JP4393799B2 - Induction heating cooker - Google Patents

Induction heating cooker Download PDF

Info

Publication number
JP4393799B2
JP4393799B2 JP2003173172A JP2003173172A JP4393799B2 JP 4393799 B2 JP4393799 B2 JP 4393799B2 JP 2003173172 A JP2003173172 A JP 2003173172A JP 2003173172 A JP2003173172 A JP 2003173172A JP 4393799 B2 JP4393799 B2 JP 4393799B2
Authority
JP
Japan
Prior art keywords
temperature
heating
cooking container
cooking
radiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003173172A
Other languages
Japanese (ja)
Other versions
JP2005011618A (en
Inventor
弘文 乾
知也 藤濤
克徳 財前
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2003173172A priority Critical patent/JP4393799B2/en
Publication of JP2005011618A publication Critical patent/JP2005011618A/en
Application granted granted Critical
Publication of JP4393799B2 publication Critical patent/JP4393799B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、一般家庭やオフィス、レストランなどで使用する誘導加熱調理器に関するものである。
【0002】
【従来の技術】
従来、この種の誘導加熱調理器は、トッププレートの下面に温度検知手段を設けて、調理容器の底面温度を検出して加熱量を制御しているものである(例えば、特許文献1参照)。
【0003】
この誘導加熱調理器の構造について図8を用いて説明する。
【0004】
図に示すように、調理容器1が載置されるトッププレート2と、このトッププレート2の下方に配設された加熱コイル3と、前記トッププレート2の下方に配設された温度センサ4と、前記加熱コイル3に高周波電流を流して調理容器1を誘導加熱するインバータ回路5と、前記温度センサ4の検出温度が設定温度となるように前記インバータ回路5を駆動制御する制御手段6とを備えている。
【0005】
ここで、図示していない電源、または操作スタートのスイッチが操作されて加熱が開始されると、制御手段6からの信号によりインバータ回路5が動作して、加熱コイル3から高周波磁界が発生される。この高周波磁界によって調理容器1が加熱され温度が上昇する。前記制御手段6は、加熱コイル3による加熱動作が開始されてから所定時間経過した時の前記温度センサ4の検出温度が設定温度よりも低い場合は、加熱出力を下げるか、または設定温度を低く変更するようにしている。これにより、加熱開始から所定時間経過後の温度センサ4の検出温度に応じて加熱量を制御して、調理容器1の温度が異常に上昇することを防止しているものである。
【0006】
【特許文献1】
特開平11−87043号公報
【0007】
【発明が解決しようとする課題】
しかしながら、前記従来の構成の誘導加熱調理器は、トッププレート2の熱伝導率の低さや熱容量の存在によって、温度センサ4の検出温度と調理容器1の温度に温度差が生じている。近年、誘導加熱調理器の加熱量は、ハイパワー化が進み、2.5kW〜3kW程度となり、前記温度差はより大きくなってきている。特に、少量の油の加熱時や被加熱物がない調理容器を加熱した場合、前記温度差は大きくなる傾向にあり、温度センサ4の応答性の低さから温度変化が検出できず、調理容器1の温度上昇の防止に遅れが生じて、調理容器1の空焼き状態など調理容器の傷みが生じやすいものである。
【0008】
本発明は、前記従来の課題を解決するもので、加熱量が大きくなっても空焼き状態など調理容器の傷みがないよう、温度上昇をより確実に防止することができる誘導加熱調理器を提供することを目的とするものである。
【0009】
【課題を解決するための手段】
前記目的を達成するために、本発明の誘導加熱調理器は、調理容器を載置するトッププレートと、前記トッププレートの下方に配置し前記調理容器を加熱する加熱コイルと、トッププレートを介して調理容器の温度を検出する温度検出手段と、調理容器から放射され前記トッププレートを透過するエネルギーを検出して調理容器の温度を検出する赤外線センサからなる放射温度検出手段と、調理容器を加熱する加熱量を設定する加熱量設定手段と、加熱されて前記温度検出手段の検出温度が比較温度に到達すると前記加熱量が小さくなりかつ前記比較温度の設定が高くなるように移行させることにより、調理容器の過昇温度を防止する過昇温度防止手段と、前記放射温度検出手段の検出する温度の微分値を算出する温度微分手段と、を備え、前記温度微分手段は、前記調理容器の底面が厚い場合に被加熱物があるにも関わらず前記調理容器の底面温度が略100℃未満で急激に温度が上昇する時と前記調理容器に被加熱物がな温度上昇する時を区別するため、前記放射温度検出手段の温度が略100℃以上の場合に算出されるようにした前記温度微分値が所定値以上になると加熱量を低下させるかまたは加熱を停止させるものである。
【0010】
これにより、加熱量に応じて過昇温度を設定することができ、加熱量が大きくなっても空焼き状態など調理容器の傷みがないよう、調理容器の温度上昇をより確実に防止することができるものである。また、放射温度検出手段の温度微分値を算出する温度微分手段を設け、前記放射温度検出手段の温度が略100℃以上の場合に前記温度微分値が所定値以上になると前記加熱量を低下または加熱を停止させることにより、調理容器の急激な温度上昇を検出して加熱制御ができるものである。
【0011】
【発明の実施の形態】
請求項1に記載の発明は、調理容器器を載置するトッププレートと、前記トッププレートの下方に配置し前記調理容器を加熱する加熱コイルと、調理容器から放射され前記トッププレートを透過するエネルギーを検出して前記調理容器の温度を検出する赤外線センサからなる放射温度検出手段と、前記トッププレートを介して前記調理容器の温度を検出する温度検出手段と、前記調理容器を加熱する加熱量を設定する加熱量設定手段と、加熱されて前記温度検出手段の検出温度が比較温度に到達すると前記加熱量が小さくなりかつ前記比較温度の設定が高くなるように移行させることにより前記調理容器の過昇温度を防止する過昇温度防止手段と、前記加熱コイルの電流又はパワー素子の電圧を検出して前記調理容器が載置されているかいないかを判別する調理容器有無検知手段と、前記放射温度検出手段の検出する温度の微分値を算出する温度微分手段と、を備え、前記温度微分手段は、前記調理容器の底面が厚い場合に被加熱物があるにも関わらず前記調理容器の底面温度が略100℃未満で急激に温度が上昇する時と前記調理容器に被加熱物がな温度上昇する時を区別するため、前記放射温度検出手段の温度が略100℃以上の場合に算出されるようにした前記温度微分値が所定値以上になると加熱量を低下させるかまたは加熱を停止させる誘導加熱調理器とすることにより、加熱量に応じて過昇温度を設定することができ、加熱量が大きくなっても空焼き状態など調理容器の傷みがないよう、調理容器の温度上昇をより確実に防止することができるものである。
【0012】
また、調理容器から放射される放射温度を検出する赤外線センサからなる放射温度検出手段を備え、前記放射温度検出手段の温度情報により加熱量を制御することにより、調理容器の底面温度を正確に検知してより精度良く温度制御ができる。
【0015】
また放射線検出手段の検出する温度の微分値を算出する温度微分手段を備え、前記温度微分手段は、調理容器の底面温度が略100℃未満で急激に温度が上昇する時と前記調理容器に被加熱物がない時の温度上昇を区別するため、前記放射温度検出手段の検出する温度が略100℃以上の場合前記温度微分値が所定値以上になると加熱量を低下させるかまたは加熱を停止させる誘導加熱調理器とすることにより、調理容器の温度変化を正確に捉えることができる。
【0019】
【実施例】
以下、本発明の実施例及び参考例について、図面を参照して説明する。
【0020】
参考例1)
図1は、本発明の参考例1における誘導加熱調理器の構成を示すものである。
【0021】
参考例の誘導加熱調理器は、被加熱物を収容し加熱する調理容器21と、前記調理容器21を載置するガラス材料などの非磁性体で構成したトッププレート22と、前記トッププレート2の下方に配置し、調理容器21を加熱するために誘導磁界を発生させる加熱コイル23と、前記加熱コイル23の高周波電流を駆動制御する加熱制御手段24と、前記トッププレート22を介して調理容器21の温度を検出するサーミスタで構成した温度検出手段25と、前記調理容器21を加熱する加熱量を設定する操作スイッチからなる加熱量設定手段26と、前記温度検出手段23と前記加熱量設定手段26との出力により調理容器21の過昇温度を防止する過昇温度防止手段27とを備えている。
【0022】
前記過昇温度防止手段27は、加熱設定手段26で設定された加熱量に応じて過昇温度防止手段27の比較温度を可変して調理容器21の過昇温度を防止しているものである。
【0023】
なお、前記温度検出手段25は、トッププレート22の下方位置で調理容器21の載置部の中心部に設けているが、調理容器21の温度が検出できればよく、本参考例の構成に限られるものではない。また、前記温度検出手段25を複数個設けて、調理容器21の温度を検出できる構成にすると、底面が反った形状の調理容器21の温度検出が向上できるものである。
【0024】
以下、本参考例の動作について説明する。図示していない電源を投入し、加熱量設定手段26の操作スイッチで所定の加熱量を設定すると、加熱制御手段24が加熱コイル23に高周波電流を供給する。加熱コイル23に高周波電流が供給されると、加熱コイル23から誘導磁界が発せられ、トッププレート22に載置された調理容器21が誘導加熱される。この誘導加熱によって調理容器21の温度が上昇し、調理容器21内に収容された被加熱物が調理される。このとき、加熱制御手段2は、温度検出手段25からの温度情報によって、被加熱物の調理の進行状態を把握でき、調理の進行状態に応じて加熱コイル23に供給する電力を調整するものである。こうして、調理容器21内の被加熱物は調理されるものである。
【0025】
過昇温度防止手段27は、前記加熱量設定手段26で設定された加熱量に応じて比較温度を定めている。例えば3kWで加熱された場合では、略120℃で次の加熱量である2kWに移行するようにしている。また、前記加熱量設定手段26で設定された加熱量が2kWの場合では、略175℃で次の加熱量である1.5kWへ移行するようにしているものである。つまり、過昇温度防止手段27は、加熱量が大きくなると比較する温度値を低くするようにして設定することで、調理容器21の温度上昇が小さくできるようにしている。このように加熱量に応じて過昇温度防止手段27の温度値を設けることにより、調理容器21の温度上昇を抑制することができる。
【0026】
なお、前記過昇温度防止手段27の温度値は、高加熱量の場合に略1kWまでの温度値にヒステリシス幅をもたせることで、より調理容器21の温度上昇が低減できるものである。
【0027】
以上のように本参考例によれば、過昇温度防止手段27によって、加熱量に応じて比較する温度値を可変することで、高加熱量の場合でも調理容器21の温度上昇が抑制できるもので、調理容器21の高温加熱による痛みを防止することができる誘導加熱調理器が実現できるものである。
【0028】
参考例2)
続いて、図2により、本発明の参考例2における誘導加熱調理器について説明する。
【0029】
参考例において、参考例1との相違は、調理容器21から放射される放射温度を検出する赤外線センサからなる放射温度検出手段28を備え、この放射温度検出手段28の温度情報により加熱量を制御するようにしたことである。
【0030】
放射温度検出手段28は、フォトダイオードからなる赤外線センサで構成し、調理容器21の底面から放射される熱エネルギーを、トッププレート22を透過させて検出し、その温度情報を過昇温度防止手段27へ伝えている。
【0031】
なお、前記放射温度検出手段28は、焦電素子やサーモパイル等の赤外線を検出できるセンサが使用できるものであり、トッププレート22に赤外線を透過させる透過材を設けても同様な温度検出ができる。
【0032】
以下、本参考例の動作について説明する。放射温度検出手段28は、調理容器21の底面から放射される赤外線量を検出して温度を検知しているものである。このとき本実施例では、放射温度検出手段28は、加熱コイル23の中心部になるように取り付けられている。調理容器21は、加熱コイル22によって誘導加熱される。このときの温度分布は、加熱コイル23の磁束の集中分布に比例するものである。加熱コイル23の中心に対向する調理容器21の中心部は、誘導加熱に直接影響されず、調理容器21内の被加熱物の温度に比例するものである。この加熱コイル23の中心となる調理容器21の底面の温度を検出することで、正確に被加熱物の温度が検出できるものである。
【0033】
また、放射温度検出手段28は調理容器21の底面を非接触に検知して、調理容器21の温度を演算して求めているため、応答性が速く調理容器21の温度を正確に検知することができるものである。このため、加熱制御手段24の加熱コイル23に対する電力制御も、調理容器21の温度変化に即応したものとなっている。
【0034】
以上のように本参考例によれば、放射温度検出手段28によって、調理容器21の底面の温度が検出できる構成としたものであり、調理容器21の底面温度を正確に検知して温度制御ができる誘導加熱調理器を実現するものである。
【0035】
参考
続いて、図3により、本発明の参考における誘導加熱調理器について説明する。
【0036】
参考例において、参考例2との相違は、調理容器21がトッププレート22上に載置されて加熱開始後、放射温度検出手段28の温度情報を有効とするようにしたことである。
【0037】
参考例の動作について説明する。放射温度検出手段28は、調理容器21の底面に対向しているので、トッププレート22上に調理容器21が載置されていない場合は、太陽光や照明などの外乱光が入射されることになる。この外乱光の光エネルギーによって、放射温度検出手段28は熱エネルギーがあるかのように出力することとなる。調理容器21が載置されている場合は、調理容器21の底面が対向すると共に、調理容器21によって外乱光を遮断することができる。この状態では、調理容器21の温度が検出できるものである。
【0038】
また、調理容器有無検知手段29が、加熱コイル23の電流値や、パワー素子の電圧によって、調理容器21の有無を検知し、その情報を過昇温度防止手段27へ伝えている。調理容器21がない場合は、加熱コイル23の電流が小さく、これらを検出することで調理容器21の載置状態が判別できる。加熱量設定手段26によって、加熱が開始されても、調理容器21の載置状態を判別して、より安定に調理容器21の温度が検出できるものである。
【0039】
以上のように本参考例によれば、調理容器21がトッププレート22上に載置されて加熱開始後、放射温度検出手段28の温度情報を有効にするため、外乱光の影響を少なくして調理容器21の温度が検出できる誘導加熱調理器を実現するものである。
【0040】
参考
続いて、図4により、本発明の参考における誘導加熱調理器について説明する。
【0041】
参考例において、参考例2との相違は、放射温度検出手段28の温度微分値を算出する温度微分手段30を設け、温度微分値が所定値以上の場合に加熱量を低下または停止させるようにしていることである。
【0042】
なお、温度微分手段30は、移動平均処理を行って電気信号のノイズを減少させたり、微分値の温度変化幅を大きくしたりして検出精度を向上させることができるものである。
【0043】
以下、本参考例の動作について説明する。放射温度検出手段28は、調理容器21の底面の温度を検出している。加熱が開始されると、調理容器21の底面が誘導加熱され温度が上昇する。調理容器21に被加熱物がある場合は、調理容器21の底面の熱が被加熱物に伝達され、所定の温度になり調理ができるものである。また、調理容器21に被加熱物がない場合、加熱が開始されると調理容器21の底面の温度が急激に上昇する。これは被加熱物に熱が伝達しないためであり、調理容器21の底面温度が急激に高温となる。放射温度検出手段28は、この調理容器21の底面温度の急激な温度上昇を検出し、加熱を低下または停止させるように加熱量を減少させているものである。
【0044】
以上のように本参考例によれば、温度微分手段30によって、調理容器21の急激な温度上昇を検出して加熱量を抑制できるため、調理容器21の温度上昇を防止することができる誘導加熱調理器を実現できるものである。
【0045】
(実施例
続いて、図4により、本発明の実施例における誘導加熱調理器について説明する。
【0046】
本実施例において、参考との相違は、温度微分手段30は、放射温度検出手段28の温度が略100℃以上の場合に温度微分値を算出するようにして、温度微分値が所定値以上の場合に加熱量を低下または停止させるようにしていることである。
【0047】
以下、本実施例の動作を説明する。加熱が開始した直後、被加熱物があるにも関わらず、調理容器21の底面が誘導加熱されると底面の温度が短時間に急激に上昇する現象が起こる。これは、高くなった調理容器21底の熱が、被加熱物に伝達するのに時間が必要であるからである。特に、調理容器21の底面が厚い場合に見られる現象であり、底面温度が略100℃未満でありながら急激に温度が上昇するものである。本実施例では、前記現象と被加熱物がない時の温度上昇を区別するために、放射温度検出手段28の温度が略100℃以上の時に微分値を用いて、加熱量を制御するようにしている。
【0048】
以上のように本実施例によれば、温度微分手段30が、放射温度検出手段28の略100℃以上の時の温度変化を検出することによって、調理容器21の温度変化を正確に捉えることができ、調理容器21の温度上昇が防止できる誘導加熱調理器とすることができるものである。
【0049】
(参考例
続いて、図5により、本発明の参考例における誘導加熱調理器について説明する。
【0050】
参考例において、参考例1との相違は、加熱開始から所定時間後に加熱を低下または停止させる加熱休止手段31を設けて、温度検知手段25の検知温度の応答性を向上させるようにしたことである。
【0051】
以下本参考例の動作について説明する。加熱量設定手段26によって加熱量が設定されると、加熱が開始されると共に加熱休止手段31に信号が送られる。加熱休止手段31は、この信号を受け所定時間を計数した後に加熱量を停止させるように加熱量制御手段24に信号を送る。そして、所定時間加熱を停止している間、調理容器21の底面温度の熱が、トッププレート22を介して温度検出手段25に伝達されるものである。加熱休止手段31が、所定時間を計数した後、再び加熱を開始するように加熱量制御手段24に信号を送り、加熱が再び継続される。トッププレート22は、熱伝導率が低く、調理容器21の温度が温度検出手段25に伝達するのに遅れが生じるものである。この伝達遅れを一時的に加熱を停止させることで、温度検出手段25に調理容器21の底面の熱を伝達させて、トッププレート22による熱伝導の影響を少なくするものである。このように調理容器21の温度を検出することで、調理容器21の温度上昇を防止することができる。
【0052】
以上のように本参考例によれば、加熱休止手段31を設けることによって、正確に調理容器21の温度が検知でき、より正確な温度制御が実行できるものである。
【0053】
(参考例
続いて、図6により、本発明の参考例における誘導加熱調理器について説明する。
【0054】
参考例において、参考例2との相違は、過昇温度防止手段27は、加熱が開始されてから放射温度検出手段28の温度が所定時間変化しない場合に異常を検出する異常検知手段32を設け、放射温度検出手段28が異常の場合に加熱量を低下または停止させるようにしたことである。
【0055】
なお、異常検知手段32によって、放射温度検出手段28が異常である場合に、使用者に異常を報知させることも考えられる。
【0056】
参考例の動作について説明する。放射温度検出手段28は、調理容器21の底面温度を検出している。加熱が開始されると、調理容器21の底面温度は上昇するものであり、この底面温度を検出している放射温度検出手段28の温度値は、加熱開始時より変化している。しかし、放射温度検出手段28の受光面が汚れたり、放射温度検出手段28の温度検知素子が断線したりするなど故障していた場合は、放射温度検出手段28の出力は変化しない。異常検知手段32は、この放射温度検出手段28の出力を監視して、加熱が継続されているのに出力が変化しないことで、放射温度検出手段28が故障していると判断して、加熱量を低下あるいは停止させるようにしている。
【0057】
以上のように本参考例では、異常検出手段32が、放射温度検出手段28の異常を検出することによって、加熱量を抑制して調理容器21の温度上昇を防止することができ、より安全性を高めた誘導加熱調理器が実現できる。
【0058】
(参考例
続いて、図7により、本発明の参考例における誘導加熱調理器について説明する。
【0059】
参考例において、参考例2との相違は、過昇温度防止手段27は、温度検出手段25と放射温度検出手段28との温度情報差が所定値以上ある場合に放射温度検出手段28の異常を検出する異常検知手段33を設け、放射温度検出手段28が異常の場合に加熱量を低下または停止させるようにしたことである。
【0060】
以下、本参考例の動作について説明する。加熱が開始されると、調理容器21の温度が上昇して、温度検知手段25が検出する温度は上昇する。また、放射温度検出手段28が検出する温度も上昇する。加熱が継続されて、放射温度検出手段28の温度値が少ししか変化しない場合は、放射温度検知手段28の受光面が汚れている時、またトッププレート22が汚れて調理容器21の熱エネルギーが透過しない時であり、放射温度検出手段28が正確に調理容器21の底面温度が検出できていないことになる。また、調理容器21が鏡面などの状態で放射率が極めて小さい場合、放射温度検出手段28の出力変化は小さいものとなる。これらの出力が小さい場合は、放射温度検出手段28が調理容器21の底面温度を正確に検出できていないこととなり、加熱量を低下または停止させて安全性を高めるようにしている。
【0061】
以上のように本参考例では、異常検知手段33によって、調理容器21の底面温度を抑制できるため、より安全を高めた誘導加熱調理器が実現できるものである。
【0062】
【発明の効果】
以上のように、本発明の誘導加熱調理器は、トッププレートを介して調理容器の温度を検出する温度検出手段の出力により調理容器の過昇温度を防止する過昇温度防止手段について、加熱量に応じて過昇温度を設定することができ、加熱量が大きくなっても空焼き状態など調理容器の傷みがないよう、調理容器の温度上昇をより確実に防止するとともに、放射温度検出手段により正確に検出した調理容器の温度情報により加熱量を制御することができるものである。
【図面の簡単な説明】
【図1】 本発明の参考例1である誘導加熱調理器の構成を示す断面図
【図2】 本発明の参考例2である誘導加熱調理器の構成を示す断面図
【図3】 本発明の参考である誘導加熱調理器の構成を示す断面図
【図4】 本発明の参考、実施例である誘導加熱調理器の構成を示す断面図
【図5】 本発明の参考例である誘導加熱調理器の構成を示す断面図
【図6】 本発明の参考例である誘導加熱調理器の構成を示す断面図
【図7】 本発明の参考例である誘導加熱調理器の構成を示す断面図
【図8】 従来例である誘導加熱調理器の構成を示す断面図
【符号の説明】
21 調理容器
22 トッププレート
23 加熱コイル
24 加熱制御手段
25 温度検出手段
26 加熱量設定手段
27 過昇温度防止手段
28 放射温度検出手段
30 温度微分手段
31 加熱休止手段
32、33 異常検知手段
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an induction heating cooker used in general homes, offices, restaurants and the like.
[0002]
[Prior art]
Conventionally, this type of induction heating cooker is provided with temperature detecting means on the lower surface of the top plate, and detects the bottom surface temperature of the cooking container to control the heating amount (see, for example, Patent Document 1). .
[0003]
The structure of this induction heating cooker will be described with reference to FIG.
[0004]
As shown in the figure, a top plate 2 on which a cooking container 1 is placed, a heating coil 3 disposed below the top plate 2, and a temperature sensor 4 disposed below the top plate 2. , An inverter circuit 5 for inductively heating the cooking vessel 1 by applying a high-frequency current to the heating coil 3, and a control means 6 for driving and controlling the inverter circuit 5 so that the temperature detected by the temperature sensor 4 becomes a set temperature. I have.
[0005]
Here, when heating is started by operating a power source (not shown) or an operation start switch, the inverter circuit 5 is operated by a signal from the control means 6 to generate a high frequency magnetic field from the heating coil 3. . The cooking vessel 1 is heated by this high frequency magnetic field and the temperature rises. When the temperature detected by the temperature sensor 4 is lower than a set temperature when a predetermined time has elapsed after the heating operation by the heating coil 3 is started, the control means 6 lowers the heating output or lowers the set temperature. I am trying to change it. Thereby, the amount of heating is controlled according to the temperature detected by the temperature sensor 4 after the elapse of a predetermined time from the start of heating, thereby preventing the temperature of the cooking container 1 from rising abnormally.
[0006]
[Patent Document 1]
Japanese Patent Laid-Open No. 11-87043
[Problems to be solved by the invention]
However, the induction heating cooker having the above-described conventional configuration has a temperature difference between the temperature detected by the temperature sensor 4 and the temperature of the cooking vessel 1 due to the low thermal conductivity of the top plate 2 and the presence of heat capacity. In recent years, the amount of heating of induction heating cookers has been increased to high power, and has become about 2.5 kW to 3 kW, and the temperature difference has become larger. In particular, when cooking a small amount of oil or when a cooking container without an object to be heated is heated, the temperature difference tends to increase, and the temperature change cannot be detected due to the low responsiveness of the temperature sensor 4, and the cooking container 1 is delayed, and the cooking container 1 is easily damaged, such as when the cooking container 1 is baked.
[0008]
The present invention solves the above-mentioned conventional problems, and provides an induction heating cooker that can more reliably prevent temperature rise so that there is no damage to the cooking container such as an empty baking state even when the amount of heating increases. It is intended to do.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, an induction heating cooker according to the present invention includes a top plate on which a cooking container is placed, a heating coil that is disposed below the top plate and heats the cooking container, and a top plate. A temperature detection means for detecting the temperature of the cooking container, a radiation temperature detection means comprising an infrared sensor for detecting the temperature of the cooking container by detecting the energy emitted from the cooking container and transmitted through the top plate, and heating the cooking container Cooking by setting a heating amount setting means for setting a heating amount, and by making a transition so that the heating amount is reduced and the setting of the comparison temperature is increased when the detected temperature of the temperature detecting means reaches a comparison temperature after being heated. comprising a overtemperature preventing means for preventing excessive temperature of the vessel, and a temperature differential means for calculating a differential value of the detected temperature of the radiation temperature detecting means, Serial temperature differentiating means is heated to the cooking vessel and when rapid temperature increases the bottom surface temperature of the case bottom is thick the cooking vessel Despite object to be heated in the cooking vessel at substantially less than 100 ° C. to distinguish when the object is name rather temperature increase, or the temperature differential value temperature is to be calculated when more than approximately 100 ° C. of the radiation temperature detecting means decreases the heating amount becomes greater than or equal to a predetermined value Alternatively, the heating is stopped.
[0010]
As a result, it is possible to set an excessive temperature according to the heating amount, and more reliably prevent the cooking vessel from rising in temperature so that the cooking vessel will not be damaged even if the heating amount is increased, such as an empty baking state. It can be done. In addition, a temperature differentiating unit that calculates a temperature differential value of the radiation temperature detecting unit is provided, and when the temperature of the radiation temperature detecting unit is approximately 100 ° C. or higher, the heating amount is decreased when the temperature differential value exceeds a predetermined value or By stopping the heating, a rapid temperature rise of the cooking container can be detected to control the heating .
[0011]
DETAILED DESCRIPTION OF THE INVENTION
The invention according to claim 1 is a top plate on which a cooking container device is placed, a heating coil that is disposed below the top plate and heats the cooking container, and energy that is emitted from the cooking container and passes through the top plate. Detecting a temperature of the cooking container and detecting a temperature of the cooking container; a temperature detecting means for detecting the temperature of the cooking container via the top plate; and a heating amount for heating the cooking container. A heating amount setting means to be set, and when the detected temperature of the temperature detecting means reaches a comparison temperature after being heated, the amount of heating is reduced and the setting of the comparison temperature is increased so as to shift the excess of the cooking container. Overheating temperature prevention means for preventing the temperature rise and whether the cooking container is placed by detecting the current of the heating coil or the voltage of the power element. Comprising a cooking vessel presence detection means for determining whether, and a temperature differential means for calculating a differential value of the detected temperature of the radiation temperature detector, the temperature differentiating means is to be the case bottom surface of the cooking container is thick to distinguish when the bottom surface temperature of the cooking container despite heated rapidly temperature less than about 100 ° C. is heated object name rather temperature rise in the cooking container and when raised, the radiation temperature When the temperature differential value calculated when the temperature of the detecting means is approximately 100 ° C. or higher becomes a predetermined value or higher, the heating amount is reduced or the heating amount is reduced by using an induction cooker that stops heating. Accordingly, the temperature rise of the cooking vessel can be more reliably prevented so that the cooking vessel is not damaged even if the amount of heating increases, even if the heating amount increases.
[0012]
Further, with the radiation temperature detecting means consisting of an infrared sensor for detecting the radiation temperature emitted from the cooking container, wherein the a Turkey control the heating amount by the temperature information of the radiation temperature detector, accurate temperature of the bottom surface of the cooking container It is possible to control the temperature more accurately by detecting it.
[0015]
Moreover , the temperature differential means which calculates the differential value of the temperature which a radiation detection means detects is provided, The said temperature differential means is when the temperature rises rapidly when the bottom face temperature of a cooking container is less than about 100 degreeC, and the said cooking container In order to distinguish the temperature rise when there is no object to be heated, when the temperature detected by the radiation temperature detecting means is approximately 100 ° C. or higher , the heating amount is reduced or the heating is reduced when the temperature differential value becomes a predetermined value or higher. By making it the induction heating cooking appliance to stop, the temperature change of a cooking container can be caught correctly.
[0019]
【Example】
Hereinafter, examples and reference examples of the present invention will be described with reference to the drawings.
[0020]
( Reference Example 1)
FIG. 1 shows the configuration of an induction heating cooker in Reference Example 1 of the present invention.
[0021]
The induction heating cooker of this reference example includes a cooking container 21 that houses and heats an object to be heated, a top plate 22 that is made of a nonmagnetic material such as a glass material on which the cooking container 21 is placed, and the top plate 2. A heating coil 23 that generates an induction magnetic field to heat the cooking vessel 21, heating control means 24 that drives and controls the high-frequency current of the heating coil 23, and the cooking vessel via the top plate 22. Temperature detecting means 25 constituted by a thermistor for detecting the temperature of 21, heating amount setting means 26 comprising an operation switch for setting the heating amount for heating the cooking vessel 21, the temperature detecting means 23 and the heating amount setting means 26 is provided with an excessively high temperature preventing means 27 for preventing the excessively elevated temperature of the cooking vessel 21 from being output.
[0022]
The overheating temperature prevention means 27 prevents the overheating temperature of the cooking vessel 21 by changing the comparison temperature of the overheating temperature prevention means 27 in accordance with the heating amount set by the heating amount setting means 26. is there.
[0023]
In addition, although the said temperature detection means 25 is provided in the center part of the mounting part of the cooking vessel 21 in the downward position of the top plate 22, it should just be able to detect the temperature of the cooking vessel 21, and is restricted to the structure of this reference example. It is not a thing. In addition, when a plurality of the temperature detecting means 25 are provided so that the temperature of the cooking vessel 21 can be detected, the temperature detection of the cooking vessel 21 having a curved bottom surface can be improved.
[0024]
The operation of this reference example will be described below. When a power supply (not shown) is turned on and a predetermined heating amount is set by the operation switch of the heating amount setting means 26, the heating control means 24 supplies a high frequency current to the heating coil 23. When a high frequency current is supplied to the heating coil 23, an induction magnetic field is generated from the heating coil 23, and the cooking vessel 21 placed on the top plate 22 is induction heated. Due to this induction heating, the temperature of the cooking container 21 rises, and the object to be heated contained in the cooking container 21 is cooked. At this time, the heating control unit 2 4, the temperature information from the temperature detection means 25, which can grasp the progress of the cooking of the object to be heated, to adjust the power supplied to the heating coil 23 in accordance with the progress of the cooking It is. Thus, the object to be heated in the cooking container 21 is cooked.
[0025]
The excessive temperature preventing means 27 determines a comparison temperature according to the heating amount set by the heating amount setting means 26. For example, when heated at 3 kW, the next heating amount is shifted to 2 kW at about 120 ° C. Further, when the heating amount set by the heating amount setting means 26 is 2 kW, the next heating amount is shifted to 1.5 kW, which is approximately 175 ° C. In other words, the excessive temperature prevention means 27 is configured to reduce the temperature rise of the cooking container 21 by setting the temperature value to be compared to be lower when the heating amount is larger. Thus, the temperature rise of the cooking vessel 21 can be suppressed by providing the temperature value of the excessive temperature rise prevention means 27 according to the heating amount.
[0026]
In addition, the temperature value of the excessive temperature rise prevention means 27 can reduce the temperature rise of the cooking container 21 by giving a hysteresis width to the temperature value up to about 1 kW in the case of a high heating amount.
[0027]
As described above, according to the present reference example, the temperature value to be compared can be changed according to the heating amount by the overheating temperature preventing means 27, so that the temperature rise of the cooking vessel 21 can be suppressed even in the case of a high heating amount. Thus, an induction heating cooker that can prevent pain due to high temperature heating of the cooking container 21 can be realized.
[0028]
( Reference Example 2)
Then, the induction heating cooking appliance in the reference example 2 of this invention is demonstrated with FIG.
[0029]
In this reference example, the difference from the reference example 1 is provided with a radiation temperature detection means 28 comprising an infrared sensor for detecting the radiation temperature radiated from the cooking vessel 21, and the amount of heating is determined by the temperature information of the radiation temperature detection means 28. It is to control.
[0030]
The radiation temperature detection means 28 is constituted by an infrared sensor made of a photodiode, detects the thermal energy radiated from the bottom surface of the cooking vessel 21 through the top plate 22, and detects the temperature information of the overheated temperature prevention means 27. I tell you.
[0031]
The radiation temperature detecting means 28 can use a sensor capable of detecting infrared rays, such as a pyroelectric element or a thermopile, and the same temperature can be detected even if a transmission material that transmits infrared rays is provided on the top plate 22.
[0032]
The operation of this reference example will be described below. The radiation temperature detecting means 28 detects the temperature by detecting the amount of infrared rays radiated from the bottom surface of the cooking vessel 21. At this time, in this embodiment, the radiation temperature detecting means 28 is attached so as to be the central portion of the heating coil 23. The cooking vessel 21 is induction heated by the heating coil 22. The temperature distribution at this time is proportional to the magnetic flux concentration distribution of the heating coil 23. The central portion of the cooking vessel 21 that faces the center of the heating coil 23 is not directly affected by induction heating, but is proportional to the temperature of the object to be heated in the cooking vessel 21. By detecting the temperature of the bottom surface of the cooking vessel 21 that is the center of the heating coil 23, the temperature of the object to be heated can be accurately detected.
[0033]
Further, since the radiation temperature detecting means 28 detects the bottom surface of the cooking container 21 in a non-contact manner and calculates the temperature of the cooking container 21, the responsiveness is fast and the temperature of the cooking container 21 is detected accurately. It is something that can be done. For this reason, the electric power control with respect to the heating coil 23 of the heating control means 24 is also adapted to the temperature change of the cooking vessel 21.
[0034]
As described above, according to the present reference example, the temperature of the bottom surface of the cooking container 21 can be detected by the radiation temperature detecting means 28, and the temperature control can be performed by accurately detecting the bottom surface temperature of the cooking container 21. An induction heating cooker that can be realized is realized.
[0035]
( Reference Example 3 )
Then, the induction heating cooking appliance in the reference example 3 of this invention is demonstrated with FIG.
[0036]
In this reference example, the difference from the reference example 2 is that the cooking container 21 is placed on the top plate 22 and the heating is started, and then the temperature information of the radiation temperature detecting means 28 is made valid.
[0037]
The operation of this reference example will be described. Since the radiation temperature detection means 28 is opposed to the bottom surface of the cooking vessel 21, disturbance light such as sunlight or illumination is incident when the cooking vessel 21 is not placed on the top plate 22. Become. Due to the light energy of the disturbance light, the radiation temperature detecting means 28 outputs as if there is thermal energy. When the cooking vessel 21 is placed, the bottom surface of the cooking vessel 21 is opposed, and disturbance light can be blocked by the cooking vessel 21. In this state, the temperature of the cooking vessel 21 can be detected.
[0038]
The cooking container presence / absence detection means 29 detects the presence / absence of the cooking container 21 based on the current value of the heating coil 23 and the voltage of the power element, and transmits the information to the overheated temperature prevention means 27. When there is no cooking container 21, the electric current of the heating coil 23 is small, and the mounting state of the cooking container 21 can be determined by detecting these. Even when heating is started by the heating amount setting means 26, the mounting state of the cooking vessel 21 can be determined and the temperature of the cooking vessel 21 can be detected more stably.
[0039]
As described above, according to the present reference example, after the cooking container 21 is placed on the top plate 22 and heating is started, the temperature information of the radiation temperature detecting means 28 is made effective so that the influence of ambient light is reduced. An induction heating cooker that can detect the temperature of the cooking vessel 21 is realized.
[0040]
( Reference Example 4 )
Then, the induction heating cooking appliance in the reference example 4 of this invention is demonstrated with FIG.
[0041]
In this reference example, the difference from the reference example 2 is that a temperature differentiating means 30 for calculating a temperature differential value of the radiation temperature detecting means 28 is provided, and the heating amount is reduced or stopped when the temperature differential value is a predetermined value or more. It is to be.
[0042]
The temperature differentiating unit 30 can improve detection accuracy by performing a moving average process to reduce noise of an electric signal or to increase a temperature change width of a differential value.
[0043]
The operation of this reference example will be described below. The radiation temperature detection means 28 detects the temperature of the bottom surface of the cooking vessel 21. When heating is started, the bottom surface of the cooking vessel 21 is induction-heated and the temperature rises. When there is an object to be heated in the cooking container 21, the heat of the bottom surface of the cooking container 21 is transmitted to the object to be heated, so that cooking can be performed at a predetermined temperature. Moreover, when there is no to-be-heated object in the cooking container 21, if heating is started, the temperature of the bottom face of the cooking container 21 will rise rapidly. This is because heat is not transmitted to the object to be heated, and the bottom surface temperature of the cooking vessel 21 rapidly increases. The radiation temperature detecting means 28 detects a rapid temperature rise in the bottom surface temperature of the cooking vessel 21 and reduces the heating amount so as to reduce or stop the heating.
[0044]
As described above, according to the present reference example, the temperature differentiation means 30 can detect a rapid temperature rise of the cooking container 21 to suppress the amount of heating, and therefore induction heating that can prevent the temperature rise of the cooking container 21. A cooker can be realized.
[0045]
(Example 1 )
Then, the induction heating cooking appliance in Example 1 of this invention is demonstrated with FIG.
[0046]
In this embodiment, the difference from the reference example 4 is that the temperature differential means 30 calculates the temperature differential value when the temperature of the radiation temperature detection means 28 is approximately 100 ° C. or higher, and the temperature differential value is a predetermined value. In this case, the heating amount is reduced or stopped.
[0047]
The operation of this embodiment will be described below. Immediately after the start of heating, there is a phenomenon in which the temperature of the bottom surface rapidly rises in a short time when the bottom surface of the cooking vessel 21 is induction-heated despite the presence of an object to be heated. This is because it takes time for the heat at the bottom of the cooking vessel 21 that has been raised to be transferred to the object to be heated. In particular, this phenomenon is observed when the bottom surface of the cooking vessel 21 is thick, and the temperature rapidly increases while the bottom surface temperature is less than about 100 ° C. In this embodiment, in order to distinguish the phenomenon from the temperature rise when there is no object to be heated, the amount of heating is controlled using a differential value when the temperature of the radiation temperature detecting means 28 is approximately 100 ° C. or higher. ing.
[0048]
As described above, according to the present embodiment, the temperature differentiating means 30 can accurately detect the temperature change of the cooking container 21 by detecting the temperature change when the radiation temperature detecting means 28 is approximately 100 ° C. or higher. It is possible to provide an induction heating cooker that can prevent the temperature rise of the cooking vessel 21.
[0049]
(Reference Example 5 )
Then, the induction heating cooking appliance in the reference example 5 of this invention is demonstrated with FIG.
[0050]
In this reference example, the difference from the reference example 1 is that a heating pause means 31 for reducing or stopping heating after a predetermined time from the start of heating is provided to improve the responsiveness of the detected temperature of the temperature detecting means 25. It is.
[0051]
The operation of this reference example will be described below. When the heating amount is set by the heating amount setting means 26, heating is started and a signal is sent to the heating pause means 31. The heating pause means 31 sends a signal to the heating amount control means 24 so as to stop the heating amount after receiving this signal and counting a predetermined time. And while heating is stopped for a predetermined time, the heat of the bottom surface temperature of the cooking vessel 21 is transmitted to the temperature detection means 25 via the top plate 22. After the heating pause means 31 counts a predetermined time, a signal is sent to the heating amount control means 24 so as to start heating again, and heating is continued again. The top plate 22 has a low thermal conductivity, and a delay occurs when the temperature of the cooking vessel 21 is transmitted to the temperature detecting means 25. By temporarily stopping the heating for this transmission delay, the heat of the bottom surface of the cooking vessel 21 is transmitted to the temperature detecting means 25, and the influence of heat conduction by the top plate 22 is reduced. Thus, the temperature rise of the cooking container 21 can be prevented by detecting the temperature of the cooking container 21.
[0052]
As described above, according to the present reference example, by providing the heating pause means 31, the temperature of the cooking container 21 can be accurately detected, and more accurate temperature control can be performed.
[0053]
(Reference Example 6 )
Then, the induction heating cooking appliance in the reference example 6 of this invention is demonstrated with FIG.
[0054]
In this reference example, the difference from the reference example 2 is that the overheating temperature preventing means 27 has an abnormality detecting means 32 for detecting an abnormality when the temperature of the radiation temperature detecting means 28 does not change for a predetermined time after heating is started. The amount of heating is reduced or stopped when the radiation temperature detecting means 28 is abnormal.
[0055]
In addition, when the radiation temperature detection means 28 is abnormal by the abnormality detection means 32, it is also conceivable to notify the user of the abnormality.
[0056]
The operation of this reference example will be described. The radiation temperature detection means 28 detects the bottom surface temperature of the cooking vessel 21. When heating is started, the bottom surface temperature of the cooking vessel 21 rises, and the temperature value of the radiation temperature detecting means 28 that detects this bottom surface temperature has changed since the start of heating. However, if the light receiving surface of the radiation temperature detecting means 28 is dirty or the temperature detecting element of the radiation temperature detecting means 28 is broken, the output of the radiation temperature detecting means 28 does not change. The abnormality detection means 32 monitors the output of the radiation temperature detection means 28 and determines that the radiation temperature detection means 28 is out of order because the output does not change even though the heating is continued. The amount is reduced or stopped.
[0057]
As described above, in the present reference example, the abnormality detection unit 32 can detect the abnormality of the radiation temperature detection unit 28, thereby suppressing the heating amount and preventing the temperature of the cooking container 21 from increasing. An induction heating cooker with a high level of heat can be realized.
[0058]
(Reference Example 7 )
Then, the induction heating cooking appliance in the reference example 7 of this invention is demonstrated with FIG.
[0059]
In this reference example, the difference from the reference example 2 is that the overheated temperature preventing means 27 has an abnormality in the radiation temperature detecting means 28 when the temperature information difference between the temperature detecting means 25 and the radiation temperature detecting means 28 is a predetermined value or more. Is provided, and when the radiation temperature detecting means 28 is abnormal, the heating amount is reduced or stopped.
[0060]
The operation of this reference example will be described below. When heating is started, the temperature of the cooking vessel 21 rises, and the temperature detected by the temperature detection means 25 rises. Further, the temperature detected by the radiation temperature detecting means 28 also increases. When heating is continued and the temperature value of the radiation temperature detecting means 28 changes only slightly, when the light receiving surface of the radiation temperature detecting means 28 is dirty, or when the top plate 22 is dirty and the thermal energy of the cooking vessel 21 is increased. This is a time when light does not pass through, and the radiation temperature detecting means 28 has not been able to accurately detect the bottom surface temperature of the cooking vessel 21. In addition, when the emissivity is extremely small when the cooking vessel 21 is in a mirror surface or the like, the output change of the radiation temperature detecting means 28 is small. When these outputs are small, the radiation temperature detecting means 28 cannot accurately detect the bottom surface temperature of the cooking vessel 21, and the heating amount is reduced or stopped to increase safety.
[0061]
As described above, in the present reference example, since the bottom surface temperature of the cooking container 21 can be suppressed by the abnormality detection means 33, an induction heating cooker with higher safety can be realized.
[0062]
【The invention's effect】
As described above, the induction heating cooker according to the present invention uses the heating amount for the overheating temperature preventing means for preventing the overheating temperature of the cooking container by the output of the temperature detecting means for detecting the temperature of the cooking container via the top plate. It can be set excessive temperature in accordance with, so that there is no damage of the cooking container such as a baking state even heating amount is increased, thereby more reliably prevent the temperature rise of the cooking container, by a radiation temperature detector The amount of heating can be controlled by accurately detecting the temperature information of the cooking container .
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing the configuration of an induction heating cooker that is Reference Example 1 of the present invention. FIG. 2 is a cross-sectional view showing the configuration of an induction heating cooker that is Reference Example 2 of the present invention. reference example of reference example sectional view showing a configuration of the induction heating cooker is a 3 [4] the present invention 4, reference sectional view and FIG. 5 the invention showing a configuration of an induction heating cooker according to a first embodiment Sectional drawing which shows the structure of the induction heating cooking appliance which is Example 5. FIG. 6 is sectional drawing which shows the structure of the induction heating cooking appliance which is the reference example 6 of this invention. FIG. 7 Induction heating which is the reference example 7 of this invention. Cross-sectional view showing the configuration of the cooker [FIG. 8] Cross-sectional view showing the configuration of the conventional induction heating cooker [Explanation of symbols]
DESCRIPTION OF SYMBOLS 21 Cooking container 22 Top plate 23 Heating coil 24 Heating control means 25 Temperature detection means 26 Heating amount setting means 27 Overheating temperature prevention means 28 Radiation temperature detection means 30 Temperature differentiation means 31 Heating suspension means 32, 33 Abnormality detection means

Claims (1)

調理容器を載置するトッププレートと、前記トッププレートの下方に配置し前記調理容器を加熱する加熱コイルと、前記トッププレートを介して前記調理容器の温度を検出する温度検出手段と、調理容器から放射され前記トッププレートを透過するエネルギーを検出して前記調理容器の温度を検出する赤外線センサからなる放射温度検出手段と、前記調理容器を加熱する加熱量を設定する加熱量設定手段と、加熱されて前記温度検出手段の検出温度が比較温度に到達すると前記加熱量が小さくなりかつ前記比較温度の設定が高くなるように移行させることにより前記調理容器の過昇温度を防止する過昇温度防止手段と、前記放射温度検出手段の検出する温度の微分値を算出する温度微分手段と、を備え、前記温度微分手段は、前記調理容器の底面が厚い場合に被加熱物があるにも関わらず前記調理容器の底面温度が略100℃未満で急激に温度が上昇する時と前記調理容器に被加熱物がな温度上昇する時を区別するため、前記放射温度検出手段の温度が略100℃以上の場合に算出されるようにした前記温度微分値が所定値以上になると加熱量を低下させるかまたは加熱を停止させる誘導加熱調理器。A top plate for placing the cooking container, a heating coil disposed below the top plate for heating the cooking container, a temperature detecting means for detecting the temperature of the cooking container via the top plate, and a cooking container Radiation temperature detection means comprising an infrared sensor for detecting energy transmitted through the top plate and detecting the temperature of the cooking container, heating amount setting means for setting a heating amount for heating the cooking container, and heating When the detected temperature of the temperature detecting means reaches the comparison temperature, the overheated temperature preventing means for preventing the overheated temperature of the cooking container by shifting so that the heating amount is reduced and the setting of the comparative temperature is increased. When, and a temperature differential means for calculating a differential value of the detected temperature of the radiation temperature detector, said temperature differential means, the cooking vessel Despite the heated object when the surface is thick distinguish when the temperature of the bottom surface of the cooking container rapidly temperature less than about 100 ° C. is heated object name rather temperature rise in the cooking container and when rising Therefore, an induction heating cooker that reduces the heating amount or stops heating when the temperature differential value calculated when the temperature of the radiation temperature detecting means is approximately 100 ° C. or higher becomes a predetermined value or higher.
JP2003173172A 2003-06-18 2003-06-18 Induction heating cooker Expired - Fee Related JP4393799B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003173172A JP4393799B2 (en) 2003-06-18 2003-06-18 Induction heating cooker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003173172A JP4393799B2 (en) 2003-06-18 2003-06-18 Induction heating cooker

Publications (2)

Publication Number Publication Date
JP2005011618A JP2005011618A (en) 2005-01-13
JP4393799B2 true JP4393799B2 (en) 2010-01-06

Family

ID=34097073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003173172A Expired - Fee Related JP4393799B2 (en) 2003-06-18 2003-06-18 Induction heating cooker

Country Status (1)

Country Link
JP (1) JP4393799B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007115515A (en) * 2005-10-20 2007-05-10 Matsushita Electric Ind Co Ltd Induction heating cooking device
ES2425231T3 (en) * 2006-02-07 2013-10-14 Panasonic Corporation Induction heating cooking device
DE102006026907A1 (en) * 2006-06-09 2008-01-03 BSH Bosch und Siemens Hausgeräte GmbH Induction hob and method for determining a temperature of a bottom of a preparation container
JP5066864B2 (en) * 2006-08-08 2012-11-07 パナソニック株式会社 Induction heating device
JP4939248B2 (en) * 2007-02-08 2012-05-23 パナソニック株式会社 Induction heating cooker
JP2008218280A (en) * 2007-03-06 2008-09-18 Matsushita Electric Ind Co Ltd Heating equipment
JP2008262719A (en) * 2007-04-10 2008-10-30 Matsushita Electric Ind Co Ltd Induction heating device
EP2175691B1 (en) * 2007-06-22 2013-08-14 Panasonic Corporation Induction cooker
JP5045305B2 (en) * 2007-08-21 2012-10-10 パナソニック株式会社 Induction heating cooker
JP5104126B2 (en) * 2007-08-28 2012-12-19 パナソニック株式会社 Induction heating cooker
JP4985240B2 (en) * 2007-08-31 2012-07-25 パナソニック株式会社 Induction heating cooker
JP5195078B2 (en) * 2008-06-27 2013-05-08 パナソニック株式会社 Induction heating cooker
JP2010257959A (en) * 2009-04-02 2010-11-11 Mitsubishi Electric Corp Induction cooker
JP6497283B2 (en) * 2015-09-11 2019-04-10 株式会社デンソー Data analysis device

Also Published As

Publication number Publication date
JP2005011618A (en) 2005-01-13

Similar Documents

Publication Publication Date Title
JP4965648B2 (en) Induction heating cooker
JP5655777B2 (en) Induction heating cooker
JP5641488B2 (en) Induction heating cooker
JP4965652B2 (en) Induction heating cooker
JP4393799B2 (en) Induction heating cooker
JP4910667B2 (en) Cooker
WO2007091597A1 (en) Induction heating cooking device
JPWO2010122704A1 (en) Induction heating cooker
JP4492135B2 (en) Induction heating cooker
JP4311413B2 (en) Induction heating device
JP2010160899A (en) Induction heating cooker
JP4123108B2 (en) Induction heating cooker
JP5218286B2 (en) Induction heating cooker
JP4996289B2 (en) Induction heating cooker
JP5747178B2 (en) Induction heating cooker and its program
JP4497196B2 (en) Induction heating cooker
JP4357938B2 (en) Induction heating cooker
JP2009043587A (en) Induction heating cooker
JP5104126B2 (en) Induction heating cooker
JP5264838B2 (en) Cooker
JP5182172B2 (en) Induction heating cooker
JP2008060088A5 (en)
JP2007335233A (en) Heating cooking device
JP5029550B2 (en) Induction heating cooker
JP2009176553A (en) Induction heating cooker

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060529

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060613

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071009

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080701

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080829

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090407

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090706

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090915

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091014

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121023

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131023

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees