されている。   And the said infrared intensity detection part 40 is comprised so that the infrared intensity about each of the several different wavelength range in the infrared rays radiated | emitted from the cooking container may be detected, and the said temperature detection part 50 is the infrared intensity detection part 40. The temperature of the cooking container is detected based on the relationship of the infrared intensity for each of the plurality of wavelength ranges detected in this manner. Furthermore, the infrared intensity detection part 40 is comprised so that the infrared intensity of the wavelength range set out of the range with the strong radiation intensity from the flame of the burner 30 among the infrared wavelength ranges may be detected.

バーナ30により加熱される調理用容器として、波長の変化に対する放射率の変化が小さい放射率均平範囲及び波長の変化に対する放射率の変化が大きい放射率変動範囲を有する放射特性の放射率変動型の調理用容器、及び、波長の変化に対する放射率の変化が無い又は変化が少ない放射特性の放射率均平型の調理用容器が存在するが、赤外線強度検出部40は、前記複数の波長域についての赤外線強度として、波長の変化に対する放射率の変化が小さい放射率均平範囲及び波長の変化に対する放射率の変化が大きい放射率変動範囲を有する放射特性の放射率変動型の調理用容器に対応させて、前記放射率変動範囲に設定した第1温度計測用の波長域K1についての赤外線強度、前記放射率均平範囲に設定した第1温度計測用の波長域K1についての赤外線強度、前記放射率均平範囲に異なる波長域として設定した2種の第2温度計測用の波長域K2についての赤外線強度、及び、前記放射率均平範囲に設定した温度判定用の波長域K3についての赤外線強度の夫々を検出するように構成されている。   As a cooking container heated by the burner 30, an emissivity variation type radiation characteristic having an emissivity leveling range in which the change in emissivity is small with respect to a change in wavelength and an emissivity variation range in which the change in emissivity is large with respect to a change in wavelength And a uniform emissivity-type cooking container with little or no change in the emissivity with respect to the change in wavelength, but the infrared intensity detector 40 has the plurality of wavelength ranges. Infrared intensity of the emissivity fluctuation type cooking container with emissivity characteristics having an emissivity leveling range where the emissivity change is small with respect to the wavelength change and an emissivity fluctuation range where the emissivity change is large with respect to the wavelength change Correspondingly, the infrared intensity for the wavelength range K1 for the first temperature measurement set in the emissivity fluctuation range, and the wavelength range K1 for the first temperature measurement set in the emissivity leveling range. Infrared light intensity, infrared intensity for two types of wavelength ranges K2 for second temperature measurement set as different wavelength ranges in the emissivity average range, and temperature determination set in the emissivity average range Each of the infrared intensities for the wavelength band K3 is detected.

又、前記温度検出部50が、2種の前記第1温度計測用の波長域K1の夫々について検出される一対の赤外線強度の比に基づいて第1予測温度を求め、かつ、2種の前記第2温度計測用の波長域K2の夫々について検出される一対の赤外線強度の比に基づいて第2予測温度を求めて、前記第1予測温度と前記第2予測温度との差が許容範囲内にあるときは、前記第1予測温度及び前記第2予測温度に基づいて前記調理用容器の温度を判定し、前記第1予測温度と前記第2予測温度との差が前記許容範囲を外れているときは、前記温度判定用の波長域K3について検出される赤外線強度に基づいて前記調理用容器の温度を判定するように構成されている。   The temperature detection unit 50 obtains a first predicted temperature based on a ratio of a pair of infrared intensities detected for each of the two types of wavelength regions K1 for the first temperature measurement, and the two types of the temperature A second predicted temperature is obtained based on a ratio of a pair of infrared intensities detected for each of the wavelength ranges K2 for measuring the second temperature, and a difference between the first predicted temperature and the second predicted temperature is within an allowable range. The temperature of the cooking container is determined based on the first predicted temperature and the second predicted temperature, and a difference between the first predicted temperature and the second predicted temperature is out of the allowable range. The temperature of the cooking container is determined based on the infrared intensity detected for the temperature determination wavelength region K3.

以下、赤外線強度検出部40による赤外線強度の計測対象となる複数の波長域を設定するために、複数の種類の調理用容器を用いて本出願人が行った各種の実測データについて具体的に説明する。ここでは、複数の種類の調理用容器としては、金属の表面に黒色塗装した調理用容器、金属の表面に銀色塗装した調理用容器、ステンレス板を用いた調理用容器、金属の表面にシリコン系有機耐熱塗料を塗布した調理用容器、及び、アルミ板の表面をアルマイト処理した調理用容器の夫々を用いて計測した結果を示す。   Hereinafter, various measurement data performed by the present applicant using a plurality of types of cooking containers in order to set a plurality of wavelength ranges to be measured by the infrared intensity detector 40 will be specifically described. To do. Here, as a plurality of types of cooking containers, a cooking container with a black coating on a metal surface, a cooking container with a silver coating on a metal surface, a cooking container using a stainless steel plate, a silicon-based coating on a metal surface The result measured using each of the cooking container which apply | coated the organic heat-resistant coating material, and the cooking container which carried out the anodizing of the surface of the aluminum plate is shown.

図2に、本出願人が計測した物体表面温度が200℃である物体の赤外波長領域における種々の材質についての放射特性を示している。この内容について説明を加えると、黒体では放射率は波長の変化にかかわらず1.0で一定であり、又、金属の表面に黒色塗装した調理用容器、金属の表面に銀色塗装した調理用容器、及び、ステンレス板を用いた調理用容器等では、波長の変化にかかわらず夫々放射率が約0.9程度、0.4程度、及び、0.2程度で略一定である。   FIG. 2 shows radiation characteristics of various materials in the infrared wavelength region of an object having an object surface temperature of 200 ° C. measured by the present applicant. To explain this, the emissivity of a black body is constant at 1.0 regardless of the change in wavelength. Also, a cooking container with a black coating on a metal surface and a cooking container with a silver coating on a metal surface. In a container, a cooking container using a stainless steel plate, and the like, the emissivity is substantially constant at about 0.9, about 0.4, and about 0.2 regardless of the change in wavelength.

しかしながら、金属の表面にシリコン系有機耐熱塗料を塗布した調理用容器やアルミ板の表面をアルマイト処理した調理用容器では、波長が変化すると、放射率が長めの波長領域では約0.9程度で略一定であるのに対して短かめの波長領域においては放射率が小さい値になり、波長の変化に対する放射率の変化が大きい放射特性であることが実験結果から判明した。つまり、金属の表面にシリコン系有機耐熱塗料を塗布した調理用容器やアルミ板の表面をアルマイト処理した調理用容器が放射率変動型の調理用容器に対応しており、前記長めの波長領域が波長の変化に対する放射率の変化が小さい放射率均平範囲に対応し、前記短かめの波長領域が波長の変化に対する放射率の変化が大きい放射率変動範囲に対応する。   However, in a cooking container in which a silicon-based organic heat-resistant paint is applied to the surface of a metal or a cooking container in which the surface of an aluminum plate is anodized, if the wavelength changes, the emissivity is about 0.9 in the longer wavelength region. Although it is substantially constant, the emissivity is small in the shorter wavelength region, and it has been found from the experimental results that the emissivity changes greatly with respect to the change in wavelength. In other words, a cooking container in which a silicon-based organic heat-resistant paint is applied to the surface of a metal or a cooking container in which the surface of an aluminum plate is anodized corresponds to an emissivity variation type cooking container, and the longer wavelength region is A change in emissivity with respect to a change in wavelength corresponds to an emissivity average range, and the shorter wavelength region corresponds to an emissivity fluctuation range in which an emissivity change with respect to a change in wavelength is large.

図3〜図5には、各種の材質の調理用容器(鍋)についての赤外線放射強度の分光スペクトルデータを示している。すなわち、図3は金属の表面に黒色塗装した調理用容器について、図4は金属の表面に銀色塗装した調理用容器について、図5はアルミ板の表面をアルマイト処理した調理用容器について、夫々、常温(25℃)から300℃程度の範囲で加熱したときに、温度が変化したときの赤外線放射強度の分光スペクトルデータを示している。これらの図から明らかなように、加熱調理時の調理用容器の温度、例えば、常温から300℃程度において、1.5μm以上且つ数十μm以下の範囲内の波長領域において赤外線が放射しており、例えば、3.5μm以上且つ15μm以下の範囲内において各種の赤外線センサにて検出可能な充分な放射強度を有している。   3 to 5 show spectral data of infrared radiation intensity for cooking containers (pots) made of various materials. That is, FIG. 3 shows a cooking container black-coated on the metal surface, FIG. 4 shows a cooking container silver-coated on the metal surface, and FIG. 5 shows a cooking container in which the surface of the aluminum plate is anodized. The spectral spectrum data of the infrared radiation intensity when the temperature is changed when heated in a range from room temperature (25 ° C.) to about 300 ° C. is shown. As is apparent from these figures, infrared rays are radiated in the wavelength range of 1.5 μm or more and several tens of μm or less at the temperature of the cooking container during cooking, for example, from room temperature to about 300 ° C. For example, it has sufficient radiation intensity that can be detected by various infrared sensors within a range of 3.5 μm or more and 15 μm or less.

又、図6には、ガス燃焼式のバーナ30にて形成される火炎から放射される赤外線放射強度の分光スペクトルデータを示しており、この図から明らかなように、赤外線の波長範囲のうち、2.4μm以上且つ3.1μm以下の範囲、及び、4.2μm以上且つ8.0μm以下の範囲では、火炎からの放射が強い。そこで、赤外線強度検出部40にて赤外線強度を検出する検出対象波長域としては、このような火炎からの放射が強い波長範囲外に設定することが望ましい。   In addition, FIG. 6 shows spectral spectrum data of the infrared radiation intensity emitted from the flame formed by the gas combustion type burner 30, and as is clear from this figure, out of the infrared wavelength range, In the range of 2.4 μm or more and 3.1 μm or less, and in the range of 4.2 μm or more and 8.0 μm or less, radiation from the flame is strong. Therefore, it is desirable to set the detection target wavelength range in which the infrared intensity is detected by the infrared intensity detector 40 outside the wavelength range where the radiation from such a flame is strong.

そして、上記したような調理用容器からの赤外線の放射領域や火炎による影響等を考慮した上で、放射率変動型の調理用容器を用いる場合であっても、極力誤差を少なくした状態で調理用容器の温度を検出することができるように、赤外線強度検出部40による波長域を設定するようにしている。   In consideration of the effect of the infrared radiation region from the cooking container and the flame as described above, cooking is performed with as little error as possible even when using a variable emissivity cooking container. The wavelength range by the infrared intensity detection unit 40 is set so that the temperature of the container can be detected.

すなわち、赤外線強度検出部40による赤外線検出用の波長域として、3.5μm以上且つ4μm以下の領域を第1波長域α1として設定し、8μm以上且つ11μm以下の領域を第2波長域α2として設定し、13μm以上15μm以下の領域を第3波長域α3として設定して、それら3つの波長域の赤外線強度を夫々検出する構成としている。説明を加えると、図3及び図4から判るように、第1波長域α1が、放射率均平型の調理用容器については放射する赤外線強度の温度変化に対する変化が第2波長域α2や第3波長域α3よりも大きい波長領域に対応するように定められている。言い換えると、第1波長域α1においては、温度の変化に対する赤外線強度の変化についての分解能が第2波長域α2や第3波長域αにおける分解能よりも大きいものになっている。   That is, as a wavelength region for infrared detection by the infrared intensity detector 40, a region of 3.5 μm or more and 4 μm or less is set as the first wavelength region α1, and a region of 8 μm or more and 11 μm or less is set as the second wavelength region α2. In addition, the region of 13 μm or more and 15 μm or less is set as the third wavelength region α3, and the infrared intensity in each of these three wavelength regions is detected. In addition, as can be seen from FIG. 3 and FIG. 4, the first wavelength region α1 has an emissivity flat type cooking container. It is determined so as to correspond to a wavelength region larger than the three wavelength regions α3. In other words, in the first wavelength range α1, the resolution with respect to the change in infrared intensity with respect to the change in temperature is larger than the resolution in the second wavelength range α2 and the third wavelength range α.

前記第1波長域α1が前記放射率変動型の調理用容器における前記放射率変動範囲に設定した第1温度計測用の波長域K1に対応し、前記第2波長域α2が前記放射率均平範囲に設定した第1温度計測用の波長域K1に対応する。そして、第2波長域α2及び第3波長域α3が、前記放射率均平範囲に異なる波長域として設定した2種の第2温度計測用の波長域K2に対応する。従って、この実施形態では、第2波長域α2が、第1温度計測用の波長域K1及び第2温度計測用の波長域K2を兼用する構成となっている。さらに、この実施形態では、第2波長域α2が、温度判定用の波長域K3をも兼用する構成となっている。   The first wavelength region α1 corresponds to the first temperature measurement wavelength region K1 set in the emissivity variation range in the emissivity variation type cooking container, and the second wavelength region α2 is the emissivity uniformity. This corresponds to the first temperature measurement wavelength region K1 set in the range. And 2nd wavelength range (alpha) 2 and 3rd wavelength range (alpha) 3 respond | correspond to the wavelength range K2 for 2 types of 2nd temperature measurement set as a wavelength range different in the said emissivity average range. Therefore, in this embodiment, the second wavelength range α2 is configured to serve as both the first temperature measurement wavelength range K1 and the second temperature measurement wavelength range K2. Furthermore, in this embodiment, the second wavelength region α2 is configured to also serve as the temperature determination wavelength region K3.

図7には、赤外線強度検出部40により検出された第1波長域α1における赤外線強度(A)及び第2波長域α2における赤外線強度(B)の比、すなわち第1赤外線強度比(B/A)に対する調理用容器の温度との関係を示しており、図8には、赤外線強度検出部40により検出された第2波長域α2における赤外線強度(B)と第3波長域α3における赤外線強度(C)の比、すなわち第2赤外線強度比(C/B)に対する調理用容器の温度との関係を示している。   FIG. 7 shows the ratio of the infrared intensity (A) in the first wavelength range α1 and the infrared intensity (B) in the second wavelength range α2 detected by the infrared intensity detection unit 40, that is, the first infrared intensity ratio (B / A). FIG. 8 shows the relationship between the infrared intensity (B) in the second wavelength range α2 and the infrared intensity (in the third wavelength range α3) detected by the infrared intensity detection unit 40. The relationship between the ratio of C), that is, the temperature of the cooking container with respect to the second infrared intensity ratio (C / B) is shown.

図7に示すように、前記第1赤外線強度比(B/A)に対する調理用容器の温度の関係においては、金属の表面に有機シリコン系塗料を塗布した調理用容器やアルミ板の表面をアルマイト処理した調理用容器では、金属の表面に黒色塗装した調理用容器や金属の表面に銀色塗装した調理用容器に対して大きく異なる特性を示しており、第1赤外線強度比(B/A)が同じであっても対応する温度は大きく異なる状態となる。   As shown in FIG. 7, in relation to the temperature of the cooking container with respect to the first infrared intensity ratio (B / A), the surface of the cooking container or aluminum plate in which the organosilicon coating is applied to the metal surface is anodized. The treated cooking container shows characteristics that are significantly different from those of a cooking container with a black coating on a metal surface and a cooking container with a silver coating on a metal surface, and the first infrared intensity ratio (B / A) is Even if they are the same, the corresponding temperatures are greatly different.

一方、金属の表面に黒色塗装した調理用容器及び金属の表面に銀色塗装した調理用容器については、常温(25℃)から300℃程度の温度範囲において、共に略同じ状態で温度に依存して変化しており、両者は殆ど同じ特性になっている。つまり、第1赤外線強度比(B/A)が同じであれば、その第1赤外線強度比(B/A)に対する調理用容器の温度は略同じになっている。   On the other hand, the cooking container with black coating on the metal surface and the cooking container with silver coating on the metal surface both depend on the temperature in a temperature range from room temperature (25 ° C.) to about 300 ° C. in the same state. They are changing and both have almost the same characteristics. That is, if the first infrared intensity ratio (B / A) is the same, the temperature of the cooking container with respect to the first infrared intensity ratio (B / A) is substantially the same.

そこで、金属の表面に黒色塗装した調理用容器及び金属の表面に銀色塗装した調理用容器については、第1赤外線強度比(B/A)と調理用容器の温度との変化特性についての代表的なものを予め記憶しておき、加熱される調理用容器について、赤外線強度検出部40により検出された第1波長域α1における赤外線強度と第2波長域α2における赤外線強度の比すなわち第1赤外線強度比(B/A)を求め、その実測された第1赤外線強度比(B/A)、及び、予め記憶している前記変化特性から調理用容器の温度を検出することが可能となる。   Therefore, for a cooking container with a black coating on the metal surface and a cooking container with a silver coating on the metal surface, typical changes in the characteristics of the first infrared intensity ratio (B / A) and the temperature of the cooking container. Is stored in advance, and the ratio of the infrared intensity in the first wavelength range α1 and the infrared intensity in the second wavelength range α2 detected by the infrared intensity detection unit 40, that is, the first infrared intensity for the cooking container to be heated The ratio (B / A) is obtained, and the temperature of the cooking container can be detected from the actually measured first infrared intensity ratio (B / A) and the change characteristic stored in advance.

図8に示すように、第2赤外線強度比(C/B)に対する調理用容器の温度の関係においては、常温(25℃)から300℃程度の温度範囲において、金属の表面にシリコン系有機耐熱塗料を塗布した調理用容器やアルミ板の表面をアルマイト処理した調理用容器は、金属の表面に黒色塗装した調理用容器や金属の表面に銀色塗装した調理用容器のものとほとんど同じ特性になっており、第2赤外線強度比(C/B)が同じであれば、その第2赤外線強度比に対する調理用容器の温度は略同じになっている。   As shown in FIG. 8, the relationship between the temperature of the cooking container and the second infrared intensity ratio (C / B) shows that the silicon-based organic heat resistant metal surface has a temperature range from room temperature (25 ° C.) to about 300 ° C. A cooking container with paint or an anodized aluminum container surface has almost the same characteristics as a cooking container with a black coating on a metal surface or a cooking container with a silver coating on a metal surface. If the second infrared intensity ratio (C / B) is the same, the temperature of the cooking container relative to the second infrared intensity ratio is substantially the same.

しかし、図8に記載した実験結果によれば、例えば200℃以下の温度領域においては、横軸である温度の変化に対する縦軸である赤外線強度比の変化率が小さいだけでなく、調理用容器の材質の違いによるバラつきが少し大きめになっていることが判る。従って、この第2赤外線強度比(C/B)に対する調理用容器の温度の関係に基づいて調理用容器の温度を計測するようにすると、このような調理用容器の材質の違いによるバラつきが原因で結果精度が低下するおそれがある。   However, according to the experimental results shown in FIG. 8, for example, in a temperature range of 200 ° C. or lower, not only the change rate of the infrared intensity ratio, which is the vertical axis, but also the temperature change, which is the horizontal axis, is not only small. It can be seen that the variation due to the different materials is slightly larger. Therefore, when the temperature of the cooking container is measured based on the relationship of the temperature of the cooking container with respect to the second infrared intensity ratio (C / B), the variation due to the difference in the material of the cooking container is a cause. The result accuracy may be reduced.

そこで、図2に示すように、金属の表面にシリコン系有機耐熱塗料を塗布した調理用容器やアルミ板の表面をアルマイト処理した調理用容器、すなわち、放射率変動型の調理用容器については、波長が8.0μm以上の範囲では、いずれのものについても放射率が0.9程度であることがわかるが、本出願人がさらに詳しく調査した結果、放射率が0.80から0.98の範囲であることを見出した。   Therefore, as shown in FIG. 2, for a cooking container in which a silicon-based organic heat-resistant paint is applied to the surface of a metal or a cooking container in which the surface of an aluminum plate is anodized, that is, an emissivity variation type cooking container, In the wavelength range of 8.0 μm or more, it can be seen that the emissivity is about 0.9 for any of these, but as a result of further investigation by the applicant, the emissivity is 0.80 to 0.98. I found it to be in range.

そこで、本出願人は、放射率が0.80〜0.98と変化した場合のそれらの平均値である0.89又はそれに近い調理用容器を用いて、温度が変化したときの第2波長域α2の赤外線強度の変化特性を予め計測して記憶しておき、その記憶している変化特性と、温度測定対象として材質が異なる調理用容器について赤外線強度検出部40にて計測された第2波長域α2の赤外線強度の実測値とから、その調理用容器の温度を計測する実験を行ったところ、被測定物の放射率が0.80〜0.98と変化した場合においても、実際の温度が200℃である場合に、その測定結果として、±15℃の範囲内にあることが実験により確かめられた。このようにして、第2波長域α2の赤外線強度を利用することにより、放射率変動型の調理用容器であっても極力精度よく温度を計測することができるのである。   Therefore, the present applicant uses a cooking container of 0.89 which is an average value when the emissivity is changed from 0.80 to 0.98 or a cooking container close to the second wavelength when the temperature is changed. The change characteristic of the infrared intensity in the region α2 is measured and stored in advance, and the stored change characteristic and the second measured by the infrared intensity detection unit 40 for the cooking container having a different material as the temperature measurement object. When an experiment was performed to measure the temperature of the cooking container from the actually measured value of the infrared intensity in the wavelength region α2, the actual emissivity of the object to be measured changed from 0.80 to 0.98. When the temperature was 200 ° C., it was experimentally confirmed that the measurement result was within a range of ± 15 ° C. In this way, by using the infrared intensity in the second wavelength region α2, the temperature can be measured as accurately as possible even in an emissivity variation type cooking container.

そこで、前記温度検出部50は、上記したような第1赤外線強度比(B/A)と調理用容器の温度との変化特性、第2赤外線強度比(C/B)と調理用容器の温度との変化特性、並びに、放射率が0.89又はそれに近い調理用容器を用いて計測された調理用容器の温度の変化に対する第2波長域α2の赤外線強度の変化特性の夫々を、予め図示しないメモリに記憶しておき、バーナ30にて加熱される調理用容器について、前記赤外線強度検出部40により実際に検出された検出結果とこれらの記憶されている変化特性とから調理用容器の温度を検出するように構成されている。   Therefore, the temperature detection unit 50 has a change characteristic between the first infrared intensity ratio (B / A) and the temperature of the cooking container as described above, and the second infrared intensity ratio (C / B) and the temperature of the cooking container. And a change characteristic of the infrared intensity in the second wavelength region α2 with respect to a change in the temperature of the cooking container measured using a cooking container having an emissivity of 0.89 or close thereto are illustrated in advance. The temperature of the cooking container is determined from the detection results actually detected by the infrared intensity detection unit 40 and the stored change characteristics of the cooking container heated in the burner 30 and stored in the memory. Is configured to detect.

説明を加えると、温度検出部50は、前記赤外線強度検出部40により検出される第1波長域α1における赤外線強度と第2波長域α2における赤外線強度との比である第1赤外線強度比(B/A)の実測値、及び、前記記憶されている第1赤外線強度比(B/A)
と温度との変化特性から調理用容器の第1予測温度T1を求め、更に、前記赤外線強度検出部40により検出される第2波長域α2における赤外線強度と第3波長域α3における赤外線強度との比の実測値、及び、前記記憶されている第2赤外線強度比(C/B)と温度との変化特性から調理用容器の第2予測温度T2を求め、前記第1予測温度T1と前記第2予測温度T2との差が許容範囲内にあるときは、前記第1予測温度T1を前記調理用容器の温度として、且つ、前記第1予測温度T1と前記第2予測温度T2との差が前記許容範囲を超えているときは、前記第2波長域α2を前記温度判定用の波長域K3として、その第2波長域α2における赤外線強度に基づいて調理用容器の温度を判定するように構成されている。
In other words, the temperature detector 50 includes a first infrared intensity ratio (B) that is a ratio of the infrared intensity in the first wavelength region α1 and the infrared intensity in the second wavelength region α2 detected by the infrared intensity detector 40. / A) measured value and the stored first infrared intensity ratio (B / A)
The first predicted temperature T1 of the cooking container is obtained from the change characteristic of the temperature and the temperature, and further, the infrared intensity in the second wavelength range α2 and the infrared intensity in the third wavelength range α3 detected by the infrared intensity detection unit 40 A second predicted temperature T2 of the cooking container is obtained from the actual measurement value of the ratio and the stored change characteristic of the second infrared intensity ratio (C / B) and the temperature, and the first predicted temperature T1 and the first 2 When the difference between the predicted temperature T2 is within an allowable range, the first predicted temperature T1 is set as the temperature of the cooking container, and the difference between the first predicted temperature T1 and the second predicted temperature T2 is When the allowable range is exceeded, the second wavelength band α2 is set as the temperature determination wavelength band K3, and the temperature of the cooking container is determined based on the infrared intensity in the second wavelength band α2. Has been.

次に、赤外線強度検出部40の構成について具体的に説明する。
図1に示すように、赤外線強度検出部40が、前記汁受皿8の中央部に形成した開口部に下方側から挿入する状態で配設され、その赤外線強度検出部40にて、五徳2に載置された調理用容器Nの底部から放射されて導入された赤外線の赤外線強度を検出するように構成されている。又、図1に示すように、赤外線強度検出部40は、通過させる赤外線の波長域が互いに異なる3個のバンドパスフィルター41a,41b,41cと、それら3個のバンドパスフィルター41a,41b,41cを通過した赤外線を各別に検出する3個の赤外線検出素子42a,42b,42cとを備えて構成して、調理用容器Nから放射される赤外線における異なる3つの波長域、すなわち、前記第1波長域α1、前記第2波長域α2及び前記第3波長域α3の夫々についての赤外線強度を検出するように構成されている。ちなみに、前記バンドパスフィルター41a,41b,41cは、対応する波長域の赤外線のみを選択的に透過させるように構成されている。
Next, the configuration of the infrared intensity detection unit 40 will be specifically described.
As shown in FIG. 1, the infrared intensity detection unit 40 is disposed in a state of being inserted from below into an opening formed in the central part of the soup pan 8. It is configured to detect the infrared intensity of the infrared rays radiated and introduced from the bottom of the placed cooking container N. As shown in FIG. 1, the infrared intensity detector 40 includes three bandpass filters 41a, 41b, and 41c having different wavelength ranges of infrared rays to pass through, and the three bandpass filters 41a, 41b, and 41c. Three infrared detecting elements 42a, 42b, 42c for detecting the infrared rays that have passed through each of the three different wavelength ranges in the infrared rays emitted from the cooking container N, that is, the first wavelength. The infrared intensity is detected for each of the area α1, the second wavelength area α2, and the third wavelength area α3. Incidentally, the band pass filters 41a, 41b and 41c are configured to selectively transmit only infrared rays in the corresponding wavelength region.

上記のような波長域の赤外線強度を検出する3個の赤外線検出素子42a,42b,42cとしては、Ge若しくはInGaAsを赤外線セルとして用いたもの、PbS若しくはPbSeを赤外線セルとして用いたもの、また、HgCdTeを赤外線セルとして用いたもの等、種々のものを利用することができる。また、上記の材料以外にも昇電素子やサーモパイル等を用いることもできる。   As the three infrared detecting elements 42a, 42b and 42c for detecting the infrared intensity in the wavelength range as described above, Ge or InGaAs is used as an infrared cell, PbS or PbSe is used as an infrared cell, Various things, such as what used HgCdTe as an infrared cell, can be utilized. In addition to the above materials, a power raising element, a thermopile, or the like can be used.

次に、前記温度検出部50により調理用容器Nの温度を求める処理について説明する。
温度検出部50には、上記したような第1赤外線強度比(B/A)と調理用容器の温度との変化特性、第2赤外線強度比(C/B)と調理用容器の温度との変化特性、及び、放射率が0.89又はそれに近い調理用容器を用いて計測された調理用容器の温度の変化に対する第2波長域α2の赤外線強度の変化特性が、予めメモリに記憶されている。ちなみに、これらの変化特性は、例えば、各相関関係についての近似式を求めて設定したり、あるいは、マップデータとして記憶する等、種々の形態で記憶しておくことができる。
Next, a process for obtaining the temperature of the cooking container N by the temperature detection unit 50 will be described.
The temperature detector 50 includes a change characteristic between the first infrared intensity ratio (B / A) and the temperature of the cooking container as described above, and the second infrared intensity ratio (C / B) and the temperature of the cooking container. The change characteristic and the change characteristic of the infrared intensity in the second wavelength region α2 with respect to the change in the temperature of the cooking container measured using a cooking container whose emissivity is 0.89 or close to it are stored in the memory in advance. Yes. Incidentally, these change characteristics can be stored in various forms, for example, by obtaining an approximate expression for each correlation, or by storing it as map data.

そして、前記温度検出部50は、赤外線強度検出部40にて検出された第1波長域α1に対応する赤外線強度と第2波長域α2に対応する第1赤外線強度(B/A)を求め、その実測した第1赤外線強度比(B/A)、及び、予め記憶している第1赤外線強度比(B/A)と調理用容器の温度との変化特性から第1予測温度T1を求める。又、赤外線強度検出部40にて検出された第2波長域α2に対応する赤外線強度と第3波長域α3に対応する赤外線強度との比つまり第2赤外線強度比(C/B)を求め、その実測した第2赤外線強度比(C/B)、及び、予め記憶している第2赤外線強度比(C/B)と調理用容器の温度との変化特性から第2予測温度T2を求める。   The temperature detection unit 50 obtains the infrared intensity corresponding to the first wavelength range α1 detected by the infrared intensity detection unit 40 and the first infrared intensity (B / A) corresponding to the second wavelength range α2. The first predicted temperature T1 is obtained from the actually measured first infrared intensity ratio (B / A) and the change characteristics of the first infrared intensity ratio (B / A) stored in advance and the temperature of the cooking container. Further, a ratio between the infrared intensity corresponding to the second wavelength range α2 detected by the infrared intensity detection unit 40 and the infrared intensity corresponding to the third wavelength range α3, that is, the second infrared intensity ratio (C / B) is obtained. A second predicted temperature T2 is obtained from the actually measured second infrared intensity ratio (C / B), and the change characteristics between the previously stored second infrared intensity ratio (C / B) and the temperature of the cooking container.

そして、第1予測温度T1と第2予測温度T2との差が許容範囲(例えば±15℃の範囲)内であれば第1予測温度T1を調理用容器の温度として判定する。
一方、第1予測温度T1と第2予測温度T2との差が前記許容範囲を超えていれば、第2波長域α2における赤外線強度の検出値、及び、予め記憶している第2波長域α2における赤外線強度と調理用容器の温度との変化特性から、調理用容器の温度を判定するのである。
If the difference between the first predicted temperature T1 and the second predicted temperature T2 is within an allowable range (for example, a range of ± 15 ° C.), the first predicted temperature T1 is determined as the temperature of the cooking container.
On the other hand, if the difference between the first predicted temperature T1 and the second predicted temperature T2 exceeds the allowable range, the detected value of the infrared intensity in the second wavelength region α2 and the second wavelength region α2 stored in advance. The temperature of the cooking container is determined from the change characteristic between the infrared intensity at and the temperature of the cooking container.

前記温度検出部50にて求められた温度は、前記燃焼制御部3に出力され、燃焼制御部3は、この温度検出部50にて求められる温度に基づいて燃料供給量調節弁6等を制御することにより、調理用容器Nの自動温度制御、調理用容器Nの過昇温時の緊急停止制御等を行うように構成されている。   The temperature obtained by the temperature detection unit 50 is output to the combustion control unit 3, and the combustion control unit 3 controls the fuel supply amount adjustment valve 6 and the like based on the temperature obtained by the temperature detection unit 50. Thus, the automatic temperature control of the cooking container N, the emergency stop control when the cooking container N is excessively heated, and the like are performed.

〔別実施形態〕
次に別実施形態を説明する。
[Another embodiment]
Next, another embodiment will be described.

(1)上記実施形態では、前記温度判定用の波長域K3として、前記第2波長域α2を兼用する構成としたが、このような構成に代えて、前記温度判定用の波長域K3として前記第3波長域α3を兼用する構成としてもよく、あるいは、前記放射率均平範囲において、前記第2波長域α2や前記第3波長域α3とは異なる波長域を設定するものでもよい。 (1) In the above-described embodiment, the second wavelength range α2 is also used as the temperature determination wavelength range K3. However, instead of such a configuration, the temperature determination wavelength range K3 is described above. The third wavelength band α3 may also be used. Alternatively, a wavelength band different from the second wavelength band α2 and the third wavelength band α3 may be set in the emissivity leveling range.

(2)上記実施形態では、前記第2波長域α2が、前記第1温度計測用の波長域K1及び前記第2温度計測用の波長域K2を兼用する構成としたが、このような構成に代えて、前記放射率均平範囲に設定した第1温度計測用の波長域K1と、前記放射率均平範囲に異なる波長域として設定した2種の第2温度計測用の波長域K2の夫々を互いに異なる波長域に設定するものでもよい。つまり、2種の第1温度計測用の波長域K1と2種の第2温度計測用の波長域K2として異なる4つの波長域を夫々設定する構成としてもよい。 (2) In the above embodiment, the second wavelength region α2 is configured to serve as both the first temperature measurement wavelength region K1 and the second temperature measurement wavelength region K2. Instead, the wavelength range K1 for the first temperature measurement set in the emissivity average range and the two types of wavelength ranges K2 for the second temperature measurement set as different wavelength ranges in the emissivity average range, respectively. May be set in different wavelength ranges. That is, four different wavelength ranges may be set as the two types of wavelength ranges K1 for first temperature measurement and the two types of wavelength ranges K2 for second temperature measurement.

(3)上記実施形態では、前記温度検出手段が、第1予測温度T1と第2予測温度T2との差が許容範囲内であれば第1予測温度T1を調理用容器の温度として判定する構成としたが、このような構成に代えて、第1予測温度T1と第2予測温度T2との差が許容範囲内であれば第1予測温度T1と第2予測温度T2との平均値を調理用容器の温度として判定する等、種々の形態で実施することができる。 (3) In the above embodiment, the temperature detecting means determines the first predicted temperature T1 as the temperature of the cooking container if the difference between the first predicted temperature T1 and the second predicted temperature T2 is within an allowable range. However, instead of such a configuration, if the difference between the first predicted temperature T1 and the second predicted temperature T2 is within an allowable range, the average value of the first predicted temperature T1 and the second predicted temperature T2 is cooked. It can be implemented in various forms such as determining the temperature of the container for use.

(4)上記実施形態では、前記加熱調理器として、混合気を環状のバーナ本体から内向きに噴出させて燃焼させる内炎式バーナを備えるコンロを示したが、混合気を外向き上方に噴出させるブンゼン燃焼式のバーナを備えたコンロであってもよい。
つまり、図9に示すように、バーナ30が、天板1に形成された開口部を通して上方に露出して混合気を外向き上方に噴出させて燃焼させる炎口33を備える外炎式バーナにて構成するものでもよく、この構成では、炎口33を形成するバーナ本体35が円筒状に設けられて、その中央に上下方向に貫通する貫通孔36が形成され、赤外線強度検出部40がその貫通孔36を通した赤外線強度を検出するように構成されている。尚、貫通孔36の上端部は透光性の窓部37にて覆う構成としている。
(4) In the above embodiment, the stove provided with the internal flame type burner for injecting and burning the air-fuel mixture inward from the annular burner body as the heating cooker has been shown. A stove provided with a Bunsen combustion type burner to be used may be used.
In other words, as shown in FIG. 9, the burner 30 is exposed to the upper side through the opening formed in the top plate 1, and is an external flame type burner provided with a flame port 33 that ejects the air-fuel mixture upward and burns it. In this configuration, the burner body 35 forming the flame opening 33 is provided in a cylindrical shape, and a through hole 36 penetrating in the vertical direction is formed at the center thereof. The infrared intensity through the through hole 36 is detected. The upper end portion of the through hole 36 is covered with a translucent window portion 37.

(5)上記実施形態では、赤外線強度検出手段が、3個のバンドパスフィルター41a,41b,41cを通過した赤外線を各別に検出する3個の赤外線検出素子42a,42b,42cを備えて、調理用容器Nから放射される赤外線における互いに異なる3つの波長域夫々についての赤外線強度を検出するように構成したが、このような構成に代えて、1つの赤外線検出素子に対して3個のバンドパスフィルターが交互に作用するように位置を切り換えて、その切り換えた状態の夫々における赤外線検出素子の検出値を用いて、互いに異なる波長域の赤外線強度を検出する構成としてもよい。 (5) In the above embodiment, the infrared intensity detecting means includes three infrared detecting elements 42a, 42b, and 42c that individually detect the infrared rays that have passed through the three band pass filters 41a, 41b, and 41c. The infrared rays emitted from the container N are configured to detect the infrared intensity for each of the three different wavelength ranges, but instead of such a configuration, three bandpasses for one infrared detection element The positions may be switched so that the filters act alternately, and the infrared intensity in different wavelength ranges may be detected using the detection value of the infrared detection element in each of the switched states.

(6)上記実施形態では、前記赤外線強度検出手段が、バーナの中央部の下方側に位置して上下方向に沿って入射する赤外線の強度を検出するものを例示したが、このような構成に限らず、バーナの中央部から横方向に位置をずらせて、斜め方向に沿って入射する赤外線の強度を検出するものでもよく、設置形態は種々変更して実施することができる。 (6) In the above embodiment, the infrared intensity detecting means is exemplified to detect the intensity of the infrared ray that is located along the vertical direction and is located on the lower side of the center portion of the burner. The present invention is not limited to this, and it is possible to detect the intensity of infrared rays incident in the oblique direction by shifting the position in the horizontal direction from the center of the burner.

(7)上記実施形態では、前記加熱手段としてガス燃焼式のバーナを用いる構成としたが、加熱手段はバーナに限定されるものではなく、例えばハロゲンランプを用いたもの、電気抵抗線を内蔵したシーズヒータを用いたもの、又は、電磁誘導加熱(通常、「IH」と呼ばれる)を行う磁界発生コイルを用いたもの等、電気式加熱部にて構成しても良い。 (7) In the above embodiment, a gas combustion type burner is used as the heating means. However, the heating means is not limited to the burner, for example, a halogen lamp is used, and an electric resistance wire is incorporated. You may comprise by an electric heating part, such as what uses a sheathed heater, or the thing using the magnetic field generation coil which performs electromagnetic induction heating (usually called "IH").

加熱調理器の概略構成図Schematic configuration diagram of the cooking device 放射特性を示す図Diagram showing radiation characteristics 調理用容器から放射される赤外線放射強度の分光スペクトルデータを示す図The figure which shows the spectrum data of the infrared radiation intensity radiated | emitted from the container for cooking 調理用容器から放射される赤外線放射強度の分光スペクトルデータを示す図The figure which shows the spectrum data of the infrared radiation intensity radiated | emitted from the container for cooking 調理用容器から放射される赤外線放射強度の分光スペクトルデータを示す図The figure which shows the spectrum data of the infrared radiation intensity radiated | emitted from the container for cooking 火炎から放射される赤外線放射強度の分光スペクトルデータを示す図Figure showing the spectral data of the infrared radiation intensity emitted from the flame 調理用容器の温度と赤外線強度比との関係を示す図The figure which shows the relationship between the temperature of the container for cooking, and infrared rays intensity ratio 調理用容器の温度と赤外線強度比との関係を示す図The figure which shows the relationship between the temperature of the container for cooking, and infrared rays intensity ratio 別実施形態の加熱調理器の概略構成図The schematic block diagram of the heating cooker of another embodiment

符号の説明Explanation of symbols

30 加熱手段
40 赤外線強度検出手段
50 温度検出手段
K1 第1温度計測用の波長域
K2 第2温度計測用の波長域
K3 温度判定用の波長域
T1 第1予測温度
T2 第2予測温度
30 Heating means 40 Infrared intensity detecting means 50 Temperature detecting means K1 Wavelength range for first temperature measurement K2 Wavelength range for second temperature measurement K3 Wavelength range for temperature determination T1 First predicted temperature T2 Second predicted temperature

Claims (4)

調理用容器を加熱する加熱手段と、前記調理用容器から放射された赤外線における複数の波長域夫々についての赤外線強度を検出する赤外線強度検出手段と、その赤外線強度検出手段にて検出される前記複数の波長域夫々についての赤外線強度に基づいて前記調理用容器の温度を検出する温度検出手段とを備えた加熱調理器用の温度検出装置であって、
前記赤外線強度検出手段が、
前記複数の波長域についての赤外線強度として、
波長の変化に対する放射率の変化が小さい放射率均平範囲及び波長の変化に対する放射率の変化が大きい放射率変動範囲を有する放射特性の放射率変動型の調理用容器に対応させて、前記放射率変動範囲に設定した第1温度計測用の波長域についての赤外線強度、前記放射率均平範囲に設定した第1温度計測用の波長域についての赤外線強度、前記放射率均平範囲に異なる波長域として設定した2種の第2温度計測用の波長域についての赤外線強度、及び、前記放射率均平範囲に設定した温度判定用の波長域についての赤外線強度の夫々を検出するように構成され、
前記温度検出手段が、
2種の前記第1温度計測用の波長域の夫々について検出される一対の赤外線強度の比に基づいて第1予測温度を求め、かつ、2種の前記第2温度計測用の波長域の夫々について検出される一対の赤外線強度の比に基づいて第2予測温度を求めて、前記第1予測温度と前記第2予測温度との差が許容範囲内にあるときは、前記第1予測温度及び前記第2予測温度に基づいて前記調理用容器の温度を判定し、前記第1予測温度と前記第2予測温度との差が前記許容範囲を外れているときは、前記温度判定用の波長域について検出される赤外線強度に基づいて前記調理用容器の温度を判定するように構成されている加熱調理器用の温度検出装置。
A heating means for heating the cooking container, an infrared intensity detection means for detecting an infrared intensity for each of a plurality of wavelength ranges in the infrared rays radiated from the cooking container, and the plurality detected by the infrared intensity detection means A temperature detection device for a heating cooker, comprising temperature detection means for detecting the temperature of the cooking container based on the infrared intensity for each of the wavelength ranges of
The infrared intensity detecting means is
As the infrared intensity for the plurality of wavelength ranges,
The radiation corresponding to an emissivity variation type cooking container having an emissivity characteristic having an emissivity leveling range with a small change in emissivity with respect to a change in wavelength and an emissivity variation range with a large change in emissivity with respect to a change in wavelength. Infrared intensity for the first temperature measurement wavelength range set in the rate variation range, Infrared intensity for the first temperature measurement wavelength range set in the emissivity level range, and a wavelength that is different from the emissivity level range It is configured to detect each of the infrared intensity for the two types of wavelength ranges for measuring the second temperature set as the area and the infrared intensity for the wavelength range for temperature determination set in the emissivity average range. ,
The temperature detecting means is
A first predicted temperature is obtained based on a ratio of a pair of infrared intensities detected for each of the two types of wavelength regions for the first temperature measurement, and each of the two types of wavelength regions for the second temperature measurement is used. The second predicted temperature is obtained based on the ratio of the pair of infrared intensities detected for the first predicted temperature and when the difference between the first predicted temperature and the second predicted temperature is within an allowable range, the first predicted temperature and When the temperature of the cooking container is determined based on the second predicted temperature, and the difference between the first predicted temperature and the second predicted temperature is outside the allowable range, the wavelength region for temperature determination A temperature detection device for a heating cooker configured to determine the temperature of the cooking container based on the infrared intensity detected for.
前記放射率変動範囲に設定した第1温度計測用の波長域が、波長の変化に対する放射率の変化が無い又は変化が少ない放射特性の放射率均平型の調理用容器については放射する赤外線強度の温度変化に対する変化が前記2種の前記第2温度計測用の波長域よりも大きい波長域に対応するように定められ、
前記温度検出手段が、
前記第1予測温度と前記第2予測温度との差が前記許容範囲内にあるときは、前記第1予測温度を前記調理用容器の温度として判定するように構成されている請求項1記載の加熱調理器用の温度検出装置。
Infrared intensity radiated for an emissivity-equalized cooking container having a radiation characteristic in which the wavelength range for first temperature measurement set in the emissivity fluctuation range has no or little change in emissivity with respect to wavelength change. Corresponding to a wavelength range larger than the two types of wavelength ranges for the second temperature measurement,
The temperature detecting means is
The configuration according to claim 1, wherein when the difference between the first predicted temperature and the second predicted temperature is within the allowable range, the first predicted temperature is determined as the temperature of the cooking container. Temperature detection device for cooking appliances.
前記赤外線強度検出手段が、
前記放射率変動範囲に設定される前記第1温度計測用の波長域として、3.1μm以上且つ4.2μm以下の範囲内から選択された波長域が設定され、且つ、前記放射率均平範囲に設定される前記2種の第2温度計測用の波長域並びに前記温度判定用の波長域として、8.0μm以上且つ20.0μm以下の範囲内から選択された波長域が設定され、それら複数の波長域夫々の赤外線強度を検出するように構成されている請求項1又は2記載の加熱調理器用の温度検出装置。
The infrared intensity detecting means is
A wavelength range selected from a range of 3.1 μm or more and 4.2 μm or less is set as the first temperature measurement wavelength range set in the emissivity variation range, and the emissivity average range is set. A wavelength range selected from the range of 8.0 μm or more and 20.0 μm or less is set as the two types of wavelength ranges for the second temperature measurement and the wavelength range for the temperature determination, and a plurality of them are set. The temperature detection apparatus for cooking-by-heating machines of Claim 1 or 2 comprised so that the infrared intensity of each wavelength range may be detected.
前記赤外線強度検出手段が、
前記放射率均平範囲に設定した前記温度判定用の波長域についての赤外線強度として、前記2種の第2温度計測用の波長域のうちのいずれか1つの波長域についての赤外線強度を検出するように構成されている請求項1〜3のいずれか1項に記載の加熱調理器用の温度検出装置。
The infrared intensity detecting means is
The infrared intensity for any one of the two types of wavelength ranges for the second temperature measurement is detected as the infrared intensity for the wavelength range for temperature determination set in the emissivity level range. The temperature detection device for a heating cooker according to any one of claims 1 to 3, which is configured as described above.
JP2007069334A 2007-03-16 2007-03-16 Temperature detection device for cooking device Expired - Fee Related JP4989265B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007069334A JP4989265B2 (en) 2007-03-16 2007-03-16 Temperature detection device for cooking device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007069334A JP4989265B2 (en) 2007-03-16 2007-03-16 Temperature detection device for cooking device

Publications (2)

Publication Number Publication Date
JP2008232469A JP2008232469A (en) 2008-10-02
JP4989265B2 true JP4989265B2 (en) 2012-08-01

Family

ID=39905483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007069334A Expired - Fee Related JP4989265B2 (en) 2007-03-16 2007-03-16 Temperature detection device for cooking device

Country Status (1)

Country Link
JP (1) JP4989265B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5074972B2 (en) * 2008-03-24 2012-11-14 大阪瓦斯株式会社 Temperature detection device for cooking device
JP2010157463A (en) * 2009-01-05 2010-07-15 Panasonic Corp Induction heating cooker
JP5270405B2 (en) * 2009-03-06 2013-08-21 大阪瓦斯株式会社 Temperature detection device
ES2533143A1 (en) * 2013-10-02 2015-04-07 Bsh Electrodomésticos España, S.A. Gas cooking point, a hob arrangement and method for operating a gas cooking point
US11076454B2 (en) * 2014-05-16 2021-07-27 Illinois Tool Works Inc. Induction heating system temperature sensor assembly

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6453122A (en) * 1987-08-24 1989-03-01 Daikin Ind Ltd Method for measuring soldering temperature
JP4422943B2 (en) * 2001-03-16 2010-03-03 大阪瓦斯株式会社 Stove
JP4557736B2 (en) * 2005-02-03 2010-10-06 大阪瓦斯株式会社 Stove
JP4586650B2 (en) * 2005-06-29 2010-11-24 オムロン株式会社 Temperature measurement module and temperature measurement method using the same

Also Published As

Publication number Publication date
JP2008232469A (en) 2008-10-02

Similar Documents

Publication Publication Date Title
JP4989265B2 (en) Temperature detection device for cooking device
JP5138257B2 (en) Infrared intensity detector for cooking appliances
CN103369754B (en) Induction cooking device
JP4989264B2 (en) Temperature detection device for cooking device
JP5006560B2 (en) Temperature detection method, temperature detection device, and cooking device provided with temperature detection device
JP5107081B2 (en) Temperature detection device for cooking device
JP4557736B2 (en) Stove
CN102711301A (en) Induction heating cooker
US11248964B2 (en) Stove guard utilizing different wavelengths
JP5149538B2 (en) Cooker
JP5074972B2 (en) Temperature detection device for cooking device
JP4628118B2 (en) Stove
JP6037854B2 (en) Stove, operating method of stove, estimation method of heating container material used on stove, and estimation method of heating container material
JP4557732B2 (en) Stove
JP5270405B2 (en) Temperature detection device
JP7078495B2 (en) Cooker
JP4811099B2 (en) Cooker
JP7304304B2 (en) Gas stove
CN103687120B (en) Induction heating cooking instrument
JP7394701B2 (en) heating cooker
JP7337026B2 (en) heating cooker
JP5921283B2 (en) Temperature measuring device and cooking device
JP7228778B2 (en) induction cooker
JP5351995B2 (en) Cooker
JP7054822B2 (en) Induction heating cooker

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100302

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120329

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120427

R150 Certificate of patent or registration of utility model

Ref document number: 4989265

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees