JP4989264B2 - Temperature detection device for cooking device - Google Patents

Temperature detection device for cooking device Download PDF

Info

Publication number
JP4989264B2
JP4989264B2 JP2007069333A JP2007069333A JP4989264B2 JP 4989264 B2 JP4989264 B2 JP 4989264B2 JP 2007069333 A JP2007069333 A JP 2007069333A JP 2007069333 A JP2007069333 A JP 2007069333A JP 4989264 B2 JP4989264 B2 JP 4989264B2
Authority
JP
Japan
Prior art keywords
temperature
emissivity
wavelength
range
cooking container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007069333A
Other languages
Japanese (ja)
Other versions
JP2008232468A (en
Inventor
章 宮藤
知男 団栗
克彦 福井
健一郎 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mikuni Corp
Osaka Gas Co Ltd
Original Assignee
Mikuni Corp
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mikuni Corp, Osaka Gas Co Ltd filed Critical Mikuni Corp
Priority to JP2007069333A priority Critical patent/JP4989264B2/en
Publication of JP2008232468A publication Critical patent/JP2008232468A/en
Application granted granted Critical
Publication of JP4989264B2 publication Critical patent/JP4989264B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/06Control, e.g. of temperature, of power
    • H05B6/062Control, e.g. of temperature, of power for cooking plates or the like
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2213/00Aspects relating both to resistive heating and to induction heating, covered by H05B3/00 and H05B6/00
    • H05B2213/07Heating plates with temperature control means

Description

本発明は、調理用容器を加熱する加熱手段と、前記調理用容器から放射された赤外線における複数の波長域夫々についての赤外線強度を検出する赤外線強度検出手段と、その赤外線強度検出手段にて検出される前記複数の波長域夫々についての赤外線強度に基づいて前記調理用容器の温度を検出する温度検出手段とを備えた加熱調理器用の温度検出装置に関する。   The present invention is detected by a heating means for heating a cooking container, an infrared intensity detection means for detecting the infrared intensity for each of a plurality of wavelength ranges in the infrared rays emitted from the cooking container, and the infrared intensity detection means. The present invention relates to a temperature detection device for a heating cooker comprising temperature detection means for detecting the temperature of the cooking container based on infrared intensity for each of the plurality of wavelength ranges.

上記加熱調理器用の温度検出装置において、従来では、加熱調理器としてガスバーナや電磁式加熱器等の加熱手段を備えたコンロに適用したものとして、次のように構成されたものがあった。
すなわち、前記赤外線強度検出手段が、赤外線波長領域における異なる2つの波長域、具体的には、3.5μm以上且つ4.0μm以下の範囲内の波長域、及び、8μm以上且つ10μm以下の範囲内の波長域の赤外線の赤外線強度を検出するように構成され、前記温度検出手段が、前記2つの波長域における赤外線強度の比と調理用容器の温度との変化特性について予め実験結果より定めた変化特性を示すデータ、例えば演算式あるいはマップデータ等をメモリに記憶しておき、赤外線強度検出手段によって検出される前記2つの波長域における赤外線強度の計測結果から、それらの赤外線強度の比と、予め記憶している赤外線強度の比と温度との特性を示すデータとから調理用容器の温度を検出するように構成して、その検出された調理用容器の温度に基づいて、調理用容器の温度制御を行ったり、調理用容器における過度の温度上昇を回避させるために加熱手段の加熱作動を緊急停止させる等の処理を行えるようにしたものがあった(例えば、特許文献1参照。)。
In the above-described temperature detection device for a heating cooker, conventionally, there has been one configured as follows as applied to a stove provided with heating means such as a gas burner or an electromagnetic heater as a heating cooker.
That is, the infrared intensity detection means has two different wavelength ranges in the infrared wavelength region, specifically, a wavelength range in the range of 3.5 μm to 4.0 μm, and a range of 8 μm to 10 μm. The temperature detecting means is configured to detect the infrared intensity of infrared rays in the wavelength range of, and the temperature detecting means is a change determined in advance from experimental results with respect to a change characteristic between the ratio of the infrared intensity in the two wavelength ranges and the temperature of the cooking container. Data indicating characteristics, such as arithmetic expressions or map data, is stored in a memory, and from the measurement result of the infrared intensity in the two wavelength ranges detected by the infrared intensity detecting means, the ratio of the infrared intensity, It is configured to detect the temperature of the cooking container from the stored infrared intensity ratio and the data indicating the characteristic of the temperature, and the detected cooking Depending on the temperature of the cooker, there are those that can perform processing such as temperature control of the cooking container or emergency stop of the heating operation of the heating means in order to avoid excessive temperature rise in the cooking container. (For example, refer to Patent Document 1).

説明を加えると、上述したような異なる2つの波長域における赤外線強度の比と赤外線を放射している調理用容器の温度との変化特性が、常温から約300℃程度の温度範囲内においては、調理用容器の材質の差にかかわらず略同じ特性であることを前提として、このような温度と赤外線強度との関係を用いて調理用容器の温度を検出するようにしたものである。   When the explanation is added, the change characteristic between the ratio of the infrared intensity in the two different wavelength ranges as described above and the temperature of the cooking container emitting infrared rays is within a temperature range from room temperature to about 300 ° C. The temperature of the cooking container is detected using such a relationship between the temperature and the infrared intensity on the premise that the characteristics are substantially the same regardless of the difference in the material of the cooking container.

特開2002−340339号公報JP 2002-340339 A

しかしながら、本出願人が鋭意研究を行った結果、調理用容器として利用される材質の多くのものは、上記したような特性を有するが、一部の材質のものについては、上述したように予め記憶している赤外線強度の比と温度との特性を示すデータを用いて調理用容器の温度を計測した場合に、計測結果が実際の温度とは大きく異なるものが存在することを実験により知見するに至った。   However, as a result of intensive studies by the present applicant, many of the materials used as cooking containers have the characteristics described above, but some of the materials are preliminarily used as described above. When measuring the temperature of the cooking container using the data indicating the ratio between the infrared intensity ratio and the temperature stored, it is found through experiments that the measurement result is significantly different from the actual temperature. It came to.

本出願人による実験結果について説明を加えると、図2に、本出願人が計測した物体表面温度が200℃である物体の赤外波長領域における種々の材質についての波長の変化に対する放射率の変化を表す放射特性を示している。そして、この計測結果から以下に説明するようなことが判明した。
すなわち、黒体、金属の表面に黒色塗装した調理用容器、金属の表面に銀色塗装した調理用容器、及び、ステンレス板を用いた調理用容器等では、波長の変化にかかわらず放射率の変化が無いか又は少ない状態となるものであるが、金属の表面にシリコン系有機耐熱塗料を塗布した調理用容器やアルミ板の表面をアルマイト処理した調理用容器では、波長が変化すると、放射率が長めの波長領域では放射率の変化が無いか又は少ない状態となるのに対して、短かめの波長領域においては波長の変化に対する放射率の変化が大きく変化する状態になるという放射特性である、言い換えると、波長の変化に対する放射率の変化が小さい放射率均平範囲及び波長の変化に対する放射率の変化が大きい放射率変動範囲を有する放射特性であることが判明した。
The experimental results by the applicant will be described. FIG. 2 shows the change in emissivity with respect to the change in wavelength for various materials in the infrared wavelength region of the object whose object surface temperature measured by the applicant is 200 ° C. The radiation characteristic showing is shown. And it became clear from this measurement result that it explained below.
That is, the emissivity changes regardless of the change in wavelength in black bodies, cooking containers with a black coating on the metal surface, cooking containers with a silver coating on the metal surface, and cooking containers using a stainless steel plate. In a cooking container in which a silicon-based organic heat-resistant paint is applied to the surface of a metal or a cooking container in which the surface of an aluminum plate is anodized, if the wavelength changes, the emissivity increases. In other words, there is no or little change in emissivity in the longer wavelength region, whereas in the shorter wavelength region, the change in emissivity with respect to the change in wavelength becomes a state that changes greatly. The radiation characteristics have an emissivity leveling range in which the change in emissivity with respect to a change in wavelength is small and an emissivity fluctuation range in which the change in emissivity with a change in wavelength is large. It was.

そして、上述したように、2つの波長域における赤外線強度の比と赤外線を放射している調理用容器の温度との変化特性がどのような材質の調理用容器であっても略同じであることを前提として温度を検出するようにした上記従来構成による温度検出の構成では、波長の変化に対する放射率の変化が小さい放射率均平範囲及び波長の変化に対する放射率の変化が大きい放射率変動範囲を有する放射特性の放射率変動型の調理用容器を計測対象とする場合には、検出される温度が調理用容器の実際の温度とが大きくずれた値になってしまい、調理用容器の温度を検出することができないおそれがあり、調理用容器の温度に基づく制御等を良好に行うことができない不利があった。   As described above, the change characteristics of the ratio of the infrared intensity in the two wavelength ranges and the temperature of the cooking container that emits infrared light are substantially the same regardless of the material of the cooking container. In the temperature detection configuration according to the above-described conventional configuration that detects the temperature on the premise of emissivity, the emissivity leveling range in which the change in emissivity with respect to the change in wavelength is small and the emissivity fluctuation range in which the change in emissivity with respect to the change in wavelength is large If the measurement target is an emissivity variation type cooking container having a radiation characteristic, the detected temperature is greatly deviated from the actual temperature of the cooking container, and the temperature of the cooking container There is a possibility that it cannot be detected, and there is a disadvantage that control based on the temperature of the cooking container cannot be performed satisfactorily.

本発明の目的は、調理用容器として放射率変動型の調理用容器を用いる場合であっても、極力誤差を少なくした状態で調理用容器の温度を検出することが可能となる加熱調理器用の温度検出装置を提供する点にある。   An object of the present invention is for a heating cooker that can detect the temperature of a cooking container with as little error as possible even when an emissivity-variable cooking container is used as the cooking container. The object is to provide a temperature detection device.

