JP2019039672A - Temperature correction method for infrared camera - Google Patents

Temperature correction method for infrared camera Download PDF

Info

Publication number
JP2019039672A
JP2019039672A JP2017159120A JP2017159120A JP2019039672A JP 2019039672 A JP2019039672 A JP 2019039672A JP 2017159120 A JP2017159120 A JP 2017159120A JP 2017159120 A JP2017159120 A JP 2017159120A JP 2019039672 A JP2019039672 A JP 2019039672A
Authority
JP
Japan
Prior art keywords
temperature
sensor module
infrared
infrared camera
temperature correction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017159120A
Other languages
Japanese (ja)
Inventor
鉄平 馬場
Teppei Baba
鉄平 馬場
喜弘 清水
Yoshihiro Shimizu
喜弘 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
INFINITEGRA Inc
Original Assignee
INFINITEGRA Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by INFINITEGRA Inc filed Critical INFINITEGRA Inc
Priority to JP2017159120A priority Critical patent/JP2019039672A/en
Publication of JP2019039672A publication Critical patent/JP2019039672A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Radiation Pyrometers (AREA)

Abstract

To correct a temperature output by an infrared camera.SOLUTION: A temperature offset is calculated by using a surface temperature of a temperature sensor module 103 measured by an infrared sensor module 102 and a temperature measured by the temperature sensor module 103, to correct the temperature of pixels excluding mapping 202 of the temperature sensor module in a visual field range 107 on the basis of the temperature offset.SELECTED DRAWING: Figure 1

Description

本発明は、赤外線カメラの温度補正方法に関する。 The present invention relates to a temperature correction method for an infrared camera.

物体から放射される赤外線エネルギーを検知するセンサをアレイ状に構成することで、撮影対象の温度分布を表示する赤外線撮像装置(赤外線カメラ)がある。元々は軍事用途で研究開発・使用されていたが、民生用途(スマートフォン・タブレット端末、無人航空機、監視システム、自動車制御システム等)としても広く使われ始めている。特に近年、比較的安価なマイクロボロメータを使用した非冷却型の赤外線カメラが、この民生活用を後押ししている。 There is an infrared imaging device (infrared camera) that displays a temperature distribution of an object to be imaged by configuring sensors that detect infrared energy emitted from an object in an array. Originally researched, developed and used for military applications, it is also beginning to be widely used for consumer applications (smartphones / tablets, unmanned aircraft, surveillance systems, automobile control systems, etc.). In particular, in recent years, uncooled infrared cameras using relatively inexpensive microbolometers have boosted this consumer use.

しかし、マイクロボロメータを使用した赤外線センサは、赤外線センサ素子自体の温度変化が赤外線エネルギーを検知する性能に影響し、温度測定精度を下げてしまう。そこで、マイクロボロメータを使用した赤外線センサの温度測定精度向上が求められている。特許文献1のように、マイクロボロメータの温度特性に起因する出力電圧のばらつきを補正することで温度測定精度を向上させる方法がある。 However, in an infrared sensor using a microbolometer, the temperature change of the infrared sensor element itself affects the performance of detecting infrared energy, and the temperature measurement accuracy is lowered. Therefore, there is a demand for improving the temperature measurement accuracy of an infrared sensor using a microbolometer. As in Patent Document 1, there is a method for improving temperature measurement accuracy by correcting variations in output voltage caused by temperature characteristics of a microbolometer.

特開2008−185465公報JP 2008-185465 A

以上のように赤外線カメラの温度補正方法は提案されているが、マイクロボロメータの入出力を制御するだけでは、温度精度向上に限界があることがある。 As described above, a temperature correction method for an infrared camera has been proposed. However, there are cases where there is a limit to improving the temperature accuracy only by controlling the input / output of the microbolometer.

そこで本発明の目的は、マイクロボロメータ以外に外付けの温度計を赤外線カメラに設置し、その温度計と連携することで測定対象の温度を補正する方法を提供することにある。 Therefore, an object of the present invention is to provide a method for correcting the temperature of a measurement object by installing an external thermometer in addition to a microbolometer in an infrared camera and cooperating with the thermometer.

本発明の前記ならびにその他の目的と新規な特徴は、本明細書の記述および添付図面から明らかになるであろう。 The above and other objects and novel features of the present invention will be apparent from the description of this specification and the accompanying drawings.

本願において開示される発明のうち、代表的なものの概要を簡単に説明すれば、次のとおりである。 Of the inventions disclosed in the present application, the outline of typical ones will be briefly described as follows.

すなわち、代表的なものの概要は、マイクロボロメータ以外に外付けの温度計を赤外線カメラに設置し、その温度計と連携することで測定対象の温度を補正することである。 That is, a typical outline is to install an external thermometer in addition to the microbolometer in the infrared camera, and to correct the temperature of the measurement object in cooperation with the thermometer.

本願において開示される発明のうち、代表的なものによって得られる効果を簡単に説明すれば以下のとおりである。 Among the inventions disclosed in the present application, effects obtained by typical ones will be briefly described as follows.

すなわち、代表的なものによって得られる効果は、マイクロボロメータ以外に外付けの温度計を赤外線カメラに設置し、その温度計と連携することで測定対象の温度を補正できることである。 In other words, an effect obtained by a typical one is that an external thermometer other than the microbolometer is installed in the infrared camera, and the temperature of the measurement object can be corrected by cooperating with the thermometer.

本発明の実施の形態1に係る赤外線カメラの構成図である。It is a block diagram of the infrared camera which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る赤外線センサモジュールによって撮影された画像を示す図である。It is a figure which shows the image image | photographed with the infrared sensor module which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る画素間補正の概要を示す図である。It is a figure which shows the outline | summary of the correction | amendment between pixels which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る温度補正の概要を示す図ある。It is a figure which shows the outline | summary of the temperature correction which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る温度補正方法のフロー図である。It is a flowchart of the temperature correction method which concerns on Embodiment 1 of this invention.

以下、本発明の実施の形態を図面に基づいて詳細に説明する。なお、実施の形態を説明するための全図において、同一の部材には原則として同一の符号を付し、その繰り返しの説明は省略する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Note that components having the same function are denoted by the same reference symbols throughout the drawings for describing the embodiment, and the repetitive description thereof will be omitted.

図1から図5により、本発明の実施の形態1に係る赤外線カメラの温度補正方法について説明する。
図1は本発明の実施の形態1に係る赤外線カメラの構成図、
図2は本発明の実施の形態1に係る赤外線センサモジュールによって撮影された画像を示す図、
図3は本発明の実施の形態1に係る画素間補正の概要を示す図、
図4は本発明の実施の形態1に係る温度補正の概要を示す図、
図5は本発明の実施の形態1に係る温度補正方法のフロー図である。
A temperature correction method for an infrared camera according to Embodiment 1 of the present invention will be described with reference to FIGS.
FIG. 1 is a configuration diagram of an infrared camera according to Embodiment 1 of the present invention.
FIG. 2 is a diagram showing an image photographed by the infrared sensor module according to Embodiment 1 of the present invention;
FIG. 3 is a diagram showing an outline of inter-pixel correction according to Embodiment 1 of the present invention;
FIG. 4 is a diagram showing an outline of temperature correction according to Embodiment 1 of the present invention;
FIG. 5 is a flowchart of the temperature correction method according to Embodiment 1 of the present invention.

図1において、赤外線カメラ100は、レンズ101を備える赤外線センサモジュール102と、温度センサモジュール103が接続された温度センサ基板104と、赤外線カメラ基板105を備える。
赤外線センサモジュール102は、温度測定に係る赤外線を撮影するセンサモジュールである。
温度センサモジュール103は、温度センサモジュール103の表面温度を測定するモジュールであり、その放射率は一定かつ判明していなくてはならず、複数あってもよい。
赤外線センサモジュール102と赤外線カメラ基板105は直接接続され、温度センサ基板104と赤外線カメラ基板105は、接続106によって接続される。
接続106はケーブルや基板、無線接続等でよい。
視野範囲107は、レンズ101を通して撮影される範囲である。
測定対象物108は、視野範囲107内にある温度測定を行う被写体である。
温度センサモジュール103と測定対象物108は、視野範囲107内に収まっていなくてはならない。
In FIG. 1, the infrared camera 100 includes an infrared sensor module 102 including a lens 101, a temperature sensor substrate 104 to which the temperature sensor module 103 is connected, and an infrared camera substrate 105.
The infrared sensor module 102 is a sensor module that captures infrared rays related to temperature measurement.
The temperature sensor module 103 is a module for measuring the surface temperature of the temperature sensor module 103, and its emissivity must be constant and known, and there may be a plurality of temperature sensors.
The infrared sensor module 102 and the infrared camera substrate 105 are directly connected, and the temperature sensor substrate 104 and the infrared camera substrate 105 are connected by a connection 106.
Connection 106 may be a cable, board, wireless connection, or the like.
The field of view range 107 is a range that is photographed through the lens 101.
The measurement object 108 is a subject that performs temperature measurement within the visual field range 107.
The temperature sensor module 103 and the measurement object 108 must be within the visual field range 107.

図2において、熱画像200は、赤外線センサモジュール102によって撮影された画像であり、測定対象物の写像201と、温度センサモジュールの写像202が映っている。
測定対象物の写像201は、レンズ101を通して撮影された測定対象物108である。
温度センサモジュールの写像202は、レンズ101を通して撮影された温度センサモジュール103である。
温度センサモジュール103が複数ある場合は、温度センサモジュールの写像202も複数映っている。
In FIG. 2, a thermal image 200 is an image taken by the infrared sensor module 102, and a mapping 201 of the measurement object and a mapping 202 of the temperature sensor module are shown.
The measurement object mapping 201 is the measurement object 108 photographed through the lens 101.
The mapping 202 of the temperature sensor module is the temperature sensor module 103 photographed through the lens 101.
When there are a plurality of temperature sensor modules 103, a plurality of temperature sensor module maps 202 are also shown.

図3により、画素間補正について説明する。図3において、熱画像200内の2つの任意の画素では、赤外線センサモジュール102の電気的な特性や材質上の特性により、赤外線受光感度が異なることがある。この画素間の赤外線受光感度の違いを補正するための手段を画素間補正と呼ぶ。 The inter-pixel correction will be described with reference to FIG. In FIG. 3, two arbitrary pixels in the thermal image 200 may have different infrared light receiving sensitivities depending on the electrical characteristics and material characteristics of the infrared sensor module 102. Means for correcting the difference in infrared light receiving sensitivity between the pixels is referred to as inter-pixel correction.

図4により、赤外線カメラ基板105の構成を説明する。
図4において、赤外線カメラ基板105は、温度測定部401と、温度補正部402、温度出力部403を備える。
温度計測部401は、赤外線センサモジュール102から赤外線強度を受け取り、温度値を出力する。
温度補正部402は、温度計測部401と、接続106と温度センサ基板104を介して温度センサモジュール103から、それぞれ温度値を取得し、補正された温度を出力する。なお、温度センサモジュール103が複数個ある場合は、各温度センサモジュールが出力する温度値を画素間補正した上で平均した値を、温度補正部402で使用してもよい。
温度出力部403は、温度補正部402から補正された温度を取得し、ディスプレイ等表示装置やハードディスクドライブ等記録装置に補正された温度を出力する。
The configuration of the infrared camera substrate 105 will be described with reference to FIG.
In FIG. 4, the infrared camera substrate 105 includes a temperature measurement unit 401, a temperature correction unit 402, and a temperature output unit 403.
The temperature measurement unit 401 receives the infrared intensity from the infrared sensor module 102 and outputs a temperature value.
The temperature correction unit 402 obtains temperature values from the temperature sensor module 103 via the temperature measurement unit 401, the connection 106, and the temperature sensor substrate 104, and outputs the corrected temperature. When there are a plurality of temperature sensor modules 103, the temperature correction unit 402 may use an average value obtained by correcting the temperature values output from each temperature sensor module between pixels.
The temperature output unit 403 acquires the corrected temperature from the temperature correction unit 402 and outputs the corrected temperature to a display device such as a display or a recording device such as a hard disk drive.

図5は、温度補正部402内の温度補正方法を示すフロー図である。
測定対象物の放射率501は、測定対象物108の放射率である。
温度計測部による温度値502は、温度計測部401が出力する温度値である。
放射率による温度補正部503は、シュテファン・ボルツマンの法則を用いて、測定対象物の放射率501と温度計測部による温度値502から、測定対象物の温度値504を算出する。
補正係数計算部505は、画素間補正の演算に用いる補正係数506を生成する。
温度センサモジュールの放射率507は、温度センサモジュール103の放射率である。
放射率による温度補正部508は、放射率による温度補正部503と同機能を有し、シュテファン・ボルツマンの法則を用いて、温度センサモジュールの放射率507と温度計測部による温度値502から、温度センサモジュールの温度値509を算出する。
温度センサモジュールの温度出力値510は、温度センサモジュール103の表面温度である。
差分計算部511は、温度センサモジュールの温度値509と温度センサモジュールの温度出力値510の差である温度オフセット512を出力する。
補正温度計算部513は、測定対象物の温度値504を補正し、補正温度514を出力する。
補正温度514は、本発明の目的である補正された温度値であり、その算出方法は、測定対象物の温度値504×補正係数506+温度オフセット512、である。
FIG. 5 is a flowchart showing a temperature correction method in the temperature correction unit 402.
The emissivity 501 of the measurement object is the emissivity of the measurement object 108.
A temperature value 502 by the temperature measurement unit is a temperature value output by the temperature measurement unit 401.
The emissivity-based temperature correction unit 503 calculates the temperature value 504 of the measurement object from the emissivity 501 of the measurement object and the temperature value 502 of the temperature measurement unit using the Stefan-Boltzmann law.
The correction coefficient calculation unit 505 generates a correction coefficient 506 that is used for calculation of correction between pixels.
The emissivity 507 of the temperature sensor module is the emissivity of the temperature sensor module 103.
The emissivity-based temperature correction unit 508 has the same function as the emissivity-based temperature correction unit 503, and uses the Stefan-Boltzmann law to calculate the temperature from the emissivity 507 of the temperature sensor module and the temperature value 502 of the temperature measurement unit. A temperature value 509 of the sensor module is calculated.
The temperature output value 510 of the temperature sensor module is the surface temperature of the temperature sensor module 103.
The difference calculation unit 511 outputs a temperature offset 512 that is the difference between the temperature value 509 of the temperature sensor module and the temperature output value 510 of the temperature sensor module.
The corrected temperature calculation unit 513 corrects the temperature value 504 of the measurement object and outputs a corrected temperature 514.
The correction temperature 514 is a corrected temperature value that is an object of the present invention, and the calculation method is the temperature value 504 of the measurement object × the correction coefficient 506 + the temperature offset 512.

以上で、実施の形態1について説明した。 The first embodiment has been described above.

以上、本発明者によってなされた発明を実施の形態に基づき具体的に説明したが、本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることはいうまでもない。 As mentioned above, the invention made by the present inventor has been specifically described based on the embodiment. However, the present invention is not limited to the embodiment, and various modifications can be made without departing from the scope of the invention. Needless to say.

本発明は、電力・ガス・水道・鉄道等社会インフラ、産業用機器、医療、監視、農業、無人航空機、自動車等のサーマルカメラを利用するシステムに適用可能である。 The present invention can be applied to systems using thermal cameras such as social infrastructure such as power, gas, water, and railway, industrial equipment, medical care, surveillance, agriculture, unmanned aircraft, and automobiles.

100…赤外線カメラ、101…レンズ、102…赤外線センサモジュール、103…温度センサモジュール、104…温度センサ基板、105…赤外線カメラ基板、106…接続、107…視野範囲、108…測定対象物、200…熱画像、201…測定対象物の写像、202…温度センサモジュールの写像、401…温度計測部、402…温度補正部、403…温度出力部、501…測定対象物の放射率、502…温度計測部による温度値、503…放射率による温度補正部、504…測定対象物の温度値、505…補正係数計算部、506…補正係数、507…温度センサモジュールの放射率、508…放射率による温度補正部、509…温度センサモジュールの温度値、510…温度センサモジュールの温度出力値、511…差分計算部、512…温度オフセット、513…補正温度計算部、514…補正温度 DESCRIPTION OF SYMBOLS 100 ... Infrared camera, 101 ... Lens, 102 ... Infrared sensor module, 103 ... Temperature sensor module, 104 ... Temperature sensor board, 105 ... Infrared camera board, 106 ... Connection, 107 ... Field of view, 108 ... Measurement object, 200 ... Thermal image 201 ... Mapping of measurement object, 202 ... Mapping of temperature sensor module, 401 ... Temperature measurement unit, 402 ... Temperature correction unit, 403 ... Temperature output unit, 501 ... Emissivity of measurement object, 502 ... Temperature measurement 503... Temperature correction unit based on emissivity, 504. Temperature value of measurement object, 505. Correction coefficient calculation unit, 506... Correction coefficient, 507... Emissivity of temperature sensor module, 508. Correction unit, 509 ... temperature value of temperature sensor module, 510 ... temperature output value of temperature sensor module, 511 ... difference meter Department, 512 ... temperature offset, 513 ... correction temperature calculation unit, 514 ... correction temperature

Claims (2)

赤外線を受光して熱画像を表示または出力する赤外線カメラにおいて、
前記赤外線カメラは、赤外線センサモジュールと、温度センサ、温度補正部を備え、
前記赤外線センサモジュールは、受光した赤外線強度により視野範囲の温度分布を測定する赤外線センサモジュールであり、
前記温度センサは、前記赤外線センサモジュールの視野範囲内のある特定範囲の温度を測定する温度計であり、
前記温度補正部は、前記赤外線センサモジュールが出力する温度と、前記温度センサが出力する特定範囲の温度を受信する
ことを特徴とする赤外線カメラの温度補正方法。
In an infrared camera that receives infrared and displays or outputs a thermal image,
The infrared camera includes an infrared sensor module, a temperature sensor, and a temperature correction unit.
The infrared sensor module is an infrared sensor module that measures a temperature distribution in a visual field range based on received infrared intensity,
The temperature sensor is a thermometer that measures the temperature of a specific range within the visual field range of the infrared sensor module,
The temperature correction method for an infrared camera, wherein the temperature correction unit receives a temperature output from the infrared sensor module and a temperature in a specific range output from the temperature sensor.
請求項1記載の赤外線カメラの温度補正方法であって、
前記温度補正部は、前記赤外線センサモジュールによる前記特定点の温度と、前記温度センサによる前記特定点の温度の差分を取得し、その差分から前記視野範囲全体の温度分布を補正する
ことを特徴とする赤外線カメラの温度補正方法。
A temperature correction method for an infrared camera according to claim 1,
The temperature correction unit acquires a difference between the temperature of the specific point by the infrared sensor module and the temperature of the specific point by the temperature sensor, and corrects the temperature distribution of the entire visual field range from the difference. Temperature correction method for infrared camera.
JP2017159120A 2017-08-22 2017-08-22 Temperature correction method for infrared camera Pending JP2019039672A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017159120A JP2019039672A (en) 2017-08-22 2017-08-22 Temperature correction method for infrared camera

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017159120A JP2019039672A (en) 2017-08-22 2017-08-22 Temperature correction method for infrared camera

Publications (1)

Publication Number Publication Date
JP2019039672A true JP2019039672A (en) 2019-03-14

Family

ID=65725688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017159120A Pending JP2019039672A (en) 2017-08-22 2017-08-22 Temperature correction method for infrared camera

Country Status (1)

Country Link
JP (1) JP2019039672A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200493797Y1 (en) * 2020-11-06 2021-06-07 오즈레이 주식회사 Thermal imaging camera with combined black body
KR20210122190A (en) * 2020-03-30 2021-10-08 (주)씨앤테크 A temperature measuring apparatus and a temperature measuring method
KR102312521B1 (en) * 2020-06-09 2021-10-15 (주)메쉬 Externally mounted temperature calibration device for thermal imaging cameras and temperature measurement system using it
KR102316804B1 (en) * 2020-08-10 2021-10-25 한화시스템 주식회사 Apparatus and method for assisting temperature measurement in temperature measuring system
KR20220070984A (en) * 2020-11-23 2022-05-31 주식회사 엠테이크 Unit for error correction and object temperature measuring device with the same
WO2023072325A1 (en) * 2021-11-01 2023-05-04 Západočeská Univerzita V Plzni Device for thermographic temperature measurement

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01287428A (en) * 1988-05-13 1989-11-20 Fujitsu Ltd Infrared image pickup device
JP2001349786A (en) * 2000-06-06 2001-12-21 Denso Corp Calibration method for non-contact temperature sensor
JP2010265533A (en) * 2009-05-18 2010-11-25 Nippon Steel Corp Heating controller and heating control method
JP2016130699A (en) * 2015-01-14 2016-07-21 アズビル株式会社 Thermopile array sensor, and method of auto-calibration processing on thermopile array sensor
US20170006237A1 (en) * 2015-06-30 2017-01-05 Rosemount Inc. Explosion-proof thermal imaging system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01287428A (en) * 1988-05-13 1989-11-20 Fujitsu Ltd Infrared image pickup device
JP2001349786A (en) * 2000-06-06 2001-12-21 Denso Corp Calibration method for non-contact temperature sensor
JP2010265533A (en) * 2009-05-18 2010-11-25 Nippon Steel Corp Heating controller and heating control method
JP2016130699A (en) * 2015-01-14 2016-07-21 アズビル株式会社 Thermopile array sensor, and method of auto-calibration processing on thermopile array sensor
US20170006237A1 (en) * 2015-06-30 2017-01-05 Rosemount Inc. Explosion-proof thermal imaging system

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210122190A (en) * 2020-03-30 2021-10-08 (주)씨앤테크 A temperature measuring apparatus and a temperature measuring method
KR102470560B1 (en) * 2020-03-30 2022-11-29 (주)씨앤테크 A temperature measuring apparatus and a temperature measuring method
KR102312521B1 (en) * 2020-06-09 2021-10-15 (주)메쉬 Externally mounted temperature calibration device for thermal imaging cameras and temperature measurement system using it
US20210385393A1 (en) * 2020-06-09 2021-12-09 Mesh Co., Ltd. Externally mounted temperature calibration device for thermal cameras and temperature measurement system using the same
WO2021251563A1 (en) * 2020-06-09 2021-12-16 (주)메쉬 Externally-mounted temperature correction device for improving temperature accuracy of thermal camera, and temperature measurement system using same
US11910124B2 (en) * 2020-06-09 2024-02-20 Mesh Co., Ltd. Externally mounted temperature calibration device for thermal cameras and temperature measurement system using the same
KR102316804B1 (en) * 2020-08-10 2021-10-25 한화시스템 주식회사 Apparatus and method for assisting temperature measurement in temperature measuring system
WO2022035154A1 (en) * 2020-08-10 2022-02-17 한화시스템 주식회사 Apparatus and method for assisting in temperature measurement of temperature measurement system
KR200493797Y1 (en) * 2020-11-06 2021-06-07 오즈레이 주식회사 Thermal imaging camera with combined black body
KR20220070984A (en) * 2020-11-23 2022-05-31 주식회사 엠테이크 Unit for error correction and object temperature measuring device with the same
KR102656079B1 (en) * 2020-11-23 2024-04-09 주식회사 엠테이크 Unit for error correction and object temperature measuring device with the same
WO2023072325A1 (en) * 2021-11-01 2023-05-04 Západočeská Univerzita V Plzni Device for thermographic temperature measurement

Similar Documents

Publication Publication Date Title
JP2019039672A (en) Temperature correction method for infrared camera
US9438825B2 (en) Infrared sensor amplification techniques for thermal imaging
US8818079B2 (en) 3D radiometry
CN102798475A (en) Method for determining temperature of object according to standard infrared video image
WO2009089897A3 (en) Thermographic camera
US20190154512A1 (en) Method for Determining a Temperature without Contact, and Infrared Measuring System
US9992432B2 (en) Gain normalization and non-uniformity correction
KR101438327B1 (en) Thermal imaging camera for correcting ununiformity according to temperature of infrared detector and method of correcting ununiformity in the same
JP2020053976A (en) Imaging device with alignment analysis feature
JP6768452B2 (en) Pixel non-uniformity correction
KR101322801B1 (en) System and method for setting emissivity of infrared thermal vision camera using reference pattern
JP2005249723A (en) Display output unit for image containing temperature distribution, and control method therefor
KR102220654B1 (en) Correction System of Measurement Temperature
CN109269675A (en) Temperature-measuring gun
EP3182082B1 (en) Gain normalization
JP2016133305A (en) Infrared detector
Jin et al. Infrared nonuniformity correction and radiometric calibration technology using U-shaped blackbody
KR101731287B1 (en) Method and apparatus for compensating output of infrared sensor
KR101794554B1 (en) Device for realizing temperature profile
TW202146862A (en) Infrared imaging device capable of correcting images through temperature detection and image processing
US11539889B2 (en) Method for the noise optimization of a camera, in particular a handheld thermal imaging camera
JP2012154845A (en) Method for obtaining correction data in temperature measuring device, and temperature measuring method and temperature measuring device employing the same
JP2007325120A (en) Far infrared imaging system and far infrared imaging method
KR102298343B1 (en) Method and device for monitoring the body temperature of moving object using thermal imaging sensor
JP7441621B2 (en) infrared measurement system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200814

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210727

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211221

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220705