JP5047222B2 - Electromagnetic cooker - Google Patents

Electromagnetic cooker Download PDF

Info

Publication number
JP5047222B2
JP5047222B2 JP2009116331A JP2009116331A JP5047222B2 JP 5047222 B2 JP5047222 B2 JP 5047222B2 JP 2009116331 A JP2009116331 A JP 2009116331A JP 2009116331 A JP2009116331 A JP 2009116331A JP 5047222 B2 JP5047222 B2 JP 5047222B2
Authority
JP
Japan
Prior art keywords
amount
oil
pan
temperature
cooking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009116331A
Other languages
Japanese (ja)
Other versions
JP2010267433A (en
Inventor
広康 私市
博史 山崎
滋之 永田
昭彦 小林
彰 森井
庄太 神谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2009116331A priority Critical patent/JP5047222B2/en
Publication of JP2010267433A publication Critical patent/JP2010267433A/en
Application granted granted Critical
Publication of JP5047222B2 publication Critical patent/JP5047222B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/06Control, e.g. of temperature, of power
    • H05B6/062Control, e.g. of temperature, of power for cooking plates or the like
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2213/00Aspects relating both to resistive heating and to induction heating, covered by H05B3/00 and H05B6/00
    • H05B2213/07Heating plates with temperature control means

Description

本発明は、揚げ物調理時の油温を制御する電磁調理器に関するものである。   The present invention relates to an electromagnetic cooker that controls the oil temperature during frying.

従来の電磁調理器は、鍋を保持するガラス天板と、鍋からの赤外線をガラス天板を介して検出する赤外線検出手段と、赤外線検出手段の出力から鍋の温度を検知する温度検知手段と、温度検知手段の出力および操作部での設定温度により油の予熱工程において予め設定された温度で加熱コイルの出力を下方向に切替え、油が設定温度になるように制御する制御手段と、第1の温度判定値から第2の温度判定値までの立ち上がり温度に応じて鍋内の油量を判定する油量判定手段とを備えている(例えば、特許文献1参照)。   A conventional electromagnetic cooker includes a glass top plate for holding a pan, infrared detection means for detecting infrared rays from the pan through the glass top plate, and temperature detection means for detecting the temperature of the pan from the output of the infrared detection means, A control means for switching the output of the heating coil downward at a preset temperature in the oil preheating step according to the output of the temperature detection means and the set temperature at the operation unit, and controlling the oil to reach the set temperature; Oil amount determination means for determining the oil amount in the pan according to the rising temperature from the temperature determination value of 1 to the second temperature determination value (see, for example, Patent Document 1).

特開2003−92177号公報(請求項1、3、図1)Japanese Patent Laying-Open No. 2003-92177 (Claims 1, 3 and 1)

ところで、前述のガラス天板は、2.5μm以上の波長は通さず、また、2.5μm以下の波長では500K(227℃)以下の温度の波長はガラス天板によりカットされるため、揚げ物調理の油温180℃付近の温度でしか検出できなかった。
本発明は、前記のような課題を解決するためになされたもので、調理鍋内の油量に関係なく、また、鍋底の反り状態に関係なく油温を精度良く温度制御する電磁調理器を提供することを目的とする。
By the way, the above-mentioned glass top plate does not pass the wavelength of 2.5 μm or more, and the wavelength of the temperature of 500 K (227 ° C.) or less is cut by the glass top plate at the wavelength of 2.5 μm or less. Was detected only at a temperature around 180 ° C.
The present invention has been made to solve the above-described problems. An electromagnetic cooker that accurately controls the oil temperature regardless of the amount of oil in the cooking pan and regardless of the warped state of the pan bottom. The purpose is to provide.

本発明に係る電磁調理器は、調理鍋が載置されるトッププレートと、トッププレートの下に設置され、トッププレートに載置された調理鍋を加熱する加熱コイルと、交流電圧を高周波電圧に変換して加熱コイルに高周波電流を供給する駆動回路と、加熱コイルの出力電力を検知し、その電力が設定電力になるように駆動回路を制御する制御回路と、トッププレートより上側に設けられ、調理鍋の側面から放射される赤外線を受光する赤外線センサーと、赤外線センサーによって受光された赤外線量に基づいて鍋側面温度を算出する鍋温度算出部とを備え、制御回路は、揚げ物調理モードが開始されると、所定時間、所定電力となるように駆動回路を制御し、所定時間のうち第1の所定時間において、その間の赤外線量の変化値あるいは鍋側面温度の変化値を求めて調理鍋と加熱コイルの位置関係を判定し、その後、所定時間のうち第2の所定時間において、その間の赤外線量の変化値あるいは鍋側面温度の変化値を求めて基本油量を判定し、かつ先に判定した調理鍋と加熱コイルの位置関係から基本油量を補正して調理鍋内の油量を算出し、その油量に基づいて温度フィードバック制御のゲインを選定し、温度フィードバック制御のゲインは、油量が多くなるにつれ大きくなり、油量が少なくなるにつれ小さくなる。 An electromagnetic cooker according to the present invention includes a top plate on which a cooking pan is placed, a heating coil that is installed under the top plate and that heats the cooking pan placed on the top plate, and an alternating voltage is converted to a high-frequency voltage. A drive circuit that converts and supplies high-frequency current to the heating coil, a control circuit that detects the output power of the heating coil and controls the drive circuit so that the power becomes set power, and is provided above the top plate, Infrared sensor that receives infrared rays radiated from the side of the cooking pan, and pan temperature calculation unit that calculates the pan side temperature based on the amount of infrared rays received by the infrared sensor, the control circuit starts the fried food cooking mode Once a predetermined time, and controls the driving circuit to a predetermined power, the first predetermined time of the predetermined time, the change value or pot sides therebetween in amount of infrared rays Determining a positional relationship between the heating coil cooking pot seeking every change value, then, in the second predetermined time of the predetermined time, it obtains the change in value of the change value or pan side temperature between the infrared-amount basic Judge the amount of oil, calculate the amount of oil in the cooking pan by correcting the basic oil amount from the positional relationship between the cooking pan and the heating coil determined earlier, and select the gain of temperature feedback control based on that oil amount The gain of the temperature feedback control increases as the oil amount increases, and decreases as the oil amount decreases.

本発明においては、揚げ物調理モードが開始されると、所定時間、所定電力となるように駆動回路を制御し、所定時間のうち第1の所定時間において、その間の赤外線量あるいは鍋側面温度の変化値を求めて調理鍋と加熱コイルの位置関係を判定し、その後、所定時間のうち第2の所定時間において、その間の赤外線量あるいは鍋側面温度の変化値を求めて基本油量を判定し、かつ先に判定した調理鍋と加熱コイルの位置関係から基本油量を補正して調理鍋内の油量を算出し、その油量に基づいて温度フィードバック制御のゲインを選定するようにしたので、調理鍋内の油量、鍋底の反り状態に関係なく油温のオーバーシュートがなくなり、精度良く温度制御ができる。   In the present invention, when the deep-fried food cooking mode is started, the drive circuit is controlled to be at a predetermined power for a predetermined time, and during the first predetermined time of the predetermined time, the amount of infrared rays or the temperature of the pan side surface during that time is changed. Determine the positional relationship between the cooking pan and the heating coil by determining the value, and then determine the basic oil amount by determining the amount of infrared rays or the temperature change of the pan side surface during the second predetermined time of the predetermined time, And the basic oil amount was corrected from the positional relationship between the cooking pan and the heating coil determined earlier, the oil amount in the cooking pan was calculated, and the gain of temperature feedback control was selected based on the oil amount. Regardless of the amount of oil in the cooking pan and the warping state of the pan bottom, the oil temperature does not overshoot and temperature control can be performed with high accuracy.