本発明に係る加熱調理器用の温度検出装置は、調理用容器を加熱する加熱手段と、前記調理用容器から放射された赤外線における複数の波長域夫々についての赤外線強度を検出する赤外線強度検出手段と、その赤外線強度検出手段にて検出される前記複数の波長域夫々についての赤外線強度に基づいて前記調理用容器の温度を検出する温度検出手段とを備えたものであって、その第1特徴構成は、
前記赤外線強度検出手段が、
前記複数の波長域についての赤外線強度として、
波長の変化に対する放射率の変化が小さい放射率均平範囲及び波長の変化に対する放射率の変化が大きい放射率変動範囲を有する放射特性の放射率変動型の調理用容器に対応させて、前記放射率変動範囲に設定した第1温度計測用の波長域についての赤外線強度、前記放射率均平範囲に設定した第1温度計測用の波長域についての赤外線強度、及び、前記放射率均平範囲に異なる波長域として設定した2種の第2温度計測用の波長域の夫々についての赤外線強度を検出するように構成され、
前記温度検出手段が、
2種の前記第1温度計測用の波長域の夫々について検出される一対の赤外線強度の比に基づいて第1予測温度を求め、かつ、2種の前記第2温度計測用の波長域の夫々について検出される一対の赤外線強度の比に基づいて第2予測温度を求めて、それら第1予測温度及び第2予測温度に基づいて調理用容器の温度を判定するように構成されている点にある。
A temperature detecting device for a heating cooker according to the present invention includes a heating means for heating a cooking container, and an infrared intensity detecting means for detecting infrared intensity for each of a plurality of wavelength ranges in infrared rays emitted from the cooking container. And a temperature detecting means for detecting the temperature of the cooking container based on the infrared intensity for each of the plurality of wavelength ranges detected by the infrared intensity detecting means. Is
The infrared intensity detecting means is
As the infrared intensity for the plurality of wavelength ranges,
The radiation corresponding to an emissivity variation type cooking container having an emissivity characteristic having an emissivity leveling range with a small change in emissivity with respect to a change in wavelength and an emissivity variation range with a large change in emissivity with respect to a change in wavelength Infrared intensity for the first temperature measurement wavelength range set in the rate variation range, Infrared intensity for the first temperature measurement wavelength range set in the emissivity level range, and the emissivity level range It is configured to detect the infrared intensity for each of the two types of wavelength ranges for second temperature measurement set as different wavelength ranges,
The temperature detecting means is
A first predicted temperature is obtained based on a ratio of a pair of infrared intensities detected for each of the two types of wavelength regions for the first temperature measurement, and each of the two types of wavelength regions for the second temperature measurement is used. The second predicted temperature is obtained based on the ratio of the pair of infrared intensities detected with respect to the point, and the temperature of the cooking container is determined based on the first predicted temperature and the second predicted temperature. is there.

第1特徴構成によれば、前記赤外線強度検出手段により、波長の変化に対する放射率の変化が小さい放射率均平範囲及び波長の変化に対する放射率の変化が大きい放射率変動範囲を有する放射特性の放射率変動型の調理用容器に対応させて、前記放射率変動範囲に設定した第1温度計測用の波長域についての赤外線強度、前記放射率均平範囲に設定した第1温度計測用の波長域についての赤外線強度、及び、前記放射率均平範囲に異なる波長域として設定した2種の第2温度計測用の波長域の夫々についての赤外線強度を検出するのである。   According to the first characteristic configuration, the infrared intensity detection means has an emissivity level range in which the change in emissivity with respect to the change in wavelength is small and an emissivity fluctuation range in which the change in emissivity with respect to the change in wavelength is large. Corresponding to the emissivity variation type cooking container, the infrared intensity for the first temperature measurement wavelength range set in the emissivity variation range, the first temperature measurement wavelength set in the emissivity average range The infrared intensity is detected for each of the two types of wavelength ranges for the second temperature measurement set as different wavelength ranges in the emissivity flattening range.

説明を加えると、図2に示すように、金属の表面にシリコン系有機耐熱塗料を塗布した調理用容器やアルミ板の表面をアルマイト処理した調理用容器等においては、波長が変化すると、放射率が長めの波長領域では放射率の変化が無いか又は少ない状態となるのに対して、短かめの波長領域においては波長の変化に対する放射率の変化が大きく変化する状態になるという放射特性となっているが、このような放射率変動型の調理用容器を対象とする場合であれば、前記長めの波長領域が波長の変化に対する放射率の変化が小さい放射率均平範囲に対応し、前記短かめの波長領域が波長の変化に対する放射率の変化が大きい放射率変動範囲に対応するのであり、夫々の波長領域に対応させて、前記放射率変動範囲に第1温度計測用の波長域を設定し、前記放射率均平範囲に第1温度計測用の波長域を設定し、前記放射率均平範囲に異なる波長域として2種の第2温度計測用の波長域を設定して、各波長域にて夫々赤外線強度を検出することになる。   In addition, as shown in FIG. 2, in a cooking container in which a silicon-based organic heat-resistant paint is applied to the surface of a metal or a cooking container in which the surface of an aluminum plate is anodized, However, there is no or little change in the emissivity in the longer wavelength region, whereas in the shorter wavelength region, the radiation characteristic is such that the change in emissivity with respect to the change in wavelength is greatly changed. However, if the emissivity variation type cooking container is used, the longer wavelength region corresponds to an emissivity average range in which the change in emissivity with respect to the change in wavelength is small, and The kame wavelength range corresponds to an emissivity fluctuation range in which the change in emissivity with respect to the change in wavelength is large, and the wavelength range for the first temperature measurement is set in the emissivity fluctuation range in correspondence with each wavelength range. Then, a wavelength range for the first temperature measurement is set in the emissivity average range, and two types of wavelength ranges for the second temperature measurement are set as different wavelength ranges in the emissivity average range. Infrared intensity is detected in each region.

そうすると、前記放射率変動範囲及び前記放射率均平範囲に各別に設定される2種の第1温度計測用の波長域夫々について検出される一対の赤外線強度の比と調理用容器の温度との変化特性と、前記放射率均平範囲に異なる波長域として設定される2種の前記第2温度計測用の波長域の夫々について検出される一対の赤外線強度の比と調理用容器の温度との変化特性とは、夫々異なる関係になる。   Then, the ratio of the pair of infrared intensities detected for each of the two types of wavelength ranges for the first temperature measurement separately set in the emissivity fluctuation range and the emissivity flattening range and the temperature of the cooking container A change characteristic, a ratio of a pair of infrared intensities detected for each of the two wavelength ranges for the second temperature measurement set as different wavelength ranges in the emissivity level range, and a temperature of the cooking container The change characteristics are different from each other.

一方、調理用容器としては、放射率変動型の調理用容器以外に、波長の変化に対する放射率の変化が無い又は変化が少ない放射特性の放射率均平型の調理用容器も存在するが、この放射率均平型の調理用容器では、前記放射率変動範囲及び前記放射率均平範囲の夫々おいて放射率の変化が無い又は変化が少ないので、前記2種の第1温度計測用の波長域夫々について検出される一対の赤外線強度の比と、前記放射率均平範囲に異なる波長域として設定される2種の前記第2温度計測用の波長域の夫々について検出される一対の赤外線強度の比は、調理用容器の温度の変化に対して同じか又は略同じ特性になる。   On the other hand, as the cooking container, in addition to the emissivity variation type cooking container, there is also an emissivity flat type cooking container having a radiation characteristic with no or little change in the emissivity with respect to the change in wavelength, In this emissivity flat type cooking container, there is no change in emissivity or little change in each of the emissivity fluctuation range and the emissivity flat range, and therefore, the two types of first temperature measurement containers are used. A ratio of a pair of infrared intensities detected for each wavelength region and a pair of infrared rays detected for each of the two types of wavelength regions for the second temperature measurement set as different wavelength regions in the emissivity average range The intensity ratio will be the same or substantially the same characteristics with respect to changes in the temperature of the cooking container.

そこで、例えば、異なる波長域の赤外線強度の比と温度との変化特性として、放射率変動型の調理用容器あるいは放射率均平型の調理用容器のいずれかの特性に基づいて設定しておき、その赤外線強度の比と温度との変化特性を用いて、2種の前記第1温度計測用の波長域の夫々について検出される一対の赤外線強度の比に基づいて第1予測温度を求め、2種の前記第2温度計測用の波長域の夫々について検出される一対の赤外線強度の比に基づいて第2予測温度とを夫々求めると、それらの第1予測温度及び第2予測温度の情報から、調理用容器が、放射率変動型の調理用容器であるか、放射率均平型の調理用容器であるかを判定することが可能であり、各調理用容器の温度の変化に対する波長毎の赤外線強度の変化等の放射特性は予め予測できるので、それらの第1予測温度及び第2予測温度から調理用容器の温度を判定することができ、各調理用容器の特性に合わせた状態で極力誤差を少なくした状態で調理用容器の温度を検出することが可能となる。   Therefore, for example, the change characteristic between the ratio of the infrared intensity in different wavelength ranges and the temperature is set based on the characteristics of either the emissivity fluctuation type cooking container or the emissivity flat type cooking container. The first predicted temperature is determined based on the ratio of the pair of infrared intensities detected for each of the two types of wavelength regions for the first temperature measurement using the infrared intensity ratio and the change characteristic of the temperature, When the second predicted temperature is obtained based on the ratio of a pair of infrared intensities detected for each of the two types of wavelength ranges for the second temperature measurement, information on the first predicted temperature and the second predicted temperature is obtained. From the above, it is possible to determine whether the cooking container is an emissivity fluctuation type cooking container or an emissivity flat type cooking container, and the wavelength with respect to the temperature change of each cooking container Radiation characteristics such as changes in infrared intensity for each Therefore, the temperature of the cooking container can be determined from the first predicted temperature and the second predicted temperature, and the temperature of the cooking container is reduced with as little error as possible according to the characteristics of each cooking container. Can be detected.

従って、調理用容器として、波長の変化に対する放射率の変化が小さい放射率均平範囲及び波長の変化に対する放射率の変化が大きい放射率変動範囲を有する放射特性の放射率変動型の調理用容器を用いる場合であっても、極力誤差を少なくした状態で調理用容器の温度を検出することが可能となる加熱調理器用の温度検出装置を提供できるに至った。   Accordingly, as a cooking container, an emissivity fluctuation type cooking container having a radiation characteristic having an emissivity leveling range in which an emissivity change is small with respect to a wavelength change and an emissivity fluctuation range in which an emissivity change is large with respect to a wavelength change. Even in the case of using, it has become possible to provide a temperature detection device for a cooking device that can detect the temperature of the cooking container with as little error as possible.

本発明の第2特徴構成は、第1特徴構成に加えて、
前記放射率変動範囲に設定した第1温度計測用の波長域が、波長の変化に対する放射率の変化が無い又は変化が少ない放射特性の放射率均平型の調理用容器については放射する赤外線強度の温度変化に対する変化が前記2種の前記第2温度計測用の波長域よりも大きい波長領域に対応するように定められ、
前記温度検出手段が、
前記第1予測温度と前記第2予測温度との差が許容範囲内にあるときは、前記第1予測温度を前記調理用容器の温度として、且つ、前記第1予測温度と前記第2予測温度との差が前記許容範囲を超えているときは、前記第2予測温度を前記調理用容器の温度として判定するように構成されている点にある。
In addition to the first feature configuration, the second feature configuration of the present invention includes:
Infrared intensity radiated for an emissivity-equalized cooking container having a radiation characteristic in which the wavelength range for first temperature measurement set in the emissivity fluctuation range has no or little change in emissivity with respect to wavelength change. Corresponding to a wavelength range larger than the two types of wavelength ranges for the second temperature measurement,
The temperature detecting means is
When the difference between the first predicted temperature and the second predicted temperature is within an allowable range, the first predicted temperature is set as the temperature of the cooking container, and the first predicted temperature and the second predicted temperature. When the difference with the value exceeds the allowable range, the second predicted temperature is determined as the temperature of the cooking container.

第2特徴構成によれば、前記第1予測温度と前記第2予測温度との差が許容範囲内にあるときは、調理用容器として、各複数の波長域の夫々において放射率の変化が無い又は変化が少ない放射率均平型の調理用容器であることが想定されるので、その場合は、前記第1予測温度を前記調理用容器の温度として判定するようにしている。   According to the second feature configuration, when the difference between the first predicted temperature and the second predicted temperature is within an allowable range, there is no change in emissivity in each of a plurality of wavelength ranges as a cooking container. Or since it is assumed that it is an emissivity flat type cooking container with little change, in that case, the first predicted temperature is determined as the temperature of the cooking container.

そして、前記放射率変動範囲に設定した第1温度計測用の波長域では、放射率均平型の調理用容器が放射する赤外線強度の温度変化に対する変化が、前記2種の前記第2温度計測用の波長域よりも大きいので、前記第1予測温度を求めるための一対の赤外線強度の比の方が、前記第2予測温度を求めるための一対の赤外線強度の比よりも、調理用容器の温度の変化に対する変化率が大きくなる。つまり、調理用容器の温度として、第1予測温度の方が第2予測温度に較べてより適正な温度として用いることができる。そこで、前記第1予測温度と前記第2予測温度との差が許容範囲内にあるときは、第1予測温度を調理用容器の温度として判定するようにしているのである。   And in the wavelength range for the first temperature measurement set in the emissivity fluctuation range, the change of the infrared intensity radiated by the emissivity flat type cooking container with respect to the temperature change is the two types of the second temperature measurement. The ratio of the pair of infrared intensities for determining the first predicted temperature is larger than the ratio of the pair of infrared intensities for determining the second predicted temperature. The rate of change with respect to changes in temperature increases. That is, as the temperature of the cooking container, the first predicted temperature can be used as a more appropriate temperature than the second predicted temperature. Therefore, when the difference between the first predicted temperature and the second predicted temperature is within an allowable range, the first predicted temperature is determined as the temperature of the cooking container.

又、前記第1予測温度と前記第2予測温度との差が前記許容範囲を超えているときは、調理用容器が放射率変動型の調理用容器であることが想定されるので、その場合は、第2予測温度を調理用容器の温度として判定するようにしている。第2予測温度は、前記放射率均平範囲に異なる波長域として設定した2種の第2温度計測用の波長域にて夫々検出した赤外線強度の比に基づいて求めるので、適正な温度として求めることが可能となる。   In addition, when the difference between the first predicted temperature and the second predicted temperature exceeds the allowable range, it is assumed that the cooking container is an emissivity variable cooking container. Determines the second predicted temperature as the temperature of the cooking container. The second predicted temperature is obtained based on the ratio of the infrared intensity detected in each of the two types of second temperature measurement wavelength ranges set as different wavelength ranges in the emissivity flattening range. It becomes possible.

従って、放射率均平型の調理用容器と放射率変動型の調理用容器の夫々について、調理用容器の温度を適正な温度として求めることが可能であり、特に、放射率均平型の調理用容器については極力正確に調理用容器の温度を検出することが可能となる。   Therefore, it is possible to obtain the temperature of the cooking container as an appropriate temperature for each of the emissivity flat type cooking container and the emissivity variable type cooking container, and in particular, emissivity flat type cooking. For the cooking container, the temperature of the cooking container can be detected as accurately as possible.

本発明の第3特徴構成は、第1特徴構成又は第2特徴構成に加えて、前記赤外線強度検出手段が、前記放射率変動範囲に設定される前記第1温度計測用の波長域として、3.1μm以上且つ4.2μm以下の範囲内から選択された波長域が設定され、且つ、前記放射率均平範囲に設定される前記2種の第2温度計測用の波長域として、8.0μm以上且つ20.0μm以下の範囲内から選択された波長域が設定され、それら複数の波長域夫々の赤外線強度を検出するように構成されている点にある。   According to a third feature configuration of the present invention, in addition to the first feature configuration or the second feature configuration, the infrared intensity detection means has a wavelength range for the first temperature measurement set in the emissivity fluctuation range as 3 A wavelength range selected from the range of not less than 0.1 μm and not more than 4.2 μm is set, and the wavelength range for the two types of second temperature measurement set in the emissivity level range is 8.0 μm. The wavelength range selected from the range above and below 20.0 μm is set, and the infrared intensity of each of the plurality of wavelength ranges is detected.

第3特徴構成によれば、前記第1温度計測用の波長域が、3.1μm以上且つ4.2μm以下の範囲内から選択され、前記2種の第2温度計測用の波長域として、8.0μm以上且つ20.0μm以下の範囲内から選択されて夫々設定されることになる。   According to the third characteristic configuration, the wavelength range for the first temperature measurement is selected from a range of 3.1 μm or more and 4.2 μm or less, and the two types of wavelength ranges for the second temperature measurement are 8 It is selected from the range of not less than 0.0 μm and not more than 20.0 μm, and is set respectively.

すなわち、調理用容器を例えばバーナで形成される火炎により加熱する加熱調理器であれば、調理用容器から放射される赤外線の赤外線強度を赤外線強度検出手段により火炎を介して検出する場合、その火炎には、CO2やH2Oが気体の状態で存在する。そして、そのコンロにおける実際の火炎は、CO2やH2Oの発光に伴う高輝度の赤外線を発しているため、その発光は、調理用容器から放射される赤外線の赤外線強度検出手段におけるノイズ発生の原因となる。そして、CO2やH2Oは、2.4μm以上且つ3.1μm以下の範囲内、及び、4.2μm以上且つ8.0μm以下の範囲内において赤外線を発光するので、それらの範囲外であれば、火炎の赤外線発光に伴うノイズの影響が除去できることより極力正確な温度検出が可能となる。 That is, if the cooking container is a heating cooker that is heated by, for example, a flame formed of a burner, when the infrared intensity of infrared rays emitted from the cooking container is detected via the flame by the infrared intensity detection means, the flame CO 2 and H 2 O exist in a gas state. And since the actual flame in the stove emits high-intensity infrared rays due to the emission of CO 2 and H 2 O, the emission is caused by noise generation in the infrared intensity detection means of infrared rays emitted from the cooking container. Cause. CO 2 and H 2 O emit infrared rays in the range of 2.4 μm to 3.1 μm and in the range of 4.2 μm to 8.0 μm, so if they are out of these ranges In this case, it is possible to detect the temperature as accurately as possible because the influence of noise accompanying the infrared emission of the flame can be removed.

以下、本発明に係る加熱調理器用の温度検出装置を加熱調理器としてのコンロに適用した場合の実施形態を図面に基づいて説明する。
図1に示すように、加熱調理器としてのコンロは、円形の加熱用の開口1aを有する平板状の天板1、開口1aの上方に離間させて加熱対象物調理用の鍋等の調理用容器Nを載置可能な五徳2、その五徳2上に載置される調理用容器Nを加熱する加熱手段としてのガス燃焼式のバーナ30、そのバーナ30の作動を制御する燃焼制御部3等を備えて構成されている。
DESCRIPTION OF EMBODIMENTS Hereinafter, an embodiment in which a temperature detection device for a heating cooker according to the present invention is applied to a stove as a heating cooker will be described with reference to the drawings.
As shown in FIG. 1, the stove as a heating cooker is used for cooking a flat top plate 1 having a circular heating opening 1a, a cooking pot such as a cooking pot for cooking an object to be heated above the opening 1a. Gotoku 2 on which container N can be placed, gas combustion burner 30 as a heating means for heating cooking container N placed on Gotoku 2, combustion control unit 3 for controlling the operation of burner 30, and the like It is configured with.

前記バーナ30は、ブンゼン燃焼式の内炎式バーナであり、燃料供給路5を通じて供給される燃料ガスGを噴出するガスノズル31、そのガスノズル31から燃料ガスGが噴出されると共に、その燃料ガスGの噴出に伴う吸引作用により燃焼用空気が供給される混合管32、及び、内周部に混合気を噴出する複数の炎口33を備えて、前記混合管32から混合気が供給される環状のバーナ本体34等を備えて構成され、前記バーナ30は、前記開口1aの下方に位置させて設けている。   The burner 30 is a Bunsen combustion type internal flame type burner. The gas nozzle 31 ejects the fuel gas G supplied through the fuel supply passage 5, the fuel gas G is ejected from the gas nozzle 31, and the fuel gas G An annular gas pipe is provided with a mixture tube 32 to which combustion air is supplied by the suction action associated with the jetting of the gas and a plurality of flame ports 33 for jetting the gas mixture to the inner periphery, and the gas mixture is supplied from the mixture tube 32. The burner body 34 is provided, and the burner 30 is provided below the opening 1a.

このバーナ30においては、混合管32からバーナ本体34内に供給された燃料ガスGと空気との混合気が炎口33からバーナ本体34の中心に向けて略水平方向に噴出され、その噴出された燃料ガスGと空気との混合気が燃焼して、火炎Fが前記開口1aを通って上向きに形成される。   In the burner 30, the mixture of the fuel gas G and air supplied from the mixing pipe 32 into the burner body 34 is ejected in a substantially horizontal direction from the flame port 33 toward the center of the burner body 34, and is ejected. The mixture of the fuel gas G and air burns, and a flame F is formed upward through the opening 1a.

前記燃料供給路5には、前記ガスノズル31への燃料ガスGの供給を断続する燃料供給断続弁6と、ガスノズル31への燃料ガスGの供給量を調節する燃料供給量調節弁7とが設けられ、バーナ30のバーナ本体34内の下方には、開口1aを介して落下した煮零れ等を受けるための汁受皿8が設けられる。   The fuel supply path 5 is provided with a fuel supply intermittent valve 6 for intermittently supplying the fuel gas G to the gas nozzle 31 and a fuel supply amount adjusting valve 7 for adjusting the supply amount of the fuel gas G to the gas nozzle 31. In the lower part of the burner body 34 of the burner 30, there is provided a juice receiving tray 8 for receiving boiled food that has fallen through the opening 1 a.

さらに、このコンロには、天板の下方側に位置し且つ汁受皿8の中央部に位置して調理用容器から放射された赤外線の強度を検出する赤外線強度検出手段としての赤外線強度検出部40と、その赤外線強度検出部40により検出された赤外線の強度に基づいて調理用容器の温度を検出する温度検出手段としての温度検出部50とを備えた温度検出装置が設けられている。   Further, the stove has an infrared intensity detecting unit 40 as an infrared intensity detecting means that is located below the top plate and is located in the center of the soup pan 8 and detects the intensity of infrared rays emitted from the cooking container. And a temperature detecting unit 50 as temperature detecting means for detecting the temperature of the cooking container based on the intensity of infrared rays detected by the infrared intensity detecting unit 40 is provided.

そして、前記赤外線強度検出部40が、調理用容器から放射される赤外線における異なる複数の波長域夫々についての赤外線強度を検出するように構成され、前記温度検出部50が、赤外線強度検出部40にて検出される複数の波長域夫々についての赤外線強度の関係に基づいて、調理用容器の温度を検出するように構成されている。さらに、赤外線強度検出部40は、赤外線の波長範囲のうちのバーナ30の火炎からの放射強度が強い範囲外に設定された波長域の赤外線強度を検出するように構成されている。   And the said infrared intensity detection part 40 is comprised so that the infrared intensity about each of the several different wavelength range in the infrared rays radiated | emitted from the cooking container may be detected, and the said temperature detection part 50 is the infrared intensity detection part 40. The temperature of the cooking container is detected based on the relationship of the infrared intensity for each of the plurality of wavelength ranges detected in this manner. Furthermore, the infrared intensity detection part 40 is comprised so that the infrared intensity of the wavelength range set out of the range with the strong radiation intensity from the flame of the burner 30 among the infrared wavelength ranges may be detected.

バーナ30により加熱される調理用容器としては、波長の変化に対する放射率の変化が小さい放射率均平範囲及び波長の変化に対する放射率の変化が大きい放射率変動範囲を有する放射特性の放射率変動型の調理用容器、及び、波長の変化に対する放射率の変化が無い又は変化が少ない放射特性の放射率均平型の調理用容器が存在するが、赤外線強度検出部40は、前記複数の波長域についての赤外線強度として、前記放射率変動型の調理用容器に対応させて、前記放射率変動範囲に設定した第1温度計測用の波長域K1についての赤外線強度、前記放射率均平範囲に設定した第1温度計測用の波長域K1についての赤外線強度、及び、前記放射率均平範囲に異なる波長域として設定した2種の第2温度計測用の波長域K2の夫々についての赤外線強度を検出するように構成されている。   The cooking container heated by the burner 30 has an emissivity fluctuation of radiation characteristics having an emissivity leveling range in which the change in emissivity is small with respect to a change in wavelength and an emissivity fluctuation range in which the change in emissivity is large with respect to a change in wavelength. Type cooking containers and emissivity-equalized cooking containers having a radiation characteristic with little or no change in the emissivity with respect to the change in wavelength exist, but the infrared intensity detector 40 has the plurality of wavelengths. Infrared intensity for the first temperature measurement wavelength range K1 set in the emissivity variation range corresponding to the emissivity variation type cooking container as the infrared intensity for the region, the emissivity average range About the infrared intensity about the set wavelength range K1 for the first temperature measurement, and each of the two types of wavelength ranges K2 for the second temperature measurement set as different wavelength ranges in the emissivity average range It is configured to detect an outside line intensity.

又、前記温度検出部50が、2種の前記第1温度計測用の波長域K1の夫々について検出される一対の赤外線強度の比に基づいて第1予測温度を求め、かつ、2種の前記第2温度計測用の波長域K2の夫々について検出される一対の赤外線強度の比に基づいて第2予測温度を求めて、それら第1予測温度及び第2予測温度に基づいて調理用容器の温度を判定するように構成されている。   The temperature detection unit 50 obtains a first predicted temperature based on a ratio of a pair of infrared intensities detected for each of the two types of wavelength regions K1 for the first temperature measurement, and the two types of the temperature The second predicted temperature is obtained based on the ratio of the pair of infrared intensities detected for each of the wavelength ranges K2 for measuring the second temperature, and the temperature of the cooking container is determined based on the first predicted temperature and the second predicted temperature. Is configured to determine.

以下、赤外線強度検出部40による赤外線強度の計測対象となる複数の波長域を設定するために、複数の種類の調理用容器を用いて本出願人が行った各種の実測データについて具体的に説明する。ここでは、複数の種類の調理用容器としては、金属の表面に黒色塗装した調理用容器、金属の表面に銀色塗装した調理用容器、ステンレス板を用いた調理用容器、金属の表面にシリコン系有機耐熱塗料を塗布した調理用容器、及び、アルミ板の表面をアルマイト処理した調理用容器の夫々を用いて計測した結果を示す。   Hereinafter, various measurement data performed by the present applicant using a plurality of types of cooking containers in order to set a plurality of wavelength ranges to be measured by the infrared intensity detector 40 will be specifically described. To do. Here, as a plurality of types of cooking containers, a cooking container with a black coating on a metal surface, a cooking container with a silver coating on a metal surface, a cooking container using a stainless steel plate, a silicon-based coating on a metal surface The result measured using each of the cooking container which apply | coated the organic heat-resistant coating material, and the cooking container which carried out the anodizing of the surface of the aluminum plate is shown.

図2に、本出願人が計測した物体表面温度が200℃である物体の赤外波長領域における種々の材質についての放射特性を示している。この内容について説明を加えると、黒体では放射率は波長の変化にかかわらず1.0で一定であり、又、金属の表面に黒色塗装した調理用容器、金属の表面に銀色塗装した調理用容器、及び、ステンレス板を用いた調理用容器等では、波長の変化にかかわらず夫々放射率が約0.9程度、0.4程度、及び、0.2程度で略一定である。従って、これらの各種の調理用容器が前記放射率均平型の調理用容器に対応するものである。   FIG. 2 shows radiation characteristics of various materials in the infrared wavelength region of an object having an object surface temperature of 200 ° C. measured by the present applicant. To explain this, the emissivity of a black body is constant at 1.0 regardless of the change in wavelength. Also, a cooking container with a black coating on a metal surface and a cooking container with a silver coating on a metal surface. In a container, a cooking container using a stainless steel plate, and the like, the emissivity is substantially constant at about 0.9, about 0.4, and about 0.2 regardless of the change in wavelength. Therefore, these various cooking containers correspond to the emissivity flat type cooking containers.

しかしながら、金属の表面にシリコン系有機耐熱塗料を塗布した調理用容器やアルミ板の表面をアルマイト処理した調理用容器では、波長が変化すると、放射率が長めの波長領域では約0.9程度で略一定であるのに対して短かめの波長領域においては放射率が小さい値になり、波長の変化に対する放射率の変化が大きい放射特性であることが実験結果から判明した。つまり、金属の表面にシリコン系有機耐熱塗料を塗布した調理用容器やアルミ板の表面をアルマイト処理した調理用容器が放射率変動型の調理用容器に対応しており、前記長めの波長領域が波長の変化に対する放射率の変化が小さい放射率均平範囲に対応し、前記短かめの波長領域が波長の変化に対する放射率の変化が大きい放射率変動範囲に対応する。   However, in a cooking container in which a silicon-based organic heat-resistant paint is applied to the surface of a metal or a cooking container in which the surface of an aluminum plate is anodized, if the wavelength changes, the emissivity is about 0.9 in the longer wavelength region. Although it is substantially constant, the emissivity is small in the shorter wavelength region, and it has been found from the experimental results that the emissivity changes greatly with respect to the change in wavelength. In other words, a cooking container in which a silicon-based organic heat-resistant paint is applied to the surface of a metal or a cooking container in which the surface of an aluminum plate is anodized corresponds to an emissivity variation type cooking container, and the longer wavelength region is A change in emissivity with respect to a change in wavelength corresponds to an emissivity average range, and the shorter wavelength region corresponds to an emissivity fluctuation range in which an emissivity change with respect to a change in wavelength is large.

図3〜図5には、各種の材質の調理用容器(鍋)についての赤外線放射強度の分光スペクトルデータを示している。すなわち、図3は金属の表面に黒色塗装した調理用容器について、図4は金属の表面に銀色塗装した調理用容器について、図5はアルミ板の表面をアルマイト処理した調理用容器について、夫々、常温(25℃)から300℃程度の範囲で加熱したときに、温度が変化したときの赤外線放射強度の分光スペクトルデータを示している。これらの図から明らかなように、加熱調理時の調理用容器の温度、例えば、常温から300℃程度において、1.5μm以上且つ数十μm以下の範囲内の波長領域において赤外線が放射しており、例えば、3.5μm以上且つ15μm以下の範囲内において各種の赤外線センサにて検出可能な充分な放射強度を有している。   3 to 5 show spectral data of infrared radiation intensity for cooking containers (pots) made of various materials. That is, FIG. 3 shows a cooking container black-coated on the metal surface, FIG. 4 shows a cooking container silver-coated on the metal surface, and FIG. 5 shows a cooking container in which the surface of the aluminum plate is anodized. The spectral spectrum data of the infrared radiation intensity when the temperature is changed when heated in a range from room temperature (25 ° C.) to about 300 ° C. is shown. As is apparent from these figures, infrared rays are radiated in the wavelength range of 1.5 μm or more and several tens of μm or less at the temperature of the cooking container during cooking, for example, from room temperature to about 300 ° C. For example, it has sufficient radiation intensity that can be detected by various infrared sensors within a range of 3.5 μm or more and 15 μm or less.

又、図6には、ガス燃焼式のバーナ30にて形成される火炎から放射される赤外線放射強度の分光スペクトルデータを示しており、この図から明らかなように、赤外線の波長範囲のうち、2.4μm以上且つ3.1μm以下の範囲、及び、4.2μm以上且つ8.0μm以下の範囲では、火炎からの放射が強い。そこで、赤外線強度検出部40にて赤外線強度を検出する検出対象波長域としては、このような火炎からの放射が強い波長範囲外に設定することが好ましい。   In addition, FIG. 6 shows spectral spectrum data of the infrared radiation intensity emitted from the flame formed by the gas combustion type burner 30, and as is clear from this figure, out of the infrared wavelength range, In the range of 2.4 μm or more and 3.1 μm or less, and in the range of 4.2 μm or more and 8.0 μm or less, radiation from the flame is strong. Therefore, it is preferable to set the detection target wavelength range in which the infrared intensity is detected by the infrared intensity detector 40 outside the wavelength range where the radiation from such a flame is strong.

そして、上記したような調理用容器からの赤外線の放射特性や火炎による影響等を考慮した上で、放射率変動型の調理用容器を用いる場合であっても、極力誤差を少なくした状態で調理用容器の温度を検出することができるように、赤外線強度検出部40による波長域を設定するようにしている。   In consideration of the radiation characteristics of infrared rays from the cooking container as described above and the influence of flame, etc., cooking is performed with as little error as possible even when using an emissivity variable cooking container. The wavelength range by the infrared intensity detection unit 40 is set so that the temperature of the container can be detected.

以下、このコンロに備えられる温度検出装置における赤外線検出用の波長域の設定並びにその赤外線検出に基づく調理用容器の温度の計測のための構成について具体的に説明する。   Hereinafter, a configuration for setting the wavelength range for infrared detection in the temperature detection device provided in the stove and measuring the temperature of the cooking container based on the infrared detection will be specifically described.

すなわち、赤外線強度検出部40による赤外線強度を検出するための検出用の波長域として、3.5μm以上且つ4μm以下の領域を第1波長域α1として設定し、8μm以上且つ11μm以下の領域を第2波長域α2として設定し、13μm以上15μm以下の領域を第3波長域α3として設定して、それら3つの波長域の赤外線強度を夫々検出する構成としている。そして、図3及び図4から判るように、第1波長域α1が、放射率均平型の調理用容器については放射する赤外線強度の温度変化に対する変化が第2波長域α2や第3波長域α3よりも大きい波長領域に対応するように定められている。言い換えると、第1波長域α1においては、温度の変化に対する赤外線強度の変化についての分解能が第2波長域α2や第3波長域αにおける分解能よりも大きいものになっている。   That is, as a detection wavelength range for detecting the infrared intensity by the infrared intensity detection unit 40, a region of 3.5 μm or more and 4 μm or less is set as the first wavelength region α1, and a region of 8 μm or more and 11 μm or less is set as the first wavelength region α1. The two wavelength regions α2 are set, the region of 13 μm or more and 15 μm or less is set as the third wavelength region α3, and the infrared intensity in each of these three wavelength regions is detected. As can be seen from FIG. 3 and FIG. 4, the first wavelength region α1 has a change in the infrared intensity radiated with respect to the temperature change for the emissivity flat type cooking container. It is determined so as to correspond to a wavelength region larger than α3. In other words, in the first wavelength range α1, the resolution with respect to the change in infrared intensity with respect to the change in temperature is larger than the resolution in the second wavelength range α2 and the third wavelength range α.

前記第1波長域α1が前記放射率変動型の調理用容器における前記放射率変動範囲に設定した第1温度計測用の波長域K1に対応し、前記第2波長域α2が前記放射率均平範囲に設定した第1温度計測用の波長域K1に対応する。そして、第2波長域α2及び第3波長域α3が、前記放射率均平範囲に異なる波長域として設定した2種の第2温度計測用の波長域K2に対応する。従って、この実施形態では、第2波長域α2が、第1温度計測用の波長域K1及び第2温度計測用の波長域K2を兼用する構成となっている。   The first wavelength region α1 corresponds to the first temperature measurement wavelength region K1 set in the emissivity variation range in the emissivity variation type cooking container, and the second wavelength region α2 is the emissivity uniformity. This corresponds to the first temperature measurement wavelength region K1 set in the range. And 2nd wavelength range (alpha) 2 and 3rd wavelength range (alpha) 3 respond | correspond to the wavelength range K2 for 2 types of 2nd temperature measurement set as a wavelength range different in the said emissivity average range. Therefore, in this embodiment, the second wavelength range α2 is configured to serve as both the first temperature measurement wavelength range K1 and the second temperature measurement wavelength range K2.

図7には、赤外線強度検出部40により検出された第1波長域α1における赤外線強度(A)及び第2波長域α2における赤外線強度(B)の比、すなわち第1赤外線強度比(B/A)に対する調理用容器の温度との関係を示しており、図8には、赤外線強度検出部40により検出された第2波長域α2における赤外線強度(B)と第3波長域α3における赤外線強度(C)の比、すなわち第2赤外線強度比(C/B)に対する調理用容器の温度との関係を示している。   FIG. 7 shows the ratio of the infrared intensity (A) in the first wavelength range α1 and the infrared intensity (B) in the second wavelength range α2 detected by the infrared intensity detection unit 40, that is, the first infrared intensity ratio (B / A). FIG. 8 shows the relationship between the infrared intensity (B) in the second wavelength range α2 and the infrared intensity (in the third wavelength range α3) detected by the infrared intensity detection unit 40. The relationship between the ratio of C), that is, the temperature of the cooking container with respect to the second infrared intensity ratio (C / B) is shown.

図7に示すように、前記第1赤外線強度比(B/A)に対する調理用容器の温度の関係においては、金属の表面に有機シリコン系塗料を塗布した調理用容器やアルミ板の表面をアルマイト処理した調理用容器(放射率変動型の調理用容器)では、金属の表面に黒色塗装した調理用容器や金属の表面に銀色塗装した調理用容器(放射率均平型の調理用容器)に対して大きく異なる特性を示しており、第1赤外線強度比(B/A)が同じであっても対応する温度は大きく異なる状態となる。   As shown in FIG. 7, in relation to the temperature of the cooking container with respect to the first infrared intensity ratio (B / A), the surface of the cooking container or aluminum plate in which the organosilicon coating is applied to the metal surface is anodized. Treated cooking containers (emissivity-variable cooking containers) can be used as metal-black cooking containers or silver-coating cooking containers (emissivity flat type cooking containers). However, even if the first infrared intensity ratio (B / A) is the same, the corresponding temperatures are greatly different.

一方、金属の表面に黒色塗装した調理用容器及び金属の表面に銀色塗装した調理用容器については、常温(25℃)から300℃程度の温度範囲において、共に略同じ状態で温度に依存して変化しており、両者はほとんど同じ特性になっている。つまり、放射率均平型の調理用容器については、その材質が異なっても第1赤外線強度比(B/A)が同じであれば、その第1赤外線強度比(B/A)に対する調理用容器の温度は略同じになっている。   On the other hand, the cooking container with black coating on the metal surface and the cooking container with silver coating on the metal surface both depend on the temperature in a temperature range from room temperature (25 ° C.) to about 300 ° C. in the same state. They are changing and both have almost the same characteristics. That is, if the first infrared intensity ratio (B / A) of the emissivity flat type cooking container is the same even if the material is different, the cooking container for the first infrared intensity ratio (B / A) is used. The temperature of the container is substantially the same.

そこで、金属の表面に黒色塗装した調理用容器及び金属の表面に銀色塗装した調理用容器等の放射率均平型の調理用容器については、第1赤外線強度比(B/A)と調理用容器の温度との変化特性についての代表的なものを予め記憶しておき、実際に加熱される調理用容器について検出した第1赤外線強度比と予め記憶している前記変化特性とから調理用容器の温度を検出することが可能となる。   Therefore, the first infrared intensity ratio (B / A) and the cooking rate are used for a cooking container with a black coating on the metal surface and a cooking container with a silver coating on the metal surface. The typical thing about the change characteristic with the temperature of a container is memorized beforehand, and the container for cooking from the 1st infrared intensity ratio detected about the container for cooking actually heated and the change characteristic memorized beforehand Temperature can be detected.

図8に示すように、第2赤外線強度比(C/B)に対する調理用容器の温度の関係においては、常温(25℃)から300℃程度の温度範囲において、金属の表面にシリコン系有機耐熱塗料を塗布した調理用容器やアルミ板の表面をアルマイト処理した調理用容器(放射率変動型の調理用容器)では、金属の表面に黒色塗装した調理用容器や金属の表面に銀色塗装した調理用容器(放射率均平型の調理用容器)のものとほとんど同じ特性になっており、第2赤外線強度比(C/B)が同じであれば、その第2赤外線強度比に対する温度は略同じになっている。   As shown in FIG. 8, the relationship between the temperature of the cooking container and the second infrared intensity ratio (C / B) shows that the silicon-based organic heat resistant metal surface has a temperature range from room temperature (25 ° C.) to about 300 ° C. In a cooking container with paint applied or a cooking container with an anodized aluminum plate surface (emissivity-variable cooking container), a cooking container with a black coating on a metal surface or a silver coating on a metal surface If the second infrared intensity ratio (C / B) is the same, the temperature relative to the second infrared intensity ratio is substantially the same as that of the container for the container (emissivity flat type cooking container). It is the same.

そこで、金属の表面に黒色塗装した調理用容器や金属の表面に銀色塗装した調理用容器(放射率均平型の調理用容器)に限らず、金属の表面にシリコン系有機耐熱塗料を塗布した調理用容器やアルミ板の表面をアルマイト処理した調理用容器(放射率変動型の調理用容器)についても、第2赤外線強度比(B/A)と調理用容器の温度との変化特性についての代表的なものを予め記憶しておき、実際に加熱される調理用容器について検出した第2赤外線強度比と予め記憶している前記変化特性とから調理用容器の温度を検出することが可能となる。   Therefore, silicon-based organic heat-resistant paint is applied to the surface of the metal, not limited to cooking containers with a black coating on the metal surface and cooking containers with a silver coating on the metal surface (emissivity flat type cooking container). Regarding the cooking container and the cooking container whose surface of the aluminum plate is anodized (emissivity variation type cooking container), the change characteristic between the second infrared intensity ratio (B / A) and the temperature of the cooking container It is possible to store a representative one in advance and detect the temperature of the cooking container from the second infrared intensity ratio detected for the cooking container to be actually heated and the change characteristic stored in advance. Become.

但し、図7と図8との対比から判るように、第1赤外線強度比(B/A)に対する調理用容器の温度の関係では、横軸である温度の変化に対する縦軸である赤外線強度比の変化率(傾き)が、第2赤外線強度比(C/B)に対する調理用容器の温度の関係に比べて大きく、赤外線強度比から温度を求めるときの検出精度が高いものになる。これは、上述したように、第1波長域α1が、放射率均平型の調理用容器については放射する赤外線強度の温度変化に対する変化が第2波長域α2や第3波長域α3よりも大きい波長領域に対応するように定められているからである。   However, as can be seen from the comparison between FIG. 7 and FIG. 8, in the relationship of the temperature of the cooking container with respect to the first infrared intensity ratio (B / A), the infrared intensity ratio which is the vertical axis with respect to the temperature change which is the horizontal axis. The rate of change (inclination) of is greater than the relationship of the temperature of the cooking container to the second infrared intensity ratio (C / B), and the detection accuracy when obtaining the temperature from the infrared intensity ratio is high. This is because, as described above, the first wavelength region α1 is larger in the emissivity-flat type cooking container than the second wavelength region α2 and the third wavelength region α3 with respect to the temperature change of the emitted infrared intensity. This is because it is determined to correspond to the wavelength region.

そして、上記したような計測結果を用いて、このコンロの温度検出装置では、第1赤外線強度比と調理用容器の温度との変化特性、及び、第2赤外線強度比と調理用容器の温度との変化特性を予め計測してメモリ等の記憶手段に記憶しておき、バーナ30にて加熱される調理用容器について、前記赤外線強度検出部40により実際に検出された検出結果とこれらの記憶されている変化特性とから、温度検出部50が調理用容器の温度を検出するように構成されている。   And using the measurement results as described above, in the temperature detection device of the stove, the change characteristics between the first infrared intensity ratio and the temperature of the cooking container, and the second infrared intensity ratio and the temperature of the cooking container, The change characteristics are measured in advance and stored in storage means such as a memory, and the detection results actually detected by the infrared intensity detection unit 40 and the storage of these cooking containers heated by the burner 30 are stored. The temperature detection unit 50 is configured to detect the temperature of the cooking container from the change characteristics.

そして、前記温度検出部50は、赤外線強度検出部40にて検出された第1波長域α1に対応する赤外線強度と第2波長域α2に対応する第1赤外線強度(B/A)を求め、その実測した第1赤外線強度比(B/A)、及び、予め記憶している第1赤外線強度比(B/A)と調理用容器の温度との変化特性から第1予測温度T1を求める。又、赤外線強度検出部40にて検出された第2波長域α2に対応する赤外線強度と第3波長域α3に対応する赤外線強度との比つまり第2赤外線強度比(C/B)を求め、その実測した第2赤外線強度比(C/B)、及び、予め記憶している第2赤外線強度比(C/B)と調理用容器の温度との変化特性から第2予測温度T2を求め、それら第1予測温度T1及び第2予測温度T2から調理用容器を検出する構成となっている。   The temperature detection unit 50 obtains the infrared intensity corresponding to the first wavelength range α1 detected by the infrared intensity detection unit 40 and the first infrared intensity (B / A) corresponding to the second wavelength range α2. The first predicted temperature T1 is obtained from the actually measured first infrared intensity ratio (B / A) and the change characteristics of the first infrared intensity ratio (B / A) stored in advance and the temperature of the cooking container. Further, a ratio between the infrared intensity corresponding to the second wavelength range α2 detected by the infrared intensity detection unit 40 and the infrared intensity corresponding to the third wavelength range α3, that is, the second infrared intensity ratio (C / B) is obtained. The second predicted temperature T2 is obtained from the measured second infrared intensity ratio (C / B), and the change characteristic between the second infrared intensity ratio (C / B) stored in advance and the temperature of the cooking container, The cooking container is detected from the first predicted temperature T1 and the second predicted temperature T2.

すなわち、前記温度検出部50は、前記第1予測温度T1と前記第2予測温度T2との差が許容範囲内にあるときは、前記第1予測温度T1を前記調理用容器の温度として、且つ、前記第1予測温度T1と前記第2予測温度T2との差が前記許容範囲を超えているときは、前記第2予測温度T2を前記調理用容器の温度として判定するように構成されている。   That is, when the difference between the first predicted temperature T1 and the second predicted temperature T2 is within an allowable range, the temperature detection unit 50 sets the first predicted temperature T1 as the temperature of the cooking container, and When the difference between the first predicted temperature T1 and the second predicted temperature T2 exceeds the allowable range, the second predicted temperature T2 is determined as the temperature of the cooking container. .

次に、赤外線強度検出部40の構成について具体的に説明する。
図1に示すように、赤外線強度検出部40が、前記汁受皿8の中央部に形成した開口部に下方側から挿入する状態で配設され、その赤外線強度検出部40にて、五徳2に載置された調理用容器Nの底部から放射されて導入された赤外線の赤外線強度を検出するように構成されている。又、赤外線強度検出部40は、通過させる赤外線の波長域が互いに異なる3個のバンドパスフィルター41a,41b,41cと、それら3個のバンドパスフィルター41a,41b,41cを通過した赤外線を各別に検出する3個の赤外線検出素子42a,42b,42cとを備えて構成して、調理用容器Nから放射される赤外線における異なる3つの波長域、すなわち、前記第1波長域α1、前記第2波長域α2及び前記第3波長域α3の夫々についての赤外線強度を検出するように構成されている。ちなみに、前記バンドパスフィルター41a,41b,41cは、対応する波長域の赤外線のみを選択的に透過させるように構成されている。
Next, the configuration of the infrared intensity detection unit 40 will be specifically described.
As shown in FIG. 1, the infrared intensity detection unit 40 is disposed in a state of being inserted from below into an opening formed in the central part of the soup pan 8. It is configured to detect the infrared intensity of the infrared rays radiated and introduced from the bottom of the placed cooking container N. The infrared intensity detector 40 also includes three band-pass filters 41a, 41b, 41c that pass through different wavelength ranges of infrared rays and the infrared rays that have passed through the three band-pass filters 41a, 41b, 41c. It comprises three infrared detecting elements 42a, 42b, 42c to detect, and three different wavelength ranges in the infrared rays radiated from the cooking container N, that is, the first wavelength range α1 and the second wavelength. The infrared intensity is detected for each of the region α2 and the third wavelength region α3. Incidentally, the band pass filters 41a, 41b and 41c are configured to selectively transmit only infrared rays in the corresponding wavelength region.

上記のような波長域の赤外線強度を検出する3個の赤外線検出素子42a,42b,42cとしては、Ge若しくはInGaAsを赤外線セルとして用いたもの、PbS若しくはPbSeを赤外線セルとして用いたもの、また、HgCdTeを赤外線セルとして用いたもの等、種々のものを利用することができる。また、上記の材料以外にも昇電素子やサーモパイル等を用いることもできる。   As the three infrared detecting elements 42a, 42b and 42c for detecting the infrared intensity in the wavelength range as described above, Ge or InGaAs is used as an infrared cell, PbS or PbSe is used as an infrared cell, Various things, such as what used HgCdTe as an infrared cell, can be utilized. In addition to the above materials, a power raising element, a thermopile, or the like can be used.

次に、前記温度検出部50により調理用容器Nの温度を求める処理について説明する。
温度検出部50には、上記したような第1赤外線強度比(B/A)と調理用容器の温度との変化特性、及び、第2赤外線強度比(C/B)と調理用容器の温度との変化特性を予め計測してメモリに記憶されている。ちなみに、これらの変化特性は、例えば、各相関関係についての近似式を求めて設定したり、あるいは、マップデータとして記憶する等、種々の形態で記憶しておくことができる。
Next, a process for obtaining the temperature of the cooking container N by the temperature detection unit 50 will be described.
The temperature detector 50 includes a change characteristic between the first infrared intensity ratio (B / A) and the temperature of the cooking container as described above, and a second infrared intensity ratio (C / B) and the temperature of the cooking container. Is measured in advance and stored in the memory. Incidentally, these change characteristics can be stored in various forms, for example, by obtaining an approximate expression for each correlation, or by storing it as map data.

そして、前記温度検出部50は、赤外線強度検出部40にて検出された第1波長域α1に対応する赤外線強度と第2波長域α2に対応する赤外線強度との比つまり実測赤外線強度比を求め、その実測赤外線強度比、及び、予め記憶している第1赤外線強度比(B/A)と調理用容器の温度との変化特性から第1予測温度T1を求める。又、赤外線強度検出部40にて検出された第2波長域α2に対応する赤外線強度と第3波長域α3に対応する赤外線強度との比つまり実測赤外線強度比を求め、その実測赤外線強度比、及び、予め記憶している第2赤外線強度比(C/B)と調理用容器の温度との変化特性から第2予測温度T2を求める。   The temperature detection unit 50 obtains a ratio between the infrared intensity corresponding to the first wavelength range α1 detected by the infrared intensity detection unit 40 and the infrared intensity corresponding to the second wavelength range α2, that is, a measured infrared intensity ratio. The first predicted temperature T1 is obtained from the measured infrared intensity ratio, and the change characteristics between the first infrared intensity ratio (B / A) stored in advance and the temperature of the cooking container. Further, the ratio of the infrared intensity corresponding to the second wavelength region α2 detected by the infrared intensity detector 40 and the infrared intensity corresponding to the third wavelength region α3, that is, the actually measured infrared intensity ratio, And the 2nd predicted temperature T2 is calculated | required from the change characteristic of the 2nd infrared intensity ratio (C / B) memorize | stored beforehand and the temperature of the container for cooking.

そして、第1予測温度T1と第2予測温度T2との差が許容範囲(例えば±15℃の範囲)内であれば第1予測温度T1を調理用容器の温度として判定し、第1予測温度T1と第2予測温度T2との差が前記許容範囲を超えていれば第2予測温度T2を調理用容器の温度として判定するのである。   If the difference between the first predicted temperature T1 and the second predicted temperature T2 is within an allowable range (for example, a range of ± 15 ° C.), the first predicted temperature T1 is determined as the temperature of the cooking container, and the first predicted temperature If the difference between T1 and the second predicted temperature T2 exceeds the allowable range, the second predicted temperature T2 is determined as the temperature of the cooking container.

前記温度検出部50にて求められた温度は、前記燃焼制御部3に出力され、燃焼制御部3は、この温度検出部50にて求められる温度に基づいて燃料供給量調節弁6等を制御することにより、調理用容器Nの自動温度制御、調理用容器Nの過昇温時の緊急停止制御等を行うように構成されている。   The temperature obtained by the temperature detection unit 50 is output to the combustion control unit 3, and the combustion control unit 3 controls the fuel supply amount adjustment valve 6 and the like based on the temperature obtained by the temperature detection unit 50. Thus, the automatic temperature control of the cooking container N, the emergency stop control when the cooking container N is excessively heated, and the like are performed.

〔別実施形態〕
次に別実施形態を説明する。
[Another embodiment]
Next, another embodiment will be described.

(1)上記実施形態では、前記第2波長域α2が、前記第1温度計測用の波長域K1及び前記第2温度計測用の波長域K2を兼用する構成としたが、このような構成に代えて、前記放射率均平範囲に設定した第1温度計測用の波長域K1と、前記放射率均平範囲に異なる波長域として設定した2種の第2温度計測用の波長域K2の夫々を互いに異なる波長域に設定するものでもよい。つまり、2種の第1温度計測用の波長域K1と2種の第2温度計測用の波長域K2として異なる4つの波長域を夫々設定する構成としてもよい。 (1) In the above embodiment, the second wavelength region α2 is configured to serve as both the first temperature measurement wavelength region K1 and the second temperature measurement wavelength region K2. Instead, the wavelength range K1 for the first temperature measurement set in the emissivity average range and the two types of wavelength ranges K2 for the second temperature measurement set as different wavelength ranges in the emissivity average range, respectively. May be set in different wavelength ranges. That is, four different wavelength ranges may be set as the two types of wavelength ranges K1 for first temperature measurement and the two types of wavelength ranges K2 for second temperature measurement.

(2)上記実施形態では、前記放射率変動範囲に設定する第1温度計測用の波長域K1として第1波長域α1(3.5μm以上且つ4μm以下の領域)を設定し、前記放射率均平範囲に設定する第1温度計測用の波長域K1及び前記放射率均平範囲に設定する1つの第2温度計測用の波長域K2として第2波長域α2(8μm以上且つ11μm以下の領域)を設定し、且つ、前記放射率均平範囲に設定する他の1つの第2温度計測用の波長域K2として第3波長域α3(13μm以上15μm以下の領域)を設定するようにしたが、上記したような第1波長域α1、第2波長域α2、第3波長域α3の波長範囲は例示であって、これらの波長範囲に限定されるものではなく、具体的な波長範囲は適宜変更して実施することができる。 (2) In the above embodiment, the first wavelength region α1 (region of 3.5 μm to 4 μm) is set as the first temperature measurement wavelength region K1 set in the emissivity variation range, and the emissivity average is set. A second wavelength region α2 (region of 8 μm or more and 11 μm or less) as a first temperature measurement wavelength region K1 set in a flat range and one second temperature measurement wavelength region K2 set in the emissivity average range. And setting the third wavelength region α3 (region of 13 μm or more and 15 μm or less) as the other second temperature measurement wavelength region K2 set in the emissivity flattening range, The wavelength ranges of the first wavelength range α1, the second wavelength range α2, and the third wavelength range α3 as described above are examples, and are not limited to these wavelength ranges, and the specific wavelength ranges are appropriately changed. Can be implemented.

(3)上記実施形態では、前記温度検出手段が、第1予測温度T1と第2予測温度T2との差が許容範囲内であれば第1予測温度T1を調理用容器の温度として判定し、第1予測温度T1と第2予測温度T2との差が前記許容範囲を超えていれば第2予測温度T2を調理用容器の温度として判定する構成としたが、このような構成に代えて、第1予測温度T1と第2予測温度T2との差が許容範囲内であれば第1予測温度T1と第2予測温度T2との平均値を調理用容器の温度として判定する等、種々の形態で実施することができる。 (3) In the above embodiment, if the difference between the first predicted temperature T1 and the second predicted temperature T2 is within an allowable range, the temperature detecting means determines the first predicted temperature T1 as the temperature of the cooking container, If the difference between the first predicted temperature T1 and the second predicted temperature T2 exceeds the allowable range, the second predicted temperature T2 is determined as the temperature of the cooking container, but instead of such a configuration, If the difference between the first predicted temperature T1 and the second predicted temperature T2 is within an allowable range, various forms such as determining the average value of the first predicted temperature T1 and the second predicted temperature T2 as the temperature of the cooking container, etc. Can be implemented.

(4)上記実施形態では、前記加熱調理器として、混合気を環状のバーナ本体から内向きに噴出させて燃焼させる内炎式バーナを備えるコンロを示したが、混合気を外向き上方に噴出させるブンゼン燃焼式のバーナを備えたコンロであってもよい。
つまり、図9に示すように、バーナ30が、天板1に形成された開口部を通して上方に露出して混合気を外向き上方に噴出させて燃焼させる炎口33を備える外炎式バーナにて構成するものでもよく、この構成では、炎口33を形成するバーナ本体35が円筒状に設けられて、その中央に上下方向に貫通する貫通孔36が形成され、赤外線強度検出部40がその貫通孔36を通した赤外線強度を検出するように構成されている。尚、貫通孔36の上端部は透光性の窓部37にて覆う構成としている。
(4) In the above embodiment, the stove provided with the internal flame type burner for injecting and burning the air-fuel mixture inward from the annular burner body as the heating cooker has been shown. A stove provided with a Bunsen combustion type burner to be used may be used.
In other words, as shown in FIG. 9, the burner 30 is exposed to the upper side through the opening formed in the top plate 1, and is an external flame type burner provided with a flame port 33 that ejects the air-fuel mixture upward and burns it. In this configuration, the burner body 35 forming the flame opening 33 is provided in a cylindrical shape, and a through hole 36 penetrating in the vertical direction is formed at the center thereof. The infrared intensity through the through hole 36 is detected. The upper end portion of the through hole 36 is covered with a translucent window portion 37.

(5)上記実施形態では、赤外線強度検出手段が、3個のバンドパスフィルター41a,41b,41cを通過した赤外線を各別に検出する3個の赤外線検出素子42a,42b,42cを備えて、調理用容器Nから放射される赤外線における互いに異なる3つの波長域夫々についての赤外線強度を検出するように構成したが、このような構成に代えて、複数の波長域の夫々の赤外線を全て検出可能な1つの赤外線検出素子に対して3個のバンドパスフィルターが交互に作用するように位置を切り換えて、その切り換えた状態の夫々における赤外線検出素子の検出値を用いて、互いに異なる波長域の赤外線強度を検出する構成としてもよい。 (5) In the above embodiment, the infrared intensity detecting means includes three infrared detecting elements 42a, 42b, and 42c that individually detect the infrared rays that have passed through the three band pass filters 41a, 41b, and 41c. The infrared intensity emitted from each of the three different wavelength ranges in the infrared rays radiated from the container N is configured to be detected, but instead of such a configuration, all the infrared rays in a plurality of wavelength ranges can be detected. Infrared intensities in different wavelength ranges using the detection values of the infrared detection element in each of the switched states by switching the positions so that three bandpass filters act alternately on one infrared detection element. It is good also as a structure which detects.

(6)上記実施形態では、前記赤外線強度検出手段が、バーナの中央部の下方側に位置して上下方向に沿って入射する赤外線の強度を検出するものを例示したが、このような構成に限らず、バーナの中央部から横方向に位置をずらせて、斜め方向に沿って入射する赤外線の強度を検出するものでもよく、設置形態は種々変更して実施することができる。 (6) In the above embodiment, the infrared intensity detecting means is exemplified to detect the intensity of the infrared ray that is located along the vertical direction and is located on the lower side of the center portion of the burner. The present invention is not limited to this, and it is possible to detect the intensity of infrared rays incident in the oblique direction by shifting the position in the horizontal direction from the center of the burner.

(7)上記実施形態では、前記加熱手段としてガス燃焼式のバーナを用いる構成としたが、加熱手段はバーナに限定されるものではなく、例えばハロゲンランプを用いたもの、電気抵抗線を内蔵したシーズヒータを用いたもの、又は、電磁誘導加熱(通常、「IH」と呼ばれる)を行う磁界発生コイルを用いたもの等、電気式加熱部にて構成しても良い。 (7) In the above embodiment, a gas combustion type burner is used as the heating means. However, the heating means is not limited to the burner, for example, a halogen lamp is used, and an electric resistance wire is incorporated. You may comprise by an electric heating part, such as what uses a sheathed heater, or the thing using the magnetic field generation coil which performs electromagnetic induction heating (usually called "IH").

加熱調理器の概略構成図Schematic configuration diagram of the cooking device 放射特性を示す図Diagram showing radiation characteristics 調理用容器から放射される赤外線放射強度の分光スペクトルデータを示す図The figure which shows the spectrum data of the infrared radiation intensity radiated | emitted from the container for cooking 調理用容器から放射される赤外線放射強度の分光スペクトルデータを示す図The figure which shows the spectrum data of the infrared radiation intensity radiated | emitted from the container for cooking 調理用容器から放射される赤外線放射強度の分光スペクトルデータを示す図The figure which shows the spectrum data of the infrared radiation intensity radiated | emitted from the container for cooking 火炎から放射される赤外線放射強度の分光スペクトルデータを示す図Figure showing the spectral data of the infrared radiation intensity emitted from the flame 調理用容器の温度と赤外線強度比との関係を示す図The figure which shows the relationship between the temperature of the container for cooking, and infrared rays intensity ratio 調理用容器の温度と赤外線強度比との関係を示す図The figure which shows the relationship between the temperature of the container for cooking, and infrared rays intensity ratio 別実施形態の加熱調理器の概略構成図The schematic block diagram of the heating cooker of another embodiment

符号の説明Explanation of symbols

30 加熱手段
40 赤外線強度検出手段
50 温度検出手段
K1 第1温度計測用の波長域
K2 第2温度計測用の波長域
T1 第1予測温度
T2 第2予測温度
30 Heating means 40 Infrared intensity detecting means 50 Temperature detecting means K1 Wavelength range for first temperature measurement K2 Wavelength range for second temperature measurement T1 First predicted temperature T2 Second predicted temperature

Claims (3)

調理用容器を加熱する加熱手段と、前記調理用容器から放射された赤外線における複数の波長域夫々についての赤外線強度を検出する赤外線強度検出手段と、その赤外線強度検出手段にて検出される前記複数の波長域夫々についての赤外線強度に基づいて前記調理用容器の温度を検出する温度検出手段とを備えた加熱調理器用の温度検出装置であって、
前記赤外線強度検出手段が、
前記複数の波長域についての赤外線強度として、
波長の変化に対する放射率の変化が小さい放射率均平範囲及び波長の変化に対する放射率の変化が大きい放射率変動範囲を有する放射特性の放射率変動型の調理用容器に対応させて、前記放射率変動範囲に設定した第1温度計測用の波長域についての赤外線強度、前記放射率均平範囲に設定した第1温度計測用の波長域についての赤外線強度、及び、前記放射率均平範囲に異なる波長域として設定した2種の第2温度計測用の波長域の夫々についての赤外線強度を検出するように構成され、
前記温度検出手段が、
2種の前記第1温度計測用の波長域の夫々について検出される一対の赤外線強度の比に基づいて第1予測温度を求め、かつ、2種の前記第2温度計測用の波長域の夫々について検出される一対の赤外線強度の比に基づいて第2予測温度を求めて、それら第1予測温度及び第2予測温度に基づいて調理用容器の温度を判定するように構成されている加熱調理器用の温度検出装置。
A heating means for heating the cooking container, an infrared intensity detection means for detecting an infrared intensity for each of a plurality of wavelength ranges in the infrared rays radiated from the cooking container, and the plurality detected by the infrared intensity detection means A temperature detection device for a heating cooker, comprising temperature detection means for detecting the temperature of the cooking container based on the infrared intensity for each of the wavelength ranges of
The infrared intensity detecting means is
As the infrared intensity for the plurality of wavelength ranges,
The radiation corresponding to an emissivity variation type cooking container having an emissivity characteristic having an emissivity leveling range with a small change in emissivity with respect to a change in wavelength and an emissivity variation range with a large change in emissivity with respect to a change in wavelength. Infrared intensity for the first temperature measurement wavelength range set in the rate variation range, Infrared intensity for the first temperature measurement wavelength range set in the emissivity level range, and the emissivity level range It is configured to detect the infrared intensity for each of the two types of wavelength ranges for second temperature measurement set as different wavelength ranges,
The temperature detecting means is
A first predicted temperature is obtained based on a ratio of a pair of infrared intensities detected for each of the two types of wavelength regions for the first temperature measurement, and each of the two types of wavelength regions for the second temperature measurement is used. Cooking is configured to determine a second predicted temperature based on a ratio of a pair of infrared intensities detected with respect to and to determine the temperature of the cooking container based on the first predicted temperature and the second predicted temperature Temperature detector for dexterity.
前記放射率変動範囲に設定した第1温度計測用の波長域が、波長の変化に対する放射率の変化が無い又は変化が少ない放射特性の放射率均平型の調理用容器については放射する赤外線強度の温度変化に対する変化が前記2種の前記第2温度計測用の波長域よりも大きい波長域に対応するように定められ、
前記温度検出手段が、
前記第1予測温度と前記第2予測温度との差が許容範囲内にあるときは、前記第1予測温度を前記調理用容器の温度として、且つ、前記第1予測温度と前記第2予測温度との差が前記許容範囲を超えているときは、前記第2予測温度を前記調理用容器の温度として判定するように構成されている請求項1記載の加熱調理器用の温度検出装置。
Infrared intensity radiated for an emissivity-equalized cooking container having a radiation characteristic in which the wavelength range for first temperature measurement set in the emissivity fluctuation range has no or little change in emissivity with respect to wavelength change. Corresponding to a wavelength range larger than the two types of wavelength ranges for the second temperature measurement,
The temperature detecting means is
When the difference between the first predicted temperature and the second predicted temperature is within an allowable range, the first predicted temperature is set as the temperature of the cooking container, and the first predicted temperature and the second predicted temperature. The temperature detection device for a heating cooker according to claim 1, wherein the second predicted temperature is determined as the temperature of the cooking container when the difference between the temperature and the tolerance exceeds the allowable range.
前記赤外線強度検出手段が、
前記放射率変動範囲に設定される前記第1温度計測用の波長域として、3.1μm以上且つ4.2μm以下の範囲内から選択された波長域が設定され、且つ、前記放射率均平範囲に設定される前記2種の第2温度計測用の波長域として、8.0μm以上且つ20.0μm以下の範囲内から選択された波長域が設定され、それら複数の波長域夫々の赤外線強度を検出するように構成されている請求項1又は2記載の加熱調理器用の温度検出装置。
The infrared intensity detecting means is
A wavelength range selected from a range of 3.1 μm or more and 4.2 μm or less is set as the first temperature measurement wavelength range set in the emissivity variation range, and the emissivity average range is set. A wavelength range selected from the range of 8.0 μm or more and 20.0 μm or less is set as the two types of wavelength ranges for the second temperature measurement set to 2 and the infrared intensity of each of the plurality of wavelength ranges is set. The temperature detection device for a heating cooker according to claim 1 or 2, wherein the temperature detection device is configured to detect.
JP2007069333A 2007-03-16 2007-03-16 Temperature detection device for cooking device Expired - Fee Related JP4989264B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007069333A JP4989264B2 (en) 2007-03-16 2007-03-16 Temperature detection device for cooking device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007069333A JP4989264B2 (en) 2007-03-16 2007-03-16 Temperature detection device for cooking device

Publications (2)

Publication Number Publication Date
JP2008232468A JP2008232468A (en) 2008-10-02
JP4989264B2 true JP4989264B2 (en) 2012-08-01

Family

ID=39905482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007069333A Expired - Fee Related JP4989264B2 (en) 2007-03-16 2007-03-16 Temperature detection device for cooking device

Country Status (1)

Country Link
JP (1) JP4989264B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210067754A (en) * 2019-11-29 2021-06-08 (주)쿠첸 Cooking apparatus

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5074972B2 (en) * 2008-03-24 2012-11-14 大阪瓦斯株式会社 Temperature detection device for cooking device
JP5270405B2 (en) * 2009-03-06 2013-08-21 大阪瓦斯株式会社 Temperature detection device
FI20185482A1 (en) 2018-05-25 2019-11-26 Safera Oy Stove guard that makes use of different wavelengths

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6453122A (en) * 1987-08-24 1989-03-01 Daikin Ind Ltd Method for measuring soldering temperature
JP4422943B2 (en) * 2001-03-16 2010-03-03 大阪瓦斯株式会社 Stove
JP4557736B2 (en) * 2005-02-03 2010-10-06 大阪瓦斯株式会社 Stove
JP4586650B2 (en) * 2005-06-29 2010-11-24 オムロン株式会社 Temperature measurement module and temperature measurement method using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210067754A (en) * 2019-11-29 2021-06-08 (주)쿠첸 Cooking apparatus
KR102299433B1 (en) * 2019-11-29 2021-09-08 (주)쿠첸 Cooking apparatus

Also Published As

Publication number Publication date
JP2008232468A (en) 2008-10-02

Similar Documents

Publication Publication Date Title
JP4989265B2 (en) Temperature detection device for cooking device
JP5138257B2 (en) Infrared intensity detector for cooking appliances
CN103369754B (en) Induction cooking device
JP4989264B2 (en) Temperature detection device for cooking device
JP5006560B2 (en) Temperature detection method, temperature detection device, and cooking device provided with temperature detection device
JP5107081B2 (en) Temperature detection device for cooking device
JP4557736B2 (en) Stove
US11248964B2 (en) Stove guard utilizing different wavelengths
JP5149538B2 (en) Cooker
JP5074972B2 (en) Temperature detection device for cooking device
JP4628118B2 (en) Stove
JP6037854B2 (en) Stove, operating method of stove, estimation method of heating container material used on stove, and estimation method of heating container material
JP4557732B2 (en) Stove
JP7078495B2 (en) Cooker
JP5270405B2 (en) Temperature detection device
JP2004241220A (en) Induction heating cooking device
JP7304304B2 (en) Gas stove
JP5921283B2 (en) Temperature measuring device and cooking device
JP7054822B2 (en) Induction heating cooker
JP7228778B2 (en) induction cooker
CN103687120A (en) Induction heating cooker
JP7394701B2 (en) heating cooker
JP7337026B2 (en) heating cooker
JP5351995B2 (en) Cooker
WO2020169111A1 (en) Control system for cooking device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100302

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120329

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120427

R150 Certificate of patent or registration of utility model

Ref document number: 4989264

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees