JP2010175442A - Thermopile type infrared detector - Google Patents

Thermopile type infrared detector Download PDF

Info

Publication number
JP2010175442A
JP2010175442A JP2009019742A JP2009019742A JP2010175442A JP 2010175442 A JP2010175442 A JP 2010175442A JP 2009019742 A JP2009019742 A JP 2009019742A JP 2009019742 A JP2009019742 A JP 2009019742A JP 2010175442 A JP2010175442 A JP 2010175442A
Authority
JP
Japan
Prior art keywords
thermopile
emissivity
output
infrared detector
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009019742A
Other languages
Japanese (ja)
Inventor
Shingo Kimura
親吾 木村
Naoki Nishigaki
直樹 西垣
Motoki Tanaka
基樹 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Ceramic Co Ltd
Original Assignee
Nippon Ceramic Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Ceramic Co Ltd filed Critical Nippon Ceramic Co Ltd
Priority to JP2009019742A priority Critical patent/JP2010175442A/en
Publication of JP2010175442A publication Critical patent/JP2010175442A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Radiation Pyrometers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem that a conventional method employs the calculation of a detection temperature by adjusting an output by using a thermopile type infrared detector in line with emissivity of a detection object and reveals a fall in temperature measurement accuracy of the detection object when the emissivity is changed by an operation of changing the detection object. <P>SOLUTION: The configuration of this detector in which a reflectivity measuring element such as a photo-reflector or the like and a reflectivity measuring circuit are mounted on the same board, is characterized in that a detection output from the thermopile type infrared detector is subjected in an emissivity compensating processing, based on an output measured by the reflectivity measuring circuit. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、対象物の反射率を計測し、補正する事により、対象物の表面状態に関わらず、精度良く温度計測を行うサーモパイル型赤外線検出装置に関する。   The present invention relates to a thermopile infrared detector that measures temperature with high accuracy regardless of the surface state of an object by measuring and correcting the reflectance of the object.

従来用いられている一般的なサーモパイル型赤外線検出装置は、検出対象物の放射率に合わせた出力調整を行う事で対象物温度を精度良く検出している。
よって、測温対象物の放射率が異なる場合、調整出力にズレが発生する事から、サーモパイル型赤外線検出装置に於ける検出温度へ、別途、フォトリフレクタ等にて測温対象物の反射率測定回路設け、放射率を求める事で、外部にて検出出力に補正を行っている。
Conventional thermopile infrared detectors that have been used in the past accurately detect the temperature of an object by adjusting the output according to the emissivity of the object to be detected.
Therefore, if the emissivity of the temperature measurement object is different, the adjustment output will be shifted, so the reflectance of the temperature measurement object will be measured separately using a photoreflector, etc., to the detection temperature in the thermopile infrared detector. The detection output is corrected externally by providing a circuit and obtaining the emissivity.

特願2008−163651号広報Japanese Patent Application No. 2008-163651

従来の手法では、検出対象物の放射率に合わせサーモパイル型赤外線検出装置にて出力調整を行う事で検出温度を算出する為、検出対象物が変わる事により、放射率が変化すると検出対象物の測温精度が低下するという課題がある。
図3に従来のサーモパイル型赤外線検出装置の検出温度算出のブロック概略図を示す。
In the conventional method, the detection temperature is calculated by adjusting the output with a thermopile infrared detector in accordance with the emissivity of the detection object, so if the emissivity changes due to the change of the detection object, the detection object There is a problem that temperature measurement accuracy decreases.
FIG. 3 shows a block schematic diagram of calculation of the detected temperature of the conventional thermopile type infrared detecting device.

本発明は前記課題を解決する為に、フォトリフレクタ等の反射率計測素子、及び、反射率計測回路を同一基板上に実装具備し、反射率計測回路より計測された出力により、サーモパイル型赤外線検出装置からの検出出力に放射率補正処理を行った構成である事を特徴としている。   In order to solve the above-mentioned problems, the present invention has a reflectance measuring element such as a photoreflector and a reflectance measuring circuit mounted on the same substrate, and a thermopile infrared detection is performed based on the output measured by the reflectance measuring circuit. It is characterized by a configuration in which emissivity correction processing is performed on the detection output from the apparatus.

本発明は、単一回路の基板内でーモパイル型赤外線検出装置へフォトリフレクタ等の反射率計測素子、及び、反射率計測回路を同一基板上に実装具備し、サーモパイル型赤外線検出装置からの検出出力に放射率補正処理を行う事で、対象物の表面状態に関係なく、精度良く、対象物温度の計測が可能である効果を奏する。   In the present invention, a reflectance measuring element such as a photoreflector and a reflectance measuring circuit are mounted on the same substrate in a single circuit substrate, and the detection output from the thermopile infrared detection device. By performing the emissivity correction process, the object temperature can be accurately measured regardless of the surface state of the object.

本発明の実施例1に係る放射率補正回路を具備したサーモパイル型赤外線検出装置の回路図である。1 is a circuit diagram of a thermopile type infrared detection device including an emissivity correction circuit according to Embodiment 1 of the present invention. FIG. 本発明の実施例1に係る放射率補正回路を具備したサーモパイル型赤外線検出装置の放射率補正ブロック概略図。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic diagram of an emissivity correction block of a thermopile type infrared detecting device including an emissivity correction circuit according to a first embodiment of the present invention. 従来のサーモパイル型赤外線検出装置の検出温度算出のブロック概略図である。It is a block schematic diagram of detection temperature calculation of the conventional thermopile type infrared detecting device. サーモパイル型赤外線検出装置の放射率に於けるサーモパイル信号出力特性である。It is a thermopile signal output characteristic in the emissivity of a thermopile type infrared detector. 反射率計測回路に於ける反射率計測出力特性である。It is a reflectance measurement output characteristic in a reflectance measurement circuit. 本発明の実施例1に係る放射率補正を行った場合のサーモパイル出力特性である。It is a thermopile output characteristic at the time of performing the emissivity correction which concerns on Example 1 of this invention. 本発明の実施例1に係る各出力特性の一覧表である。It is a list of each output characteristic concerning Example 1 of the present invention.

以下、本発明について図を参照して詳細な説明を行う。
本発明のサーモパイル型赤外線検出装置は、検出対象物の反射率を測定する事により検出対象物の放射率を算出する為のフォトリフレクタ等の反射率計測素子、及び、反射率計測回路を同一基板上に実装具備した形状により提供される。サーモパイル型赤外線検出装置として、図1に放射率補正回路を具備したサーモパイル型赤外線検出装置の回路図を示す。図2に放射率補正ブロック概略図を示す。
Hereinafter, the present invention will be described in detail with reference to the drawings.
The thermopile type infrared detector of the present invention includes a reflectance measuring element such as a photoreflector for calculating the emissivity of a detection target by measuring the reflectance of the detection target, and the reflectance measurement circuit on the same substrate. Provided by the shape mounted above. FIG. 1 shows a circuit diagram of a thermopile type infrared detection device equipped with an emissivity correction circuit as a thermopile type infrared detection device. FIG. 2 shows a schematic diagram of the emissivity correction block.

実施例1にかかる本発明の詳細を以下に説明する。図1は、放射率補正回路を具備したサーモパイル型赤外線検出器の回路である。
本実施例では、赤外線を受光することにより検出対象物の放射赤外線量を測定し検出対象物の温度を検出する事を可能にするサーモパイルチップへの赤外線入射量を検出対象物投影エリアより規定した赤外線検出領域を光学設計により導くシリコンからなる平面フィルターを使用し、赤外線透過窓を有する金属製CANケース、サーモパイルチップを電気的接続したリード端子を備えたヘッダーと共に外来からの環境的変化や電磁障害を防止するためにハーメチックシールとした一般的な構造であるサーモパイル型赤外線検出器と同一基板上に、発光部にLEDを使い受光部にフォトトランジスタを用いたフォトリフレクタ等にて検出対象物の反射率を測定する事により検出対象物の放射率を算出し、算出された放射率にてサーモパイルセンサ出力へ補正を同一基板上にて補正演算を行うサーモパイル型赤外線検出装置の構造となっている。また、本実施例では光学系基材としてシリコンを使用しているが、例えば、ガラス等の波長依存性のある基材であってもかまわない。
Details of the present invention according to Example 1 will be described below. FIG. 1 is a circuit of a thermopile infrared detector equipped with an emissivity correction circuit.
In the present embodiment, the amount of infrared incident on the thermopile chip that enables the temperature of the detection target to be detected by measuring the amount of infrared radiation radiated from the detection target by receiving infrared rays is defined from the detection target projection area. Uses a planar filter made of silicon to guide the infrared detection area by optical design, a metallic CAN case with an infrared transmission window, a header with lead terminals electrically connected to a thermopile chip, and external environmental changes and electromagnetic interference Reflection of the object to be detected by a photo reflector using an LED for the light emitting part and a phototransistor for the light receiving part on the same substrate as the thermopile infrared detector, which is a general structure with a hermetic seal to prevent The emissivity of the object to be detected is calculated by measuring the rate, and the thermopile sensor is output at the calculated emissivity. It has a structure of the thermopile-type infrared detection device which performs correction calculation at the same substrate a correction to. In this embodiment, silicon is used as the optical system substrate, but a substrate having wavelength dependency such as glass may be used.

また、本実施例では光学設計として平面フィルターを使用しているが、例えば、平凸レンズ、平凹レンズ、両凸レンズ、両凹レンズでもかまわない。
また、サーモパイル型赤外線検出装置として、対象物の放射赤外線量を測定し対象物の温度を検出する事を可能にする1エリア検出のサーモパイルチップのみならず、赤外線受光部を2素子有するデュアル型サーモパイル型赤外線検出装置、赤外線受光部をライン状に配列したインライン型のサーモパイルアレイ型赤外線検出装置、赤外線受光部をマトリックス状に配列したマトリックス型のサーモパイルマトリックス型赤外線検出装置の温度検出器のように赤外線受光部を1〜16素子有する多素子型サーモパイル型赤外線検出装置でもかまわない。
In this embodiment, a plane filter is used as an optical design. However, for example, a plano-convex lens, a plano-concave lens, a biconvex lens, or a biconcave lens may be used.
Moreover, as a thermopile type infrared detection device, not only a one-area detection thermopile chip that can measure the amount of radiated infrared rays of an object and detect the temperature of the object, but also a dual type thermopile having two infrared light receiving parts. Type infrared detectors, infrared detectors like inline type thermopile array type infrared detectors with infrared detectors arranged in a line, temperature detectors of matrix type thermopile matrix type infrared detectors with infrared detectors arranged in a matrix A multi-element type thermopile type infrared detecting device having 1 to 16 light receiving portions may be used.

本発明のサーモパイル型赤外線検出器を用い、熱源温度:100℃の物体A(放射率:1.0)、物体B(放射率:0.5)、物体C(放射率:0.3)を計測した。
図4は、サーモパイル型赤外線検出装置の各物体A,B,Cの放射率の違いに於けるサーモパイル起電力特性である。サーモパイル型赤外線検出器に於いては、検出対象物の放射率:1.0の場合、出力:1.0V、放射率0.5の場合、出力0.5V、放射率:0.3の場合、0.3Vとなる。
図5は、反射率計測回路に於ける物体A,B,Cの反射率計測出力特性である。フォトリフレクタ等を用い、対象物の放射率を測定した場合、物体A:0.0V、物体B:0.5V、物体C:0.7Vとなる。尚、フォトリフレクタ等のみでは、出力電圧レベルが低い事から、図1の様な反転増幅回路を設ける事で、前記放射率出力となる様に出力の増幅・調整を行っている。
図6は、本発明の放射率補正処理を行った場合の物体A,B,C検出時のサーモパイル起電力特性を示す。図6の通り、物体A,B,Cのサーモパイル起電力は、物体の放射率を問わず、全て1.0Vとなる。
Using the thermopile type infrared detector of the present invention, heat source temperature: 100 ° C. object A (emissivity: 1.0), object B (emissivity: 0.5), object C (emissivity: 0.3) Measured.
FIG. 4 is a thermopile electromotive force characteristic in a difference in emissivity between the objects A, B, and C of the thermopile infrared detector. In the thermopile infrared detector, when the emissivity of the detection target is 1.0, the output is 1.0 V, the emissivity is 0.5, the output is 0.5 V, and the emissivity is 0.3. 0.3V.
FIG. 5 shows reflectance measurement output characteristics of the objects A, B, and C in the reflectance measurement circuit. When the emissivity of the object is measured using a photo reflector or the like, the object A is 0.0 V, the object B is 0.5 V, and the object C is 0.7 V. Since only the photoreflector or the like has a low output voltage level, an inverting amplifier circuit as shown in FIG. 1 is provided to amplify and adjust the output so as to obtain the emissivity output.
FIG. 6 shows thermopile electromotive force characteristics when objects A, B, and C are detected when the emissivity correction process of the present invention is performed. As shown in FIG. 6, the thermopile electromotive forces of the objects A, B, and C are all 1.0 V regardless of the emissivity of the objects.

前記、図4、図5のそれぞれの特性より、対象物の放射率により、減衰したサーモパイル信号出力を補う為に、サーモパイル起電力へ、反射率計測出力を加算する為の図1の様な回路構成とする事で同一基板上で放射率補正処理を行う事が可能となり、物体A,B,Cに於ける放射率の違いがあっても、サーモパイル起電力が一定である事を確認した。
図7へ、前記実施例の各出力特性の一覧表を示す。
図4の従来のサーモパイル型赤外線検出器の放射率に於ける出力特性グラフ、図6の本発明のサーモパイル型赤外線検出器の放射率に於ける出力特性グラフの比較、及び、図7の一覧表の通り、同一基板上で放射率補正処理回路の効果を確認した。
The circuit as shown in FIG. 1 for adding the reflectance measurement output to the thermopile electromotive force in order to compensate for the attenuated thermopile signal output by the emissivity of the object based on the characteristics shown in FIGS. By adopting the configuration, it is possible to perform emissivity correction processing on the same substrate, and it was confirmed that the thermopile electromotive force is constant even if there is a difference in emissivity between the objects A, B, and C.
FIG. 7 shows a list of output characteristics of the embodiment.
FIG. 4 is a graph showing the output characteristics at the emissivity of the conventional thermopile infrared detector, FIG. 6 is a comparison of the output characteristics graph at the emissivity of the thermopile infrared detector of the present invention, and FIG. As shown, the effect of the emissivity correction processing circuit on the same substrate was confirmed.

1 サーモパイル素子
2 サーミスタ
3 フォトリフレクタ
4 反転増幅用アンプ
5 放射率加算、サーモパイル起電力増幅用アンプ
DESCRIPTION OF SYMBOLS 1 Thermopile element 2 Thermistor 3 Photo reflector 4 Inverting amplification amplifier 5 Emissivity addition, thermopile electromotive force amplification amplifier

Claims (1)

サーモパイル型赤外線検出装置に於いて、同一基板上に検出対象物の反射率測定を行う反射率測定回路を具備し、同一基板内で放射率補正処理を施したサーモパイル信号出力とする事を特徴とするサーモパイル型赤外線検出装置。   The thermopile infrared detector has a reflectivity measurement circuit that measures the reflectivity of the object to be detected on the same substrate, and outputs a thermopile signal that has undergone emissivity correction processing on the same substrate. A thermopile infrared detector.
JP2009019742A 2009-01-30 2009-01-30 Thermopile type infrared detector Pending JP2010175442A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009019742A JP2010175442A (en) 2009-01-30 2009-01-30 Thermopile type infrared detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009019742A JP2010175442A (en) 2009-01-30 2009-01-30 Thermopile type infrared detector

Publications (1)

Publication Number Publication Date
JP2010175442A true JP2010175442A (en) 2010-08-12

Family

ID=42706558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009019742A Pending JP2010175442A (en) 2009-01-30 2009-01-30 Thermopile type infrared detector

Country Status (1)

Country Link
JP (1) JP2010175442A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103076087A (en) * 2012-12-28 2013-05-01 西北核技术研究所 Mid-infrared photoelectric detector driving circuit, detector assembly and assembly array
JP2013084403A (en) * 2011-10-07 2013-05-09 Hitachi Appliances Inc Induction heating cooker
WO2021049188A1 (en) * 2019-09-13 2021-03-18 村田機械株式会社 Temperature monitoring method, temperature monitoring device, and control panel

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11225881A (en) * 1998-02-13 1999-08-24 Matsushita Electric Ind Co Ltd Heating cooking device
JP2005195435A (en) * 2004-01-06 2005-07-21 Nippon Ceramic Co Ltd Noncontact type temperature detector

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11225881A (en) * 1998-02-13 1999-08-24 Matsushita Electric Ind Co Ltd Heating cooking device
JP2005195435A (en) * 2004-01-06 2005-07-21 Nippon Ceramic Co Ltd Noncontact type temperature detector

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013084403A (en) * 2011-10-07 2013-05-09 Hitachi Appliances Inc Induction heating cooker
CN103076087A (en) * 2012-12-28 2013-05-01 西北核技术研究所 Mid-infrared photoelectric detector driving circuit, detector assembly and assembly array
WO2021049188A1 (en) * 2019-09-13 2021-03-18 村田機械株式会社 Temperature monitoring method, temperature monitoring device, and control panel

Similar Documents

Publication Publication Date Title
KR100668025B1 (en) Temperature correction processing apparatus
US20110255075A1 (en) Spectrometric assembly and method for determining a temperature value for a detector of a spectrometer
US9329025B2 (en) Measuring device
JP5702101B2 (en) Infrared sensor signal correction method, temperature measurement method, and temperature measurement apparatus
JP5542090B2 (en) Infrared sensor signal correction method, temperature measurement method, and temperature measurement apparatus
JP2019039672A (en) Temperature correction method for infrared camera
JPWO2009081748A1 (en) Radiation temperature measurement method and radiation temperature measurement system
JP5755780B2 (en) Infrared sensor signal correction method, temperature measurement method, and temperature measurement apparatus
JP2010175442A (en) Thermopile type infrared detector
KR101459668B1 (en) Method For Correcting Temperature Distribution of Semiconductor Device Measured by Infrared Thermal Imaging Camera And System Using The Same
JP2005249723A (en) Display output unit for image containing temperature distribution, and control method therefor
RU2290614C1 (en) Two-channel spectral ratio pyrometer
JP2007085840A (en) Infrared detection device
JP2008268106A (en) Method of measuring temperature information
JP2007248201A (en) Radiation thermometer
JP5520238B2 (en) A method for acquiring correction data in a temperature measuring apparatus, a temperature measuring method and a temperature measuring apparatus for performing the method.
JP2011033565A (en) Temperature compensation for infrared sensor output data
US20190301943A1 (en) System for detecting electromagnetic radiation
JP2006058228A (en) Multi-element thermopile module
JP6664367B2 (en) Detector, and method of correcting, calibrating, and detecting the detector
CN207515908U (en) A kind of multi-pass self calibration polarization detecting device and system
JP2010002400A (en) Thermopile type infrared detection device
KR20170077472A (en) The method of calibration of packaged photonic sensor pixel array by evaluating its characteristic
WO2022215417A1 (en) Radiation temperature measurement device and radiation temperature measurement method
JP7271604B2 (en) Infrared imager

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120123

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140819