本発明の実施の形態1に係る電磁調理器の構成を示すブロック図である。It is a block diagram which shows the structure of the electromagnetic cooker which concerns on Embodiment 1 of this invention. 調理鍋が加熱口内に載置されたときの調理鍋と加熱コイルの位置関係を示す断面図である。It is sectional drawing which shows the positional relationship of a cooking pan and a heating coil when a cooking pan is mounted in the heating port. 調理鍋が赤外線センサー側にズレて加熱口に載置されたときの調理鍋と加熱コイルの位置関係を示す断面図である。It is sectional drawing which shows the positional relationship of a cooking pan and a heating coil when a cooking pan shifts | deviates to the infrared sensor side and is mounted in the heating port. 調理鍋と加熱コイルの位置関係及び調理鍋内の油量に応じて変化する鍋側面温度の曲線図である。It is a curve figure of the pan side surface temperature which changes according to the positional relationship of a cooking pan and a heating coil, and the oil quantity in a cooking pan. 第1の所定時間t1の微分値と補正係数Kとの相関を示す図である。It is a figure which shows the correlation with the differential value of 1st predetermined time t1, and the correction coefficient K. FIG. 第2の所定時間t2の微分値と基本油量Lとの相関を示す図である。It is a figure which shows the correlation with the differential value of 2nd predetermined time t2, and the basic oil amount L. FIG. 調理鍋内の油量(基本油量×K)とフィードバックゲインFGとの相関を示す図である。It is a figure which shows the correlation with the oil amount (basic oil amount xK) in a cooking pan, and the feedback gain FG. 実施の形態2における調理鍋の油量(基本油量L×補正係数K)としきい値との相関を示す図である。It is a figure which shows the correlation with the oil amount (basic oil amount Lx correction coefficient K) of the cooking pan in Embodiment 2, and a threshold value. 調理鍋の油量(基本油量L×K)と投入電力との相関を示す図である。It is a figure which shows the correlation with the oil amount (basic oil amount LxK) of cooking pot, and input electric power. 本発明の実施の形態4に係る電磁調理器の構成を示すブロック図である。It is a block diagram which shows the structure of the electromagnetic cooker which concerns on Embodiment 4 of this invention. 第1の所定時間t1の微分値と鍋側面温度及びサーミスタ温度の温度差との相関を示す鍋底の反り量の線図である。It is a diagram of the amount of curvature of the pan bottom showing the correlation between the differential value of the first predetermined time t1 and the temperature difference between the pan side surface temperature and the thermistor temperature. 鍋底の反り量とサーミスタ温度の補正係数Ks との相関を示す図である。It is a figure which shows the correlation with the curvature amount of a pan bottom, and the correction coefficient Ks of the thermistor temperature.

実施の形態1.
図1は本発明の実施の形態1に係る電磁調理器の構成を示すブロック図である。
図1において、本体11の上部に取り付けられたトッププレート3は、耐熱強化ガラスとそのガラスの外周に取り付けられた金属の枠体(図示せず)とにより構成されている。トッププレート3の耐熱強化ガラスの表面には、調理鍋1の加熱位置を示す円形の加熱口(図示せず)が表示されている。また、トッププレート3の下には、前述の加熱口に対向して設けられた環状の加熱コイル4が設置されている。加熱コイル4は、後述する駆動回路6からの高周波電流に基づいてトッププレート3上の調理鍋1を誘導加熱する。
Embodiment 1 FIG.
FIG. 1 is a block diagram showing the configuration of the electromagnetic cooking device according to Embodiment 1 of the present invention.
In FIG. 1, the top plate 3 attached to the upper part of the main body 11 is comprised by the heat resistant tempered glass and the metal frame (not shown) attached to the outer periphery of the glass. A circular heating port (not shown) indicating the heating position of the cooking pan 1 is displayed on the surface of the heat-resistant tempered glass of the top plate 3. In addition, an annular heating coil 4 is provided below the top plate 3 so as to face the above-described heating port. The heating coil 4 induction-heats the cooking pan 1 on the top plate 3 based on a high-frequency current from a drive circuit 6 described later.

トッププレート3の上側に設けられた赤外線センサー5は、例えば、前述の枠体に調理鍋1の側面と対向するように取り付けられ、調理鍋1の側面から放射される赤外線を受光する。駆動回路6は、インバータ回路を備え、後述する制御回路7からの制御に基づいてインバータ回路を駆動し、交流電圧8を高周波電圧に変換させて高周波電流を加熱コイル4に供給する。制御回路7は、例えばカレント・トランスで構成された電流検出器9により検出された入力電流と電圧検出器10により検出された入力電圧とから入力電力を算出し、操作部により設定された加熱電力となるように駆動回路6を制御する。   For example, the infrared sensor 5 provided on the upper side of the top plate 3 is attached to the above-described frame so as to face the side surface of the cooking pan 1, and receives infrared rays emitted from the side surface of the cooking pan 1. The drive circuit 6 includes an inverter circuit, drives the inverter circuit based on control from the control circuit 7 described later, converts the alternating voltage 8 into a high frequency voltage, and supplies the high frequency current to the heating coil 4. The control circuit 7 calculates the input power from the input current detected by the current detector 9 composed of, for example, a current transformer and the input voltage detected by the voltage detector 10, and the heating power set by the operation unit The drive circuit 6 is controlled so that

次に、調理鍋1と加熱コイル4の位置関係及び調理鍋1内の油量に応じて変化する鍋側面温度について説明する。
図2は調理鍋が加熱口内に載置されたときの調理鍋と加熱コイルの位置関係を示す断面図、図3は調理鍋が赤外線センサー側にズレて加熱口に載置されたときの調理鍋と加熱コイルの位置関係を示す断面図、図4は調理鍋と加熱コイルの位置関係及び調理鍋内の油量に応じて変化する鍋側面温度の曲線図である。なお、図4に示すt1は第1の所定時間、t2は第2の所定時間で、曲線は加熱開始から第2の所定時間t2経過するまでの鍋側面温度を示している。
Next, the pan side temperature which changes according to the positional relationship between the cooking pan 1 and the heating coil 4 and the amount of oil in the cooking pan 1 will be described.
2 is a cross-sectional view showing the positional relationship between the cooking pan and the heating coil when the cooking pan is placed in the heating port, and FIG. 3 is a cooking when the cooking pan is shifted to the infrared sensor side and placed on the heating port. Sectional drawing which shows the positional relationship of a pan and a heating coil, FIG. 4 is a curve figure of the pan side surface temperature which changes according to the positional relationship of a cooking pan and a heating coil, and the oil amount in a cooking pan. In addition, t1 shown in FIG. 4 is the first predetermined time, t2 is the second predetermined time, and the curve indicates the pan side surface temperature from the start of heating until the second predetermined time t2 elapses.

図3に示すように調理鍋1の赤外線センサー5側の側面が加熱コイル4からはみ出している場合は、加熱コイル5からの磁束により、先ず鍋底aと赤外線センサー5の反対側の鍋側面bが直接加熱され、その熱が調理鍋1の油2を介して赤外線センサー5側の鍋側面に伝わる。そのため、赤外線センサー5側の鍋側面の温度上昇は小さい。一方、図2に示すように調理鍋1が加熱コイル4の内側にある場合は、点線で囲まれた鍋側面bが鍋底aと共に加熱コイル4からの磁束により直接加熱されるため、赤外線センサー5側の鍋側面の温度上昇は大きい。図4に示すように、第1の所定時間t1の加熱では、油2の熱伝達係数よりも調理鍋1の熱伝達係数の方が大きいので、先ず調理鍋1が加熱される。この場合、油量よりも調理鍋1と加熱コイル4との位置関係の影響が大きく、加熱が進むにつれて油2に熱が伝わっていき、油量に応じて温度上昇の傾きが変わる。また、同じ油量であっても、調理鍋1が加熱コイル4の内側にある方が温度上昇の傾きが大きい。   As shown in FIG. 3, when the side surface on the infrared sensor 5 side of the cooking pan 1 protrudes from the heating coil 4, the pan bottom a and the pan side b opposite to the infrared sensor 5 are first caused by the magnetic flux from the heating coil 5. Directly heated, the heat is transmitted to the side of the pan on the infrared sensor 5 side through the oil 2 of the cooking pan 1. Therefore, the temperature rise on the side of the pan on the infrared sensor 5 side is small. On the other hand, when the cooking pan 1 is inside the heating coil 4 as shown in FIG. 2, since the pan side b surrounded by the dotted line is directly heated by the magnetic flux from the heating coil 4 together with the pan bottom a, the infrared sensor 5 The temperature rise on the side of the pan is large. As shown in FIG. 4, in the heating for the first predetermined time t <b> 1, since the heat transfer coefficient of the cooking pot 1 is larger than the heat transfer coefficient of the oil 2, the cooking pot 1 is first heated. In this case, the influence of the positional relationship between the cooking pan 1 and the heating coil 4 is greater than the amount of oil, and heat is transferred to the oil 2 as the heating proceeds, and the slope of the temperature rise changes according to the amount of oil. Moreover, even if it is the same oil quantity, the direction where the cooking pan 1 exists in the inside of the heating coil 4 has large inclination of a temperature rise.

そこで、実施の形態1においては、所定時間、所定電力となるように駆動回路6を制御すると共に、所定時間のうち第1の所定時間t1において、その間の鍋側面温度の変化値を求めて調理鍋1と加熱コイル4の位置関係を判定し、その後、所定時間のうち第2の所定時間t2において、その間の鍋側面温度の変化値を求めて基本油量を判定し、かつ先に判定した調理鍋1と加熱コイル4の位置関係とから調理鍋1内の油量を算出し、その油量に基づいて温度フィードバック制御のゲインを選定し、加熱コイル4の電力を制御するようにしている。   Therefore, in the first embodiment, the driving circuit 6 is controlled so as to have a predetermined power for a predetermined time, and at the first predetermined time t1 in the predetermined time, the change value of the pan side surface temperature is obtained during cooking. The positional relationship between the pan 1 and the heating coil 4 is determined, and then, at the second predetermined time t2 of the predetermined time, the change value of the pan side temperature during that time is determined, the basic oil amount is determined, and the determination is made first. The amount of oil in the cooking pan 1 is calculated from the positional relationship between the cooking pan 1 and the heating coil 4, a gain of temperature feedback control is selected based on the amount of oil, and the power of the heating coil 4 is controlled. .

次に、前述した一連の処理について図5乃至図7を用いて詳述する。
図5は第1の所定時間t1の微分値と補正係数Kとの相関を示す図、図6は第2の所定時間t2の微分値と基本油量Lとの相関を示す図、図7は調理鍋内の油量(基本油量×K)とフィードバックゲインFGとの相関を示す図である。
Next, the series of processes described above will be described in detail with reference to FIGS.
FIG. 5 is a diagram showing the correlation between the differential value at the first predetermined time t1 and the correction coefficient K, FIG. 6 is a diagram showing the correlation between the differential value at the second predetermined time t2 and the basic oil amount L, and FIG. It is a figure which shows the correlation with the oil amount (basic oil amount xK) in a cooking pan, and the feedback gain FG.

前述の処理は、本調理器の制御回路7によって行われる。この制御回路7は、赤外線センサー5によって受光された赤外線量に基づいて鍋側面温度を算出する鍋温度算出部を備え、揚げ物調理スイッチがオンされたときに、所定時間、所定電力となるように駆動回路6を制御する。この時、所定時間のうち第1の所定時間t1において、その間の鍋側面温度を時間微分して微分値(変化値)を算出する。次いで、図5に示すように、その微分値が所定値T1以上かどうかを判定し、微分値が所定値T1以下のときは調理鍋1が赤外線センサー5側にズレていると判定して、補正係数Kを1.0とする。また、微分値が所定値T1より大きいときは調理鍋1が加熱コイル4の内側あるいは赤外線センサー5の反対側にズレて載置されていると判定して、その微分値に応じて設定された補正係数K(1.0より小さい値)を選定する。   The above-described processing is performed by the control circuit 7 of the cooker. The control circuit 7 includes a pan temperature calculating unit that calculates the pan side surface temperature based on the amount of infrared light received by the infrared sensor 5 so that when the deep-fried food cooking switch is turned on, the control circuit 7 has predetermined power for a predetermined time. The drive circuit 6 is controlled. At this time, at the first predetermined time t1 of the predetermined time, the pan side surface temperature during that time is time-differentiated to calculate a differential value (change value). Next, as shown in FIG. 5, it is determined whether the differential value is equal to or greater than a predetermined value T1, and when the differential value is equal to or less than the predetermined value T1, it is determined that the cooking pan 1 is shifted to the infrared sensor 5 side. The correction coefficient K is set to 1.0. Further, when the differential value is larger than the predetermined value T1, it is determined that the cooking pot 1 is placed on the inner side of the heating coil 4 or on the opposite side of the infrared sensor 5, and is set according to the differential value. A correction coefficient K (a value smaller than 1.0) is selected.

その後、制御回路7は、所定時間のうち第2の所定時間t2において、その間の鍋側面温度を時間微分して微分値(変化値)を算出し、その微分値に応じて設定された基本油量Lを選定する(図6参照)。そして、その基本油量Lに先に選定した補正係数Kを乗算して調理鍋1内の油量を求め、図7に示すようにその油量に応じて設定されたフィードバックゲインFGを選定し、温度フィードバック制御のゲインとする。フィードバックゲインFGは、油量が多くなるにつれ大きくなり、少なくなるにつれ小さくなる。   Thereafter, the control circuit 7 calculates the differential value (change value) by time-differentiating the pan side surface temperature during the second predetermined time t2 of the predetermined time, and the basic oil set according to the differential value The quantity L is selected (see FIG. 6). Then, the basic oil amount L is multiplied by the correction coefficient K previously selected to obtain the oil amount in the cooking pan 1, and a feedback gain FG set according to the oil amount is selected as shown in FIG. And gain of temperature feedback control. The feedback gain FG increases as the oil amount increases and decreases as the oil amount decreases.

なお、鍋温度算出部により算出された鍋側面温度を時間微分するようにしたが、これに代えて、赤外線センサーによって受光された赤外線量を時間微分するようにしても良い。また、鍋側面温度の微分値の算出については、動作説明の際に詳述する。   Although the pan side surface temperature calculated by the pan temperature calculating unit is time-differentiated, the amount of infrared rays received by the infrared sensor may be time-differentiated instead. The calculation of the differential value of the pan side surface temperature will be described in detail when the operation is described.

前記のように構成された電磁調理器においては、操作部により電源を「入」にし、揚げ物調理スイッチをオンして揚げ物調理モードが開始されると、制御回路7は、所定時間、所定電力となるように駆動回路6を制御する。この時、赤外線センサー5が受ける調理鍋1の側面からの赤外線量P、赤外線センサー5自体の温度TO を読み込んで、調理鍋1の赤外線放射率をε、ステファン・ボルツマン定数をσ、鍋側面温度をTaとする下記の(1)式から鍋側面温度Taを算出する。
P=σ(εTa4 −εTo4 )…(1)
In the electromagnetic cooker configured as described above, when the power source is turned “on” by the operation unit, and the deep-fried food cooking mode is started by turning on the deep-fried food cooking switch, the control circuit 7 The drive circuit 6 is controlled so that At this time, the infrared ray amount P from the side of the cooking pan 1 received by the infrared sensor 5 and the temperature T O of the infrared sensor 5 itself are read, the infrared emissivity of the cooking pan 1 is ε, the Stefan-Boltzmann constant is σ, the side of the pan The pan side surface temperature Ta is calculated from the following equation (1) where the temperature is Ta.
P = σ (εTa 4 −εTo 4 ) (1)

その後、加熱開始から第1の所定時間t1を経過したときに、調理鍋1の側面から放射される赤外線量Pを赤外線センサー5を介して受光し、赤外線センサー5自体の温度TO を読み込んで、前述の(1)式から鍋側面温度Taを算出する。次いで、先に算出した鍋側面温度Taとで時間微分し、鍋側面温度Taの微分値を算出する。 Thereafter, when the start of heating has elapsed a first predetermined time t1, the amount of infrared rays P emitted from the side surface of the cooking pot 1 received through the infrared sensor 5 reads the temperature T O of the infrared sensor 5 itself The pan side surface temperature Ta is calculated from the above equation (1). Next, time differentiation is performed with the previously calculated pan side surface temperature Ta, and a differential value of the pan side surface temperature Ta is calculated.

次いで、制御回路7は、算出した微分値が予め設定された所定値T1より大きいかどうかを判定し(図5参照)、微分値が所定値T1以下のときは、調理鍋1が赤外線センサー5側にズレていると判定して、補正係数Kを1.0とする。また、微分値が所定値T1より大きいときは調理鍋1が加熱コイル4の内側あるいは赤外線センサー5の反対側にズレて載置されていると判定して、その微分値に応じて設定された補正係数K(1.0より小さい値)を選定する。   Next, the control circuit 7 determines whether or not the calculated differential value is larger than a predetermined value T1 that is set in advance (see FIG. 5). And the correction coefficient K is set to 1.0. Further, when the differential value is larger than the predetermined value T1, it is determined that the cooking pot 1 is placed on the inner side of the heating coil 4 or on the opposite side of the infrared sensor 5, and is set according to the differential value. A correction coefficient K (a value smaller than 1.0) is selected.

その後、制御回路7は、第2の所定時間t2の測定に入った際に、前記と同様に調理鍋1の側面から放射される赤外線量Pを赤外線センサー5を介して受光し、赤外線センサー5自体の温度TO を読み込んで、前述の(1)式から鍋側面温度Taを算出する。そして、第2の所定時間t2が経過したとき、調理鍋1の側面から放射される赤外線量Pを赤外線センサー5を介して受光し、赤外線センサー5自体の温度TO を読み込んで、前述の(1)式から鍋側面温度Taを算出する。次いで、先に算出した鍋側面温度Taとで時間微分し、鍋側面温度Taの微分値を算出し、その微分値に応じて設定された基本油量Lを選定する(図6参照)。そして、その基本油量Lに先に選定した補正係数Kを乗算して調理鍋1内の油量を算出する。 Thereafter, the control circuit 7 receives the infrared ray amount P radiated from the side surface of the cooking pan 1 through the infrared sensor 5 in the same manner as described above when entering the measurement of the second predetermined time t2, and the infrared sensor 5 The temperature T O of itself is read, and the pan side surface temperature Ta is calculated from the above-described equation (1). When the second predetermined time t2 has elapsed, the amount of infrared rays P emitted from the side surface of the cooking pot 1 received through the infrared sensor 5 reads the temperature T O of the infrared sensor 5 itself, the above-mentioned ( 1) The pan side surface temperature Ta is calculated from the equation. Next, time differentiation is performed with the previously calculated pan side surface temperature Ta, a differential value of the pan side surface temperature Ta is calculated, and a basic oil amount L set according to the differential value is selected (see FIG. 6). Then, the amount of oil in the cooking pan 1 is calculated by multiplying the basic oil amount L by the correction coefficient K previously selected.

例えば、調理鍋1が加熱コイル4の内側にある場合、第1の所定時間t1での微分値は油量が少ないほど大きくなるので、補正係数Kが小さくなる。第2の所定時間t2での微分値は第1の所定時間t1のときと比べ傾きが小さくなるものの油量が少ないほど大きくなるので、基本油量Lが少なくなる。このため、調理鍋1内の油量は少なく推定される。また、第1の所定時間t1での微分値は油量が多いほど小さくなるので、補正係数Kが大きくなる。第2の所定時間t2での微分値は第1の所定時間t1のときと比べ傾きが小さくなるものの油量が多いほど小さくなるので、基本油量Lが多くなる。このため、調理鍋1内の油量は多く推定される。   For example, when the cooking pan 1 is inside the heating coil 4, the differential value at the first predetermined time t <b> 1 increases as the oil amount decreases, so the correction coefficient K decreases. Although the differential value at the second predetermined time t2 is smaller than that at the first predetermined time t1, it becomes larger as the oil amount is smaller, so the basic oil amount L becomes smaller. For this reason, the amount of oil in the cooking pot 1 is estimated to be small. Further, since the differential value at the first predetermined time t1 becomes smaller as the amount of oil increases, the correction coefficient K increases. Although the differential value at the second predetermined time t2 is smaller than that at the first predetermined time t1, the smaller the oil amount, the smaller the basic oil amount L. For this reason, a large amount of oil in the cooking pan 1 is estimated.

また、調理鍋1が赤外線センサー5側にある場合において、第1の所定時間t1での微分値により補正係数Kを1.0とした場合、第2の所定時間t2での微分値は油量が多くなるほど小さくなるので、基本油量Lが多くなり、調理鍋1内の油量は多く推定される。逆に、第2の所定時間t2での微分値は油量が少なくなるほど大きくなるので、基本油量Lは微分値が小さいときと比べ少なくなり、調理鍋1内の油量は少なく推定される。   When the cooking pan 1 is on the infrared sensor 5 side and the correction coefficient K is 1.0 based on the differential value at the first predetermined time t1, the differential value at the second predetermined time t2 is the oil amount. As the amount of oil increases, the amount of basic oil L increases, and the amount of oil in the cooking pan 1 is estimated to be large. Conversely, since the differential value at the second predetermined time t2 increases as the oil amount decreases, the basic oil amount L decreases compared to when the differential value is small, and the oil amount in the cooking pan 1 is estimated to be small. .

調理鍋1内の油量を推定した後は、その油量に応じて設定されたフィードバックゲインFGを選定し(図7参照)、温度フィードバック制御のゲインとする。そして、揚げ物調理の目標温度Tobj と鍋側面温度Taとを比較し、鍋側面温度Taが低いときは、第2の所定時間t2経過後、加熱コイル4に電力を投入する。このときの電力は、FG(Tobj −Ta)に比例したものである。   After estimating the amount of oil in the cooking pan 1, a feedback gain FG set in accordance with the amount of oil is selected (see FIG. 7) and used as a gain for temperature feedback control. And the target temperature Tobj of fried food cooking and the pan side surface temperature Ta are compared, and when the pan side surface temperature Ta is low, electric power will be supplied to the heating coil 4 after 2 second predetermined time t2. The power at this time is proportional to FG (Tobj−Ta).

以上のように実施の形態1によれば、揚げ物調理スイッチのオンにより揚げ物調理モードが開始されると、所定時間、所定電力となるように駆動回路6を制御すると共に、所定時間のうち第1の所定時間t1において、その間の鍋側面温度Taを時間微分して微分値を求め、その微分値から補正係数Kを選定し、その後、所定時間のうち第2の所定時間t2において、その間の鍋側面温度Taを時間微分して微分値を求め、その微分値から基本油量Lを選定し、かつ先に選定した補正係数Kとから調理鍋1内の油量を算出し、その油量に基づいて温度フィードバック制御のゲインFGを選定するようにしたので、調理鍋1内の油量、鍋底の反り状態に関係なく油温のオーバーシュートがなくなり、精度良く温度制御ができる。   As described above, according to the first embodiment, when the deep-fried food cooking mode is started by turning on the deep-fried food cooking switch, the drive circuit 6 is controlled to be at a predetermined power for a predetermined time, and the first time in the predetermined time. At a predetermined time t1, the pan side surface temperature Ta during that time is differentiated with respect to time to obtain a differential value, a correction coefficient K is selected from the differential value, and then at a second predetermined time t2 of the predetermined time, the pan during that time The side temperature Ta is differentiated with respect to time to obtain a differential value, the basic oil amount L is selected from the differential value, and the oil amount in the cooking pan 1 is calculated from the correction coefficient K selected earlier, and the oil amount is calculated. Since the gain FG of the temperature feedback control is selected based on this, overshoot of the oil temperature is eliminated regardless of the amount of oil in the cooking pan 1 and the warped state of the pan bottom, and temperature control can be performed with high accuracy.

なお、実施の形態1では、第1の所定時間t1で求めた鍋側面温度Taの微分値から補正係数Kを選定し、第2の所定時間t2で求めた鍋側面温度Taの微分値から基本油量Lを選定し、その基本油量Lに先の補正係数Kを乗算して調理鍋1内の油量を求めるようにしたが、その油量が例えば200g(所定量)以下のときに揚げ物調理モードの制御を中止して、液晶表示部やLEDあるいは音声により、使用者に調理鍋1内の油量が少ない旨を報知するようにしても良い。このように構成した場合、調理鍋1内の油量が少ないときに油温が上がりすぎるのを防止でき、より安全性が向上する。   In the first embodiment, the correction coefficient K is selected from the differential value of the pan side surface temperature Ta obtained at the first predetermined time t1, and the basic value is derived from the differential value of the pan side surface temperature Ta obtained at the second predetermined time t2. The oil amount L is selected, and the basic oil amount L is multiplied by the previous correction coefficient K to obtain the oil amount in the cooking pan 1. When the oil amount is, for example, 200 g (predetermined amount) or less. You may make it alert | report that there is little oil amount in the cooking pan 1 to a user with a liquid crystal display part, LED, or an audio | voice by stopping control of fried food cooking mode. When comprised in this way, when the amount of oil in the cooking pan 1 is small, it can prevent that oil temperature goes up too much, and safety improves more.

実施の形態2.
実施の形態2は、前述した実施の形態1の電磁調理器において、揚げ物調理に最適な温度(例えば180℃)に達しているときに、食材の投入により鍋側面温度Taが急激に下がった場合、現在の電力に所定電力を加算して加熱を行うようにしたものである。
Embodiment 2. FIG.
In the second embodiment, in the electromagnetic cooker of the first embodiment described above, when the temperature optimal for fried food cooking (for example, 180 ° C.) has been reached, the pan side surface temperature Ta suddenly drops due to the addition of ingredients. The heating is performed by adding a predetermined power to the current power.

図8は実施の形態2における調理鍋の油量(基本油量L×補正係数K)としきい値との相関を示す図、図9は調理鍋の油量(基本油量L×K)と投入電力との相関を示す図である。なお、図8に示す油投入しきい値は、後述する実施の形態3で説明する。また、実施の形態2の電磁調理器の構成は、実施の形態1と同様であるため、図1を用いて説明する。   FIG. 8 is a diagram showing the correlation between the amount of oil in the cooking pan (basic oil amount L × correction coefficient K) and the threshold in Embodiment 2, and FIG. 9 is the amount of oil in the cooking pan (basic oil amount L × K). It is a figure which shows the correlation with input electric power. Note that the oil input threshold shown in FIG. 8 will be described in a third embodiment to be described later. Moreover, since the structure of the electromagnetic cooking device of Embodiment 2 is the same as that of Embodiment 1, it demonstrates using FIG.

実施の形態2における電磁調理器の制御回路7は、調理鍋1の油温が揚げ物調理に最適な温度である所定温度(例えば180℃)に達すると、所定間隔毎にその間の鍋側面温度Taを時間微分して微分値(変化値)を算出し、かつその微分値が油量(基本油量L×補正係数K)に応じて設定された食材投入しきい値(第1しきい値)以上マイナス方向に変化したかどうかを判定する。微分値が食材投入しきい値以上マイナス方向に変化したときは、調理鍋1内に食材が投入されたと判定して、油量に応じて設定された電力を現在の電力に加えて加熱する。その食材投入しきい値は、図8に示すように、調理鍋1内の油量が多くなるにつれ小さくなり、油量が少なくなるにつれ大きくなる。   When the oil temperature of the cooking pan 1 reaches a predetermined temperature (for example, 180 ° C.) that is optimal for deep-fried food cooking, the control circuit 7 of the electromagnetic cooker in the second embodiment sets the pan side surface temperature Ta between the predetermined intervals. Is differentiated with respect to time to calculate a differential value (change value), and the differential value is set in accordance with the oil amount (basic oil amount L × correction coefficient K). It is determined whether or not it has changed in the negative direction. When the differential value changes in the negative direction beyond the food material input threshold, it is determined that the food material has been input into the cooking pan 1, and the power set according to the amount of oil is added to the current power and heated. As shown in FIG. 8, the food material input threshold decreases as the amount of oil in the cooking pan 1 increases, and increases as the amount of oil decreases.

鍋側面温度Taは、実施の形態1で述べたように(1)式から求めたものである。また、前述の油量は、実施の形態1と同様に、第1の所定時間t1で求めた鍋側面温度Taの微分値から補正係数Kを選定し、第2の所定時間t2で求めた鍋側面温度Taの微分値から基本油量Lを選定し、その基本油量Lに先の補正係数Kを乗算して得たものである。なお、鍋温度算出部により算出された鍋側面温度を時間微分するようにしたが、これに代えて、赤外線センサーによって受光された赤外線量を時間微分するようにしても良い。   The pan side temperature Ta is obtained from the equation (1) as described in the first embodiment. In addition, as in the first embodiment, the oil amount described above is selected from the differential value of the pan side surface temperature Ta obtained at the first predetermined time t1, and the pan obtained at the second predetermined time t2. This is obtained by selecting the basic oil amount L from the differential value of the side surface temperature Ta and multiplying the basic oil amount L by the correction coefficient K. Although the pan side surface temperature calculated by the pan temperature calculating unit is time-differentiated, the amount of infrared rays received by the infrared sensor may be time-differentiated instead.

以上のように実施の形態2によれば、調理鍋1内の油量が多いときに食材投入しきい値を小さくするので、油量が多くても食材の投入を確実に検知でき、また、調理鍋1内の油量が少ないときはそのしきい値を上げるようにしているので、箸の投入などによる誤判定を防止できる。また、食材が投入された際の電力の加算を油量に応じて変えるようにしているので、食材投入による温度低下状態からの温度復帰がオーバーシュートすることなく行われ、揚げ物調理に最適な温度を維持でき、美味しい調理が可能になる。   As described above, according to the second embodiment, when the amount of oil in the cooking pan 1 is large, the food material input threshold value is reduced, so that the input of the food material can be reliably detected even when the oil amount is large, Since the threshold is raised when the amount of oil in the cooking pan 1 is small, erroneous determination due to the insertion of chopsticks or the like can be prevented. In addition, the addition of electric power when food is added is changed according to the amount of oil, so temperature recovery from the temperature drop state due to food input is performed without overshoot, and the optimal temperature for fried food cooking Can be maintained and delicious cooking becomes possible.

実施の形態3.
実施の形態3は、前述した実施の形態2の電磁調理器において、揚げ物調理に最適な温度(例えば180℃)に達しているときに、油2が追加投入された場合、調理鍋1内の油量を再度算出するようにしたものである。油2が追加投入されたかどうかの判定については、前述の図8を用いて説明する。なお、実施の形態3の電磁調理器の構成は、実施の形態1と同様であるため、図1を用いて説明する。
Embodiment 3 FIG.
In the electromagnetic cooker according to the second embodiment described above, the third embodiment is configured such that when the oil 2 is additionally introduced when the temperature (for example, 180 ° C.) is optimal for fried food cooking, The oil amount is calculated again. The determination as to whether or not the oil 2 is additionally charged will be described with reference to FIG. In addition, since the structure of the electromagnetic cooker of Embodiment 3 is the same as that of Embodiment 1, it demonstrates using FIG.

実施の形態3における電磁調理器の制御回路7は、所定間隔毎に算出した鍋側面温度Taの微分値(変化値)が油量に応じて設定された食材投入しきい値(第1しきい値)より大きい油投入しきい値以上マイナス方向に変化したかどうかを判定する。前述の微分値が油量に応じて設定された食材投入しきい値以上マイナス方向に変化したときは、前述の如く調理鍋1内に食材が投入されたと判定するが、微分値が油投入しきい値以上マイナス方向に変化したときは、調理鍋1内に油2が投入されたと判定して、油量の算出を再度行う。その油投入しきい値は、図8に示すように、食材投入しきい値より高く、調理鍋1内の油量が多くなるにつれ小さくなり、油量が少なくなるにつれ大きくなる。   The control circuit 7 of the electromagnetic cooker according to the third embodiment is configured such that the differential value (change value) of the pan side surface temperature Ta calculated every predetermined interval is set according to the amount of oil (first threshold). Value) Determine whether or not the oil input threshold value has changed in the negative direction beyond the threshold value. When the above-mentioned differential value changes in the negative direction beyond the food material input threshold set in accordance with the amount of oil, it is determined that the food material has been input into the cooking pan 1 as described above. When it changes to the minus direction more than a threshold value, it determines with the oil 2 having been poured into the cooking pan 1, and calculates oil amount again. As shown in FIG. 8, the oil input threshold is higher than the food input threshold, decreases as the amount of oil in the cooking pan 1 increases, and increases as the amount of oil decreases.

油量の再算出は、例えば調理鍋1内に油2が投入された際、実施の形態1で述べた第1の所定時間t1及び第2の所定時間t2に相当する各期間を設けて、それぞれ鍋側面温度Taの微分値(時間微分)を算出する。そして、最初の期間の微分値から補正係数を判定し、次の期間の微分値から基本油量を判定し、次いで、その基本油量に先の補正係数を乗算して新たな油量を求める。その後、新たな油量に応じて設定された電力を現在の電力に加えて加熱する。   For example, when the oil 2 is introduced into the cooking pan 1, the recalculation of the oil amount is performed by providing each period corresponding to the first predetermined time t1 and the second predetermined time t2 described in the first embodiment, The differential value (time differential) of the pan side surface temperature Ta is calculated for each. Then, the correction coefficient is determined from the differential value in the first period, the basic oil amount is determined from the differential value in the next period, and then, the new oil amount is obtained by multiplying the basic oil amount by the previous correction coefficient. . Then, the electric power set according to the new oil amount is added to the current electric power and heated.

以上のように実施の形態3によれば、調理鍋1内の油量が多いときに油投入しきい値を小さくするので、油量が多くても油2の投入を確実に検知でき、また、調理鍋1内の油量が少ないときはそのしきい値を上げるようにしているので、誤判定を防止できる。また、油2が投入された際の電力の加算を新たな油量に応じて変えるようにしているので、油投入による温度低下状態からの温度復帰がオーバーシュートすることなく行われ、揚げ物調理に最適な温度を維持でき、美味しい調理が可能になる。   As described above, according to the third embodiment, when the amount of oil in the cooking pan 1 is large, the oil input threshold value is reduced. Therefore, even when the amount of oil is large, the input of oil 2 can be reliably detected. Since the threshold value is raised when the amount of oil in the cooking pan 1 is small, erroneous determination can be prevented. Moreover, since the addition of electric power when oil 2 is input is changed according to the new oil amount, temperature recovery from the temperature drop state due to oil input is performed without overshooting, and fried food cooking The optimum temperature can be maintained, and delicious cooking becomes possible.

実施の形態4.
図10は本発明の実施の形態4に係る電磁調理器の構成を示すブロック図、図11は第1の所定時間t1の微分値と鍋側面温度及びサーミスタ温度の温度差との相関を示す鍋底の反り量の線図、図12は鍋底の反り量とサーミスタ温度の補正係数Ks との相関を示す図である。なお、図10においては、図1で説明した実施の形態1と同様の部分に同じ符号を付している。
Embodiment 4 FIG.
FIG. 10 is a block diagram showing the configuration of the electromagnetic cooking device according to Embodiment 4 of the present invention, and FIG. 11 shows the correlation between the differential value of the first predetermined time t1, the temperature difference between the pan side surface temperature and the thermistor temperature. FIG. 12 is a diagram showing the correlation between the amount of warpage of the pan bottom and the correction coefficient Ks of the thermistor temperature. In FIG. 10, the same parts as those in the first embodiment described in FIG.

実施の形態4の電磁調理器は、図10に示すように、赤外線センサー5の他にサーミスタ21を備えている。サーミスタ21は、加熱コイル4の中央空間部にトッププレート3の裏面に接触して設置され、後述する制御回路7と接続されている。   As shown in FIG. 10, the electromagnetic cooker according to the fourth embodiment includes a thermistor 21 in addition to the infrared sensor 5. The thermistor 21 is installed in contact with the back surface of the top plate 3 in the central space of the heating coil 4 and is connected to a control circuit 7 described later.

前述の制御回路7は、サーミスタ21を介してトッププレート3上の調理鍋1の鍋底温度を検出する鍋温度検出部を備え、揚げ物調理スイッチのオンにより揚げ物調理モードが開始されると、調理鍋1の温度が揚げ物調理に最適な所定温度(例えば180℃)になるように駆動回路6を制御する。この時、加熱開始から所定時間t1の間の鍋側面温度Taを時間微分して微分値(変化値)を算出する。次いで、サーミスタ21を介してトッププレート3上の調理鍋1の鍋底温度Tsを検出し、鍋側面温度Taから鍋底温度Tsを減算して温度差を算出する。その後、図11に示すように、前述の微分値と温度差とから鍋底に反りがあるかどうかを判定する。   The control circuit 7 described above includes a pan temperature detection unit that detects the pan bottom temperature of the cooking pan 1 on the top plate 3 via the thermistor 21. When the frying cooking mode is started by turning on the frying cooking switch, the cooking pan The drive circuit 6 is controlled so that the temperature of 1 becomes a predetermined temperature (for example, 180 ° C.) optimum for cooking fried food. At this time, the pan side surface temperature Ta during the predetermined time t1 from the start of heating is time-differentiated to calculate a differential value (change value). Next, the pan bottom temperature Ts of the cooking pan 1 on the top plate 3 is detected via the thermistor 21, and the pan bottom temperature Ts is subtracted from the pan side surface temperature Ta to calculate the temperature difference. Thereafter, as shown in FIG. 11, it is determined whether there is a warp in the pan bottom from the above-described differential value and temperature difference.

微分値と温度差とから鍋底に反りなしと判定したときは、サーミスタ21の検出による鍋底温度Tsを調理鍋1の温度としてフィードバック制御を行う。また、微分値と温度差とから鍋底に反り有りと判定したときはその反り量を判定し(図11参照)、かつ反り量に応じて設定された補正係数Ksを選定する(図12参照)。そして、サーミスタ21の検出による鍋底温度Tsに補正係数Ksを乗算し、調理鍋1の温度としてフィードバック制御を行う。   When it is determined from the differential value and the temperature difference that there is no warping at the bottom of the pan, feedback control is performed using the pan bottom temperature Ts detected by the thermistor 21 as the temperature of the cooking pan 1. Further, when it is determined that the pan bottom is warped from the differential value and the temperature difference, the warpage amount is determined (see FIG. 11), and a correction coefficient Ks set according to the warpage amount is selected (see FIG. 12). . Then, the pan bottom temperature Ts detected by the thermistor 21 is multiplied by the correction coefficient Ks, and feedback control is performed as the temperature of the cooking pan 1.

以上のように実施の形態4によれば、鍋側面温度Taの微分値と鍋側面温度Taから鍋底温度Tsを減算した温度差とから鍋底の反り量を判定したとき、その反り量に応じて設定された補正係数Ksでサーミスタ21の検出の鍋底温度Tsを補正(乗算)するようにしたので、鍋底に反りのある調理鍋1であっても、サーミスタ21で正確な調理鍋1の温度を検出でき、精度良く温度制御ができる。   As described above, according to the fourth embodiment, when the amount of warpage of the pan bottom is determined from the differential value of the pan side surface temperature Ta and the temperature difference obtained by subtracting the pan bottom temperature Ts from the pan side surface temperature Ta, according to the amount of warpage. Since the pan temperature Ts detected by the thermistor 21 is corrected (multiplied) by the set correction coefficient Ks, the thermistor 21 can accurately set the temperature of the cooking pan 1 even if the cooking pan 1 is warped. It can be detected and the temperature can be controlled accurately.

なお、実施の形態4では、鍋側面温度Taの微分値と鍋側面温度Taから鍋底温度Tsを減算した温度差とから鍋底の反り量を判定するようにしたが、赤外線センサー5の検出による鍋側面温度Taとサーミスタ21の検出による鍋底温度Tsとの両者の温度差を算出し、その温度差が第1の所定値以上乖離しているとき揚げ物調理モードの制御を中止して、例えば液晶表示部やLED、あるいは音声によって使用者にその旨を報知するようにしても良い。これは、鍋底の反りが極端に大きい調理鍋1によって揚げ物調理が行われた場合である。この構成により、反りの大きい調理鍋1使用時に油温が極端に上昇するのを防止でき、安全性が向上する。   In the fourth embodiment, the amount of warping of the pan bottom is determined from the differential value of the pan side temperature Ta and the temperature difference obtained by subtracting the pan bottom temperature Ts from the pan side temperature Ta. The temperature difference between the side surface temperature Ta and the pan bottom temperature Ts detected by the thermistor 21 is calculated. You may make it alert | report to a user by a part, LED, or an audio | voice. This is a case where fried food cooking is performed by the cooking pot 1 in which the warping of the pot bottom is extremely large. With this configuration, it is possible to prevent the oil temperature from extremely rising when the cooking pan 1 having a large warp is used, and the safety is improved.

また、赤外線センサー5の検出による鍋側面温度Ta、あるいはサーミスタ21の検出による鍋底温度Tsを補正して得られた調理鍋1の温度の何れか一方が油の例えば250℃(第2の所定値)以上に上昇したときに揚げ物調理モードの制御を中止して、加熱コイル4による調理鍋1の加熱を停止させるようにしても良い。この場合も、前述したように液晶表示部やLED、あるいは音声にて使用者にその旨を報知する。この構成により、油温が異常に高温となることを防止でき、より安全性が向上する。   Also, either one of the temperature of the cooking pan 1 obtained by correcting the pan side temperature Ta detected by the infrared sensor 5 or the pan bottom temperature Ts detected by the thermistor 21 is, for example, 250 ° C. (second predetermined value) of oil. ) When the temperature rises above, control of the fried food cooking mode may be stopped and heating of the cooking pan 1 by the heating coil 4 may be stopped. In this case as well, the user is notified of this by the liquid crystal display unit, LED, or voice as described above. With this configuration, the oil temperature can be prevented from becoming abnormally high, and the safety is further improved.

前述した各実施の形態では、鍋側面温度Taの算出に前述の(1)式を用いたことを述べたが、式の中の赤外線放射率εに例えば0.2を用いて演算するようにしても良い。この0.2は、本調理器の専用調理鍋の赤外線放射率εである。鍋側面温度Taの算出にその赤外線放射率εを用いることで、正確な温度算出が可能になる。   In each of the embodiments described above, it has been described that the above formula (1) is used for calculating the pan side surface temperature Ta. However, for example, 0.2 is used for the infrared emissivity ε in the formula. May be. This 0.2 is the infrared emissivity ε of the dedicated cooking pan of this cooker. By using the infrared emissivity ε for the calculation of the pan side surface temperature Ta, accurate temperature calculation becomes possible.

1 調理鍋、2 油、3 トッププレート、4 加熱コイル、5 赤外線センサー、6 駆動回路、7 制御回路、9 電流検出器、10 電圧検出器、21 サーミスタ。   1 cooking pot, 2 oil, 3 top plate, 4 heating coil, 5 infrared sensor, 6 drive circuit, 7 control circuit, 9 current detector, 10 voltage detector, 21 thermistor.

Claims (4)

調理鍋が載置されるトッププレートと、
前記トッププレートの下に設置され、当該トッププレートに載置された調理鍋を加熱する加熱コイルと、
交流電圧を高周波電圧に変換して前記加熱コイルに高周波電流を供給する駆動回路と、
前記加熱コイルの出力電力を検知し、当該電力が設定電力になるように前記駆動回路を制御する制御回路と、
前記トッププレートより上側に設けられ、調理鍋の側面から放射される赤外線を受光する赤外線センサーと、
前記赤外線センサーによって受光された赤外線量に基づいて鍋側面温度を算出する鍋温度算出部とを備え、
前記制御回路は、揚げ物調理モードが開始されると、所定時間、所定電力となるように前記駆動回路を制御し、前記所定時間のうち第1の所定時間において、その間の前記赤外線量の変化値あるいは前記鍋側面温度の変化値を求めて調理鍋と前記加熱コイルの位置関係を判定し、その後、前記所定時間のうち第2の所定時間において、その間の前記赤外線量の変化値あるいは前記鍋側面温度の変化値を求めて基本油量を判定し、かつ先に判定した調理鍋と前記加熱コイルの位置関係から前記基本油量を補正して調理鍋内の油量を算出し、その油量に基づいて温度フィードバック制御のゲインを選定し、
前記温度フィードバック制御のゲインは、油量が多くなるにつれ大きくなり、油量が少なくなるにつれ小さくなることを特徴とする電磁調理器。
A top plate on which the cooking pan is placed;
A heating coil that is installed under the top plate and heats the cooking pan placed on the top plate;
A drive circuit for converting an alternating voltage into a high frequency voltage and supplying a high frequency current to the heating coil;
A control circuit that detects the output power of the heating coil and controls the drive circuit so that the power becomes a set power;
An infrared sensor that is provided above the top plate and receives infrared rays emitted from the side surface of the cooking pan;
A pan temperature calculating unit that calculates a pan side surface temperature based on the amount of infrared light received by the infrared sensor;
When the deep-fried food cooking mode is started, the control circuit controls the drive circuit so as to have a predetermined power for a predetermined time, and a change value of the infrared amount during the first predetermined time among the predetermined time. Or the change value of the said pan side temperature is calculated | required, the positional relationship of a cooking pan and the said heating coil is determined, Then, in the 2nd predetermined time among the said predetermined time, the change value of the said infrared amount in the meantime or the said pan side surface The basic oil amount is determined by determining the temperature change value, and the basic oil amount is corrected from the positional relationship between the cooking pan and the heating coil determined earlier, and the oil amount in the cooking pan is calculated. select a gain of temperature feedback control based on,
A gain of the temperature feedback control increases as the amount of oil increases, and decreases as the amount of oil decreases .
前記制御回路は、算出した油量が所定量以下のときに揚げ物調理モードの制御を中止して、使用者に油量が少ない旨を報知することを特徴とする請求項1記載の電磁調理器。   2. The electromagnetic cooker according to claim 1, wherein when the calculated amount of oil is equal to or less than a predetermined amount, the control circuit stops control of the deep-fried food cooking mode and notifies the user that the amount of oil is small. . 前記制御回路は、油温が所定温度に達すると、所定間隔毎にその間の前記赤外線量の変化値あるいは前記鍋側面温度の変化値を算出し、かつその変化値が前記油量に応じて設定された第1しきい値以上マイナス方向に変化したかどうかを判定し、前記変化値が第1しきい値以上マイナス方向に変化したときは、調理鍋内に食材が投入されたと判定して、前記油量から投入電力を選定して現在の電力に加えて加熱し、
前記投入電力は、油量が多くなるにつれ大きくなることを特徴とする請求項1又は2記載の電磁調理器。
When the oil temperature reaches a predetermined temperature, the control circuit calculates a change value of the infrared amount or a change value of the pan side surface temperature at predetermined intervals, and the change value is set according to the oil amount. It is determined whether or not the first threshold value is changed in the negative direction, and when the change value is changed in the negative direction more than the first threshold value, it is determined that the ingredients are put in the cooking pan, Select the input power from the oil amount and heat in addition to the current power,
The electromagnetic cooker according to claim 1 or 2 , wherein the input electric power increases as the amount of oil increases .
前記制御回路は、前記変化値が前記油量に応じて設定された前記第1しきい値より高い第2しきい値以上マイナス方向に変化したかどうかを判定し、前記変化値が第2しきい値以上マイナス方向に変化したときは、調理鍋内に油が投入されたと判定して、前記油量の算出を再度行うことを特徴とする請求項3記載の電磁調理器。   The control circuit determines whether or not the change value has changed in a minus direction by a second threshold value higher than the first threshold value set according to the oil amount, and the change value is second. 4. The electromagnetic cooker according to claim 3, wherein when it changes in a minus direction more than a threshold value, it is determined that oil has been put into the cooking pan and the amount of oil is calculated again.
JP2009116331A 2009-05-13 2009-05-13 Electromagnetic cooker Active JP5047222B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009116331A JP5047222B2 (en) 2009-05-13 2009-05-13 Electromagnetic cooker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009116331A JP5047222B2 (en) 2009-05-13 2009-05-13 Electromagnetic cooker

Publications (2)

Publication Number Publication Date
JP2010267433A JP2010267433A (en) 2010-11-25
JP5047222B2 true JP5047222B2 (en) 2012-10-10

Family

ID=43364239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009116331A Active JP5047222B2 (en) 2009-05-13 2009-05-13 Electromagnetic cooker

Country Status (1)

Country Link
JP (1) JP5047222B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5265648B2 (en) 2010-11-30 2013-08-14 トヨタ紡織株式会社 Package tray support structure
JP2012178300A (en) * 2011-02-28 2012-09-13 Sanyo Electric Co Ltd Heating cooker
JP5865010B2 (en) * 2011-10-26 2016-02-17 日立アプライアンス株式会社 Induction heating cooker
JP5892862B2 (en) * 2012-05-29 2016-03-23 三菱電機株式会社 Cooker
JP5892888B2 (en) * 2012-07-25 2016-03-23 三菱電機株式会社 Cooking device and cooking program
WO2018104989A1 (en) * 2016-12-05 2018-06-14 三菱電機株式会社 Induction heating cooker

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04341785A (en) * 1991-05-16 1992-11-27 Toshiba Corp Heat cooking appliance
JP3990116B2 (en) * 2001-03-29 2007-10-10 三菱電機株式会社 Induction heating cooker
JP5012164B2 (en) * 2007-04-19 2012-08-29 パナソニック株式会社 Induction heating cooker

Also Published As

Publication number Publication date
JP2010267433A (en) 2010-11-25

Similar Documents

Publication Publication Date Title
JP5253557B2 (en) Induction heating cooker
JP4965648B2 (en) Induction heating cooker
JP5047222B2 (en) Electromagnetic cooker
JP4910667B2 (en) Cooker
JP4393799B2 (en) Induction heating cooker
JP2010160899A (en) Induction heating cooker
JP4123108B2 (en) Induction heating cooker
JP4120536B2 (en) Induction heating cooker
JP5047225B2 (en) Induction heating cooker
JP5062013B2 (en) Induction heating cooker
JP5747178B2 (en) Induction heating cooker and its program
JP4497196B2 (en) Induction heating cooker
JP4357938B2 (en) Induction heating cooker
JP4952214B2 (en) Induction heating cooker
JP2005078993A5 (en)
JP2010170784A (en) Heating cooker
JP2006286441A (en) Induction heating cooking device
JP2008060088A5 (en)
JP2008262722A (en) Induction heating cooker
JP4823152B2 (en) Cooker
JP2006260942A (en) Induction heating cooking device
JP4301097B2 (en) Induction heating cooker
JP2008135201A5 (en)
JP5865010B2 (en) Induction heating cooker
JP2009140638A (en) Cooker

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120619

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120717

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150727

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5047222

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250