JP2010113882A - Heating cooker - Google Patents

Heating cooker Download PDF

Info

Publication number
JP2010113882A
JP2010113882A JP2008284081A JP2008284081A JP2010113882A JP 2010113882 A JP2010113882 A JP 2010113882A JP 2008284081 A JP2008284081 A JP 2008284081A JP 2008284081 A JP2008284081 A JP 2008284081A JP 2010113882 A JP2010113882 A JP 2010113882A
Authority
JP
Japan
Prior art keywords
temperature
heated
emissivity
mirror surface
top plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008284081A
Other languages
Japanese (ja)
Other versions
JP4799603B2 (en
Inventor
Akira Morii
彰 森井
Hiroshi Yamazaki
博史 山崎
Hiroyasu Shiichi
広康 私市
Kenichiro Nishi
健一郎 西
Shigeyuki Nagata
滋之 永田
Shota Kamiya
庄太 神谷
Kazuhiro Kameoka
和裕 亀岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Home Appliance Co Ltd
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Home Appliance Co Ltd
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Home Appliance Co Ltd, Mitsubishi Electric Corp filed Critical Mitsubishi Electric Home Appliance Co Ltd
Priority to JP2008284081A priority Critical patent/JP4799603B2/en
Publication of JP2010113882A publication Critical patent/JP2010113882A/en
Application granted granted Critical
Publication of JP4799603B2 publication Critical patent/JP4799603B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/06Control, e.g. of temperature, of power
    • H05B6/062Control, e.g. of temperature, of power for cooking plates or the like
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2213/00Aspects relating both to resistive heating and to induction heating, covered by H05B3/00 and H05B6/00
    • H05B2213/07Heating plates with temperature control means

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Radiation Pyrometers (AREA)
  • Induction Heating Cooking Devices (AREA)
  • Electric Stoves And Ranges (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heating cooker which precisely detects the temperature of an article to be heated to perform an appropriate heating operation. <P>SOLUTION: This heating cooker includes: an infrared temperature detector 18 that is disposed above a top plate 12 on which the article 14 to be heated is placed and detects the temperature of the article 14 to be heated based on the dose of infrared radiation emitted from the article 14 to be heated; and a controller 22 that controls a driver 17 based on the temperature of the article 14 to be heated, detected by the infrared temperature detector 18, to control the heating operation of a heating portion 16, wherein the infrared temperature detector 18 detects the temperatures of a plurality of points in a region to be detected such as the side surface of the article 14 to be heated on the top plate 12, a boundary between the article 14 to be heated and the top plate 12, and the top plate 12, determines whether the surface state of the article 14 to be heated is a mirror or non-mirror surface based on the results of the detected temperatures, and then corrects the temperature of a predetermined point among the temperatures of the plurality of points based on a preset emissivity depending on the result of determination to set corrected temperature as the temperature of the article 14 to be heated. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、電磁誘導を利用して加熱調理を行う加熱調理器に関するものである。   The present invention relates to a cooking device that performs cooking using electromagnetic induction.

従来の一般的な加熱調理器では、天板に載置される被加熱物(例えば、鍋など)の温度を検出し、その温度に基づいて加熱手段を制御して被加熱物の温度調節を行い、被加熱物の焦げ付きや生煮えなどを防ぐ等の確実な加熱調理を可能としている。   In a conventional general cooking device, the temperature of an object to be heated (for example, a pan) placed on the top plate is detected, and the temperature of the object to be heated is adjusted by controlling the heating means based on the temperature. It is possible to perform reliable heating cooking such as preventing burning of the heated object and raw cooking.

このような加熱調理器では、被加熱物の温度を正確に検出するための技術が各種提案されている。例えば、被加熱物の材質を検出する材質検出手段と、被加熱物から放射される赤外線量を検出する赤外線温度検出手段とを備え、材質検出手段により検出した被加熱物の材質から被加熱物の放射率を求め、赤外線温度検出手段で検出された被加熱物の赤外線量を前記放射率で補正して被加熱物の温度を推定するようにした誘導加熱調理器がある(例えば、特許文献1,特許文献2参照)。   In such a heating cooker, various techniques for accurately detecting the temperature of the object to be heated have been proposed. For example, a material detecting means for detecting the material of the object to be heated and an infrared temperature detecting means for detecting the amount of infrared rays emitted from the object to be heated are provided, and the object to be heated is detected from the material of the object to be heated detected by the material detecting means. There is an induction heating cooker that calculates the emissivity of the object and estimates the temperature of the object to be heated by correcting the infrared amount of the object to be heated detected by the infrared temperature detecting means with the emissivity (for example, Patent Documents) 1, Patent Document 2).

また、別の温度検出方法を採用した加熱調理器として、天板の下に発光手段と受光手段と赤外線温度検出手段とを配置し、発光手段から天板を介して被加熱物の底面に光を照射し、被加熱物の底面で反射した反射光を天板を介して受光手段で受光し、その受光量から換算された被加熱物の放射率を用いて、赤外線温度検出手段で検出した被加熱物の赤外線量を補正し、温度を推定するようにした加熱調理器がある(例えば、特許文献3参照)。
特許第4120536号公報(第3頁、第4頁、図1) 特開2003−264055号公報(第4頁、図1) 特開平11−225881号公報(第3頁、図1)
In addition, as a cooking device employing another temperature detection method, a light emitting means, a light receiving means, and an infrared temperature detecting means are disposed under the top plate, and light is emitted from the light emitting means to the bottom surface of the object to be heated via the top plate. The reflected light reflected from the bottom of the heated object is received by the light receiving means through the top plate, and detected by the infrared temperature detecting means using the emissivity of the heated object converted from the received light amount. There is a cooking device that corrects the amount of infrared rays of the object to be heated and estimates the temperature (see, for example, Patent Document 3).
Japanese Patent No. 4120536 (page 3, page 4, FIG. 1) JP 2003-264055 A (page 4, FIG. 1) Japanese Patent Laid-Open No. 11-225881 (page 3, FIG. 1)

特許文献1及び特許文献2の加熱調理器では、被加熱物の材質に応じて放射率を決定し、その放射率に基づいて被加熱物の赤外線量を補正して被加熱物の温度を推定するようにしている。しかしながら、同じ材質であっても、被加熱物の表面状態により被加熱物から放射される赤外線量が異なることから、単に材質に基づいて放射率を一意に決定してしまうと、正確な温度を検出することができない。具体的には、黒体の赤外線放射率1.0を基準としたとき、被加熱物の材質が例えば鏡面仕上げの鉄の場合、放射率は0.21であるが、さびで鏡面状態が失われると0.69となる。このように放射率が異なると、被加熱物の温度自体は同じであっても被加熱物から放射される赤外線量は変化する。したがって、材質に基づいて放射率を一意に決定してしまうと、正確な温度を検出することができず、被加熱物の加熱動作が不安定になるという問題があった。   In the heating cookers of Patent Document 1 and Patent Document 2, the emissivity is determined according to the material of the object to be heated, and the infrared ray amount of the object to be heated is corrected based on the emissivity to estimate the temperature of the object to be heated. Like to do. However, even if the material is the same, the amount of infrared rays emitted from the object to be heated differs depending on the surface state of the object to be heated. It cannot be detected. Specifically, when the black body infrared emissivity is 1.0, when the material of the object to be heated is, for example, mirror-finished iron, the emissivity is 0.21, but the specular state is lost due to rust. Will be 0.69. Thus, when the emissivity is different, the amount of infrared rays emitted from the heated object changes even if the temperature of the heated object is the same. Therefore, if the emissivity is uniquely determined based on the material, there is a problem that an accurate temperature cannot be detected and the heating operation of the object to be heated becomes unstable.

また、特許文献3の加熱調理器では、被加熱物から放射される赤外線量をガラス製の天板を介して検出するようにしているが、天板は低温(約150℃以下)の赤外線をカットする特性を有しているため、約150℃以下の温度を正しく検出することができない。また、発光手段から投光した光を被加熱物で反射させ、その反射光を受光手段で受光するという計測原理上、受光手段に反射光以外の照明等の外乱光が入射するのを避けるように構成する必要がある。したがって、発光手段及び受光手段を天板の下部に配置し、天板の下部から被加熱物の底部(鍋底)に向けて投光し、鍋底からの反射光を受光するようにしている。しかしながら、鍋底が凹んでいる所謂反り鍋の場合、鍋底が平坦なものに比べて反射光が散乱するため、反射光を上手く受光できず、温度を正しく検出できないという問題があった。   Moreover, in the heating cooker of patent document 3, although the amount of infrared rays radiated | emitted from a to-be-heated object is detected through a glass top plate, a top plate is using low temperature (about 150 degrees C or less) infrared rays. Since it has a characteristic of cutting, a temperature of about 150 ° C. or lower cannot be correctly detected. In addition, on the measurement principle that the light projected from the light emitting means is reflected by the object to be heated, and the reflected light is received by the light receiving means, avoid disturbance light such as illumination other than reflected light from entering the light receiving means. Need to be configured. Therefore, the light emitting means and the light receiving means are disposed below the top plate, and light is projected from the bottom of the top plate toward the bottom (pan bottom) of the object to be heated so that the reflected light from the pan bottom is received. However, in the case of a so-called warped pan in which the bottom of the pan is recessed, the reflected light is scattered as compared with a flat pan bottom, so that the reflected light cannot be received well and the temperature cannot be detected correctly.

本発明はこのような点に鑑みなされたもので、被加熱物の温度を正確に検出して適切な加熱動作を実行することのできる加熱調理器を得ることを目的とする。   This invention is made | formed in view of such a point, and it aims at obtaining the heating cooker which can detect the temperature of a to-be-heated object correctly, and can perform suitable heating operation | movement.

本発明に係る加熱調理器は、被加熱物を載置する天板と、天板の下方に設けられ、被加熱物を加熱する加熱部と、加熱部を駆動する駆動部と、天板よりも上方に配置され、被加熱物から放射される赤外線量に基づいて被加熱物の温度を検出する赤外線温度検出部と、赤外線温度検出部で検出された被加熱物の温度に基づいて駆動部を制御し、加熱部の加熱動作を制御する制御部とを備え、赤外線温度検出部は、天板上に載置される被加熱物の側面、被加熱物と天板との境界部及び天板を含む被検出領域内の複数箇所の温度を検出し、その温度検出結果に基づいて被加熱物の表面状態が鏡面か非鏡面かを判定し、判定結果に応じて予め設定された放射率に基づいて、複数箇所の温度のうち、所定箇所の温度を補正して被加熱物の温度とするものである。   The cooking device according to the present invention includes a top plate on which the object to be heated is placed, a heating unit that is provided below the top plate and heats the object to be heated, a driving unit that drives the heating unit, and a top plate. And an infrared temperature detector that detects the temperature of the object to be heated based on the amount of infrared rays emitted from the object to be heated, and a drive unit based on the temperature of the object to be heated detected by the infrared temperature detector And an infrared temperature detector that controls the side of the object to be heated placed on the top plate, the boundary between the object to be heated and the top plate, and the ceiling. Detects the temperature of multiple locations in the detection area including the plate, determines whether the surface condition of the object to be heated is specular or non-specular based on the temperature detection result, and sets the emissivity preset according to the determination result Based on the above, the temperature at a predetermined location among the temperatures at multiple locations is corrected to the temperature of the object to be heated A.

本発明によれば、被加熱物の表面状態が鏡面か非鏡面かを判定し、その判定結果に応じた放射率を用いて温度換算を行うようにしたため、被加熱物の温度を正確に検出することが可能となり、適切な加熱動作を実行することが可能となる。   According to the present invention, the surface condition of the object to be heated is determined to be specular or non-specular, and the temperature is converted using the emissivity according to the determination result, so the temperature of the object to be heated is accurately detected. It becomes possible to perform an appropriate heating operation.

実施の形態1.
図1は、本発明の実施の形態1に係る加熱調理器の外観を模式的に示す斜視図、図2は、図1の側面断面図である。
加熱調理器の本体11は、本体11の上面に配置され、被加熱物14を載置するための例えばセラミクスなどの耐熱性材料から成る天板12と、本体11の上面の一側に配置されて機器のオン/オフや天板12上に載置される被加熱物14の加熱温度を設定する各操作スイッチ(図示なし)が設けられた操作部13と、機器のオン/オフや設定温度を表示する表示部15とを備えている。また、天板12の直下には天板12上に載置された被加熱物14を加熱するための加熱コイルで構成された加熱部16と、交流電源(図示せず)から供給される商用電力を高周波電力に変換して加熱部16に供給する駆動部17とを備えている。
Embodiment 1 FIG.
FIG. 1 is a perspective view schematically showing the appearance of a heating cooker according to Embodiment 1 of the present invention, and FIG. 2 is a side sectional view of FIG.
The main body 11 of the heating cooker is disposed on the upper surface of the main body 11, and is disposed on one side of the upper surface of the main body 11 and the top plate 12 made of a heat resistant material such as ceramics for placing the object to be heated 14. The operation unit 13 provided with operation switches (not shown) for setting the device on / off and the heating temperature of the object 14 to be heated placed on the top plate 12, and the device on / off and the set temperature Is displayed. Further, immediately below the top plate 12, a heating unit 16 composed of a heating coil for heating an object to be heated 14 placed on the top plate 12, and a commercial supplied from an AC power source (not shown). And a drive unit 17 that converts electric power into high-frequency power and supplies the electric power to the heating unit 16.

加熱調理器は更に、被加熱物14から放射される赤外線量を検出する赤外線検出部19を備えた赤外線温度検出部18を有している。赤外線検出部19は、天板12の上面を臨むように天板12の上方に配置されており、赤外線温度検出部18は赤外線検出部19で検出した赤外線量を温度検出部20にて温度に換算し、温度データを後述の制御部22に出力する。また、本体11内には、天板12の裏面に熱的に接触するように配置され、被加熱物14の温度を天板12を介して検出する接触式温度検出部21と、制御部22とを備えている。制御部22は、操作部13から入力設定された運転条件と、赤外線温度検出部18及び接触式温度検出部21の検出温度とに基づいて駆動部17を制御し、加熱部16の加熱動作を制御する。   The heating cooker further includes an infrared temperature detection unit 18 that includes an infrared detection unit 19 that detects the amount of infrared rays emitted from the article 14 to be heated. The infrared detection unit 19 is arranged above the top plate 12 so as to face the top surface of the top plate 12, and the infrared temperature detection unit 18 converts the infrared amount detected by the infrared detection unit 19 to a temperature by the temperature detection unit 20. It converts and outputs temperature data to the control part 22 mentioned later. In the main body 11, a contact-type temperature detection unit 21 that is disposed so as to be in thermal contact with the back surface of the top plate 12 and detects the temperature of the object to be heated 14 via the top plate 12, and a control unit 22. And. The control unit 22 controls the drive unit 17 based on the operating conditions input and set from the operation unit 13 and the detected temperatures of the infrared temperature detection unit 18 and the contact-type temperature detection unit 21, and performs the heating operation of the heating unit 16. Control.

次に、赤外線検出部19の構成及び本体11への配置について説明する。図3は、赤外線検出部の受光素子部分の構成を示す図である。図4は、赤外線検出部の配置位置の説明図である。図3に示すように、赤外線検出部19は、例えば縦方向に配列された複数の受光素子1(1a〜1h)を備えており、ここでは8個配列して構成されている。各受光素子1(1a〜1h)は、被加熱物14から放射される赤外線を受光する。各受光素子1それぞれの受光エリアの角度は例えば5度以内に設定され、天板12上の定位置に被加熱物14を載置した状態で、図4に示すように全受光素子1で被加熱物14の側面(鍋肌部)から鍋底部、更に天板部を受光エリア内に収めることができるように配置されている。   Next, the configuration of the infrared detection unit 19 and the arrangement on the main body 11 will be described. FIG. 3 is a diagram illustrating a configuration of a light receiving element portion of the infrared detection unit. FIG. 4 is an explanatory diagram of an arrangement position of the infrared detection unit. As shown in FIG. 3, the infrared detection unit 19 includes, for example, a plurality of light receiving elements 1 (1a to 1h) arranged in the vertical direction, and here, eight infrared detectors are arranged. Each of the light receiving elements 1 (1a to 1h) receives infrared rays emitted from the object to be heated 14. The angle of the light receiving area of each light receiving element 1 is set within 5 degrees, for example, and the object to be heated is placed on all the light receiving elements 1 as shown in FIG. It arrange | positions so that the pan bottom part from the side surface (pot skin part) of the heating thing 14 and also a top plate part can be stored in a light reception area.

図4の例では、受光素子1a〜1cによる受光エリアa〜cで鍋肌部から放射される赤外線を受光し、受光素子1d、1eによる受光エリアd、eで鍋底部から放射される赤外線を受光し、受光素子1f〜1hによる受光エリアf〜hで天板部から放射される赤外線を受光している。被加熱物14の各部と受光エリアa〜hとの対応関係は被加熱物14の大きさによって変化するが、何れにしろ、被加熱物14の側面(鍋肌部)、被加熱物14と天板12との境界部(鍋底部)及び天板12(天板部)を受光エリア(被検出領域)内に収め、その被検出領域内を、上下方向に複数箇所、温度検出できるように各受光素子1が配置されている。各受光素子1のそれぞれで検出された赤外線量は、温度検出部20において以下のステファン・ボルツマンの法則を用いて温度に換算される。   In the example of FIG. 4, the infrared rays radiated from the pot skin are received by the light receiving areas a to c by the light receiving elements 1a to 1c, and the infrared rays radiated from the bottom of the pot are received by the light receiving areas d and e by the light receiving elements 1d and 1e. It receives light and receives infrared rays emitted from the top plate portion in the light receiving areas f to h by the light receiving elements 1 f to 1 h. The correspondence relationship between each part of the object to be heated 14 and the light receiving areas a to h varies depending on the size of the object to be heated 14, but in any case, the side surface of the object to be heated 14 (naked skin part), the object to be heated 14 and The boundary part (pan bottom part) with the top plate 12 and the top plate 12 (top plate part) are accommodated in a light receiving area (detected area) so that temperature can be detected in a plurality of locations in the detected area in the vertical direction. Each light receiving element 1 is arranged. The amount of infrared rays detected by each of the light receiving elements 1 is converted into temperature by the temperature detection unit 20 using the following Stefan-Boltzmann law.

物体からの放射エネルギーMは、以下の(1)式で求められる。   The radiant energy M from the object is obtained by the following equation (1).

Figure 2010113882
Figure 2010113882

これを受光素子1が受光した赤外線量Pに当てはめると、以下の(2)式となる。   When this is applied to the amount of infrared rays P received by the light receiving element 1, the following equation (2) is obtained.

Figure 2010113882
Figure 2010113882

上記(2)式により、以下の(3)式が求められる。   From the above equation (2), the following equation (3) is obtained.

Figure 2010113882
Figure 2010113882

(3)式に、既知の値、すなわち受光素子1自体の温度T0、物体の放射率ε、定数k、受光素子1が受光した赤外線量Pを代入することにより、物体の温度Tが求められる。すなわち、物体の温度Tは、受光素子1自体の温度T0 、物体の放射率εが判れば、赤外線量Pにより求めることができる。 By substituting a known value into the equation (3), that is, the temperature T 0 of the light receiving element 1 itself, the emissivity ε of the object, the constant k, and the amount of infrared rays P received by the light receiving element 1, the temperature T of the object is obtained. It is done. That is, the temperature T of the object can be obtained from the infrared ray amount P if the temperature T 0 of the light receiving element 1 itself and the emissivity ε of the object are known.

本発明は、被検出領域内の複数箇所の温度を検出し、その温度検出結果から被加熱物14の表面状態が鏡面か非鏡面かを判定し、その判定結果に応じた放射率を用いて被加熱物14の温度を算出することに特徴を有するものであり、以下、その特徴部分について説明する。   The present invention detects the temperature at a plurality of locations in the detection area, determines whether the surface condition of the object to be heated 14 is specular or non-specular from the temperature detection result, and uses the emissivity according to the determination result. It has the characteristic in calculating the temperature of the to-be-heated material 14, and the characteristic part is demonstrated below.

まず、ここでは、被検出領域内の複数箇所の温度検出結果から、被加熱物14の表面状態が鏡面か非鏡面かを判定できる原理について説明する。
図5は、被加熱物の放射率が小さい場合(鏡面に相当)における、各受光素子1a〜1hによる検出温度を示す図である。図6は、被加熱物の放射率が大きい場合(非鏡面に相当)における、各受光素子1a〜1hによる検出温度を示す図である。
First, the principle that can determine whether the surface state of the object to be heated 14 is a mirror surface or a non-mirror surface from the temperature detection results at a plurality of locations in the detection region will be described.
FIG. 5 is a diagram showing detected temperatures by the respective light receiving elements 1a to 1h when the emissivity of the object to be heated is small (corresponding to a mirror surface). FIG. 6 is a diagram illustrating detected temperatures by the respective light receiving elements 1a to 1h when the emissivity of the object to be heated is large (corresponding to a non-mirror surface).

図5に示すように、放射率が小さい場合、鍋肌部や天板部に比べて鍋底部の温度が高く検出されるという特徴がある。この理由について以下に説明する。
放射率εと反射率Rとの間には、ε+R=1の関係が成立する。被加熱物14が例えばステンレス製で表面状態が鏡面の場合、放射率は0.15と低く、逆に反射率は0.85と高い。加熱状態の被加熱物14との接触により天板12へ伝わった熱に対応する赤外線は、被加熱物14の鍋底部へ放射される。そして、その赤外線は反射率の大きい被加熱物14の表面により反射され、受光素子1にて受光される。すなわち、鍋肌部や天板部に対応する受光素子1a〜1c,1f〜1hに関しては、鍋肌部や天板部そのものから放射される赤外線が受光されるが、鍋底部に対応する受光素子1d,1eに関しては、天板部からの赤外線の反射の影響も受けるため、鍋肌部や天板部に対応する受光素子1a〜1c,1f〜1hに比べて多くの赤外線を受光する。よって、放射率が小さい被加熱物14の場合、鍋肌部や天板部に比べて鍋底部の検出温度が高くなるという特徴がある。
As shown in FIG. 5, when the emissivity is small, the temperature at the bottom of the pan is detected higher than that at the pan skin or top plate. The reason for this will be described below.
Between emissivity ε and reflectance R, a relationship of ε + R = 1 is established. When the object to be heated 14 is made of stainless steel and the surface state is a mirror surface, the emissivity is as low as 0.15, and conversely, the reflectivity is as high as 0.85. Infrared rays corresponding to the heat transmitted to the top plate 12 by contact with the heated object 14 in the heated state are radiated to the bottom of the heated object 14. The infrared light is reflected by the surface of the object to be heated 14 having a high reflectance and is received by the light receiving element 1. That is, with respect to the light receiving elements 1a to 1c and 1f to 1h corresponding to the pot skin portion and the top plate portion, infrared rays radiated from the pot skin portion and the top plate portion themselves are received, but the light receiving elements corresponding to the pot bottom portion. Since 1d and 1e are also affected by the reflection of infrared rays from the top plate portion, they receive more infrared rays than the light receiving elements 1a to 1c and 1f to 1h corresponding to the pan skin portion and the top plate portion. Therefore, in the case of the to-be-heated object 14 with a small emissivity, there exists the characteristic that the detection temperature of a pan bottom part becomes high compared with a pan skin part or a top-plate part.

一方、放射率が大きい非鏡面の被加熱物14の場合、図6に示すように、鍋肌部と鍋底部との間にさほど温度差が無いという特徴がある。以上のことから、以下の式によって鏡面/非鏡面を判定することが可能である。
(a)最高温度を示す素子温度−受光素子1aの検出温度≦閾値 の場合、非鏡面
(b)最高温度を示す素子温度−受光素子1aの検出温度>閾値 の場合、鏡面
On the other hand, in the case of the non-specular surface heated object 14 having a high emissivity, as shown in FIG. 6, there is a characteristic that there is not much temperature difference between the pot skin part and the pot bottom part. From the above, it is possible to determine the specular / non-specular by the following formula.
(A) Element temperature indicating maximum temperature−detection temperature of light receiving element 1a ≦ threshold, non-mirror surface (b) Element temperature indicating maximum temperature−detection temperature of light receiving element 1a> threshold

なお、上記(a)、(b)式において、受光素子1aの検出温度を用いているが、受光素子1aの検出エリアaの高さ位置は、図4に示すように全受光素子1a〜1hの検出エリアa〜hの中で最上部の位置であり、天板12から一番離れた位置となっている。よって、天板12からの熱の影響や、被加熱物14の大きさによらず常に安定して被加熱物14の鍋肌部の温度を検出できることから、受光素子1aの検出温度を鏡面/非鏡面の判定に用いるようにしている。   In the above equations (a) and (b), the detection temperature of the light receiving element 1a is used, but the height position of the detection area a of the light receiving element 1a is set to all the light receiving elements 1a to 1h as shown in FIG. In the detection areas a to h, the uppermost position is the position farthest from the top 12. Therefore, since the temperature of the pot skin portion of the object to be heated 14 can be always stably detected regardless of the influence of the heat from the top plate 12 and the size of the object to be heated 14, the detection temperature of the light receiving element 1a is set to the mirror surface / It is used to determine non-specular surfaces.

このようにして鏡面/非鏡面を判定し、その判定結果に応じて放射率を決定する。具体的には、非鏡面と判定した場合には、非鏡面対応の放射率に決定し、鏡面と判定した場合には、鏡面対応の放射率に決定する。本例では、非鏡面の場合、放射率を0.94とし、鏡面の場合、放射率を0.21としているが、その理由について以下に説明する。   In this way, the specular / non-specular is determined, and the emissivity is determined according to the determination result. Specifically, when it is determined to be a non-specular surface, the emissivity corresponding to the non-specular surface is determined, and when it is determined to be a specular surface, the emissivity corresponding to the specular surface is determined. In this example, the emissivity is 0.94 in the case of a non-mirror surface, and the emissivity is 0.21 in the case of a mirror surface. The reason will be described below.

表1は、代表的な材質と放射率との関係を示す表で、各材質の表面状態毎に放射率を示している。   Table 1 is a table showing the relationship between typical materials and emissivity, and shows emissivity for each surface state of each material.

Figure 2010113882
Figure 2010113882

被加熱物14が非鏡面の場合には、代表的な非鏡面(ホーローと塗装品)の放射率のうち、最低の0.94を非鏡面対応の放射率とする。これは、非鏡面の場合、放射率が大きいため、実際の被加熱物14の温度より低く検出してしまう。このため、最低の0.94を割り当てておくことで、検出精度の向上を図ることが可能となる。一方、被加熱物14が鏡面の場合には、代表的な鏡面(アルミ、鉄(研磨)、ステンレス)の放射率のうち、最高の0.21を鏡面対応の放射率とする。これは、鏡面の場合、放射率が小さいため、実際の被加熱物14の温度より高く検出してしまう。このため、最高の0.21を割り当てておくことで、検出精度の向上を図ることが可能となる。   In the case where the object to be heated 14 has a non-mirror surface, the lowest 0.94 is set as the emissivity corresponding to the non-mirror surface among the emissivities of typical non-mirror surfaces (hollows and painted products). In the case of a non-specular surface, the emissivity is large, and thus the temperature is detected lower than the actual temperature of the object 14 to be heated. For this reason, it is possible to improve the detection accuracy by assigning the lowest 0.94. On the other hand, when the object to be heated 14 is a mirror surface, the highest one of the emissivities of typical mirror surfaces (aluminum, iron (polishing), stainless steel) is the emissivity corresponding to the mirror surface. In the case of a mirror surface, since the emissivity is small, it is detected higher than the actual temperature of the object to be heated 14. For this reason, it is possible to improve detection accuracy by assigning the highest value of 0.21.

そして、以上のように鏡面/非鏡面に応じて決定された放射率を用いて温度を算出する。この際、受光素子1a〜1hのうちの何れかを代表素子として決定し、その代表素子で検出した赤外線量と、決定された放射率とを用いて温度を算出し、その温度を被加熱物14の温度とする。ここでは、代表素子として受光素子1aを用いるとすると、受光素子1aで検出された赤外線量と、鏡面/非鏡面に応じて決定された放射率とを前記(3)式に代入して温度を算出する。代表素子としては、上記と同様の理由から、常に安定して鍋肌部の温度を検出できる受光素子1aが好ましいが、これに限られたものではない。例えば、鍋肌部を検出する受光素子1a〜1cの3素子とし、それぞれで検出された赤外線量の平均値から温度を算出するようにしても良い。   Then, the temperature is calculated using the emissivity determined according to the specular / non-specular as described above. At this time, any one of the light receiving elements 1a to 1h is determined as a representative element, a temperature is calculated using the amount of infrared rays detected by the representative element and the determined emissivity, and the temperature is calculated as an object to be heated. The temperature is 14. Here, assuming that the light receiving element 1a is used as a representative element, the amount of infrared rays detected by the light receiving element 1a and the emissivity determined according to the specular / non-specular are substituted into the equation (3) to obtain the temperature. calculate. As the representative element, for the same reason as described above, the light receiving element 1a that can always stably detect the temperature of the pot skin portion is preferable, but is not limited thereto. For example, the light receiving elements 1a to 1c that detect the pot skin portion may be used, and the temperature may be calculated from the average value of the amount of infrared rays detected by each.

図7は、赤外線温度検出部の具体的な構成と、赤外線温度検出部の温度検出結果に基づいて加熱部を制御するまでに関わる処理部を示すブロック図である。図7において図2と同一部分には同一符号を付す。
赤外線検出部19は、受光素子1に加えて、被検出領域Aから放射される赤外線を集光する集光レンズ30と、スキャン部31と、スキャン部31で選択された出力信号を所定レベルまで増幅する第1の増幅部32と、サーミスタから成る基準温度素子33とを備えている。基準温度素子33で検出された温度は、受光素子1自体の温度T0(上記(1)〜(3)式参照)に相当する。
FIG. 7 is a block diagram illustrating a specific configuration of the infrared temperature detection unit and a processing unit involved in controlling the heating unit based on the temperature detection result of the infrared temperature detection unit. In FIG. 7, the same parts as those in FIG.
In addition to the light receiving element 1, the infrared detection unit 19 collects an infrared ray emitted from the detection area A, a scanning unit 31, and an output signal selected by the scanning unit 31 to a predetermined level. A first amplifying unit 32 for amplifying and a reference temperature element 33 composed of a thermistor are provided. The temperature detected by the reference temperature element 33 corresponds to the temperature T 0 of the light receiving element 1 itself (see the above formulas (1) to (3)).

温度検出部20は、具体的にはマイコンで構成されており、所定のタイミングによって各受光素子1に対応したスキャン部31にアドレス信号を出力する信号出力部41と、赤外線検出部19の増幅部32からの出力信号を入力し、各受光素子1a〜1hの選択/切替を行なうマルチプレクサ部42とを備えている。更に、マルチプレクサ部42からの出力電圧をデジタル信号に変換するA/D変換部43と、A/D変換部43からのデジタル信号を温度データに変換する温度変換部44と、温度変換部44から出力される各温度データに基づいて被加熱物14の温度を算出し、制御部22に出力する温度算出部45とを備えている。   The temperature detection unit 20 is specifically composed of a microcomputer, and a signal output unit 41 that outputs an address signal to the scanning unit 31 corresponding to each light receiving element 1 at a predetermined timing, and an amplification unit of the infrared detection unit 19 And a multiplexer unit 42 that receives an output signal from 32 and selects / switches each of the light receiving elements 1a to 1h. Further, from the A / D converter 43 that converts the output voltage from the multiplexer 42 into a digital signal, the temperature converter 44 that converts the digital signal from the A / D converter 43 into temperature data, and the temperature converter 44 A temperature calculation unit 45 that calculates the temperature of the object to be heated 14 based on each output temperature data and outputs the temperature to the control unit 22 is provided.

A/D変換部43には、マルチプレクサ部42を介して各受光素子1a〜1hの出力信号(赤外線量)が増幅部32で増幅されて入力されており、温度変換部44は、受光素子1a〜1hで検出した赤外線量を、上記(3)式に基づき温度データに変換し、各受光素子1a〜1hによる検出温度として温度算出部45に出力する。なお、ここでは放射率を仮放射率「1」として温度データに変換する。温度算出部45の鏡面/非鏡面判定部45aは、温度変換部44から入力された各受光素子1a〜1hによる各検出温度に基づいて、被加熱物14の表面状態が鏡面か非鏡面かを判定する。ここでの判定方法は上記(a)、(b)に基づくものである。そして、仮放射率「1」で算出した温度を、判定結果に応じた放射率に基づき補正し、補正後の温度を、被加熱物14の温度として制御部22に出力する。   Output signals (infrared rays) of the respective light receiving elements 1a to 1h are amplified and input to the A / D conversion unit 43 through the multiplexer unit 42, and the temperature conversion unit 44 receives the light receiving element 1a. The amount of infrared rays detected at ˜1h is converted into temperature data based on the above equation (3), and is output to the temperature calculation unit 45 as the detected temperature by each of the light receiving elements 1a-1h. Here, the emissivity is converted into temperature data as the temporary emissivity “1”. The mirror surface / non-mirror surface determination unit 45a of the temperature calculation unit 45 determines whether the surface state of the object to be heated 14 is a mirror surface or a non-mirror surface based on the detected temperatures of the light receiving elements 1a to 1h input from the temperature conversion unit 44. judge. The determination method here is based on the above (a) and (b). Then, the temperature calculated by the provisional emissivity “1” is corrected based on the emissivity according to the determination result, and the corrected temperature is output to the control unit 22 as the temperature of the object to be heated 14.

また、接触式温度検出部21は、天板12を介して被加熱物14の温度を検出する部分で、例えばサーミスタで構成される。接触式温度検出部21の出力信号は、マルチプレクサ部42に入力される。そして、マルチプレクサ部42からの出力電圧がA/D変換部43でデジタル信号に変換され、温度変換部44で温度データに変換され、温度算出部45に入力される。   Moreover, the contact-type temperature detection part 21 is a part which detects the temperature of the to-be-heated object 14 via the top plate 12, for example, is comprised with a thermistor. The output signal of the contact temperature detection unit 21 is input to the multiplexer unit 42. The output voltage from the multiplexer unit 42 is converted into a digital signal by the A / D conversion unit 43, converted into temperature data by the temperature conversion unit 44, and input to the temperature calculation unit 45.

次に、本実施の形態1に係る誘導加熱調理器における温度検出動作を図8に基づいて説明する。図8は、温度検出処理の流れを示すフローチャートである。
操作部13の操作スイッチがONされると、制御部22は、駆動部17を介して加熱部16を駆動する。加熱部16から発生する磁束により被加熱物14に渦電流が流れ、渦電流により被加熱物14が誘導加熱される。接触式温度検出部21は、操作スイッチON時から温度検出を開始しており、所定温度分(例えば、20℃)、温度が上昇したかどうかをチェックする(S1)。加熱開始直後で被加熱物14が十分加熱されていない場合、被加熱物14の温度と赤外線検出部19自体の温度(基準温度素子33の検出温度)とが同等の温度であるため、赤外線温度検出部18では被加熱物14の温度を正確に検出できない。このため、所定温度分、温度が上昇するまで待った後、被加熱物14の温度を検出するようにしている。なお、ステップS1の判断に、ここでは接触式温度検出部21の検出温度を用いているが、ここでの温度にはさほど精度は要求されないため、赤外線温度検出部18の受光素子1a〜1hのうち、例えば最高の赤外線量と仮放射率「1」とを用いて温度を用いるようにしてもよい。
Next, the temperature detection operation in the induction heating cooker according to the first embodiment will be described with reference to FIG. FIG. 8 is a flowchart showing the flow of temperature detection processing.
When the operation switch of the operation unit 13 is turned on, the control unit 22 drives the heating unit 16 via the drive unit 17. An eddy current flows through the object to be heated 14 by the magnetic flux generated from the heating unit 16, and the object to be heated 14 is induction-heated by the eddy current. The contact-type temperature detector 21 starts temperature detection when the operation switch is turned on, and checks whether the temperature has increased by a predetermined temperature (for example, 20 ° C.) (S1). When the object to be heated 14 is not sufficiently heated immediately after the start of heating, the temperature of the object to be heated 14 and the temperature of the infrared detection unit 19 itself (detection temperature of the reference temperature element 33) are equal to each other. The detection unit 18 cannot accurately detect the temperature of the object 14 to be heated. For this reason, after waiting for the temperature to rise by a predetermined temperature, the temperature of the object to be heated 14 is detected. In addition, although the detection temperature of the contact-type temperature detection part 21 is used for determination of step S1 here, since the accuracy here is not requested | required so much, the light receiving element 1a-1h of the infrared temperature detection part 18 is used. Among them, for example, the temperature may be used by using the maximum infrared ray amount and the provisional emissivity “1”.

そして、所定温度分、被加熱物14の温度が上昇すると、温度算出部45は、温度変換部44から各受光素子1a〜1hの温度データを取得する(S2)。このステップS2の温度データは、仮放射率「1」として計算されたものである。そして、温度算出部45の鏡面/非鏡面判定部45aは、各受光素子1a〜1hの検出温度のうち、最高温度と受光素子1aの検出温度との差分が、予め設定された閾値以下かどうかをチェックし、閾値以下の場合、非鏡面と判定し、閾値を超える場合、鏡面と判定する(S3)。   And if the temperature of the to-be-heated material 14 rises by predetermined temperature, the temperature calculation part 45 will acquire the temperature data of each light receiving element 1a-1h from the temperature conversion part 44 (S2). The temperature data in step S2 is calculated as a temporary emissivity “1”. Then, the mirror surface / non-mirror surface determination unit 45a of the temperature calculation unit 45 determines whether the difference between the maximum temperature and the detection temperature of the light receiving element 1a among the detection temperatures of the light receiving elements 1a to 1h is equal to or less than a preset threshold value. Is determined to be a non-mirror surface if it is equal to or less than the threshold value, and is determined to be a mirror surface if the threshold value is exceeded (S3).

非鏡面と判定した場合、非鏡面対応の放射率0.94を用いて温度補正を行う(S4)。具体的には、放射率0.94と、受光素子1aで検出した赤外線量とを上記(3)式に代入して温度を算出し、これを被加熱物14の温度とする。一方、鏡面と判定した場合、鏡面対応の放射率0.21を用いて温度補正を行う(S5)。具体的には、上記と同様に放射率0.21と、受光素子1aで検出した赤外線量とを上記(3)式に代入して温度を算出し、これを被加熱物14の温度とする。そして、制御部22は、以上のようにして求められた被加熱物14の温度に基づいて、駆動部17を制御し、加熱部16の加熱動作を制御する。   If it is determined to be non-specular, temperature correction is performed using an emissivity of 0.94 corresponding to the non-specular (S4). Specifically, the temperature is calculated by substituting the emissivity of 0.94 and the amount of infrared rays detected by the light receiving element 1a into the above equation (3), and this is used as the temperature of the object 14 to be heated. On the other hand, when it determines with a mirror surface, temperature correction is performed using the emissivity 0.21 corresponding to a mirror surface (S5). Specifically, similarly to the above, the temperature is calculated by substituting the emissivity 0.21 and the amount of infrared rays detected by the light receiving element 1a into the above equation (3), and this is used as the temperature of the object 14 to be heated. . And the control part 22 controls the drive part 17 based on the temperature of the to-be-heated material 14 calculated | required as mentioned above, and controls the heating operation of the heating part 16. FIG.

以上説明したように、本実施の形態1によれば、次のような効果を有する。
被加熱物14の放射率は、上述したように材質によって一意に決められるものではなく、同じ材質であっても鏡面/非鏡面によって異なる。したがって、本例のように被加熱物14の表面状態が鏡面か非鏡面かを判定し、その判定結果に応じた放射率を用いて温度換算を行うことにより、実際の被加熱物14の表面状態に応じた正確な温度検出が可能となる。その結果、正確な温度で調理が可能となり、被調理物の加熱調理を良好に行うことが可能となる。
As described above, the first embodiment has the following effects.
As described above, the emissivity of the object to be heated 14 is not uniquely determined by the material, and varies depending on the mirror surface / non-mirror surface even if the material is the same. Therefore, by determining whether the surface state of the object to be heated 14 is a mirror surface or a non-mirror surface as in this example, and performing temperature conversion using the emissivity according to the determination result, the actual surface of the object to be heated 14 Accurate temperature detection according to the state becomes possible. As a result, cooking can be performed at an accurate temperature, and the cooking object can be cooked well.

また、被加熱物14の側面から放射される赤外線量に基づいて温度検出を行っているため、反り鍋であっても正確に温度検出を行うことができる。   Moreover, since temperature detection is performed based on the amount of infrared rays radiated from the side surface of the object to be heated 14, temperature detection can be accurately performed even with a warped pan.

また、天板12を介して被加熱物14の温度を検出する温度センサの場合、温度検出が可能となるまでに天板12の温度上昇に伴う遅延が生じるが、赤外線温度検出部18ではこのような遅延無く被加熱物14の温度検出が可能である。   Further, in the case of a temperature sensor that detects the temperature of the object to be heated 14 via the top plate 12, a delay due to the temperature rise of the top plate 12 occurs until the temperature can be detected. The temperature of the object to be heated 14 can be detected without such a delay.

また、被加熱物14の正確な温度を検出できるので、温度を見誤ることによる過剰な加熱等を防止でき、エネルギー消費量の削減が可能となる。   Moreover, since the exact temperature of the to-be-heated object 14 can be detected, the excessive heating by mistaking the temperature can be prevented, and the energy consumption can be reduced.

実施の形態2.
実施の形態1では、被加熱物14の表面状態が鏡面/非鏡面のどちらの場合も赤外線温度検出部18を用いて被加熱物14の温度を検出するようにしていたが、実施の形態2では、鏡面の場合には、赤外線温度検出部18に代えて接触式温度検出部21を用いて被加熱物14の温度を検出するようにしたものである。実施の形態2の加熱調理器の構成は図2及び図7に示した実施の形態1と同様であるため、図2及び図7を参照されたい。
Embodiment 2. FIG.
In the first embodiment, the temperature of the object to be heated 14 is detected using the infrared temperature detector 18 in both cases where the surface state of the object to be heated 14 is mirror surface / non-mirror surface. In the case of a mirror surface, the temperature of the object to be heated 14 is detected by using a contact-type temperature detection unit 21 instead of the infrared temperature detection unit 18. Since the structure of the heating cooker of Embodiment 2 is the same as that of Embodiment 1 shown in FIG.2 and FIG.7, please refer FIG.2 and FIG.7.

図9は、本発明の実施の形態2に係る加熱調理器における温度検出処理の流れを示すフローチャートである。実施の形態2の温度検出処理は、ステップS1〜S4までの処理は図8に示した実施の形態1と同様である。そして、実施の形態2では、ステップS3で鏡面と判定した場合、接触式温度検出部21で検出した温度を被加熱物14の温度とする(S11)。   FIG. 9 is a flowchart showing a flow of temperature detection processing in the cooking device according to Embodiment 2 of the present invention. In the temperature detection process of the second embodiment, the processes from step S1 to S4 are the same as those of the first embodiment shown in FIG. And in Embodiment 2, when it determines with a mirror surface by step S3, the temperature detected by the contact-type temperature detection part 21 is made into the temperature of the to-be-heated object 14 (S11).

被加熱物14の表面に汚れが付着した場合、放射率が上昇するため、実施の形態1のように放射率を固定値として赤外線温度検出部18で温度換算を行うと、実際の温度よりも低く検出してしまう。この現象は、鏡面の場合も非鏡面の場合も同様であるが、鏡面の場合、汚れの程度によって顕著に現れる。このように実際の温度よりも低く検出してしまうと、例えば実際には油の発火温度に達しているのにも関わらず、まだ達していないと判断してそのまま加熱動作を継続してしまうなどの不都合が生じる。したがって、鏡面の場合には接触式温度検出部21で検出した温度を被加熱物14の温度とすることで、このような不都合を解消し、安全性を向上することができる。   When dirt adheres to the surface of the object 14 to be heated, the emissivity increases. Therefore, when the infrared temperature detector 18 performs temperature conversion with the emissivity as a fixed value as in the first embodiment, the emissivity is higher than the actual temperature. It detects low. This phenomenon is the same for both the mirror surface and the non-mirror surface, but in the case of the mirror surface, the phenomenon appears remarkably depending on the degree of contamination. If the temperature is detected to be lower than the actual temperature in this way, for example, it may be determined that the oil has not yet reached despite the fact that the ignition temperature of the oil has actually been reached. Inconvenience occurs. Therefore, in the case of a mirror surface, by setting the temperature detected by the contact-type temperature detection unit 21 as the temperature of the object to be heated 14, such inconvenience can be eliminated and safety can be improved.

このように、実施の形態2によれば、実施の形態1と同様の作用効果が得られるとともに、被加熱物14の表面状態が鏡面の場合には、接触式温度検出部21で検出した温度を被加熱物14の温度とするようにしたので、被加熱物14の表面に汚れが付着しているような場合でも、安全面で有効な加熱制御を行うことが可能となる。   As described above, according to the second embodiment, the same effect as in the first embodiment can be obtained, and the temperature detected by the contact-type temperature detection unit 21 when the surface state of the article to be heated 14 is a mirror surface. Is set to the temperature of the object to be heated 14, so that even when the surface of the object to be heated 14 is contaminated, it is possible to perform effective heating control in terms of safety.

実施の形態3.
実施の形態3は、被加熱物14の材質判定を行い、上記の鏡面/非鏡面の判定結果に加えて材質判定結果も加味して放射率を決定するようにしたものである。
Embodiment 3 FIG.
In the third embodiment, the material of the object to be heated 14 is determined, and the emissivity is determined in consideration of the material determination result in addition to the above-described mirror surface / non-mirror surface determination result.

図10は、本発明の実施の形態3に係る加熱調理器の側面断面図である。図11は、本発明の実施の形態2に係る加熱調理器における温度検出に関わる処理部のブロック図である。図10及び図11において、図2及び図7と同一部分には同一符号を付す。
実施の形態3の加熱調理器は、図2に示した実施の形態1の加熱調理器に、被加熱物14の材質を判定する材質判定部50を新たに追加したものである。材質判定部50は、被加熱物14の材質が、鉄、ステンレス、アルミ、ホーローの何れであるのかを判定し、その材質判定結果を温度検出部20の温度算出部45に出力する。材質判定方法には従来既存の方法を採用でき、例えば加熱部16に流れる電流と加熱調理器への入力電流とを検出して判定する。
FIG. 10 is a side cross-sectional view of a heating cooker according to Embodiment 3 of the present invention. FIG. 11: is a block diagram of the process part in connection with the temperature detection in the heating cooker which concerns on Embodiment 2 of this invention. 10 and 11, the same parts as those in FIGS. 2 and 7 are denoted by the same reference numerals.
The heating cooker according to the third embodiment is obtained by newly adding a material determination unit 50 for determining the material of the article to be heated 14 to the heating cooker according to the first embodiment shown in FIG. The material determination unit 50 determines whether the material of the object to be heated 14 is iron, stainless steel, aluminum, or enamel, and outputs the material determination result to the temperature calculation unit 45 of the temperature detection unit 20. Conventionally known methods can be adopted as the material determination method. For example, the current flowing in the heating unit 16 and the input current to the cooking device are detected and determined.

温度算出部45は、材質毎に表面状態と放射率との関係を示した放射率テーブル45bを保持しており、材質判定部50からの材質判定結果と、鏡面/非鏡面判定部45aの判定結果とに基づいて放射率テーブル45bを参照し、放射率を決定する。放射率テーブル45bは、表1から塗装鍋部分を省いた構成に相当する(材質判定で塗装鍋の判定はできない)。   The temperature calculation unit 45 holds an emissivity table 45b indicating the relationship between the surface state and emissivity for each material, and the material determination result from the material determination unit 50 and the determination by the mirror / non-mirror surface determination unit 45a. The emissivity is determined by referring to the emissivity table 45b based on the result. The emissivity table 45b corresponds to a configuration in which the coating pot portion is omitted from Table 1 (the coating pot cannot be determined by the material determination).

図12は、本発明の実施の形態3に係る加熱調理器における温度検出処理の流れを示すフローチャートである。図12において、実施の形態1の図8と同一工程部分には同一符号を付す。
操作部13の操作スイッチがONされると、制御部22は、駆動部17を介して加熱部16の駆動を開始し、材質判定部50は材質判定を行う(S21)。そして、所定温度分(例えば、20℃)、被加熱物14の温度が上昇したかどうかをチェックする(S1)。所定温度分、被加熱物14の温度が上昇すると、温度算出部45は、温度変換部44から各受光素子1a〜1hの温度データを取得し(S2)、被加熱物14が鏡面か非鏡面かどうかを判定する(S3)。温度算出部45は、材質判定部50からの材質判定結果と、鏡面/非鏡面判定部45aの判定結果とに基づいて放射率テーブル45bを参照し、放射率を決定する(S22)。例えば、材質判定結果が鉄で、鏡面/非鏡面の判定結果が非鏡面の場合、放射率を0.69と決定する。そして、受光素子1aの赤外線受光量を、ステップS22で決定した放射率を用いて温度に換算し(S23)、これを被加熱物14の温度とする。
FIG. 12: is a flowchart which shows the flow of the temperature detection process in the heating cooker which concerns on Embodiment 3 of this invention. In FIG. 12, the same steps as those in FIG. 8 of the first embodiment are denoted by the same reference numerals.
If the operation switch of the operation part 13 is turned ON, the control part 22 will start the drive of the heating part 16 via the drive part 17, and the material determination part 50 will perform material determination (S21). And it is checked whether the temperature of the to-be-heated material 14 rose for a predetermined temperature (for example, 20 degreeC) (S1). When the temperature of the object to be heated 14 rises by a predetermined temperature, the temperature calculation unit 45 acquires temperature data of each of the light receiving elements 1a to 1h from the temperature conversion unit 44 (S2), and the object to be heated 14 is a mirror surface or a non-mirror surface. It is determined whether or not (S3). The temperature calculation unit 45 refers to the emissivity table 45b based on the material determination result from the material determination unit 50 and the determination result of the mirror / non-mirror surface determination unit 45a to determine the emissivity (S22). For example, when the material determination result is iron and the specular / non-specular determination result is non-specular, the emissivity is determined to be 0.69. Then, the amount of infrared light received by the light receiving element 1a is converted into a temperature using the emissivity determined in step S22 (S23), and this is set as the temperature of the object to be heated 14.

このように、実施の形態3によれば、鏡面/非鏡面の判定結果に加えて材質も加味して放射率を決定するので、実施の形態1に比べて更に精度の高い温度検出が可能となる。   As described above, according to the third embodiment, since the emissivity is determined in consideration of the material in addition to the specular / non-specular determination result, the temperature can be detected with higher accuracy than in the first embodiment. Become.

なお、上記各実施の形態では、赤外線検出部19の受光素子1を、複数の受光素子を直線状に配置した複眼型の構成とした例を示したが、受光素子1を1つとした単眼型の構成とし、これを上下方向に動かすことで複眼型と同様の被検出領域を検出するようにしても良い。   In each of the above embodiments, the light receiving element 1 of the infrared detecting unit 19 is shown as an example of a compound eye type structure in which a plurality of light receiving elements are arranged in a straight line. It is also possible to detect the same detection area as that of the compound eye type by moving this up and down.

本発明の実施の形態1に係る加熱調理器の外観を模式的に示す斜視図である。It is a perspective view which shows typically the external appearance of the heating cooker which concerns on Embodiment 1 of this invention. 図1の側面断面図である。It is side surface sectional drawing of FIG. 図1の赤外線温度検出部の受光素子部分の構成を示す図である。It is a figure which shows the structure of the light receiving element part of the infrared temperature detection part of FIG. 図1の赤外線温度検出部の受光素子の配置位置の説明図である。It is explanatory drawing of the arrangement position of the light receiving element of the infrared temperature detection part of FIG. 放射率が小さい被加熱物(鏡面の被加熱物に相当)の場合における、赤外線温度検出部の各受光素子による検出結果を示す図である。It is a figure which shows the detection result by each light receiving element of an infrared temperature detection part in the case of a to-be-heated object with a small emissivity (equivalent to the to-be-heated object of a mirror surface). 放射率が大きい被加熱物(非鏡面の被加熱物に相当)の場合における、赤外線温度検出部の各受光素子による検出結果を示す図である。It is a figure which shows the detection result by each light receiving element of an infrared temperature detection part in the case of a to-be-heated object with high emissivity (equivalent to a to-be-heated object of a non-specular surface). 図1の赤外線温度検出部の具体的な構成と、赤外線温度検出部の温度検出結果に基づいて加熱部を制御するまでに関わる処理部を示すブロック図である。FIG. 2 is a block diagram illustrating a specific configuration of an infrared temperature detection unit in FIG. 1 and a processing unit involved in controlling a heating unit based on a temperature detection result of the infrared temperature detection unit. 実施の形態1の温度検出処理の流れを示すフローチャートである。3 is a flowchart illustrating a flow of temperature detection processing according to the first embodiment. 実施の形態2の温度検出処理の流れを示すフローチャートである。6 is a flowchart showing a flow of temperature detection processing according to the second embodiment. 実施の形態3の加熱調理器の側面断面図である。It is side surface sectional drawing of the heating cooker of Embodiment 3. FIG. 実施の形態3の加熱調理器における温度検出に関わる処理部のブロック図である。It is a block diagram of the process part in connection with the temperature detection in the heating cooker of Embodiment 3. FIG. 実施の形態3の温度検出処理の流れを示すフローチャートである。12 is a flowchart illustrating a flow of temperature detection processing according to the third embodiment.

符号の説明Explanation of symbols

1(1a〜1c) 受光素子、11 本体、12 天板、13 操作部、14 被加熱物、15 表示部、16 加熱部、17 駆動部、18 赤外線温度検出部、19 赤外線検出部、20 温度検出部、21 接触式温度検出部、22 制御部、30 集光レンズ、31 スキャン部、32 増幅部、33 基準温度素子、41 信号出力部、42 マルチプレクサ部、43 A/D変換部、44 温度変換部、45 温度算出部、45a 非鏡面判定部、45b 放射率テーブル、50 材質判定部。   1 (1a to 1c) Light receiving element, 11 body, 12 top plate, 13 operation unit, 14 object to be heated, 15 display unit, 16 heating unit, 17 drive unit, 18 infrared temperature detection unit, 19 infrared detection unit, 20 temperature Detection unit, 21 Contact temperature detection unit, 22 Control unit, 30 Condensing lens, 31 Scan unit, 32 Amplification unit, 33 Reference temperature element, 41 Signal output unit, 42 Multiplexer unit, 43 A / D conversion unit, 44 Temperature Conversion part, 45 Temperature calculation part, 45a Non-specular surface determination part, 45b Emissivity table, 50 Material determination part.

Claims (9)

被加熱物を載置する天板と、
該天板の下方に設けられ、前記被加熱物を加熱する加熱部と、
該加熱部を駆動する駆動部と、
前記天板よりも上方に配置され、前記被加熱物から放射される赤外線量に基づいて前記被加熱物の温度を検出する赤外線温度検出部と、
該赤外線温度検出部で検出された前記被加熱物の温度に基づいて前記駆動部を制御し、前記加熱部の加熱動作を制御する制御部とを備え、
前記赤外線温度検出部は、前記天板上に載置される被加熱物の側面、前記被加熱物と前記天板との境界部及び天板を含む被検出領域内の複数箇所の温度を検出し、その温度検出結果に基づいて前記被加熱物の表面状態が鏡面か非鏡面かを判定し、判定結果に応じて予め設定された放射率に基づいて、前記複数箇所の温度のうち、所定箇所の温度を補正して前記被加熱物の温度とすることを特徴とする加熱調理器。
A top plate on which the object to be heated is placed;
A heating unit provided under the top plate for heating the object to be heated;
A drive unit for driving the heating unit;
An infrared temperature detector that is disposed above the top plate and detects the temperature of the object to be heated based on the amount of infrared rays emitted from the object to be heated;
A control unit that controls the driving unit based on the temperature of the object to be heated detected by the infrared temperature detection unit, and controls a heating operation of the heating unit;
The infrared temperature detection unit detects temperatures of a plurality of locations in a detection area including a side surface of a heated object placed on the top plate, a boundary between the heated object and the top plate, and the top plate. Then, based on the temperature detection result, it is determined whether the surface state of the object to be heated is a mirror surface or a non-mirror surface. Based on the emissivity set in advance according to the determination result, a predetermined one of the temperatures at the plurality of locations is determined. A heating cooker characterized in that the temperature of the place is corrected to the temperature of the object to be heated.
前記赤外線温度検出部は、前記複数箇所のそれぞれから放射される赤外線量と仮放射率とから前記複数箇所の温度を換算して前記鏡面か非鏡面の判定を行い、該判定後、前記判定結果に応じて予め設定された放射率と、前記所定箇所から放出される赤外線量とから温度を換算し、前記被加熱物の温度とすることを特徴とする請求項1記載の加熱調理器。   The infrared temperature detector converts the temperature of the plurality of locations from the amount of infrared rays and provisional emissivity radiated from each of the plurality of locations, determines the mirror surface or non-mirror surface, and after the determination, the determination result The cooking device according to claim 1, wherein a temperature is converted from an emissivity set in advance according to the amount of infrared rays and the amount of infrared rays emitted from the predetermined portion to obtain a temperature of the object to be heated. 前記赤外線温度検出部は、前記被検出領域内を上下方向に複数箇所、温度検出し、該複数箇所の温度のうち、最高温度と、前記複数箇所のうち最上部に位置する箇所の温度との差分が所定の閾値を超える場合には鏡面と判定し、前記所定の閾値以下の場合には非鏡面と判定することを特徴とする請求項1又は請求項2記載の加熱調理器。   The infrared temperature detection unit detects the temperature in a plurality of locations in the vertical direction in the detection area, and among the temperatures of the plurality of locations, the highest temperature and the temperature of the location located at the top of the plurality of locations The cooking device according to claim 1 or 2, wherein when the difference exceeds a predetermined threshold value, it is determined as a mirror surface, and when it is equal to or less than the predetermined threshold value, it is determined as a non-mirror surface. 前記判定結果が鏡面の場合は、代表的な鏡面の放射率のうち、最高の放射率を前記鏡面の放射率とし、前記判定結果が非鏡面の場合は、代表的な非鏡面の放射率のうち、最低の放射率を前記非鏡面の放射率とすることを特徴とする請求項1乃至請求項3の何れかに記載の加熱調理器。   When the determination result is specular, the highest emissivity of the representative specular emissivity is the emissivity of the specular surface, and when the determination result is non-specular, the emissivity of the typical non-specular surface is obtained. The cooking device according to any one of claims 1 to 3, wherein the lowest emissivity is the emissivity of the non-specular surface. 前記判定結果が鏡面の場合は放射率を0.21とし、非鏡面の場合は放射率を0.94とすることを特徴とする請求項1乃至請求項4の何れかに記載の加熱調理器。   The cooking device according to any one of claims 1 to 4, wherein when the determination result is a mirror surface, the emissivity is 0.21, and when the determination result is a non-mirror surface, the emissivity is 0.94. . 前記天板の裏面に熱的に接触するように配置され、前記被加熱物の温度を前記天板を介して検出する接触式温度検出部を備え、前記判定結果が鏡面の場合、前記接触式温度検出部で検出された温度を前記被加熱物の温度とし、前記判定結果が非鏡面の場合、放射率を0.94として前記所定箇所の温度を補正し、前記被加熱物の温度とすることを特徴とする請求項1乃至請求項3の何れかに記載の加熱調理器。   The contact-type temperature detection unit is disposed so as to be in thermal contact with the back surface of the top plate and detects the temperature of the object to be heated through the top plate, and when the determination result is a mirror surface, the contact type If the temperature detected by the temperature detector is the temperature of the object to be heated, and the determination result is non-specular, the emissivity is 0.94 and the temperature at the predetermined location is corrected to be the temperature of the object to be heated. The cooking device according to any one of claims 1 to 3, characterized in that. 前記被加熱物の材質を判定する材質判定部を備え、前記赤外線温度検出部は、鏡面か非鏡面かの判定結果に加えて、前記材質判定部の判定結果も加味して放射率を決定し、決定した放射率に基づいて前記所定箇所の温度を補正して前記被加熱物の温度とすることを特徴とする請求項1乃至請求項3の何れかに記載の加熱調理器。   A material determination unit for determining the material of the object to be heated is provided, and the infrared temperature detection unit determines the emissivity in consideration of the determination result of the material determination unit in addition to the determination result of the mirror surface or the non-mirror surface. The cooking device according to any one of claims 1 to 3, wherein a temperature of the predetermined portion is corrected based on the determined emissivity to obtain a temperature of the object to be heated. 前記鏡面か非鏡面かの判定は、前記被加熱物の温度が所定温度以上、上昇した時点で行うことを特徴とする請求項1乃至請求項7の何れかに記載の加熱調理器。   The cooking device according to any one of claims 1 to 7, wherein the determination of whether the mirror surface or the non-mirror surface is performed when the temperature of the object to be heated rises above a predetermined temperature. 前記所定箇所とは、前記複数箇所のうち最上部に位置する箇所であることを特徴とする請求項1乃至請求項8の何れかに記載の加熱調理器。   The cooking device according to any one of claims 1 to 8, wherein the predetermined place is a place located at an uppermost part among the plurality of places.
JP2008284081A 2008-11-05 2008-11-05 Cooker Expired - Fee Related JP4799603B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008284081A JP4799603B2 (en) 2008-11-05 2008-11-05 Cooker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008284081A JP4799603B2 (en) 2008-11-05 2008-11-05 Cooker

Publications (2)

Publication Number Publication Date
JP2010113882A true JP2010113882A (en) 2010-05-20
JP4799603B2 JP4799603B2 (en) 2011-10-26

Family

ID=42302303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008284081A Expired - Fee Related JP4799603B2 (en) 2008-11-05 2008-11-05 Cooker

Country Status (1)

Country Link
JP (1) JP4799603B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010287317A (en) * 2009-06-09 2010-12-24 Mitsubishi Electric Corp Induction heating cooker
CN103913255A (en) * 2014-03-28 2014-07-09 佛山市顺德区美的电热电器制造有限公司 Temperature measuring method and temperature measuring system of electric heating device and electric heating device
CN112304432A (en) * 2019-07-30 2021-02-02 Bsh家用电器有限公司 Device and method for determining the temperature of the content of a container

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002299029A (en) * 2001-03-29 2002-10-11 Mitsubishi Electric Corp Induction cooker
JP2003092177A (en) * 2001-07-13 2003-03-28 Mitsubishi Electric Corp Induction heating cooker
JP2003264055A (en) * 2002-03-08 2003-09-19 Hitachi Hometec Ltd Heating cooker
JP2005078993A (en) * 2003-09-02 2005-03-24 Matsushita Electric Ind Co Ltd Induction heating cooking device
JP2006318925A (en) * 2006-07-11 2006-11-24 Mitsubishi Electric Corp Heating cooker
JP2007010421A (en) * 2005-06-29 2007-01-18 Omron Corp Temperature measurement module and temperature measuring method using the same
JP2007103085A (en) * 2005-09-30 2007-04-19 Toshiba Corp Heating cooker

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002299029A (en) * 2001-03-29 2002-10-11 Mitsubishi Electric Corp Induction cooker
JP2003092177A (en) * 2001-07-13 2003-03-28 Mitsubishi Electric Corp Induction heating cooker
JP2003264055A (en) * 2002-03-08 2003-09-19 Hitachi Hometec Ltd Heating cooker
JP2005078993A (en) * 2003-09-02 2005-03-24 Matsushita Electric Ind Co Ltd Induction heating cooking device
JP2007010421A (en) * 2005-06-29 2007-01-18 Omron Corp Temperature measurement module and temperature measuring method using the same
JP2007103085A (en) * 2005-09-30 2007-04-19 Toshiba Corp Heating cooker
JP2006318925A (en) * 2006-07-11 2006-11-24 Mitsubishi Electric Corp Heating cooker

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010287317A (en) * 2009-06-09 2010-12-24 Mitsubishi Electric Corp Induction heating cooker
CN103913255A (en) * 2014-03-28 2014-07-09 佛山市顺德区美的电热电器制造有限公司 Temperature measuring method and temperature measuring system of electric heating device and electric heating device
CN112304432A (en) * 2019-07-30 2021-02-02 Bsh家用电器有限公司 Device and method for determining the temperature of the content of a container
CN112304432B (en) * 2019-07-30 2024-02-13 Bsh家用电器有限公司 Device and method for knowing the temperature of the contents of a container

Also Published As

Publication number Publication date
JP4799603B2 (en) 2011-10-26

Similar Documents

Publication Publication Date Title
JP2002075624A (en) Induction heating cooker
JP2007018787A (en) Cooking device
JP4744582B2 (en) Cooker
JP4799603B2 (en) Cooker
JP2003264055A (en) Heating cooker
JP5047222B2 (en) Electromagnetic cooker
JP4311413B2 (en) Induction heating device
JP5286144B2 (en) Induction heating cooker
JP5089728B2 (en) Induction heating cooker
JP2009170433A (en) Induction-heating cooker
JP4120536B2 (en) Induction heating cooker
JP2007115515A (en) Induction heating cooking device
JP4443947B2 (en) Induction heating cooker
JP2009176751A (en) Induction heating cooker
JP2010170784A (en) Heating cooker
JP5062013B2 (en) Induction heating cooker
JP2005078993A5 (en)
JP2004241218A (en) Induction heating cooker
JP5047225B2 (en) Induction heating cooker
JP2007059412A (en) Induction heating cooking device
JP2010113846A (en) Induction heating cooker
JP2006260942A (en) Induction heating cooking device
JP5084785B2 (en) Cooker
JP4375185B2 (en) Multi-neck heating cooker
JP2007188658A (en) Induction heating cooker

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110412

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110705

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110802

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4799603

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees