JP5270405B2 - Temperature detection device - Google Patents

Temperature detection device Download PDF

Info

Publication number
JP5270405B2
JP5270405B2 JP2009053618A JP2009053618A JP5270405B2 JP 5270405 B2 JP5270405 B2 JP 5270405B2 JP 2009053618 A JP2009053618 A JP 2009053618A JP 2009053618 A JP2009053618 A JP 2009053618A JP 5270405 B2 JP5270405 B2 JP 5270405B2
Authority
JP
Japan
Prior art keywords
temperature
infrared
measured
pan
wavelength region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009053618A
Other languages
Japanese (ja)
Other versions
JP2010210259A (en
Inventor
章 宮藤
克彦 福井
健一郎 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mikuni Corp
Osaka Gas Co Ltd
Original Assignee
Mikuni Corp
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mikuni Corp, Osaka Gas Co Ltd filed Critical Mikuni Corp
Priority to JP2009053618A priority Critical patent/JP5270405B2/en
Publication of JP2010210259A publication Critical patent/JP2010210259A/en
Application granted granted Critical
Publication of JP5270405B2 publication Critical patent/JP5270405B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To highly accurately measure the temperature of a cooking vessel being an object of temperature measurement or detection in a range from a low temperature to a high temperature for example even if the cooking vessel is a pan belonging to non-gray substances, a pan belonging to gray substances, or a low-emissivity type pan. <P>SOLUTION: Based on results of the comparison between temperatures T1 and T2 acquired by using the value of an infrared intensity signal (infrared intensity "A") output from a first infrared light receiving element 19, and the value of an infrared intensity signal (infrared intensity "B") output from a second infrared light receiving element 21, and between the voltage value "Vout" of a received light pulse signal output from an infrared light receiving element 28 and a second threshold "SH2", it is determined which one the cooking vessel 2 put on a trivet 7 is, out of an organic silicon type coated pan, a pan belonging to non-gray substances such as an alumite pan, a black-coated pan, a pan belonging to gray substances such as a silver-coated pan, and a pan belonging to a low-emissivity type such as a stainless pan. The temperature is calculated and detected by a temperature calculation method suited to the material of the cooking vessel 2. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、被測定物の温度を非接触状態で検出する温度検出装置及び温度検出方法に関し、特に、ガス又は電気等のエネルギにより加熱される鍋、フライパン等の調理用器具の底面温度又は加熱調理される料理等の被加熱物の温度を非接触で検出する温度検出装置に関する。   The present invention relates to a temperature detection device and a temperature detection method for detecting the temperature of an object to be measured in a non-contact state, and in particular, the bottom surface temperature or heating of a cooking utensil such as a pan or a frying pan heated by energy such as gas or electricity. The present invention relates to a temperature detection device that detects the temperature of an object to be heated such as cooked food in a non-contact manner.

温度測定対象の物体(本願では、「被測定物」という)の表面温度(以下、適宜単に「温度」という)を非接触状態で測定する温度測定技術が、従来から種々知られている。ここで、被測定物はその温度に依存した赤外線領域のエネルギを放射するため、被測定物の温度を非接触状態で測定するためには、赤外線センサを使用して被測定物が放射する赤外線強度を測定するのが一般的である。   Various temperature measuring techniques for measuring the surface temperature (hereinafter simply referred to as “temperature” as appropriate) of an object to be measured (hereinafter referred to as “measurement object”) in a non-contact state have been known. Here, since the object to be measured radiates energy in the infrared region depending on its temperature, in order to measure the temperature of the object to be measured in a non-contact state, the infrared light emitted from the object to be measured using an infrared sensor. It is common to measure strength.

被測定物が鍋やフライパン等の調理用器具の場合は、検出した赤外線強度に基づいて当該調理用器具の温度を算出し、調理用容器の温度を設定温度に維持するべくガスや電気等の加熱手段を制御したり、調理用容器の過度の温度上昇を回避させるために加熱手段による加熱動作を停止させる等の処理を行うのである。   If the object to be measured is a cooking utensil such as a pan or a frying pan, the temperature of the cooking utensil is calculated based on the detected infrared intensity, and gas or electricity is used to maintain the cooking vessel temperature at the set temperature. In order to control the heating means or to avoid an excessive temperature rise of the cooking container, processing such as stopping the heating operation by the heating means is performed.

本発明は、上記の事情に鑑みてなされたものであり、調理用容器が黒体、または灰色体、あるいは非灰色体の何れであっても、またステンレス鍋などのように、放射率が低い材料であっても、低い温度から高い温度まで、調理用容器の温度を高精度に測定することができる温度検出装置を提供することを目的としている。   The present invention has been made in view of the above circumstances, and the emissivity is low, such as a stainless steel pan, whether the cooking container is a black body, a gray body, or a non-gray body. Even if it is a material, it aims at providing the temperature detection apparatus which can measure the temperature of the container for cooking from the low temperature to the high temperature with high precision.

上記の目的を達成するために本発明(請求項1)は、被測定物の温度を非接触状態で検出する温度検出装置であって、前記被測定物からその表面温度に応じて放射される赤外線領域における二つの異なる波長領域の赤外線強度を検出する放射光検出手段と、前記被測定物に対して所定の波長領域の赤外線を照射する赤外線照射手段と、前記赤外線照射手段から照射された前記赤外線の前記被測定物からの反射光を受光するように配置された赤外線受光手段と、前記放射光検出手段の出力及び前記赤外線受光手段の出力に基づいて前記被測定物の温度を検出する温度検出手段と、により構成され、前記温度検出手段は、前記被測定物から放射される前記二つの波長領域における第1の波長領域の赤外線強度に基づいて第1温度を算出し、前記被測定物から放射される前記二つの波長領域における前記第1の波長領域よりも長い第2の波長領域の赤外線強度に基づいて第2温度を算出し、(a)前記第2温度が前記第1温度よりも高い場合には前記被測定物を非灰色体とみなし、当該非灰色体の前記第2の波長領域の赤外線強度に基づいて前記被測定物の温度を算出し、(b)前記第2温度が前記第1温度と同じか又は低い場合であって前記赤外線照射手段点灯時における前記赤外線受光手段の出力値が予め設定された閾値と同じか又は小さい時には前記被測定物を灰色体とみなし、当該灰色体の前記第1の波長領域と前記第2の波長領域との赤外線強度比に基づいて前記被測定物の温度を算出し、(c)前記赤外線照射手段点灯時における前記赤外線受光手段の出力値が前記閾値よりも大きい場合は前記被測定物を低放射率体とみなし、当該低放射率体の前記第2の波長領域の赤外線強度に基づいて前記被測定物の温度を算出する、ことを特徴としている。   In order to achieve the above object, the present invention (Claim 1) is a temperature detection device for detecting the temperature of an object to be measured in a non-contact state, and is emitted from the object to be measured according to the surface temperature thereof. Radiated light detecting means for detecting infrared intensity in two different wavelength regions in the infrared region, infrared irradiating means for irradiating the object to be measured with infrared light in a predetermined wavelength region, and the infrared light irradiating means Infrared light receiving means arranged to receive the reflected light from the object to be measured in infrared, and the temperature for detecting the temperature of the object to be measured based on the output of the radiated light detecting means and the output of the infrared light receiving means Detecting means, wherein the temperature detecting means calculates a first temperature based on the infrared intensity of the first wavelength region in the two wavelength regions emitted from the object to be measured, and A second temperature is calculated based on an infrared intensity in a second wavelength region that is longer than the first wavelength region in the two wavelength regions radiated from a fixed object, and (a) the second temperature is the first temperature When the temperature is higher than the temperature, the object to be measured is regarded as a non-gray body, the temperature of the object to be measured is calculated based on the infrared intensity of the second wavelength region of the non-gray body, and (b) the first When the temperature is equal to or lower than the first temperature and the output value of the infrared light receiving means when the infrared irradiation means is on is equal to or smaller than a preset threshold value, the object to be measured is a gray body. The temperature of the object to be measured is calculated based on an infrared intensity ratio between the first wavelength region and the second wavelength region of the gray body, and (c) the infrared light reception when the infrared irradiation unit is turned on. Means output value is more than the threshold value If so considered the object to be measured with a low emissivity material, calculates the temperature of the object to be measured based on the infrared intensity of the second wavelength region of the low emissivity material is characterized by.

また、本発明(請求項2)は、請求項1に記載の温度検出装置において、前記放射光検出手段が、前記被測定物の波長の変化に対する放射率の変化が小さい小変動範囲又は波長の変化に対する放射率の変化が大きい大変動範囲に対応させて、前記大変動範囲に設定した前記第1の波長領域についての赤外線強度と前記小変動範囲に設定した前記第2の波長領域についての赤外線強度と、の夫々を検出するように構成され、前記温度検出手段における前記第1温度の算出は、放射率が予め判明している基準体の温度変化に対する前記第1の波長領域における赤外線強度の変化を示す相関特性と前記被測定物から放射された前記第1の波長領域についての赤外線強度とに基づいて、前記被測定物から放射された赤外線強度と同じ赤外線強度に対応する前記基準体の温度を前記第1温度とし、前記温度検出手段における前記第2温度の算出は、前記温度検出手段が、前記基準体の温度変化に対する前記第2の波長領域の赤外線強度の変化を示す相関特性と前記被測定物から放射された前記第2の波長領域の赤外線強度とに基づいて、前記被測定物から放射された赤外線強度と同じ赤外線強度に対応する前記基準体の温度を前記第2温度とする、ことを特徴としている。   According to the present invention (Claim 2), in the temperature detection device according to Claim 1, the radiated light detection means has a small variation range or wavelength with a small change in emissivity with respect to a change in wavelength of the object to be measured. Infrared intensity for the first wavelength region set in the large variation range and infrared light for the second wavelength region set in the small variation range corresponding to a large variation range in which the change in emissivity with respect to the change is large And calculating the first temperature in the temperature detecting means, the infrared temperature in the first wavelength region with respect to the temperature change of the reference body whose emissivity is known in advance. Corresponds to the same infrared intensity as that emitted from the object to be measured based on the correlation characteristic indicating the change and the infrared intensity for the first wavelength region emitted from the object to be measured. The temperature of the reference body is the first temperature, and the temperature detection means calculates the second temperature by the temperature detection means changing the infrared intensity in the second wavelength region with respect to the temperature change of the reference body. And the temperature of the reference body corresponding to the same infrared intensity as the infrared intensity emitted from the object to be measured, based on the correlation characteristic indicating the infrared intensity of the second wavelength region emitted from the object to be measured. The second temperature is used.

また、本発明(請求項3)は、請求項1又は2に記載の温度検出装置において、前記第1の波長領域は、3.1乃至4.2μmの範囲内から選択され、前記第2の波長領域は、8.0乃至20.0μmの範囲内から選択されることを特徴としている。   According to the present invention (Claim 3), in the temperature detection device according to Claim 1 or 2, the first wavelength region is selected from a range of 3.1 to 4.2 μm, and the second The wavelength region is selected from the range of 8.0 to 20.0 μm.

また、本発明(請求項4)は、請求項1乃至3の何れかの項に記載の温度検出装置において、前記被測定物が非灰色体とみなされると、当該被測定物の温度は、放射率が0.8乃至0.95の範囲にて算出されることを特徴としている。   Further, according to the present invention (Claim 4), in the temperature detection device according to any one of Claims 1 to 3, when the object to be measured is regarded as a non-gray body, the temperature of the object to be measured is The emissivity is calculated in the range of 0.8 to 0.95.

また、本発明(請求項5)は、請求項1乃至3の何れかの項に記載の温度検出装置において、前記被測定物が低放射率体とみなされると、当該被測定物の温度は、放射率が0.3未満の範囲で算出されることを特徴としている。   Further, according to the present invention (Claim 5), in the temperature detection device according to any one of Claims 1 to 3, when the object to be measured is regarded as a low emissivity body, the temperature of the object to be measured is The emissivity is calculated within a range of less than 0.3.

また、本発明(請求項6)は、請求項1乃至5の何れかの項に記載の温度検出装置において、前記赤外線照射手段の点灯時において前記赤外線受光手段の出力値が、所定値よりも小さい場合には、前記被測定物が温度測定位置に存在していない旨の警告信号を出力することを特徴としている。   Further, according to the present invention (Claim 6), in the temperature detection device according to any one of Claims 1 to 5, the output value of the infrared light receiving means is higher than a predetermined value when the infrared irradiation means is turned on. If it is smaller, a warning signal indicating that the object to be measured does not exist at the temperature measurement position is output.

そして、本発明(請求項7)は、請求項1乃至6の何れかに記載の温度検出装置において、前記被測定物は、外部から電気又は磁気エネルギ若しくはガス等の燃焼エネルギが与えられて加熱される鍋、フライパン等の調理用器具若しくは当該調理用器具上の食物等の被加熱物であることを特徴としている。   According to the present invention (Claim 7), in the temperature detection device according to any one of Claims 1 to 6, the object to be measured is heated by being supplied with electrical, magnetic energy, or combustion energy such as gas from the outside. Cooking utensils such as pans and frying pans, or food to be heated on the cooking utensils.

本願の温度検出装置では、調理用容器が黒色体、または灰色体、あるいは非灰色体の何れであっても、またステンレス鍋などのように、放射率が低い材料であっても、調理用容器を構成する物質の放射率を設定することなく、低い温度から高い温度まで、調理用容器の温度を高精度に測定することができる。   In the temperature detection device of the present application, even if the cooking container is a black body, a gray body, or a non-gray body, or a material having a low emissivity such as a stainless steel pan, the cooking container The temperature of the cooking container can be measured with high accuracy from a low temperature to a high temperature without setting the emissivity of the substance constituting the.

本発明による温度検出装置の一形態を使用した調理設備の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the cooking installation using one form of the temperature detection apparatus by this invention. 図1に示す調理設備の動作例を示すフローチャートである。It is a flowchart which shows the operation example of the cooking equipment shown in FIG. 黒体炉、各鍋材料の放射率と、波長との関係を示す放射率/波長グラフである。It is an emissivity / wavelength graph which shows the relationship between the emissivity of a black body furnace and each pan material, and a wavelength. 黒色塗装鍋から放射される赤外線の放射スペクトルを示すグラフである。It is a graph which shows the infrared emission spectrum radiated | emitted from a black coating pan. 銀色塗装鍋から放射される赤外線の放射スペクトルを示すグラフである。It is a graph which shows the radiation spectrum of the infrared rays radiated | emitted from a silver paint pan. アルマイト鍋から放射される赤外線の放射スペクトルを示すグラフである。It is a graph which shows the infrared radiation spectrum radiated | emitted from an alumite pan. 火炎から放射される光のうち、赤外線成分の放射スペクトルを示すグラフである。It is a graph which shows the emission spectrum of an infrared component among the lights radiated | emitted from a flame. 黒体炉から放射される赤外線の強度と、温度との関係を示すグラフである。It is a graph which shows the relationship between the intensity | strength of the infrared rays radiated | emitted from a blackbody furnace, and temperature. 黒色塗装鍋から放射される赤外線の強度と、温度との関係を示すグラフである。It is a graph which shows the relationship between the intensity | strength of the infrared rays radiated | emitted from a black coating pan, and temperature. 銀色塗装鍋から放射される赤外線の強度と、温度との関係を示すグラフである。It is a graph which shows the relationship between the intensity | strength of the infrared rays radiated | emitted from a silver paint pan, and temperature. アルマイト鍋から放射される赤外線の強度と、温度との関係を示すグラフである。It is a graph which shows the relationship between the intensity | strength of the infrared rays radiated | emitted from an alumite pan, and temperature. 黒色塗装鍋、銀色塗装鍋、アルマイト鍋から放射される赤外線の赤外線強度比と、温度との関係を示すグラフである。It is a graph which shows the relationship between the infrared intensity ratio of the infrared rays radiated | emitted from a black paint pan, a silver paint pan, and an alumite pan, and temperature. 調理用容器を外した状態で、赤外線発光素子に印加される駆動パルス信号と、赤外線受光素子から出力される受光パルス信号の関係を示すグラフである。It is a graph which shows the relationship between the drive pulse signal applied to an infrared light emitting element in the state which removed the cooking container, and the light reception pulse signal output from an infrared light receiving element. 調理用容器として、黒色塗装鍋をセットした状態で、赤外線発光素子に印加される駆動パルス信号と、赤外線受光素子から出力される受光パルス信号の関係を示すグラフである。It is a graph which shows the relationship between the drive pulse signal applied to an infrared light emitting element, and the light reception pulse signal output from an infrared light receiving element in the state which set the black coating pan as a cooking container. 調理用容器として、アルマイト鍋をセットした状態で、赤外線発光素子に印加される駆動パルス信号と、赤外線受光素子から出力される受光パルス信号の関係を示すグラフである。It is a graph which shows the relationship between the drive pulse signal applied to an infrared light emitting element, and the light reception pulse signal output from an infrared light receiving element in the state which set the alumite pan as a cooking container. 調理用容器として、ステンレス鍋をセットした状態で、赤外線発光素子に印加される駆動パルス信号と、赤外線受光素子から出力される受光パルス信号の関係を示すグラフである。It is a graph which shows the relationship between the drive pulse signal applied to an infrared light emitting element, and the light reception pulse signal output from an infrared light receiving element in the state which set the stainless steel pan as a cooking container. 調理用容器として、銅鍋をセットした状態で、赤外線発光素子に印加される駆動パルス信号と、赤外線受光素子から出力される受光パルス信号の関係を示すグラフである。It is a graph which shows the relationship between the drive pulse signal applied to an infrared light emitting element, and the light reception pulse signal output from an infrared light receiving element in the state which set the copper pan as a cooking container.

本発明による温度検出装置の一例について、詳細に説明する。
図1は、本発明による温度検出装置の一形態を使用した調理設備の一例を示す概略構成図である。図1に示す調理設備1は、燃料ガスによって調理用容器(特許請求の範囲で使用されている被測定物に対応する部分)2を加熱するガスレンジ機構3と、非接触で、調理用容器2の温度を測定する温度検出装置4とを備えており、ガスレンジ機構3によって、調理用容器2を加熱しながら、温度検出装置4によって、非接触で、調理用容器2の温度を測定し、調理用容器2の温度が指定温度になるように、また高温になりすぎないように、ガスレンジ機構3を制御する。
An example of the temperature detection device according to the present invention will be described in detail.
FIG. 1 is a schematic configuration diagram showing an example of a cooking facility using an embodiment of a temperature detection device according to the present invention. A cooking facility 1 shown in FIG. 1 is a non-contact cooking container with a gas range mechanism 3 that heats a cooking container (a part corresponding to an object to be measured used in claims) 2 with fuel gas. 2, and the temperature of the cooking container 2 is measured by the temperature detection device 4 in a non-contact manner while the cooking container 2 is heated by the gas range mechanism 3. The gas range mechanism 3 is controlled so that the temperature of the cooking container 2 becomes a specified temperature and does not become too high.

ガスレンジ機構3は、面一状に形成される天板5と、天板5に形成された開口部6を囲むように、天板5上に載置される五徳7と、天板5に形成された開口部6の下側に、天板5から少し離間して配置される環状のガスバーナ8と、ガスバーナ8の中央部分に取り付けられる汁受皿9と、ガス管10などを介して供給される燃料ガスを断続させる燃料供給断続弁11と、燃料供給断続弁11から吐出される燃料ガスの通過量を調節する燃料供給量調節弁12と、外部から入力された信号などに基づき、燃料供給断続弁11、燃料供給量調節弁12などを制御する燃焼制御回路13と、燃料供給量調節弁12から吐出される燃料ガスを取り込み、勢い良く噴出させるガスノズル14と、ガスノズル14から噴出される燃料ガスによって生じる負圧を利用して、周囲から燃焼用の空気を取り込み、混合気にした後、ガスバーナ8の内周部側に形成された各炎口16から噴出させて、燃焼させる混合管15とを備えている。   The gas range mechanism 3 includes a top plate 5 formed on the same plane, five virtues 7 placed on the top plate 5 so as to surround an opening 6 formed on the top plate 5, and a top plate 5. An annular gas burner 8 is arranged below the formed opening 6 at a distance from the top plate 5, a juice tray 9 attached to the central portion of the gas burner 8, and a gas pipe 10. A fuel supply intermittent valve 11 for intermittently supplying fuel gas, a fuel supply amount adjusting valve 12 for adjusting a passing amount of fuel gas discharged from the fuel supply intermittent valve 11, a signal supplied from the outside, and the like. A combustion control circuit 13 for controlling the intermittent valve 11, the fuel supply amount adjustment valve 12, etc., a gas nozzle 14 for taking in the fuel gas discharged from the fuel supply amount adjustment valve 12 and ejecting it vigorously, and a fuel ejected from the gas nozzle 14 Negative caused by gas And a mixing tube 15 for injecting combustion air from the surroundings to form an air-fuel mixture, and then ejecting the air from each flame port 16 formed on the inner peripheral side of the gas burner 8 to burn it. .

そして、ガスレンジ機構3の前面などに設けられた操作パネル(図示は省略する)などが操作されて、点火指示、火力指定指示などが入力されたとき、燃焼制御回路13によって、燃料供給断続弁11を開状態にさせるとともに、燃料供給量調節弁12の開度を調節させて、ガスノズル14から燃料ガスを噴射させることにより、混合管15からガスバーナ8に最適な量の混合気を供給させて、ガスバーナ8の各炎口16から噴出させ、燃焼させる。   When an operation panel (not shown) provided on the front surface of the gas range mechanism 3 or the like is operated and an ignition instruction, a thermal power designation instruction, or the like is input, the combustion control circuit 13 causes the fuel supply intermittent valve. 11 is opened, and the opening of the fuel supply amount adjustment valve 12 is adjusted to inject fuel gas from the gas nozzle 14, thereby supplying an optimal amount of air-fuel mixture from the mixing pipe 15 to the gas burner 8. The gas burner 8 is ejected from each flame port 16 and burned.

また、温度検出装置4は、汁受皿9の中央部に形成された開口部(図示ぜず)に配置され、五徳7上に載せられている調理用容器2から放射される赤外線のうち、第1波長領域“α1(K1)”の波長成分を透過させる第1光学フィルタ18と、第1光学フィルタ18の下側に配置され、第1光学フィルタ18を透過した赤外線を受光して、赤外線強度信号を出力する第1赤外線受光素子(特許請求の範囲で使用されている放射光検出手段に対応する部分)19と、汁受皿9の開口部に配置され、五徳7上に載せられている調理用容器2から放射される赤外線のうち、第2波長領域“α2(K2)”の波長成分を透過させる第2光学フィルタ20と、第2光学フィルタ20の下側に配置され、第2光学フィルタ20を透過した赤外線を受光して、赤外線強度信号を出力する第2赤外線受光素子(特許請求の範囲で使用されている放射光検出手段に対応する部分)21と、第1赤外線受光素子19から出力される赤外線強度信号、第2赤外線受光素子21から出力される赤外線強度信号を使用して、調理用容器2の温度を演算し、操作パネル、燃焼制御回路13などに温度検知信号(調理用容器2の温度を示す信号)を供給する処理などを行う温度演算回路(特許請求の範囲で使用されている温度検出手段に対応する部分)22と、を備えている。   Further, the temperature detection device 4 is arranged in an opening (not shown) formed in the center portion of the soup pan 9, and among the infrared rays radiated from the cooking container 2 placed on the virtues 7, The first optical filter 18 that transmits the wavelength component of one wavelength region “α1 (K1)” and the infrared light that is disposed below the first optical filter 18 and that has passed through the first optical filter 18 are received, and the infrared intensity. A first infrared light receiving element (part corresponding to the radiated light detecting means used in the claims) 19 that outputs a signal, and a dish placed on the virtues 7 disposed in the opening of the juice tray 9 A second optical filter 20 that transmits a wavelength component of the second wavelength region “α2 (K2)” of infrared rays radiated from the container 2, and a second optical filter disposed below the second optical filter 20. Receives infrared light transmitted through 20 A second infrared light receiving element (a part corresponding to the radiated light detecting means used in the claims) 21 that outputs an infrared intensity signal; an infrared intensity signal output from the first infrared light receiving element 19; Using the infrared intensity signal output from the infrared light receiving element 21, the temperature of the cooking container 2 is calculated, and a temperature detection signal (a signal indicating the temperature of the cooking container 2) is sent to the operation panel, the combustion control circuit 13, and the like. And a temperature calculation circuit (a portion corresponding to the temperature detection means used in the claims) 22 for performing a supply process and the like.

さらに、温度検出装置4は、温度演算回路22から発光指示信号が出力されているとき、“0.1Hz”のパルス電圧を出力する発光制御回路23と、汁受皿9の側面上部に形成された開口部24に配置され、発光制御回路23からパルス電圧が出力されているとき、第1波長領域“α1(K1)”、第2波長領域“α2(K2)”と異なる波長(例えば、波長“H3”)の赤外線を生成して、五徳7上の調理用容器2下面に出射する赤外線発光素子(特許請求の範囲で使用されている赤外線照射手段に対応する部分)25と、汁受皿9の側面上部に形成された開口部26に配置され、五徳7上に載せられた調理用容器2下面から出射される赤外線のうち、波長“H3”の赤外線(赤外線発光素子25から出射され、五徳7上の調理用容器2下面で反射されたパルス状の赤外線)を選択的に受光して、受光パルス信号を出力する赤外線受光素子(特許請求の範囲で使用されている赤外線受光手段に対応する部分)28と、赤外線受光素子28から出力される受光パルス信号を電圧弁別し、温度演算回路22などに調理用容器検知信号を供給する反射検知回路29とを備えている。   Furthermore, the temperature detection device 4 is formed on the upper side of the side plate of the juice tray 9 and the light emission control circuit 23 that outputs a pulse voltage of “0.1 Hz” when the light emission instruction signal is output from the temperature calculation circuit 22. When the pulse voltage is output from the light emission control circuit 23 disposed in the opening 24, a wavelength different from the first wavelength region “α1 (K1)” and the second wavelength region “α2 (K2)” (for example, the wavelength “ H3 ″) infrared rays are generated and emitted to the lower surface of the cooking container 2 on the virtues 7. The infrared light emitting elements 25 (portions corresponding to the infrared irradiation means used in the claims) 25, Of the infrared rays emitted from the lower surface of the cooking container 2 placed on the gorge 7 and placed in the opening 26 formed in the upper part of the side surface, the infrared ray having the wavelength “H3” (radiated from the infrared light emitting element 25 and radix 7 Upper cooking container 2 under An infrared light receiving element (a portion corresponding to the infrared light receiving means used in the claims) 28 for selectively receiving the pulsed infrared light reflected by the surface and outputting a light reception pulse signal; A reflection detection circuit 29 is provided that voltage-discriminates the received light pulse signal output from the element 28 and supplies a cooking container detection signal to the temperature calculation circuit 22 or the like.

次に、本発明の温度検出装置で使用される単色、2色切り替え条件、ステンレス鍋などの低放射率系の鍋検出方法について説明する。   Next, a single color, two-color switching condition, and a low emissivity pan detection method such as a stainless pan used in the temperature detection device of the present invention will be described.

本願発明者は、種々の材質の物体を選択し、波長の変化と、放射率の変化とを計測したところ、図3に示す放射率/波長グラフを得ることができた。図3は、具体的には、種々の物体を加熱して、物体の温度を200℃としたときのそれぞれの波長に対する放射率を表したものである。金属の表面に黒色塗装した黒色塗装板、金属の表面に銀色塗装した銀色塗装板、ステンレス板などでは、放射率の変化がほぼ一定であり、各々、“約0.9”、“約0.4”、“約0.2”でほぼ一定になる。すなわち、このような黒色塗装鍋や銀色塗装鍋などは、波長の変化に対する放射率の変化が小さいという放射率特性を持つ。   The inventor of the present application selected an object of various materials and measured the change in wavelength and the change in emissivity, and as a result, the emissivity / wavelength graph shown in FIG. 3 was obtained. Specifically, FIG. 3 shows the emissivity for each wavelength when various objects are heated and the temperature of the object is 200 ° C. The change in emissivity is almost constant for a black painted plate painted black on a metal surface, a silver painted plate coated with silver on a metal surface, a stainless steel plate, etc., which are “about 0.9” and “about 0.00 respectively. It becomes almost constant at 4 ”and“ about 0.2 ”. That is, such a black paint pan, a silver paint pan, etc. have the emissivity characteristic that the change of the emissivity with respect to the change of a wavelength is small.

一方、金属の表面に有機シリコン系耐熱塗料を塗布した有機シリコン系耐熱塗装調理用容器、アルミ板の表面をアルマイト処理した調理用容器(以下、アルマイト鍋という)では、波長が“8.0μm”より長めの波長領域にあるとき、放射率が“約0.9”でほぼ一定であるのに対して、波長が“8.0μm”より短かめの波長領域にあるとき、放射率が“約0.4”、“約0.2”になってしまう。すなわち、このような有機シリコン系耐熱塗装調理用容器、アルマイト鍋などでは、波長の変化に対する放射率の変化が大きいという放射率特性を持つ。   On the other hand, the wavelength of the organic silicon heat resistant paint cooking container in which the organic silicon heat resistant paint is applied to the metal surface and the cooking container in which the surface of the aluminum plate is anodized (hereinafter referred to as an anodized pan) is “8.0 μm”. When the wavelength is in the longer wavelength region, the emissivity is “about 0.9”, which is substantially constant, whereas when the wavelength is in the shorter wavelength region than “8.0 μm”, the emissivity is “about 0”. .4 "and" about 0.2 ". That is, such organic silicon heat-resistant paint cooking containers, anodized pans, and the like have emissivity characteristics that the change in emissivity with respect to the change in wavelength is large.

次に、各種の材質の調理用容器(鍋)から放射される赤外線の分光スペクトルについて説明する。まず、黒色塗装鍋、銀色塗装鍋、アルマイト鍋では、常温(約25℃)の状態から“300℃”前後まで加熱したとき、赤外線の分光スペクトルが図4乃至図6に示したように変化する。   Next, infrared spectrums radiated from cooking containers (pots) made of various materials will be described. First, in a black paint pan, a silver paint pan, and an alumite pan, when heated from room temperature (about 25 ° C.) to around “300 ° C.”, the infrared spectrum changes as shown in FIGS. .

これらの図が示すように、黒色塗装鍋、銀色塗装鍋、アルマイト鍋を加熱して、温度を上昇させたとき、例えば、常温から“300℃”前後まで上昇させたとき、“1.5μm”乃至“数十μm”の波長領域で、赤外線を放射し、そのうち、“3.5μm”乃至“15μm”の範囲内で、各種の赤外線センサで検出可能な放射強度になっている。   As shown in these figures, when a black paint pan, a silver paint pan, and an alumite pan are heated to raise the temperature, for example, when the temperature is raised from room temperature to around “300 ° C.”, “1.5 μm” The infrared rays are radiated in the wavelength region of “several tens of μm”, and within the range of “3.5 μm” to “15 μm”, the radiation intensity is detectable by various infrared sensors.

また、ガス燃焼式のバーナにて形成される火炎から放射される赤外線の分光スペクトルは図7に示すように、“2.4μm”乃至“3.1μm”の波長領域と、“4.2μm”乃至“8.0μm”の波長領域で、赤外線強度が高くなることから、調理用容器から放射される赤外線の強度を測定するとき、このような火炎から放射される赤外線の強度が弱い領域、例えば図4〜図6に示す第1波長領域“α1(K1)”、第2波長領域“α2(K2)”を使用して、調理用容器から放射される赤外線の強度を測定する。このようにすれば、調理用容器から放射される赤外線の強度を測定するとき、火炎による影響を小さくさせて、温度測定誤差を極力小さくさせることができるのである。   In addition, as shown in FIG. 7, the spectrum of infrared rays emitted from a flame formed by a gas combustion burner has a wavelength range of “2.4 μm” to “3.1 μm” and “4.2 μm”. In the wavelength region of “8.0 μm”, the infrared intensity is high, so when measuring the intensity of the infrared ray emitted from the cooking container, a region where the intensity of the infrared ray emitted from such a flame is weak, for example, Using the first wavelength region “α1 (K1)” and the second wavelength region “α2 (K2)” shown in FIGS. 4 to 6, the intensity of infrared rays emitted from the cooking container is measured. In this way, when measuring the intensity of infrared rays emitted from the cooking container, the influence of the flame can be reduced, and the temperature measurement error can be minimized.

次に、各調理用容器から放射される赤外線のうち、第1波長領域“α1(K1)”を透過した赤外線の強度と、第2波長領域“α2(K2)”を透過した赤外線の強度との関係について説明する。   Next, among the infrared rays radiated from the respective cooking containers, the intensity of infrared rays that have passed through the first wavelength region “α1 (K1)” and the intensity of infrared rays that have passed through the second wavelength region “α2 (K2)” The relationship will be described.

最初に、基準となる放射率(ほぼ“1.0”)を持つ黒体炉では、黒体炉の温度を変化させたとき、図8のラインL1で示すように、第1波長領域“α1(K1)”側の赤外線強度が変化するとともに、ラインL2で示すように、第2波長領域“α2(K2)”側の赤外線強度が変化する。   First, in a blackbody furnace having a reference emissivity (approximately “1.0”), when the temperature of the blackbody furnace is changed, as shown by a line L1 in FIG. 8, the first wavelength region “α1” The infrared intensity on the (K1) "side changes, and the infrared intensity on the second wavelength region" α2 (K2) "side changes as shown by the line L2.

また、黒色塗装鍋を“100℃”、“200℃”、“300℃”に変化させたとき、図9中の各白点で示すように、黒色塗装鍋から放射される第1波長領域“α1(K1)”側の赤外線強度が変化するとともに、各黒点で示すように、黒色塗装鍋から放射される第2波長領域“α2(K2)”側の赤外線強度が変化する。すなわち、黒体炉の放射率(ほぼ“1.0”)と、黒色塗装鍋の放射率(ほぼ“0.9”)との比率に応じて、図9に記載されているラインL1(図8に記載されているラインL1と同一のもの)を“0.9”倍だけ、下側に移動させたライン(図示は省略する)が黒色塗装鍋から放射される第1波長領域“α1(K1)”側の赤外線強度になるとともに、図9に記載されているラインL2(図8に記載されているラインL2と同一のもの)を“0.9”倍だけ、下側に移動させたライン(図示は省略する)が黒色塗装鍋から放射される第2波長領域“α2(K2)”側の赤外線強度になる。   In addition, when the black paint pan is changed to “100 ° C.”, “200 ° C.”, “300 ° C.”, as shown by the white dots in FIG. The infrared intensity on the α1 (K1) ″ side changes, and as indicated by the black dots, the infrared intensity on the second wavelength region “α2 (K2)” side emitted from the black paint pan changes. That is, according to the ratio of the emissivity of the blackbody furnace (approximately “1.0”) and the emissivity of the black paint pan (approximately “0.9”), the line L1 (FIG. 9) illustrated in FIG. The first wavelength region “α1” (same as the line L1 described in FIG. 8), which is moved downward by “0.9” times (not shown) is emitted from the black paint pan. K1) “Infrared intensity on the side” and the line L2 shown in FIG. 9 (the same as the line L2 shown in FIG. 8) is moved downward by “0.9” times. The line (not shown) becomes the infrared intensity on the second wavelength region “α2 (K2)” side emitted from the black paint pan.

そして、図8に示すラインL1、ラインL2を使用して、黒色塗装鍋から放射される第1波長領域“α1(K1)”側の赤外線強度と、第2波長領域“α2(K2)”側の赤外線強度とを黒体炉での温度に換算する。   Then, using the line L1 and line L2 shown in FIG. 8, the infrared intensity on the first wavelength region “α1 (K1)” side emitted from the black paint pan and the second wavelength region “α2 (K2)” side Is converted into the temperature in a blackbody furnace.

また、銀色塗装鍋を“100℃”、“200℃”、“300℃”に変化させたとき、図10中の各白点で示すように、銀色塗装鍋から放射される第1波長領域“α1(K1)”側の赤外線強度が変化するとともに、各黒点で示すように、銀色塗装鍋から放射される第2波長領域“α2(K2)”側の赤外線強度が変化する。つまり、黒体鍋の放射率(ほぼ“1.0”)と、銀色塗装鍋の放射率(ほぼ“0.4”)との比率に応じて、図10に記載されているラインL1(図8に記載されているラインL1と同一のもの)を略“0.4”倍だけ、下側に移動させたライン(図示は省略する)が銀色塗装鍋から放射される第1波長領域“α1(K1)”側の赤外線強度になるとともに、図10に記載されているラインL2(図8に記載されているラインL2と同一のもの)を略“0.4”倍だけ、下側に移動させたライン(図示は省略する)が銀色塗装鍋から放射される第2波長領域“α2(K2)”側の赤外線強度になる。   Further, when the silver paint pan is changed to “100 ° C.”, “200 ° C.”, and “300 ° C.”, as shown by the white dots in FIG. 10, the first wavelength region radiated from the silver paint pan “ The infrared intensity on the α1 (K1) ″ side changes, and the infrared intensity on the second wavelength region “α2 (K2)” side emitted from the silver paint pan changes as indicated by the black dots. That is, according to the ratio between the emissivity of the black body pan (approximately “1.0”) and the emissivity of the silver paint pan (approximately “0.4”), the line L1 illustrated in FIG. The first wavelength region “α1” in which a line (not shown) that is moved downward by about “0.4” times is the same as the line L1 described in FIG. (K1) “Infrared intensity on the side” and move the line L2 shown in FIG. 10 (the same as the line L2 shown in FIG. 8) downward by about “0.4” times. The line (not shown) is the infrared intensity on the second wavelength region “α2 (K2)” side emitted from the silver paint pan.

そして、図8に示すラインL1、ラインL2を使用して、銀色塗装鍋から放射される第1波長領域“α1(K1)”側の赤外線強度と、第2波長領域“α2(K2)”側の赤外線強度とを黒体炉での温度に換算する。   Then, using the lines L1 and L2 shown in FIG. 8, the infrared intensity on the first wavelength region “α1 (K1)” side emitted from the silver paint pan and the second wavelength region “α2 (K2)” side Is converted into the temperature in a blackbody furnace.

また、アルマイト鍋を“100℃”、“200℃”、“300℃”に変化させたとき、図11中の各白点で示すように、アルマイト鍋から放射される第1波長領域“α1(K1)”側の赤外線強度が変化するとともに、各黒点で示すように、アルマイト鍋から放射される第2波長領域“α2(K2)”側の赤外線強度が変化する。すなわち、黒体鍋の放射率(ほぼ“1.0”)と、アルマイト鍋の放射率(第1波長領域“α1(K1)”側でほぼ“0.4”、第2波長領域“α2(K2)”側でほぼ“0.9”)との比率に応じて、図11に記載されているラインL1(図8に記載されているラインL1と同一のもの)を“0.4”倍だけ、下側に移動させたライン(図示は省略する)がアルマイト鍋から放射される第1波長領域“α1(K1)”側の赤外線強度になるとともに、図11に記載されているラインL2(図8に記載されているラインL2と同一のもの)を“0.9”倍だけ、下側に移動させたライン(図示は省略する)がアルマイト鍋から放射される第2波長領域“α2(K2)”側の赤外線強度になる。   Further, when the alumite pan is changed to “100 ° C.”, “200 ° C.”, “300 ° C.”, as shown by the white dots in FIG. 11, the first wavelength region “α1” radiated from the alumite pan ( K1) The infrared intensity on the “side” changes, and the infrared intensity on the second wavelength region “α2 (K2)” side radiated from the alumite pan changes as indicated by each black dot. That is, the emissivity of the black body pan (approximately “1.0”) and the emissivity of the anodized pan (approximately “0.4” on the first wavelength region “α1 (K1)” side, and the second wavelength region “α2 ( K2) The line L1 shown in FIG. 11 (same as the line L1 shown in FIG. 8) is multiplied by “0.4” according to the ratio of “0.9” on the “side”. However, the line moved downward (not shown) becomes the infrared intensity of the first wavelength region “α1 (K1)” radiated from the alumite pan, and the line L2 ( The second wavelength region “α2” (same as the line L2 described in FIG. 8), which is moved downward by “0.9” times (not shown) is emitted from the anodized pan. K2) “Infrared intensity on the side”.

そして、図8に示すラインL1、ラインL2を使用して、アルマイト鍋から放射される第1波長領域“α1(K1)”側の赤外線強度と、第2波長領域“α2(K2)”側の赤外線強度とを黒体炉での温度に換算する。   Then, using the lines L1 and L2 shown in FIG. 8, the infrared intensity on the first wavelength region “α1 (K1)” side radiated from the alumite pan and the second wavelength region “α2 (K2)” side The infrared intensity is converted into the temperature in the blackbody furnace.

上記の温度換算値の結果から、図9で示される黒色塗装鍋の場合、および図10で示される銀色塗装鍋の場合には、“100℃”、“200℃”、“300℃”のいずれにおいても、調理用容器から放射された第1波長領域“α1(K1)”側の赤外線強度に対応する温度T1(100)、温度T1(200)、温度T1(300)の方が調理用容器から放射された第2波長領域“α2(K2)”側の赤外線強度に対応する温度T2(100)、温度T2(200)、温度T2(300)よりも大きいという関係式が成り立つ。   From the result of the above temperature conversion value, any of “100 ° C.”, “200 ° C.”, and “300 ° C.” is obtained in the case of the black paint pan shown in FIG. 9 and the silver paint pan shown in FIG. The temperature T1 (100), the temperature T1 (200), and the temperature T1 (300) corresponding to the infrared intensity on the first wavelength region “α1 (K1)” side radiated from the cooking container are also cooking containers. The relational expression that the temperature T2 (100), the temperature T2 (200), and the temperature T2 (300) corresponding to the infrared intensity on the second wavelength region “α2 (K2)” side radiated from is higher is established.

これに対し、図11に示されるアルマイト鍋の場合には、“100℃”、200℃、300℃のいずれにおいても、調理用容器から放射された第1波長領域“α1(K1)”側の赤外線強度に対応する温度T1(100)、温度T1(200)、温度T1(300)は、調理用容器から放射された第2波長領域“α2(K2)”側の赤外線強度に対応する温度T2(100)、温度T2(200)、温度T2(300)よりも小さいという関係式が成り立つ。   On the other hand, in the case of the alumite pan shown in FIG. 11, the first wavelength region “α1 (K1)” radiated from the cooking container at any of “100 ° C.”, 200 ° C., and 300 ° C. The temperature T1 (100), the temperature T1 (200), and the temperature T1 (300) corresponding to the infrared intensity are the temperatures T2 corresponding to the infrared intensity on the second wavelength region “α2 (K2)” side emitted from the cooking container. (100), temperature T2 (200), and temperature T2 (300).

このような特性を利用すれば、調理用容器から放射された第2波長領域“α2(K2)”側の赤外線強度に対応する温度T2(100)、温度T2(200)、温度T2(300)より、調理用容器から放射された第1波長領域“α1(K1)”側の赤外線強度に対応する温度T1(100)、温度T1(200)、温度T1(300)が高いときには、黒色塗装鍋、銀色塗装鍋などの調理用容器であると判定し、低いときには、アルマイト鍋などの調理用容器であると判定することができる。   If such characteristics are used, the temperature T2 (100), the temperature T2 (200), and the temperature T2 (300) corresponding to the infrared intensity of the second wavelength region “α2 (K2)” radiated from the cooking container. Therefore, when the temperature T1 (100), temperature T1 (200), and temperature T1 (300) corresponding to the infrared intensity on the first wavelength region “α1 (K1)” side radiated from the cooking container are high, the black paint pan It can be determined that it is a cooking container such as a silver paint pan, and when it is low, it can be determined that it is a cooking container such as an alumite pan.

また、調理用容器から放射された第2波長領域“α2(K2)”側の赤外線強度“B”と、調理用容器から放射された第1波長領域“α1(K1)”側の赤外線強度“A”との赤外線強度比“B/A”と温度の関係は図12に示す赤外線強度比/温度グラフである。   Further, the infrared intensity “B” on the second wavelength region “α2 (K2)” side emitted from the cooking container, and the infrared intensity “on the first wavelength region“ α1 (K1) ”side emitted from the cooking vessel“ The relationship between the infrared intensity ratio “B / A” and temperature with respect to A ”is the infrared intensity ratio / temperature graph shown in FIG.

この赤外線強度比/温度グラフから分かるように、黒色塗装鍋、銀色塗装鍋については、常温(25℃)から“300℃”前後までの温度範囲であれば、温度が変化しても、ほぼ同じラインに沿って、赤外線強度比“B/A”が変化しており、両者は殆ど同じ特性になっている。つまり、赤外線強度比“B/A”が同じであれば、その赤外線強度比“B/A”に対する調理用容器の温度はほぼ同じになっている。   As can be seen from this infrared intensity ratio / temperature graph, the black paint pan and the silver paint pan are almost the same even if the temperature changes within the temperature range from room temperature (25 ° C.) to around “300 ° C.”. The infrared intensity ratio “B / A” changes along the line, and both have almost the same characteristics. That is, if the infrared intensity ratio “B / A” is the same, the temperature of the cooking container with respect to the infrared intensity ratio “B / A” is substantially the same.

そこで、黒色塗装鍋および銀色塗装鍋については、赤外線強度比“B/A”と、調理用容器の温度との関係を示す代表的な赤外線強度比/温度ラインを予め記憶しておき、調理用容器が加熱されているとき、調理用容器から放射された第2波長領域“α2(K2)”側の赤外線強度“B”と、調理用容器から放射された第1波長領域“α1(K1)”側の赤外線強度“A”とを計測しながら、赤外線強度比“B/A”を求め、この赤外線強度比“B/A”と、予め記憶している赤外線強度比/温度ラインとに基づき、調理用容器の温度を判定することができる。   Therefore, for the black paint pan and the silver paint pan, a typical infrared intensity ratio / temperature line indicating the relationship between the infrared intensity ratio “B / A” and the temperature of the cooking container is stored in advance and used for cooking. When the container is heated, the infrared intensity “B” on the second wavelength range “α2 (K2)” emitted from the cooking container and the first wavelength range “α1 (K1) emitted from the cooking container While measuring the infrared intensity “A” on the “side”, the infrared intensity ratio “B / A” is obtained, and based on the infrared intensity ratio “B / A” and the previously stored infrared intensity ratio / temperature line. The temperature of the cooking container can be determined.

これに対して、金属の表面に有機シリコン系塗料を塗布した有機シリコン系塗装鍋、表面をアルマイト処理したアルマイト鍋では、黒色塗装鍋、銀色塗装鍋の赤外線強度比“B/A”と大きく異なることから、赤外線強度比“B/A”を使用して、調理用容器の温度を精度よく検出することができない。   In contrast, an organosilicon paint pan with an organosilicon paint applied to the surface of a metal and an anodized pan with an anodized surface are significantly different from the infrared intensity ratio “B / A” of a black paint pan and a silver paint pan. For this reason, the temperature of the cooking container cannot be accurately detected using the infrared intensity ratio “B / A”.

金属の表面に有機シリコン系塗料を塗布した有機シリコン系塗装鍋、表面をアルマイト処理したアルマイト鍋については、図3に示すように有機シリコン系塗装鍋では、波長が“8.0μm”以上の範囲で、放射率が“0.80”から“0.98”になっていることから、これらの平均値である“0.89”、またはこれに近い放射率を持つ調理用容器を用いて、調理用容器が加熱されているとき、調理用容器の温度と、調理用容器から放射された第2波長領域“α2(K2)”側の赤外線強度“B”とを計測して、計測結果を記憶させた。   For organosilicon paint pans with an organosilicon paint on the metal surface and anodized pans with alumite treatment on the surface, the organic silicon paint pan has a wavelength in the range of “8.0 μm” or more as shown in FIG. Then, since the emissivity is from “0.80” to “0.98”, using a cooking container having an emissivity that is an average value of “0.89” or close to this, When the cooking container is heated, the temperature of the cooking container and the infrared intensity “B” of the second wavelength region “α2 (K2)” emitted from the cooking container are measured, and the measurement result is obtained. I remembered it.

金属の表面に有機シリコン系塗料を塗布した有機シリコン系塗装鍋、表面をアルマイト処理したアルマイト鍋の温度を判定するとき、これら有機シリコン系塗装鍋、アルマイト鍋から放射される第2波長領域“α2(K2)”側の赤外線強度“B”を計測し、この赤外線強度“B”と、記憶しているデータとを使用して、有機シリコン系塗装鍋、アルマイト鍋の温度を判定することにした。   When judging the temperature of an organosilicon paint pan in which an organosilicon paint is applied to the surface of a metal, and the temperature of an anodized pan with an anodized surface, the second wavelength region “α2” radiated from these organosilicon paint pan and anodized pan (K2) The infrared intensity “B” on the “side” was measured, and the infrared silicon intensity “B” and the stored data were used to determine the temperature of the organosilicon coating pot and the anodized pot. .

また、調理用容器がステンレス鍋である場合には、図3に示す如く全波長領域にわたり、放射率がほぼ一定であることから、上述した材質判定方法で、有機シリコン系塗装鍋、アルマイト鍋かどうか、黒色塗装鍋、銀色塗装鍋かどうかを判定したとき、調理用容器から放射された第2波長領域“α2(K2)”側の赤外線強度に対応する温度T2(100)、温度T2(200)、温度T2(300)より、調理用容器から放射された第1波長領域“α1(K1)”側の赤外線強度に対応する温度T1(100)、温度T1(200)、温度T1(300)が高くなる。   In addition, when the cooking container is a stainless steel pan, the emissivity is almost constant over the entire wavelength region as shown in FIG. When determining whether it is a black paint pan or a silver paint pan, the temperature T2 (100) and the temperature T2 (200 corresponding to the infrared intensity of the second wavelength region “α2 (K2)” emitted from the cooking container ), Temperature T1 (100), temperature T1 (200), temperature T1 (300) corresponding to the infrared intensity of the first wavelength region “α1 (K1)” radiated from the cooking container from temperature T2 (300) Becomes higher.

したがって、調理用容器がステンレス鍋である場合には、黒色塗装鍋、銀色塗装鍋などと同様に、調理用容器から放射された第2波長領域“α2(K2)”側の赤外線強度“B”と、調理用容器から放射された第1波長領域“α1(K1)”側の赤外線強度“A”とを計測しながら、赤外線強度比“B/A”を求め、この赤外線強度比“B/A”と、予め記憶している赤外線強度比/温度ラインとに基づき、調理用容器の温度を判定することができる。   Accordingly, when the cooking container is a stainless steel pan, the infrared intensity “B” on the second wavelength region “α2 (K2)” side radiated from the cooking container is the same as in the black paint pan, the silver paint pan, and the like. And measuring the infrared intensity “A” on the first wavelength region “α1 (K1)” side radiated from the cooking container, the infrared intensity ratio “B / A” is obtained, and this infrared intensity ratio “B / Based on A ″ and the pre-stored infrared intensity ratio / temperature line, the temperature of the cooking container can be determined.

しかし、ステンレス鍋の場合、図3に示す如く放射率が“0.2”程度と、極めて低いことから、調理用容器の温度が“100℃”程度であるとき、調理用容器から放射される第1波長領域“α1(K1)”側の赤外線強度“A”と、第2波長領域“α2(K2)”側の赤外線強度“B”とが共に、小さい値になってしまい、赤外線強度比“B/A”を使用して、調理用容器の温度を精度よく検出することができない。   However, in the case of a stainless steel pan, the emissivity is as low as about “0.2” as shown in FIG. 3, so that when the temperature of the cooking container is about “100 ° C.”, it is emitted from the cooking container. Both the infrared intensity “A” on the first wavelength region “α1 (K1)” side and the infrared intensity “B” on the second wavelength region “α2 (K2)” side are both small values, and the infrared intensity ratio Using “B / A”, the temperature of the cooking container cannot be accurately detected.

そこで、第1波長領域“α1(K1)”、第2波長領域“α2(K2)”に含まれない波長の赤外線を出射する赤外線発光素子と、第1波長領域“α1(K1)”、第2波長領域“α2(K2)”に含まれない波長の赤外線を受光する赤外線受光素子とを用意し、調理用容器から鉛直距離で“4.5cm”だけ離間させるとともに、調理用容器の底面中心に対し、“45度”傾けて、赤外線発光素子を配置し、さらに調理用容器から鉛直距離で“4.5cm”だけ離間させるとともに、調理用容器の底面中心に対し、“45度”傾けて、赤外線受光素子を配置したものを制作した。   Therefore, an infrared light emitting element that emits infrared light having a wavelength not included in the first wavelength region “α1 (K1)” and the second wavelength region “α2 (K2)”, and the first wavelength region “α1 (K1)”, An infrared light receiving element for receiving infrared light having a wavelength not included in the two-wavelength region “α2 (K2)” is prepared, and is spaced apart by “4.5 cm” from the cooking container by a vertical distance, and the bottom center of the cooking container In contrast, the infrared light emitting element is disposed at an angle of “45 °”, and is further separated by “4.5 cm” from the cooking container by a vertical distance, and at an angle of “45 °” with respect to the bottom center of the cooking container. , Produced an infrared detector.

そして、発光制御回路によって、赤外線発光素子をパルス発光させ、調理用容器の底面中心に出射させるとともに、赤外線受光素子によって、調理用容器の底面中心で反射された赤外線を受光させ、反射検知回路で、その大きさを判定させるという実験を行った。   Then, the light emission control circuit causes the infrared light emitting element to emit light in a pulse and emits the light to the center of the bottom of the cooking container, and the infrared light receiving element receives the infrared light reflected at the center of the bottom of the cooking container, and the reflection detection circuit An experiment was conducted to determine the size.

この結果、五徳上に調理用容器が載せられていない場合には、図13に示す如く発光制御回路から“0.1Hz”の周波数を持つ、“15V”のパルス電圧を出力させて、赤外線発光素子からパルス状の赤外線を出射させたとき、赤外線受光素子の出力がほぼ“0mV”になることが分かった。   As a result, when no cooking container is placed on Gotoku, a pulse voltage of “15 V” having a frequency of “0.1 Hz” is output from the light emission control circuit as shown in FIG. It was found that when pulsed infrared light was emitted from the device, the output of the infrared light receiving device was substantially “0 mV”.

また、五徳上に調理用容器が載せられ、これが黒色塗装鍋、アルマイト鍋、ステンレス鍋、銅鍋である場合には、各々、図14〜図17に示す如く赤外線受光素子から“5mV”程度の電圧値を持つ受光パルス信号、“40mV”程度の電圧値を持つ受光パルス信号、“80mV”程度の電圧値を持つ受光パルス信号、“130mV”程度の電圧値を持つ受光パルス信号が出力されることが分かった。   In addition, when a cooking container is placed on Gotoku, and this is a black paint pan, anodized pan, stainless steel pan, or copper pan, it is about 5 mV from the infrared light receiving element as shown in FIGS. A light reception pulse signal having a voltage value, a light reception pulse signal having a voltage value of about “40 mV”, a light reception pulse signal having a voltage value of about “80 mV”, and a light reception pulse signal having a voltage value of about “130 mV” are output. I understood that.

これらの実験から、反射検知回路内で、“2.5mV”程度の電圧値を持つ第1しきい値“SH1”と、“50mV”程度の電圧値“SH2”を持つ第2しきい値とを生成させ、赤外線発光素子からパルス電圧が出力されているとき、赤外線受光素子から出力される受光パルス信号の電圧値“Vout”が“Vout<SH1”であるとき、五徳上に調理用容器が載せられていないと判定させ、“SH2<Vout”であるとき、五徳上にステンレス鍋、銅鍋などの低い放射率を持つ調理用容器が搭載されていると判定するようにした。   From these experiments, a first threshold value “SH1” having a voltage value of about “2.5 mV” and a second threshold value having a voltage value “SH2” of about “50 mV” are found in the reflection detection circuit. When the pulse voltage is output from the infrared light emitting element and the voltage value “Vout” of the light receiving pulse signal output from the infrared light receiving element is “Vout <SH1”, the cooking container is It was determined that it was not placed, and when “SH2 <Vout”, it was determined that a cooking container having a low emissivity such as a stainless steel pan or a copper pan was mounted on Gotoku.

そして、本願発明においては、“0.2”、またはこれに近い放射率を持つ調理用容器の温度と、調理用容器から放射された第2波長領域“α2(K2)”側の赤外線強度“B”とを計測して得られたデータを記憶しておき、ステンレス鍋、銅鍋の温度を判定するとき、これらステンレス鍋、銅鍋から放射される第2波長領域“α2(K2)”側の赤外線強度“B”を計測し、この赤外線強度“B”と、記憶しているデータとを使用して、有機シリコン系塗装鍋、アルマイト鍋の温度を演算した。   In the present invention, the temperature of the cooking container having an emissivity of “0.2” or close to this, and the infrared intensity “2” in the second wavelength region “α2 (K2)” radiated from the cooking container “ The data obtained by measuring “B” is stored, and when determining the temperature of the stainless steel pan and copper pan, the second wavelength region “α2 (K2)” side radiated from the stainless pan and copper pan is measured. Infrared intensity “B” was measured, and using this infrared intensity “B” and the stored data, the temperature of the organic silicon-based paint pan and anodized pan was calculated.

この結果、ステンレス鍋、銅鍋などの温度が“100℃”前後のときから、“300℃”前後のときまで、調理用容器から放射される第2波長領域“α2(K2)”側の赤外線強度を使用して得られた温度と、実際の温度とのずれが極めて小さくなるのを確認することができた。   As a result, the infrared of the second wavelength region “α2 (K2)” radiated from the cooking container from when the temperature of the stainless steel pan, copper pan, etc. is around “100 ° C.” to around “300 ° C.”. It was confirmed that the difference between the temperature obtained by using the strength and the actual temperature was extremely small.

次に本構成における温度検出装置4により調理用容器での温度処理について具体的に説明する。   Next, temperature processing in the cooking container will be specifically described with the temperature detection device 4 in the present configuration.

ガスレンジ機構3の前面などに設けられた操作パネル(図示は省略する)などが操作されて、点火指示、火力指定指示などが入力されたとき、次のように動作する。   When an operation panel (not shown) or the like provided on the front surface of the gas range mechanism 3 or the like is operated and an ignition instruction, a fire power designation instruction, or the like is input, the following operation is performed.

まず、ガスレンジ機構3の前面などに設けられた操作パネル(図示は省略する)などが操作されて、図2のフローチャートに示す如く点火指示などが入力され、温度演算回路22から発光指示信号が出力されたとき、発光制御回路23からパルス電圧が出力されて、赤外線発光素子25から赤外線が出射されるとともに(ステップST1)、反射検知回路29によって、赤外線受光素子28で赤外線が受光されているかどうかがチェックされる。   First, an operation panel (not shown) or the like provided on the front surface of the gas range mechanism 3 is operated to input an ignition instruction or the like as shown in the flowchart of FIG. When the light is output, a pulse voltage is output from the light emission control circuit 23, infrared light is emitted from the infrared light emitting element 25 (step ST1), and whether infrared light is received by the infrared light receiving element 28 by the reflection detection circuit 29 or not. Is checked.

ここで、赤外線受光素子28で赤外線が受光されておらず、赤外線受光素子28から出力される受光パルス信号の電圧値“Vout”と、“2.5mV”程度の電圧値を持つ第1しきい値“SH1”とが比較され、“Vout<SH1であれば(ステップST2)、反射検知回路29によって、五徳7上に調理用容器2が載せられていないと判定されて、操作パネルなどに設けられた警告機構から、“調理用容器を載せてください”などの音声メッセージが出される(ステップST3)。   Here, infrared light is not received by the infrared light receiving element 28, and the first threshold having the voltage value “Vout” of the light reception pulse signal output from the infrared light receiving element 28 and a voltage value of about “2.5 mV”. The value “SH1” is compared, and if “Vout <SH1” (step ST2), it is determined by the reflection detection circuit 29 that the cooking container 2 is not placed on the virtues 7 and provided on the operation panel or the like. A voice message such as “Please place a cooking container” is issued from the warning mechanism (step ST3).

また、赤外線受光素子28で赤外線が受光され、赤外線受光素子28から出力される受光パルス信号の電圧値“Vout”が第1しきい値“SH1”より高ければ(ステップST2)、反射検知回路29によって、五徳7上に調理用容器2が載せられていると判定されて、調理用容器検知信号が生成される。   If the infrared light receiving element 28 receives infrared light, and the voltage value “Vout” of the light reception pulse signal output from the infrared light receiving element 28 is higher than the first threshold value “SH1” (step ST2), the reflection detection circuit 29. Thus, it is determined that the cooking container 2 is placed on the virtues 7, and a cooking container detection signal is generated.

そして、反射検知回路29から調理用容器検知信号が出力されると、温度演算回路22によって、黒体炉用の赤外線強度/温度テーブルが参照されて、第1赤外線受光素子19から出力される赤外線強度信号の値(赤外線強度“A”)に対応する温度T1が演算されるとともに、第2赤外線受光素子21から出力される赤外線強度信号の値(赤外線強度“B”)に対応する温度T2が演算される(ステップST4)。   When the cooking container detection signal is output from the reflection detection circuit 29, the temperature calculation circuit 22 refers to the infrared intensity / temperature table for the black body furnace, and the infrared light output from the first infrared light receiving element 19. A temperature T1 corresponding to the value of the intensity signal (infrared intensity “A”) is calculated, and a temperature T2 corresponding to the value of the infrared intensity signal (infrared intensity “B”) output from the second infrared light receiving element 21 is calculated. Calculation is performed (step ST4).

この後、ガスレンジ機構3によって、加熱される調理用容器2の温度が上昇し、温度T1、温度T2が予め設定されている温度以上になると、温度演算回路22によって、温度T1が温度T2より大きいかどうかがチェックされ、“T1<T2”であれば(ステップST5)、五徳7上に載せられている調理用容器2が有機シリコン系塗装鍋、アルマイト鍋などの非灰色体に属する鍋であると判定される。   Thereafter, when the temperature of the cooking container 2 to be heated rises by the gas range mechanism 3 and the temperatures T1 and T2 become equal to or higher than the preset temperatures, the temperature calculation circuit 22 causes the temperature T1 to be higher than the temperature T2. If it is checked whether it is large and “T1 <T2” (step ST5), the cooking container 2 placed on Gotoku 7 is a pan belonging to a non-gray body such as an organic silicon-based paint pan or an alumite pan. It is determined that there is.

そして、温度演算回路22によって、放射率“0.9”用の赤外線強度/温度テーブルが参照されて、第2赤外線受光素子21から出力される赤外線強度信号の値(赤外線強度“B”)に対応する温度が演算され(ステップST6)、これが操作パネルなどに表示されるとともに、燃料制御回路13に供給されて、指定された温度、またはパターン温度となるように、燃料供給量調節弁12の開度が調節される(ステップST7)。   Then, the infrared intensity / temperature table for the emissivity “0.9” is referred to by the temperature calculation circuit 22, and the value of the infrared intensity signal (infrared intensity “B”) output from the second infrared light receiving element 21 is obtained. The corresponding temperature is calculated (step ST6), and this is displayed on the operation panel and the like, and is supplied to the fuel control circuit 13 so that the specified temperature or pattern temperature is obtained. The opening degree is adjusted (step ST7).

また、上述した温度T1、温度T2の比較動作で、“T1≧T2”であれば(ステップST5)、温度演算回路22によって、五徳7上に載せられている調理用容器2が黒色塗装鍋、銀色塗装鍋などの灰色体に属する鍋、またはステンレス鍋などの低放射率系に属する鍋のいずれかであると判定され、発光制御回路23に発光指示信号が出される。   Further, in the comparison operation between the temperature T1 and the temperature T2 described above, if “T1 ≧ T2” (step ST5), the temperature calculation circuit 22 causes the cooking container 2 placed on Gotoku 7 to be a black paint pan, It is determined that the pot belongs to a gray body such as a silver paint pot, or a pot belonging to a low emissivity system such as a stainless steel pot, and a light emission instruction signal is output to the light emission control circuit 23.

これにより、発光制御回路23からパルス電圧が出力されて、赤外線発光素子25からパルス状の赤外線が出射されるとともに、反射検知回路29によって、赤外線受光素子20から出力される受光パルス信号が取り込まれる(ステップST8)。   As a result, a pulse voltage is output from the light emission control circuit 23, a pulsed infrared ray is emitted from the infrared light emitting element 25, and a light reception pulse signal output from the infrared light receiving element 20 is captured by the reflection detection circuit 29. (Step ST8).

この後、反射検知回路29によって、受光パルス信号の電圧値“Vout”と、“50mV”程度の電圧値“SH2”を持つ第2しきい値“SH2”とが比較され、“Vout≦SH2”であれば(ステップST9)、灰色体検知信号が生成されて、温度演算回路22に供給される。   Thereafter, the reflection detection circuit 29 compares the voltage value “Vout” of the received light pulse signal with the second threshold value “SH2” having a voltage value “SH2” of about “50 mV”, and “Vout ≦ SH2”. If so (step ST9), a gray body detection signal is generated and supplied to the temperature calculation circuit 22.

これにより、温度演算回路22によって、五徳7上に載せられている調理用容器2が黒色塗装鍋、銀色塗装鍋などの灰色体に属する鍋であると判定され、第2赤外線受光素子21から出力される赤外線強度信号の値(赤外線強度“B”)と、第1赤外線受光素子19から出力される赤外線強度信号の値(赤外線強度“A”)との比を示す赤外線強度比“B/A”が演算されるとともに、黒色塗装鍋用の赤外線強度比/温度テーブルが参照されて、赤外線強度比“B/A”に対応する温度が演算され(ステップST10)、これが操作パネルなどに表示されるとともに、燃料制御回路13に供給されて、指定された温度、またはパターン温度となるように、燃料供給量調節弁12の開度が調節される(ステップST11)。   Thus, the temperature calculation circuit 22 determines that the cooking container 2 placed on the Gotoku 7 is a pan belonging to a gray body such as a black paint pan or a silver paint pan, and outputs from the second infrared light receiving element 21. Infrared intensity ratio “B / A” indicating the ratio of the value of the infrared intensity signal (infrared intensity “B”) to be output and the value of the infrared intensity signal output from the first infrared light receiving element 19 (infrared intensity “A”) "Is calculated, the infrared intensity ratio / temperature table for the black paint pan is referred to, the temperature corresponding to the infrared intensity ratio" B / A "is calculated (step ST10), and this is displayed on the operation panel or the like. At the same time, the opening degree of the fuel supply amount adjustment valve 12 is adjusted so as to be supplied to the fuel control circuit 13 and reach the designated temperature or pattern temperature (step ST11).

また、上述した受光パルス信号の電圧値“Vout”チェックが行われたとき、“Vout>SH2”であれば(ステップST9)、反射検知回路29によって、ステンレス鍋検知信号が生成されて、温度演算回路22に供給される。   Further, when the voltage value “Vout” of the received light pulse signal is checked, if “Vout> SH2” (step ST9), the reflection detection circuit 29 generates a stainless pan detection signal to calculate the temperature. It is supplied to the circuit 22.

これにより、温度演算回路22によって、五徳7上に載せられている調理用容器2がステンレス鍋などの低放射率系に属する鍋であると判定され、放射率“0.2”用の赤外線強度/温度テーブルが参照されて、第2赤外線受光素子21から出力される赤外線強度信号の値(赤外線強度“B”)に対応する温度が演算され(ステップST12)、これが操作パネルなどに表示されるとともに、燃料制御回路13に供給されて、指定された温度、またはパターン温度となるように、燃料供給量調節弁12の開度が調節される(ステップST13)。   Thereby, it is determined by the temperature calculation circuit 22 that the cooking container 2 placed on Gotoku 7 is a pan belonging to a low emissivity system such as a stainless pan, and the infrared intensity for emissivity “0.2” is determined. The temperature corresponding to the value of the infrared intensity signal (infrared intensity “B”) output from the second infrared light receiving element 21 is calculated by referring to the temperature table (step ST12), and this is displayed on the operation panel or the like. At the same time, the degree of opening of the fuel supply amount adjustment valve 12 is adjusted so as to be supplied to the fuel control circuit 13 and reach the designated temperature or pattern temperature (step ST13).

このように、この形態では、黒体鍋用の赤外線強度/温度テーブル、第1赤外線受光素子19から出力される赤外線強度信号の値(赤外線強度“A”)、第2赤外線受光素子21から出力される赤外線強度信号の値(赤外線強度“B”)を使用して得られる温度T1、温度T2、赤外線受光素子28から出力される受光パルス信号の電圧値“Vout”と第2しきい値“SH2”との比較結果に基づき、五徳7上に載せられている調理用容器2が有機シリコン系塗装鍋、アルマイト鍋などの非灰色体に属する鍋、黒色塗装鍋、銀色塗装鍋などの灰色体に属する鍋、またはステンレス鍋などの低放射率系に属する鍋のいずれかであるか判定する。   Thus, in this embodiment, the infrared intensity / temperature table for the black pan, the value of the infrared intensity signal output from the first infrared light receiving element 19 (infrared intensity “A”), and the output from the second infrared light receiving element 21 The temperature T1, the temperature T2 obtained by using the value of the infrared intensity signal (infrared intensity “B”), the voltage value “Vout” of the received light pulse signal output from the infrared light receiving element 28 and the second threshold “ Based on the results of comparison with SH2 ″, the cooking container 2 placed on Gotoku 7 is a non-gray body pan such as an organic silicon paint pan or anodized pan, a black paint pan, or a gray body such as a silver paint pan. It is determined whether it is a pan belonging to or a pan belonging to a low emissivity system such as a stainless steel pan.

さらに、非灰色体に属する鍋である判定されたとき、放射率“0.9”用の赤外線強度/温度テーブル、第2赤外線受光素子21から出力される赤外線強度信号の値(赤外線強度“B”)を使用して、調理用容器2の温度を演算し、また黒色塗装鍋、銀色塗装鍋などの灰色体に属する鍋であると判定されたとき、第2赤外線受光素子21から出力される赤外線強度信号の値(赤外線強度“B”)と、第1赤外線受光素子19から出力される赤外線強度信号の値(赤外線強度“A”)との比を示す赤外線強度比“B/A”、黒色塗装鍋用の赤外線強度比/温度テーブルを使用して、調理用容器2の温度を演算し、またステンレス鍋などの低放射率系に属する鍋であると判定されたとき、放射率“0.2”用の赤外線強度/温度テーブル、第2赤外線受光素子21から出力される赤外線強度信号の値(赤外線強度“B”)を使用して、調理用容器2の温度を演算する。   Further, when it is determined that the pan belongs to the non-gray body, the infrared intensity / temperature table for emissivity “0.9”, the value of the infrared intensity signal output from the second infrared light receiving element 21 (infrared intensity “B” ") Is used to calculate the temperature of the cooking container 2 and when it is determined to be a pan belonging to a gray body such as a black paint pan or a silver paint pan, it is output from the second infrared light receiving element 21. An infrared intensity ratio “B / A” indicating a ratio between the value of the infrared intensity signal (infrared intensity “B”) and the value of the infrared intensity signal output from the first infrared light receiving element 19 (infrared intensity “A”); Using the infrared intensity ratio / temperature table for the black paint pan, the temperature of the cooking container 2 is calculated, and when it is determined that the pan belongs to a low emissivity system such as a stainless steel pan, the emissivity “0” .2 "infrared intensity / temperature table, 2nd red Using the value of the infrared intensity signals output from the line light receiving element 21 (infrared intensity "B"), and calculates the temperature of the cooking container 2.

これにより、この形態では、調理用容器2が有機シリコン系塗装鍋、アルマイト鍋などの非灰色体に属する鍋、黒色塗装鍋、銀色塗装鍋などの灰色体に属する鍋、またはステンレス鍋などのように、放射率が低い材料の鍋であっても、“100℃”程度の低い温度から高い温度まで、調理用容器2の温度を高精度で測定することができる(請求項1の効果)。   Thereby, in this form, the cooking container 2 is a pan belonging to a gray body such as a non-gray body such as an organic silicon-based paint pan or an anodized pan, a black paint pan or a silver paint pan, or a stainless steel pan. In addition, even in a pan made of a material having a low emissivity, the temperature of the cooking container 2 can be measured with high accuracy from a low temperature of about “100 ° C.” to a high temperature (effect of claim 1).

また、この形態では、調理用容器2から放射される赤外線の中から、調理用容器2の温度変化に対する赤外線強度変化が大きい第1波長領域(波長領域“3.1μm”〜“4.2μm”)の赤外線成分と、調理用容器2の温度変化に対する赤外線強度変化が小さい第2波長領域(波長領域“8.0μm”〜“20.0μm”)の赤外線成分とを抽出させて、第1温度T1と、第2温度T2とを演算させるようにしているので、調理用容器2が非灰色体に属するものかどうかを判定させるときに必要な第1温度と、第2温度との差を大きくさせることができ、これによって材質判定精度を高くさせ、調理用容器2の温度を演算させるときの精度を大幅に向上させることができる(請求項2、3の効果)。   Further, in this embodiment, the first wavelength region (wavelength region “3.1 μm” to “4.2 μm”) in which the infrared intensity change with respect to the temperature change of the cooking container 2 is large among the infrared rays radiated from the cooking container 2. ) And the infrared component in the second wavelength region (wavelength region “8.0 μm” to “20.0 μm”) in which the change in the infrared intensity with respect to the temperature change of the cooking container 2 is small are extracted to obtain the first temperature. Since T1 and the second temperature T2 are calculated, the difference between the first temperature and the second temperature required to determine whether the cooking container 2 belongs to a non-gray body is increased. Accordingly, the material determination accuracy can be increased, and the accuracy when calculating the temperature of the cooking container 2 can be greatly improved (effects of claims 2 and 3).

また、この形態では、調理用容器2が非灰色体に属するものであると判定されたとき、放射率“0.9”用の赤外線強度/温度テーブルを使用させ、また調理用容器2がステンレス鍋などの低放射率系に属するものであると判定されたとき、放射率“0.2”用の赤外線強度/温度テーブルを使用させて、調理用容器2の温度を演算させるようにしているので、調理用容器2がアルマイト鍋などの非灰色体に属するものであっても、またステンレス鍋などの低放射率系に属するものであっても、調理用容器2の温度を正確に演算させることができる(請求項4、5の効果)。   Further, in this embodiment, when it is determined that the cooking container 2 belongs to a non-gray body, an infrared intensity / temperature table for emissivity “0.9” is used, and the cooking container 2 is made of stainless steel. When it is determined to belong to a low emissivity system such as a pan, the infrared intensity / temperature table for emissivity “0.2” is used to calculate the temperature of the cooking container 2. Therefore, even if the cooking container 2 belongs to a non-gray body such as an alumite pot, or belongs to a low emissivity system such as a stainless steel pot, the temperature of the cooking container 2 is accurately calculated. (Effects of claims 4 and 5).

また、この形態では、ガスレンジ機構3の前面などに設けられた操作パネルなどが操作されて、点火指示などが入力されたとき、発光制御回路23からパルス電圧を出力させて、赤外線発光素子25から赤外線を出射させている状態で、赤外線受光素子28がパルス状の赤外線を受光していないとき、反射検知回路29によって、五徳7上に調理用容器2が載せられていないと判定させるようにしているので、五徳7上などに温度測定対象となる調理用容器2が無い状態で、点火指示などが入力されたとき、これを検知して、警報などを出させ、調理人などに知らせることができるとともに、調理用容器2の温度を演算させるとき、誤演算が発生しないようにすることができる(請求項6の効果)。   Further, in this embodiment, when an operation panel or the like provided on the front surface of the gas range mechanism 3 is operated and an ignition instruction or the like is input, a pulse voltage is output from the light emission control circuit 23, and the infrared light emitting element 25. When the infrared light receiving element 28 is not receiving the pulsed infrared light in the state where the infrared light is emitted from, the reflection detection circuit 29 determines that the cooking container 2 is not placed on the virtues 7. Therefore, when there is no cooking container 2 for temperature measurement on Gotoku 7, etc., when an ignition instruction or the like is input, this is detected and an alarm is given to inform the cook etc. In addition, it is possible to prevent erroneous calculation when calculating the temperature of the cooking container 2 (effect of claim 6).

また、この形態では、調理用容器2から放射される赤外線を受光して、調理用容器2の温度を演算させるようにしているので、温度測定対象として、外部からの熱によって加熱される鍋、フライパンなどの調理用容器、この調理用器具上の食物等の被加熱物など、赤外線を発生するものであれば、どのようなものの温度でも、非接触で、正確に測定させることができる(請求項7の効果)。   Moreover, in this form, since the infrared rays radiated from the cooking container 2 are received and the temperature of the cooking container 2 is calculated, as a temperature measurement object, a pan heated by heat from the outside, Any temperature can be accurately measured in a non-contact manner as long as it generates infrared rays, such as a cooking container such as a frying pan or a heated object such as food on the cooking utensil (claim) Effect of item 7).

本発明の上述した実施の形態では、環状に形成されたガスバーナ8を持つガスレンジ機構3を使用するようにしているが、他の形式のガスバーナ、例えば円筒状のガスバーナを持つガスレンジ機構を使用するようにしても良い。   In the above-described embodiment of the present invention, the gas range mechanism 3 having the gas burner 8 formed in an annular shape is used. However, other types of gas burners, for example, a gas range mechanism having a cylindrical gas burner are used. You may make it do.

このようなガスレンジ機構を使用した調理設備に、上述した動作と同じ動作を行わせることにより、調理用容器2が有機シリコン系塗装鍋、アルマイト鍋などの非灰色体に属する鍋、黒色塗装鍋、銀色塗装鍋などの灰色体に属する鍋、またはステンレス鍋などのように、放射率が低い材料の鍋であっても、“100℃”程度の低い温度から高い温度まで、調理用容器の温度を高精度で測定することができる。   By making the cooking facility using such a gas range mechanism perform the same operation as described above, the cooking container 2 is a pan belonging to a non-gray body such as an organic silicon-based paint pan or an alumite pan, or a black paint pan. The temperature of the cooking container from a low temperature of about "100 ° C" to a high temperature, even if it is a pan with a low emissivity, such as a pan that belongs to a gray body such as a silver paint pan, or a stainless steel pan Can be measured with high accuracy.

本発明は、被測定物の温度を非接触状態で検出する温度検出装置及び温度検出方法に関し、特に、ガス又は電気等のエネルギにより加熱される鍋、フライパン等の調理用器具の底面温度又は加熱調理される料理等の被加熱物の温度を非接触で検出する温度検出装置に関するものであり、産業上の利用可能性を有する。   The present invention relates to a temperature detection device and a temperature detection method for detecting the temperature of an object to be measured in a non-contact state. The present invention relates to a temperature detection device that detects the temperature of an object to be heated such as a cooked food in a non-contact manner, and has industrial applicability.

1:調理設備
2:調理用容器
3:ガスレンジ機構
4:温度検出装置
5:天板
6:開口部
7:五徳
8:ガスバーナ
9:汁受皿
10:ガス管
11:燃料供給断続弁
12:燃料供給量調節弁
13:燃焼制御回路
14:ガスノズル
15:混合管
16:炎口
17:開口部
18:第1光学フィルタ
19:第1赤外線受光素子
20:第2光学フィルタ
21:第2赤外線受光素子
22:温度演算回路
23:発光制御回路
25:赤外線発光素子
26:開口部
28:赤外線受光素子
29:反射検知回路
1: Cooking equipment 2: Cooking container 3: Gas range mechanism 4: Temperature detection device 5: Top plate 6: Opening part 7: Gotoku 8: Gas burner 9: Juice tray 10: Gas pipe 11: Fuel supply intermittent valve 12: Fuel Supply amount control valve 13: Combustion control circuit 14: Gas nozzle 15: Mixing pipe 16: Flame port 17: Opening portion 18: First optical filter 19: First infrared light receiving element 20: Second optical filter 21: Second infrared light receiving element 22: Temperature calculation circuit 23: Light emission control circuit 25: Infrared light emitting element 26: Opening 28: Infrared light receiving element 29: Reflection detection circuit

Claims (7)

被測定物の温度を非接触状態で検出する温度検出装置であって、
前記被測定物からその表面温度に応じて放射される赤外線領域における二つの異なる波長領域の赤外線強度を検出する放射光検出手段と、
前記被測定物に対して所定の波長領域の赤外線を照射する赤外線照射手段と、
前記赤外線照射手段から照射された前記赤外線の前記被測定物からの反射光を受光するように配置された赤外線受光手段と、
前記放射光検出手段の出力及び前記赤外線受光手段の出力に基づいて前記被測定物の温度を検出する温度検出手段と、により構成され、
前記温度検出手段は、
前記被測定物から放射される前記二つの波長領域における第1の波長領域の赤外線強度に基づいて第1温度を算出し、前記被測定物から放射される前記二つの波長領域における前記第1の波長領域よりも長い第2の波長領域の赤外線強度に基づいて第2温度を算出し、
(a)前記第2温度が前記第1温度よりも高い場合には前記被測定物を非灰色体とみなし、当該非灰色体の前記第2の波長領域の赤外線強度に基づいて前記被測定物の温度を算出し、
(b)前記第2温度が前記第1温度と同じか又は低い場合であって前記赤外線照射手段点灯時における前記赤外線受光手段の出力値が予め設定された閾値と同じか又は小さい時には前記被測定物を灰色体とみなし、当該灰色体の前記第1の波長領域と前記第2の波長領域との赤外線強度比に基づいて前記被測定物の温度を算出し、
(c)前記赤外線照射手段点灯時における前記赤外線受光手段の出力値が前記閾値よりも大きい場合は前記被測定物を低放射率体とみなし、当該低放射率体の前記第2の波長領域の赤外線強度に基づいて前記被測定物の温度を算出する、
ことを特徴とする温度検出装置。
A temperature detection device for detecting the temperature of an object to be measured in a non-contact state,
Radiated light detecting means for detecting the infrared intensity of two different wavelength regions in the infrared region radiated according to the surface temperature from the object to be measured;
Infrared irradiating means for irradiating the object to be measured with infrared rays in a predetermined wavelength region;
Infrared light receiving means arranged to receive reflected light from the object to be measured irradiated from the infrared irradiation means;
Temperature detecting means for detecting the temperature of the object to be measured based on the output of the emitted light detecting means and the output of the infrared light receiving means, and
The temperature detecting means includes
A first temperature is calculated based on the infrared intensity of the first wavelength region in the two wavelength regions emitted from the device under test, and the first temperature in the two wavelength regions emitted from the device under test is calculated. Calculating the second temperature based on the infrared intensity of the second wavelength region longer than the wavelength region;
(A) When the second temperature is higher than the first temperature, the object to be measured is regarded as a non-gray body, and the object to be measured is based on the infrared intensity of the second wavelength region of the non-gray body. Calculate the temperature of
(B) When the second temperature is equal to or lower than the first temperature and the output value of the infrared light receiving means when the infrared irradiation means is turned on is equal to or smaller than a preset threshold value, the measurement target The object is regarded as a gray body, and the temperature of the object to be measured is calculated based on an infrared intensity ratio between the first wavelength region and the second wavelength region of the gray body,
(C) When the output value of the infrared light receiving means when the infrared irradiation means is turned on is larger than the threshold value, the object to be measured is regarded as a low emissivity body, and the second wavelength region of the low emissivity body is determined. Calculate the temperature of the object to be measured based on the infrared intensity,
A temperature detecting device characterized by that.
前記放射光検出手段が、前記被測定物の波長の変化に対する放射率の変化が小さい小変動範囲又は波長の変化に対する放射率の変化が大きい大変動範囲に対応させて、前記大変動範囲に設定した前記第1の波長領域についての赤外線強度と前記小変動範囲に設定した前記第2の波長領域についての赤外線強度と、の夫々を検出するように構成され、
前記温度検出手段における前記第1温度の算出は、放射率が予め判明している基準体の温度変化に対する前記第1の波長領域における赤外線強度の変化を示す相関特性と前記被測定物から放射された前記第1の波長領域についての赤外線強度とに基づいて、前記被測定物から放射された赤外線強度と同じ赤外線強度に対応する前記基準体の温度を前記第1温度とし、
前記温度検出手段における前記第2温度の算出は、前記温度検出手段が、前記基準体の温度変化に対する前記第2の波長領域の赤外線強度の変化を示す相関特性と前記被測定物から放射された前記第2の波長領域の赤外線強度とに基づいて、前記被測定物から放射された赤外線強度と同じ赤外線強度に対応する前記基準体の温度を前記第2温度とする、ことを特徴とする請求項1に記載の温度検出装置。
The synchrotron radiation detection means is set to the large fluctuation range corresponding to a small fluctuation range where the change in emissivity is small with respect to a change in wavelength of the object to be measured or a large fluctuation range where the change in emissivity is large with respect to a change in wavelength Configured to detect each of the infrared intensity for the first wavelength region and the infrared intensity for the second wavelength region set in the small variation range,
The calculation of the first temperature in the temperature detecting means is performed from the object to be measured and a correlation characteristic indicating a change in infrared intensity in the first wavelength region with respect to a temperature change of a reference body whose emissivity is previously known. Based on the infrared intensity for the first wavelength region, the temperature of the reference body corresponding to the same infrared intensity as the infrared intensity emitted from the object to be measured is the first temperature,
In the calculation of the second temperature in the temperature detecting means, the temperature detecting means is radiated from the object to be measured and a correlation characteristic indicating a change in infrared intensity in the second wavelength region with respect to a temperature change of the reference body. The temperature of the reference body corresponding to the same infrared intensity as the infrared intensity emitted from the object to be measured is set as the second temperature based on the infrared intensity of the second wavelength region. Item 2. The temperature detection device according to Item 1.
前記第1の波長領域は、3.1乃至4.2μmの範囲内から選択され、
前記第2の波長領域は、8.0乃至20.0μmの範囲内から選択される、
ことを特徴とする請求項1又は2に記載の温度検出装置。
The first wavelength region is selected from a range of 3.1 to 4.2 μm,
The second wavelength region is selected from a range of 8.0 to 20.0 μm.
The temperature detection apparatus according to claim 1 or 2, wherein
前記被測定物が非灰色体とみなされると、当該被測定物の温度は、放射率が0.8乃至0.95の範囲にて算出されることを特徴とする請求項1乃至3の何れかの項に記載の温度検出装置。   The temperature of the object to be measured is calculated in the range of emissivity of 0.8 to 0.95 when the object to be measured is regarded as a non-gray body. The temperature detection device according to any of the above items. 前記被測定物が低放射率体とみなされると、当該被測定物の温度は、放射率が0.3未満の範囲で算出されることを特徴とする請求項1乃至3の何れかの項に記載の温度検出装置。   When the object to be measured is regarded as a low emissivity body, the temperature of the object to be measured is calculated in a range where the emissivity is less than 0.3. The temperature detection apparatus described in 1. 前記赤外線照射手段の点灯時において前記赤外線受光手段の出力値が、所定値よりも小さい場合には、前記被測定物が温度測定位置に存在していない旨の警告信号を出力する請求項1乃至5の何れかの項に記載の温度検出装置。   The warning signal that the object to be measured does not exist at the temperature measurement position is output when the output value of the infrared light receiving means is smaller than a predetermined value when the infrared irradiation means is turned on. 6. The temperature detection device according to any one of items 5. 前記被測定物は、外部から電気又は磁気エネルギ若しくはガス等の燃焼エネルギが与えられて加熱される鍋、フライパン等の調理用器具若しくは当該調理用器具上の食物等の被加熱物であることを特徴とする請求項1乃至6の何れかに記載の温度検出装置。   The object to be measured is a cooking object such as a pan, a frying pan or the like or food on the cooking utensil that is heated by being supplied with electric or magnetic energy or combustion energy such as gas from the outside. The temperature detection device according to claim 1, wherein the temperature detection device is a device.
JP2009053618A 2009-03-06 2009-03-06 Temperature detection device Active JP5270405B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009053618A JP5270405B2 (en) 2009-03-06 2009-03-06 Temperature detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009053618A JP5270405B2 (en) 2009-03-06 2009-03-06 Temperature detection device

Publications (2)

Publication Number Publication Date
JP2010210259A JP2010210259A (en) 2010-09-24
JP5270405B2 true JP5270405B2 (en) 2013-08-21

Family

ID=42970606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009053618A Active JP5270405B2 (en) 2009-03-06 2009-03-06 Temperature detection device

Country Status (1)

Country Link
JP (1) JP5270405B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5861887B2 (en) * 2012-05-08 2016-02-16 清水建設株式会社 Thermal insulation method and thermal insulation structural material
KR101504926B1 (en) 2014-03-27 2015-03-31 현대제철 주식회사 Method for measuring temperature of infrared thermometer

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4586650B2 (en) * 2005-06-29 2010-11-24 オムロン株式会社 Temperature measurement module and temperature measurement method using the same
JP5006560B2 (en) * 2006-03-27 2012-08-22 大阪瓦斯株式会社 Temperature detection method, temperature detection device, and cooking device provided with temperature detection device
JP4989265B2 (en) * 2007-03-16 2012-08-01 大阪瓦斯株式会社 Temperature detection device for cooking device
JP4989264B2 (en) * 2007-03-16 2012-08-01 大阪瓦斯株式会社 Temperature detection device for cooking device
JP5107081B2 (en) * 2008-02-08 2012-12-26 大阪瓦斯株式会社 Temperature detection device for cooking device

Also Published As

Publication number Publication date
JP2010210259A (en) 2010-09-24

Similar Documents

Publication Publication Date Title
RU2400945C1 (en) Stove of induction heating
JP2002075624A (en) Induction heating cooker
TW201040470A (en) Cooking hob and method for heating cooking vessels placed on the cooking hob
WO2007091455A1 (en) Induction heating device
KR20100010248A (en) Cooker and method for controlling temperature
JP2009295456A (en) Induction cooker
JP5006560B2 (en) Temperature detection method, temperature detection device, and cooking device provided with temperature detection device
JP5270405B2 (en) Temperature detection device
TW202221257A (en) Cooking, soldering, and/or heating systems, and associated methods
JP4989265B2 (en) Temperature detection device for cooking device
JP5286144B2 (en) Induction heating cooker
KR20120006411A (en) Intelligent style temperature perception system
JP5107081B2 (en) Temperature detection device for cooking device
JP2009170433A (en) Induction-heating cooker
JP2005347000A (en) Induction heating cooking device
JP4989264B2 (en) Temperature detection device for cooking device
JP2009176751A (en) Induction heating cooker
JP6037854B2 (en) Stove, operating method of stove, estimation method of heating container material used on stove, and estimation method of heating container material
JP2008218280A (en) Heating equipment
JP2004241220A (en) Induction heating cooking device
JP5074972B2 (en) Temperature detection device for cooking device
JP2008084873A (en) Induction heating cooker
JP2008286471A (en) Heating cooker
CN209247194U (en) Temperature-detecting device and cooking appliance for cooking appliance
JP2004355895A (en) Induction heating cooker

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130404

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130411

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130509

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5270405

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250