WO2021049188A1 - Temperature monitoring method, temperature monitoring device, and control panel - Google Patents

Temperature monitoring method, temperature monitoring device, and control panel Download PDF

Info

Publication number
WO2021049188A1
WO2021049188A1 PCT/JP2020/028767 JP2020028767W WO2021049188A1 WO 2021049188 A1 WO2021049188 A1 WO 2021049188A1 JP 2020028767 W JP2020028767 W JP 2020028767W WO 2021049188 A1 WO2021049188 A1 WO 2021049188A1
Authority
WO
WIPO (PCT)
Prior art keywords
output
monitored
temperature monitoring
emissivity
output value
Prior art date
Application number
PCT/JP2020/028767
Other languages
French (fr)
Japanese (ja)
Inventor
徹 濱口
Original Assignee
村田機械株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 村田機械株式会社 filed Critical 村田機械株式会社
Publication of WO2021049188A1 publication Critical patent/WO2021049188A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/10Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
    • G01J5/12Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors using thermoelectric elements, e.g. thermocouples
    • G01J5/14Electrical features thereof
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/72Investigating presence of flaws

Definitions

  • One aspect of the present invention relates to a temperature monitoring method, a temperature monitoring device, and a control panel.
  • a control panel equipped with at least one of an electric control device, an electric device, an electric circuit, an electronic circuit, etc. for electrically controlling a machine or equipment is known.
  • the temperature of a part of the control panel may rise due to the occurrence of an abnormality, and in some cases, the temperature rise may cause ignition. Therefore, there is a desire to monitor the temperature of the control panel.
  • a thermopile array that detects infrared radiant energy and outputs the temperature calculated by the radiant energy as described in Patent Document 1. Be done.
  • thermopile array As it is, various components (parts) are mounted on the control panel, and it may not be possible to accurately grasp the temperature as a monitoring result of the output value output from the thermopile array as it is.
  • an object of one aspect of the present invention is a temperature monitoring method, a temperature monitoring device, and a control capable of accurately monitoring the temperature of each component even when the object to be monitored is composed of various components. It is to provide a board.
  • the detected values of infrared energy are different (that is, different) due to the difference in the physical characteristics (for example, emissivity, in other words, the reflectance) of the constituent articles, although they are actually in the same temperature state.
  • the output value may be output from the element).
  • the monitored area is divided into a plurality of detection areas, and different emissivity is set for each of the divided detection areas.
  • the detected value detected by the element is not output as it is, but is corrected to an appropriate output value (temperature) based on the emissivity.
  • the temperature can be accurately monitored for each constituent article.
  • the partition step applies heat to the monitored object from the outside in advance, and the monitored area is based on the output value output from each element of the thermopile array at that time. May be divided into a plurality of detection areas.
  • this temperature monitoring method it is possible to set the emissivity based on the output value of the element (corresponding to the approximate value of the actual emissivity) when heat is actually applied to the object to be monitored from the outside. .. This makes it possible to set an accurate emissivity for each constituent article.
  • the partition step may partition the monitored area into a plurality of detection areas based on the portion of the monitored object whose characteristics are known.
  • this temperature monitoring method it is possible to set the emissivity based on the characteristics of the constituent articles known in advance. This makes it possible to set an accurate emissivity for each constituent article.
  • the temperature monitoring method further includes an installation step of adjusting the arrangement position of the thermopile array with respect to the monitored object based on the output value output from each element and determining the monitored area. It may be.
  • the output value by the thermopile array is not output (displayed) in a state where the output value is superimposed on the actual image unlike the thermography device, so the temperature of any part of the monitored object is detected.
  • a desired monitoring target area as the temperature acquisition area that can be acquired by the thermopile array.
  • thermopile array with respect to the monitored object is adjusted based on the position where it is possible to clearly determine which part is being detected based on the output value output from each element. To. This makes it possible to appropriately set the monitoring target area.
  • the installation step may specify the monitored area by installing a radiator having a known emissivity on a part of the monitored object.
  • the arrangement position of the thermopile array with respect to the monitored object is adjusted with reference to the position where the radiator having a known emissivity is installed. This makes it possible to appropriately set the monitoring target area.
  • the installation step may specify the monitored area based on the known emissivity portion of the monitored object.
  • the position of the thermopile array with respect to the monitored object is adjusted with reference to the position of the known emissivity portion of the output values output from each element. This makes it possible to appropriately set the monitoring target area.
  • the temperature monitoring device includes a thermopile array in which a plurality of elements that detect infrared energy and output an output value based on the detected energy amount are arranged, and a monitored object monitored by the thermopile array.
  • the emissivity is set for each of the plurality of detection areas and the section that divides the monitoring target area of the above into a plurality of detection areas, and the output value output from each element is corrected based on the emissivity of the detected detection area. It is provided with a correction unit for performing the correction and an output unit for outputting the output value corrected by the correction unit as a monitoring result of the monitoring target area.
  • the temperature monitoring device having this configuration divides the monitored area into a plurality of detection areas, and the emissivity is set for each of the sections. As a result, it is appropriate to set the emissivity for each detection area for the event that different output values are output from the element due to the difference in the emissivity of the constituent articles, even though the temperature is actually the same. It becomes possible to correct to the temperature. As a result, even when the object to be monitored is composed of various constituent articles, the temperature can be accurately monitored for each constituent article.
  • the infrared energy detection values differ depending on the physical characteristics (for example, emissivity) of the constituent articles, even though they are actually in the same temperature state (that is, different output values are output from the elements). May be).
  • the monitored area is divided into a plurality of detection areas, and different emissivity is set for each of the divided detection areas.
  • the detected value detected by the element is not output as it is, but is corrected to an appropriate output value (temperature) based on the emissivity.
  • the temperature can be accurately monitored for each constituent article.
  • the compartment has a plurality of monitored regions based on the output values output from each element of the thermopile array when heat is applied to the monitored object from the outside. It may be divided into detection areas.
  • this temperature monitoring device it is possible to set the emissivity based on the characteristics of the constituent articles actually measured in advance. This makes it possible to set an accurate emissivity for each constituent article.
  • the temperature monitoring device further includes a characteristic acquisition unit for acquiring the characteristics of the constituent articles constituting the monitored object, and the partition portion is based on the characteristics of the constituent articles acquired by the characteristic acquisition unit.
  • the monitored area may be divided into a plurality of detection areas.
  • the control panel includes the above-mentioned temperature monitoring device and an electronic circuit as a monitoring object, and the temperature monitoring device is arranged so as to face the electronic circuit.
  • the control panel referred to here includes a device equipped with at least one of an electric control device, an electric device, an electric circuit, an electronic circuit, and the like for electrically controlling a machine or equipment. This control panel can accurately monitor the temperature for each component of the monitored object.
  • the temperature can be accurately monitored for each constituent article.
  • FIG. 1 is a front view showing an example of an electronic circuit included in a control panel according to an embodiment.
  • FIG. 2 is a block diagram showing a functional configuration of a control panel according to an embodiment.
  • FIG. 3 is a diagram showing an example of a detection area partitioned by the partition portion of FIG.
  • FIG. 4 is an example of the monitoring result of the monitored area output by the output unit of FIG.
  • FIG. 5 is a flowchart showing an example of the steps of the temperature monitoring method according to the embodiment.
  • control panel 100 including the temperature monitoring device 1 will be described with reference to the drawings.
  • the same elements are designated by the same reference numerals, and duplicate description will be omitted.
  • the electronic circuit (monitoring object) 50 included in the control panel 100 and to be monitored by the temperature monitoring device 1 will be described.
  • An example of the control panel 100 includes a control panel that controls a ceiling traveling vehicle that travels on a track set on the ceiling and transports articles.
  • the electronic circuit 50 mainly includes a circuit board 50A, an integrated circuit 51, a transistor 53, an inductor 54, a capacitor 55, a connector 57, and a wiring 59.
  • the electronic circuit to be monitored by the temperature monitoring device 1 is not limited to the electronic circuit 50 having the configuration described below.
  • the control panel 100 includes the above-mentioned electronic circuit 50 and the temperature monitoring device 1.
  • the temperature monitoring device 1 includes a thermopile array 10 and a module 20.
  • the thermopile array 10 is a sensor in which a plurality of elements 10A that detect infrared energy and output an output value based on the detected energy amount are arranged.
  • the thermopile array 10 is arranged so as to face the electronic circuit 50. In the present embodiment, the arrangement position of the thermopile array 10 is adjusted so that the entire area of the electronic circuit 50 becomes the monitoring target area A0 (see FIG. 3).
  • the module 20 is a device that converts the output values output from each of the plurality of elements 10A included in the thermopile array 10 into temperatures and outputs them to the outside.
  • the module 20 is an electronic control unit, and has a partition unit 21, a correction unit 22, and an output unit 23.
  • the partition section 21 partitions the monitored area A0 of the electronic circuit 50 monitored by the thermopile array 10 into a plurality of detection areas.
  • the monitored area A0 is set to an area including all of the electronic circuits 50 in a plan view.
  • the compartment 21 has four monitoring target areas A0, a first detection area A1, a second detection area A2, a third detection area A3, and a fourth detection area A4 ( Divide into multiple) areas.
  • the partition portion 21 sets the monitored region A0 of the electronic circuit 50 into four detection regions (4 detection regions) based on the output values output from the respective elements 10A when heat is applied to the electronic circuit 50 from the outside. It is divided into a first detection area A1 to a fourth detection area A4).
  • the thermopile array 10 and the light source are arranged so as to face the electronic circuit 50, and the temperature of the electronic circuit 50 from which light (heat) is radiated is acquired by the thermopile array 10.
  • the compartment 21 partitions the monitored region A0 into the above four regions based on the temperature acquired by the thermopile array 10.
  • the compartment 21 is partitioned into four regions, the first detection region A1, the second detection region A2, the third detection region A3, and the fourth detection region A4, in order from the region having the highest temperature.
  • the light source that applies heat to the electronic circuit 50 from the outside include, for example, an LED light source and a lamp that radiate infrared rays.
  • the first detection area A1, the second detection area A2, the third detection area A3, and the fourth detection area A4 partitioned by the above method are as follows. That is, the first detection region A1 is a region in which the integrated circuit 51 and the capacitor 55 are arranged.
  • the second detection region A2 is a region in which the transistor 53 and the inductor 54 are arranged.
  • the third detection area A3 is an area in which the wiring 59 is arranged.
  • the fourth detection area A4 is an area on the other circuit board 50A.
  • the partition 21 does not partition the monitored region A0 into a plurality of detection regions (first detection region A1 to fourth detection region A4) based on the temperature of the electronic circuit irradiated with heat from the outside.
  • a plurality of detection target areas A0 are detected in a plurality of detection areas (first) based on the characteristics of the integrated circuit 51, the transistor 53, the inductor 54, the capacitor 55, the connector 57, the wiring 59, and the circuit board 50A acquired by the characteristic acquisition unit 24. It may be divided into the detection area A1 to the fourth detection area A4).
  • the module 20 may include a characteristic acquisition unit 24 that acquires the characteristics of the constituent articles (integrated circuit 51, transistor 53, inductor 54, capacitor 55, connector 57, and wiring 59) that make up the object to be monitored.
  • the characteristic acquisition unit 24 may acquire the respective characteristics from the information groups related to the integrated circuit 51, the transistor 53, the inductor 54, the capacitor 55, the connector 57, and the wiring 59 stored in advance in the storage unit or the like, or the input inter-unit.
  • the input of the characteristics of the integrated circuit 51, the transistor 53, the inductor 54, the capacitor 55, the connector 57, and the wiring 59 may be accepted from the face.
  • Examples of the characteristics of the integrated circuit 51, the transistor 53, the inductor 54, the capacitor 55, the connector 57, and the wiring 59 include their respective emissivity or reflectance.
  • the section 21 may partition the monitored area A0 based on the acquired emissivity, reflectance, or the like.
  • the correction unit 22 sets the emissivity for each detection area (first detection area A1 to fourth detection area A4).
  • the emissivity is a coefficient for correcting the output value output from each element 10A.
  • the emissivity is lower in the order of the first detection region A1, the second detection region A2, the third detection region A3, and the fourth detection region A4 (for example, 0.20, 0.60, 0.80, 0.95) is set. That is, the correction unit 22 sets a lower emissivity as the acquired temperature is higher.
  • the correction unit 22 corrects the output value output from each element 10A based on the correction factor, and outputs the correction value to the output unit 23.
  • the correction unit 22 adds a correction factor (for example, 0.20) to the output value output by the element 10A that detects the first detection region A1 (the region where the integrated circuit 51 and the capacitor 55 are arranged). Multiply and output the multiplied value to the output unit 23.
  • the correction unit 22 multiplies the output value output by the element 10A that detects the second detection region A2 (the region where the transistor 53 and the inductor 54 are arranged) by a correction factor (for example, 0.60), and the multiplication is performed. The value is output to the output unit 23.
  • the correction unit 22 multiplies the output value output by the element 10A that detects the third detection area A3 (the area where the wiring 59 is arranged) by the correction factor (for example, 0.80), and outputs the multiplied value. Output to unit 23.
  • the correction unit 22 multiplies the output value output by the element 10A that detects the fourth detection area A4 (the other area on the circuit board 50A) by the correction factor (for example, 0.95), and calculates the multiplied value. Output to the output unit 23.
  • the correction unit 22 sets a lower emissivity as the reflectance is higher.
  • the output unit 23 outputs the output value corrected by the correction unit 22 as a monitoring result (see FIG. 4) of the monitoring target area A0. More specifically, it is an output value output from the element 10A that detects infrared energy in the first detection region A1, the second detection region A2, the third detection region A3, and the fourth detection region A4, and is the output value of the correction unit 22.
  • the corrected output value corrected by is output as the monitoring result image S of the monitoring target area A0. In the monitoring result image S shown in FIG. 4, the higher the temperature, the brighter the color.
  • the output unit 23 outputs the monitoring result image S to, for example, a monitor, a monitoring device, or a terminal device carried by an employee of the factory or the like, which is arranged in an office such as a factory where the ceiling traveling vehicle system is installed. ..
  • thermopile array 10 in which a plurality of elements 10A that detect infrared energy and output an output value based on the detected energy amount are arranged.
  • a temperature monitoring method for monitoring the temperature of the region A0 will be described. As shown in FIG. 5, the temperature monitoring method includes a temporary installation step S1, an installation step S2, a partition step S3, a correction step S4, and an output step S5.
  • the temporary installation step S1 is a step of temporarily arranging the thermopile array 10 so as to face the electronic circuit 50.
  • the operator installs the electronic circuit 50 with the thermopile array 10 and the light source facing each other.
  • the operator acquires the temperature status of the electronic circuit 50 from the thermopile array 10 in such an installation state.
  • the installation step S2 is a step of adjusting the arrangement position of the thermopile array 10 with respect to the electronic circuit 50 based on the output value output from each element and determining the monitoring target area A0. For example, the operator adjusts the arrangement position of the thermopile array 10 based on the temperature condition of the electronic circuit 50 acquired in step S1 and determines the monitoring target area A0.
  • the monitored area A0 may be specified by installing a radiator having a known emissivity in a part of the electronic circuit 50. Specifically, the operator irradiates heat from a light source with a radiator having a relatively low emissivity (in other words, a reflector having a relatively high reflectance) arranged on, for example, an integrated circuit 51. , The temperature condition at that time is acquired by the thermopile array 10. At this time, the thermopile array 10 detects that the temperature of the region where the radiator having a relatively low emissivity is installed is high. The operator adjusts the position of the thermopile array 10 with respect to the electronic circuit 50 using this high temperature region as a mark, and determines the monitored region A0. In the present embodiment, the monitoring target area A0 is determined so that all of the electronic circuits 50 are included in the front view.
  • the monitored area A0 may be determined based on the known emissivity portion in the electronic circuit. For example, when a metal cover is provided on a part of the integrated circuit 51, the characteristics related to the metal cover are investigated in advance, and the temperature portion calculated from the characteristics (for example, emissivity) is used as a mark. The position of the thermopile array 10 with respect to the electronic circuit 50 may be adjusted to determine the monitored area A0.
  • the partition step S3 is a step of partitioning the monitored area A0 into a plurality of detection areas (first detection area A1 to fourth detection area A4).
  • the monitoring target area A0 is set to a plurality of detection areas (first detection area A1 to fourth detection area A4) based on the output value output from each element 10A when heat is applied to the electronic circuit 50. ).
  • the specific sectioning method is as described in the sectioning section 21.
  • the partition step S3 may be partitioned into a plurality of detection regions (first detection region A1 to fourth detection region A4) based on a portion whose characteristics are known in the electronic circuit 50.
  • the correction step S4 is a step of setting the emissivity for each of a plurality of detection regions (first detection region A1 to fourth detection region A4) and correcting the output value output from each element 10A based on the emissivity. is there.
  • the specific correction method is as described in the correction unit 22.
  • the output step S5 outputs the output value corrected by the correction step S4 as the monitoring result of the monitoring target area A0.
  • the specific correction method is as described in the output unit 23.
  • the control panel 100 including the temperature monitoring device 1, and the temperature monitoring method will be described.
  • the detected value of infrared energy differs due to the difference in the physical characteristics (for example, emissivity) of the electronic component even though the temperature is actually the same (that is, the output differs from the element 10A).
  • the value may be output).
  • the control panel 100 including the temperature monitoring device 1, and the temperature monitoring method the monitored area A0 is divided into four areas, the first detection area A1 to the fourth detection area A4.
  • different emissivity is set for each of the plurality of detection areas in the section.
  • the detected value detected by the element 10A is not output as it is, but is corrected to an appropriate output value (temperature) based on the emissivity.
  • the temperature can be accurately monitored for each electronic component.
  • the monitored region A0 is set to the first detection regions A1 to 4 based on the output values output from the respective elements 10A when heat is applied to the electronic circuit 50. It is divided into four detection areas of the detection area A4. This makes it possible to set the emissivity that can be specified from the output value of the element 10A when heat is actually applied to the electronic circuit 50. This makes it possible to set an accurate emissivity for each electronic component.
  • thermopile array 10 The output value of the thermopile array 10 is not output (displayed) in a state where the output value is superimposed on the actual image as in the thermography device, so which part of the electronic circuit 50 is detecting the temperature. There is an aspect that it is difficult to understand. Therefore, it is difficult to set a desired monitoring target area A0 as the temperature acquisition area that can be acquired by the thermopile array 10. Therefore, in the temperature monitoring method of the above embodiment, the installation step S2 is performed in which the arrangement position of the thermopile array 10 with respect to the electronic circuit 50 is adjusted based on the output value output from each element 10A, and the monitoring target area A0 is determined. Includes.
  • thermopile array 10 In the temperature monitoring method of the above embodiment, a position (for example, a high temperature region in the above embodiment) at which it is possible to clearly determine which part is being detected is used as a reference based on the output value output from each element 10A. As a result, the arrangement position of the thermopile array 10 with respect to the electronic circuit 50 is adjusted. This makes it possible to appropriately set the electronic circuit 50.
  • the monitoring target area A0 is specified by installing a radiator having a known emissivity in a part of the electronic circuit 50.
  • the arrangement position of the thermopile array 10 with respect to the electronic circuit 50 is adjusted with reference to the position where the radiator having a known emissivity is installed. This makes it possible to appropriately set the monitoring target area A0.
  • a control panel for controlling a plurality of ceiling traveling vehicles in which a plurality of ceiling traveling vehicles travel, an example in which one aspect of the present invention is applied to a control panel for controlling a plurality of ceiling traveling vehicles has been described. It may be applied to a main body control unit mounted on a ceiling-mounted vehicle or a temperature monitoring device for monitoring an electronic circuit included in the main body control unit.
  • One aspect of the present invention is any control panel as long as it is equipped with at least one of an electric control device, an electric device, an electric circuit, an electronic circuit, etc. for electrically controlling a machine or equipment. It can also be applied to.
  • the example in which the heat radiated from the light source is applied to the electronic circuit 50 has been described, but for example, the body heat generated by the worker may be used. That is, when the operator works in front of the electronic circuit 50, the arrangement position of the thermopile array 10 with respect to the electronic circuit 50 is adjusted with reference to the high temperature region detected by the thermopile array 10, and the monitored area A0 is determined. You may.
  • the monitoring target area A0 is set in the area including all of the electronic circuit 50 in the plan view.
  • the monitoring target area A0 is set in a part of the electronic circuit 50. It may be set.
  • Temperature monitoring device 10 ... Thermopile array, 10A ... Element, 20 ... Module, 21 ... Section, 22 ... Correction, 23 ... Output, 24 ... Characteristic acquisition, 50 ... Electronic circuit, 100 ... Control panel, A0 ... Monitoring target area, S1 ... Temporary installation step, S2 ... Installation step, S3 ... Section step, S4 ... Correction step, S5 ... Output step.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Radiation Pyrometers (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

A temperature monitoring method according to the present invention is a method in which infrared radiation energy is detected, and a thermopile array (10), in which a plurality of elements (10A) that output an output value based on the detected infrared radiation energy are arrayed, is used to monitor the temperature in a region to be monitored of an electronic circuit (50). The temperature monitoring method includes: a division step (S3) for dividing the electronic circuit (50) into a plurality of detection regions (a first detection region through a fourth detection region); a correction step (S4) for setting the emissivity for each of the detection regions, and correcting, on the basis of the emissivity, the output value outputted from each of the elements (10A); and an output step (S5) for outputting, as a monitoring result for the region to be monitored, the corrected output value resulting from the correction step (S4).

Description

温度監視方法、温度監視装置及び制御盤Temperature monitoring method, temperature monitoring device and control panel
 本発明の一側面は、温度監視方法、温度監視装置及び制御盤に関する。 One aspect of the present invention relates to a temperature monitoring method, a temperature monitoring device, and a control panel.
 機械又は設備を電気的に制御するための電気制御機器、電気機器、電気回路、及び電子回路等の少なくとも一つが搭載された制御盤が知られている。このような制御盤においては、例えば異常の発生によって制御盤の一部の温度が上昇することがあり、場合によっては当該温度上昇によって発火するおそれがある。このため、制御盤の温度を監視したいという要望がある。制御盤の温度を監視する方法として、特許文献1に記載されているような、赤外線の放射エネルギーを検出し、当該放射エネルギーにより算出される温度を出力するサーモパイルアレイを用いて監視することが考えられる。 A control panel equipped with at least one of an electric control device, an electric device, an electric circuit, an electronic circuit, etc. for electrically controlling a machine or equipment is known. In such a control panel, for example, the temperature of a part of the control panel may rise due to the occurrence of an abnormality, and in some cases, the temperature rise may cause ignition. Therefore, there is a desire to monitor the temperature of the control panel. As a method of monitoring the temperature of the control panel, it is conceivable to monitor by using a thermopile array that detects infrared radiant energy and outputs the temperature calculated by the radiant energy as described in Patent Document 1. Be done.
特開2010-175442号公報Japanese Unexamined Patent Publication No. 2010-175442
 ところで、制御盤には、様々な構成物品(部品)が搭載されており、サーモパイルアレイから出力される出力値をそのまま監視結果としては、正確に温度を把握することができない場合がある。 By the way, various components (parts) are mounted on the control panel, and it may not be possible to accurately grasp the temperature as a monitoring result of the output value output from the thermopile array as it is.
 そこで、本発明の一側面の目的は、監視対象物が様々な構成物品により構成される場合であっても構成物品ごとに正確に温度を監視することができる温度監視方法、温度監視装置及び制御盤を提供することにある。 Therefore, an object of one aspect of the present invention is a temperature monitoring method, a temperature monitoring device, and a control capable of accurately monitoring the temperature of each component even when the object to be monitored is composed of various components. It is to provide a board.
 本発明の一側面に係る温度監視方法は、赤外線エネルギーを検出し、検出したエネルギー量に基づいた出力値を出力する複数の素子が配列されたサーモパイルアレイを用いて監視対象物における監視対象領域の温度を監視する温度監視方法であって、監視対象領域を複数の検出領域に区画する区画ステップと、複数の検出領域ごとに放射率(放射率=1-反射率)を設定し、それぞれの素子から出力される出力値を、検出した検出領域の放射率に基づいて補正する補正ステップと、補正ステップによって補正された出力値を監視対象領域の監視結果として出力する出力ステップと、を含む。 The temperature monitoring method according to one aspect of the present invention uses a thermopile array in which a plurality of elements that detect infrared energy and output an output value based on the detected energy amount are arranged to cover a monitored area in a monitored object. It is a temperature monitoring method that monitors the temperature. It is a partition step that divides the monitored area into a plurality of detection areas, and the emissivity (emissivity = 1-reflectivity) is set for each of the plurality of detection areas, and each element is set. It includes a correction step of correcting the output value output from the above based on the emissivity of the detected detection area, and an output step of outputting the output value corrected by the correction step as a monitoring result of the monitoring target area.
 サーモパイルアレイを構成する素子においては、実際には同じ温度状態にもかかわらず、構成物品の物性(例えば放射率、換言すれば反射率)の違いによって赤外線エネルギーの検出値が異なる(すなわち、異なった出力値が素子から出力される)場合がある。このような事象に対して、本発明の一側面に係る温度監視方法では、監視対象領域を複数の検出領域に区画し、当該区画された検出領域ごとに異なる放射率を設定している。これにより、素子によって検出された検出値がそのまま出力されるのではなく、放射率に基づいた適切な出力値(温度)に補正される。この結果、監視対象物が様々な構成物品により構成される場合であっても構成物品ごとに正確に温度を監視することができる。 In the elements constituting the thermopile array, the detected values of infrared energy are different (that is, different) due to the difference in the physical characteristics (for example, emissivity, in other words, the reflectance) of the constituent articles, although they are actually in the same temperature state. The output value may be output from the element). In response to such an event, in the temperature monitoring method according to one aspect of the present invention, the monitored area is divided into a plurality of detection areas, and different emissivity is set for each of the divided detection areas. As a result, the detected value detected by the element is not output as it is, but is corrected to an appropriate output value (temperature) based on the emissivity. As a result, even when the object to be monitored is composed of various constituent articles, the temperature can be accurately monitored for each constituent article.
 本発明の一側面に係る温度監視方法では、区画ステップは、事前に監視対象物に外部から熱を作用させ、そのときにサーモパイルアレイのそれぞれの素子から出力される出力値に基づいて監視対象領域を複数の検出領域に区画してもよい。この温度監視方法では、実際に監視対象物に外部から熱を実際に作用させたときの素子の出力値(実際の放射率の近似値に相当する)を踏まえた放射率の設定が可能となる。これにより、構成物品ごとに正確な放射率を設定することができる。 In the temperature monitoring method according to one aspect of the present invention, the partition step applies heat to the monitored object from the outside in advance, and the monitored area is based on the output value output from each element of the thermopile array at that time. May be divided into a plurality of detection areas. In this temperature monitoring method, it is possible to set the emissivity based on the output value of the element (corresponding to the approximate value of the actual emissivity) when heat is actually applied to the object to be monitored from the outside. .. This makes it possible to set an accurate emissivity for each constituent article.
 本発明の一側面に係る温度監視方法では、区画ステップは、監視対象物において特性が既知の部分に基づいて監視対象領域を複数の検出領域に区画してもよい。この温度監視方法では、予め知られた構成物品の特性を踏まえた放射率の設定が可能となる。これにより、構成物品ごとに正確な放射率を設定することができる。 In the temperature monitoring method according to one aspect of the present invention, the partition step may partition the monitored area into a plurality of detection areas based on the portion of the monitored object whose characteristics are known. In this temperature monitoring method, it is possible to set the emissivity based on the characteristics of the constituent articles known in advance. This makes it possible to set an accurate emissivity for each constituent article.
 本発明の一側面に係る温度監視方法では、それぞれの素子から出力される出力値に基づいて、監視対象物に対するサーモパイルアレイの配置位置を調整し、監視対象領域を確定する設置ステップを、更に含んでもよい。ここで、サーモパイルアレイによる出力値は、サーモグラフィ装置のように出力値を実画像と重ね合わせた状態で出力(表示)されるわけではないので、監視対象物のどの部分の温度を検出しているのかが分かり難いという側面がある。このため、サーモパイルアレイによって取得可能な温度取得領域を所望の監視対象領域を設定することが難しい。この温度監視方法では、それぞれの素子から出力される出力値に基づいて、どの部分を検出しているのかが明確に判断がつく位置を基準として、監視対象物に対するサーモパイルアレイの配置位置が調整される。これにより、監視対象領域を適切に設定することが可能となる。 The temperature monitoring method according to one aspect of the present invention further includes an installation step of adjusting the arrangement position of the thermopile array with respect to the monitored object based on the output value output from each element and determining the monitored area. It may be. Here, the output value by the thermopile array is not output (displayed) in a state where the output value is superimposed on the actual image unlike the thermography device, so the temperature of any part of the monitored object is detected. There is an aspect that it is difficult to understand. Therefore, it is difficult to set a desired monitoring target area as the temperature acquisition area that can be acquired by the thermopile array. In this temperature monitoring method, the position of the thermopile array with respect to the monitored object is adjusted based on the position where it is possible to clearly determine which part is being detected based on the output value output from each element. To. This makes it possible to appropriately set the monitoring target area.
 本発明の一側面に係る温度監視方法では、設置ステップは、監視対象物の一部に既知の放射率の放射体を設置することによって監視対象領域を特定してもよい。この温度監視方法では、それぞれの素子から出力される出力値のうち、既知の放射率の放射体を設置した位置を基準として、監視対象物に対するサーモパイルアレイの配置位置が調整される。これにより、監視対象領域を適切に設定することが可能となる。 In the temperature monitoring method according to one aspect of the present invention, the installation step may specify the monitored area by installing a radiator having a known emissivity on a part of the monitored object. In this temperature monitoring method, among the output values output from each element, the arrangement position of the thermopile array with respect to the monitored object is adjusted with reference to the position where the radiator having a known emissivity is installed. This makes it possible to appropriately set the monitoring target area.
 本発明の一側面に係る温度監視方法では、設置ステップは、監視対象物における既知の放射率部分に基づいて監視対象領域を特定してもよい。この温度監視方法では、それぞれの素子から出力される出力値のうち、既知の放射率部分の位置を基準として、監視対象物に対するサーモパイルアレイの配置位置が調整される。これにより、監視対象領域を適切に設定することが可能となる。 In the temperature monitoring method according to one aspect of the present invention, the installation step may specify the monitored area based on the known emissivity portion of the monitored object. In this temperature monitoring method, the position of the thermopile array with respect to the monitored object is adjusted with reference to the position of the known emissivity portion of the output values output from each element. This makes it possible to appropriately set the monitoring target area.
 本発明の一側面に係る温度監視装置は、赤外線エネルギーを検出し、検出したエネルギー量に基づいた出力値を出力する複数の素子が配列されたサーモパイルアレイと、サーモパイルアレイによって監視される監視対象物の監視対象領域を複数の検出領域に区画する区画部と、複数の検出領域ごとに放射率を設定し、それぞれの素子から出力される出力値を、検出した検出領域の放射率に基づいて補正する補正部と、補正部によって補正された出力値を監視対象領域の監視結果として出力する出力部と、を備える。 The temperature monitoring device according to one aspect of the present invention includes a thermopile array in which a plurality of elements that detect infrared energy and output an output value based on the detected energy amount are arranged, and a monitored object monitored by the thermopile array. The emissivity is set for each of the plurality of detection areas and the section that divides the monitoring target area of the above into a plurality of detection areas, and the output value output from each element is corrected based on the emissivity of the detected detection area. It is provided with a correction unit for performing the correction and an output unit for outputting the output value corrected by the correction unit as a monitoring result of the monitoring target area.
 この構成の温度監視装置は、監視対象領域を複数の検出領域に区画し、当該区画ごとに放射率が設定される。これにより、実際には同じ温度状態にもかかわらず、構成物品の放射率の違いによって異なった出力値が素子から出力される事象に対して、放射率を検出領域ごとに設定することで適切な温度に補正することが可能となる。この結果、監視対象物が様々な構成物品により構成される場合であっても構成物品ごとに正確に温度を監視することができる。 The temperature monitoring device having this configuration divides the monitored area into a plurality of detection areas, and the emissivity is set for each of the sections. As a result, it is appropriate to set the emissivity for each detection area for the event that different output values are output from the element due to the difference in the emissivity of the constituent articles, even though the temperature is actually the same. It becomes possible to correct to the temperature. As a result, even when the object to be monitored is composed of various constituent articles, the temperature can be accurately monitored for each constituent article.
 サーモパイルアレイを構成する素子においては、実際には同じ温度状態にもかかわらず、構成物品の物性(例えば放射率)の違いによって赤外線エネルギーの検出値が異なる(すなわち、異なった出力値が素子から出力される)場合がある。このような事象に対して、本発明の一側面に係る温度監視装置では、監視対象領域を複数の検出領域に区画し、当該区画された検出領域ごとに異なる放射率を設定している。これにより、素子によって検出された検出値がそのまま出力されるのではなく、放射率に基づいた適切な出力値(温度)に補正される。この結果、監視対象物が様々な構成物品により構成される場合であっても構成物品ごとに正確に温度を監視することができる。 In the elements that make up the thermopile array, the infrared energy detection values differ depending on the physical characteristics (for example, emissivity) of the constituent articles, even though they are actually in the same temperature state (that is, different output values are output from the elements). May be). In response to such an event, in the temperature monitoring device according to one aspect of the present invention, the monitored area is divided into a plurality of detection areas, and different emissivity is set for each of the divided detection areas. As a result, the detected value detected by the element is not output as it is, but is corrected to an appropriate output value (temperature) based on the emissivity. As a result, even when the object to be monitored is composed of various constituent articles, the temperature can be accurately monitored for each constituent article.
 本発明の一側面に係る温度監視装置では、区画部は、監視対象物に外部から熱を作用させたときのサーモパイルアレイのそれぞれの素子から出力される出力値に基づいて監視対象領域を複数の検出領域に区画してもよい。この温度監視装置では、予め実測した構成物品の特性を踏まえた放射率の設定が可能となる。これにより、構成物品ごとに正確な放射率を設定することができる。 In the temperature monitoring device according to one aspect of the present invention, the compartment has a plurality of monitored regions based on the output values output from each element of the thermopile array when heat is applied to the monitored object from the outside. It may be divided into detection areas. With this temperature monitoring device, it is possible to set the emissivity based on the characteristics of the constituent articles actually measured in advance. This makes it possible to set an accurate emissivity for each constituent article.
 本発明の一側面に係る温度監視装置では、監視対象物を構成する構成物品の特性を取得する特性取得部を更に備え、区画部は、特性取得部によって取得される構成物品の特性に基づいて監視対象領域を複数の検出領域に区画してもよい。この温度監視装置では、予め知られた構成物品の特性を踏まえた放射率の設定が可能となる。これにより、構成物品ごとに正確な放射率を設定することができる。 The temperature monitoring device according to one aspect of the present invention further includes a characteristic acquisition unit for acquiring the characteristics of the constituent articles constituting the monitored object, and the partition portion is based on the characteristics of the constituent articles acquired by the characteristic acquisition unit. The monitored area may be divided into a plurality of detection areas. With this temperature monitoring device, it is possible to set the emissivity based on the characteristics of the constituent articles known in advance. This makes it possible to set an accurate emissivity for each constituent article.
 本発明の一側面に係る制御盤は、上記の温度監視装置と、監視対象物としての電子回路と、を備え、温度監視装置は、電子回路に対向して配置されている。ここでいう制御盤には、機械又は設備を電気的に制御するための電気制御機器、電気機器、電気回路、及び電子回路等の少なくとも一つが搭載された装置が含まれる。この制御盤は、監視対象物の構成物品ごとに正確に温度を監視することができる。 The control panel according to one aspect of the present invention includes the above-mentioned temperature monitoring device and an electronic circuit as a monitoring object, and the temperature monitoring device is arranged so as to face the electronic circuit. The control panel referred to here includes a device equipped with at least one of an electric control device, an electric device, an electric circuit, an electronic circuit, and the like for electrically controlling a machine or equipment. This control panel can accurately monitor the temperature for each component of the monitored object.
 本発明の一側面によれば、監視対象物が様々な構成物品により構成される場合であっても構成物品ごとに正確に温度を監視することができる。 According to one aspect of the present invention, even when the object to be monitored is composed of various constituent articles, the temperature can be accurately monitored for each constituent article.
図1は、一実施形態に係る制御盤に含まれる電子回路の一例を示す正面図である。FIG. 1 is a front view showing an example of an electronic circuit included in a control panel according to an embodiment. 図2は、一実施形態に係る制御盤の機能構成を示すブロック図である。FIG. 2 is a block diagram showing a functional configuration of a control panel according to an embodiment. 図3は、図2の区画部によって区画される検出領域の一例を示した図である。FIG. 3 is a diagram showing an example of a detection area partitioned by the partition portion of FIG. 図4は、図2の出力部によって出力される監視対象領域の監視結果の一例である。FIG. 4 is an example of the monitoring result of the monitored area output by the output unit of FIG. 図5は、一実施形態に係る温度監視方法の工程の一例を示したフローチャートである。FIG. 5 is a flowchart showing an example of the steps of the temperature monitoring method according to the embodiment.
 以下、図面を参照して一実施形態に係る温度監視装置1を含む制御盤100について説明する。図面の説明において、同一要素には同一符号を付し、重複する説明を省略する。 Hereinafter, the control panel 100 including the temperature monitoring device 1 according to the embodiment will be described with reference to the drawings. In the description of the drawings, the same elements are designated by the same reference numerals, and duplicate description will be omitted.
 最初に、制御盤100に含まれており、温度監視装置1の監視対象となる電子回路(監視対象物)50について説明する。制御盤100の例として、天井に設定された軌道を走行して物品を搬送する天井走行車を制御する制御盤が含まれる。図1に示されるように、電子回路50は、回路基板50Aと、集積回路51と、トランジスタ53と、インダクタ54と、コンデンサ55と、コネクタ57と、配線59と、を主に備えている。なお、温度監視装置1の監視対象となる電子回路は、以下に説明される構成の電子回路50に限定されない。 First, the electronic circuit (monitoring object) 50 included in the control panel 100 and to be monitored by the temperature monitoring device 1 will be described. An example of the control panel 100 includes a control panel that controls a ceiling traveling vehicle that travels on a track set on the ceiling and transports articles. As shown in FIG. 1, the electronic circuit 50 mainly includes a circuit board 50A, an integrated circuit 51, a transistor 53, an inductor 54, a capacitor 55, a connector 57, and a wiring 59. The electronic circuit to be monitored by the temperature monitoring device 1 is not limited to the electronic circuit 50 having the configuration described below.
 図2に示されるように、制御盤100は、上記の電子回路50と、温度監視装置1と、を備えている。温度監視装置1は、サーモパイルアレイ10と、モジュール20と、を有している。サーモパイルアレイ10は、赤外線エネルギーを検出し、検出したエネルギー量に基づいた出力値を出力する複数の素子10Aが配列されているセンサである。サーモパイルアレイ10は、電子回路50に対向して配置されている。本実施形態では、電子回路50の全領域が監視対象領域A0(図3参照)となるように、サーモパイルアレイ10の配置位置が調整されている。 As shown in FIG. 2, the control panel 100 includes the above-mentioned electronic circuit 50 and the temperature monitoring device 1. The temperature monitoring device 1 includes a thermopile array 10 and a module 20. The thermopile array 10 is a sensor in which a plurality of elements 10A that detect infrared energy and output an output value based on the detected energy amount are arranged. The thermopile array 10 is arranged so as to face the electronic circuit 50. In the present embodiment, the arrangement position of the thermopile array 10 is adjusted so that the entire area of the electronic circuit 50 becomes the monitoring target area A0 (see FIG. 3).
 モジュール20は、サーモパイルアレイ10に含まれる複数の素子10Aのそれぞれから出力される出力値を温度に換算して外部に出力する装置である。モジュール20は、電子制御ユニットであり、区画部21と、補正部22と、出力部23と、を有している。 The module 20 is a device that converts the output values output from each of the plurality of elements 10A included in the thermopile array 10 into temperatures and outputs them to the outside. The module 20 is an electronic control unit, and has a partition unit 21, a correction unit 22, and an output unit 23.
 区画部21は、サーモパイルアレイ10によって監視される電子回路50の監視対象領域A0を複数の検出領域に区画する。本実施形態では、監視対象領域A0は、平面視において電子回路50の全てを含む領域に設定されている。図3に示されるように、区画部21は、監視対象領域A0を、第一検出領域A1と、第二検出領域A2と、第三検出領域A3と、第四検出領域A4との四つ(複数)の領域に区画する。 The partition section 21 partitions the monitored area A0 of the electronic circuit 50 monitored by the thermopile array 10 into a plurality of detection areas. In the present embodiment, the monitored area A0 is set to an area including all of the electronic circuits 50 in a plan view. As shown in FIG. 3, the compartment 21 has four monitoring target areas A0, a first detection area A1, a second detection area A2, a third detection area A3, and a fourth detection area A4 ( Divide into multiple) areas.
 本実施形態では、区画部21は、電子回路50に外部から熱を作用させたときにそれぞれの素子10Aから出力される出力値に基づいて電子回路50の監視対象領域A0を四つの検出領域(第一検出領域A1~第四検出領域A4)に区画している。具体的には、電子回路50に対向するようにサーモパイルアレイ10及び光源を配置し、光(熱)が放射された電子回路50の温度をサーモパイルアレイ10によって取得する。本実施形態では、区画部21は、サーモパイルアレイ10によって取得された温度に基づいて監視対象領域A0を上記の四つの領域に区画する。より詳細には、区画部21は、温度が高い領域から順番に、第一検出領域A1、第二検出領域A2、第三検出領域A3、及び第四検出領域A4の四つの領域に区画する。なお、電子回路50に外部から熱を作用させる光源の例には、例えば、赤外線を放射するLED光源及びランプが含まれる。 In the present embodiment, the partition portion 21 sets the monitored region A0 of the electronic circuit 50 into four detection regions (4 detection regions) based on the output values output from the respective elements 10A when heat is applied to the electronic circuit 50 from the outside. It is divided into a first detection area A1 to a fourth detection area A4). Specifically, the thermopile array 10 and the light source are arranged so as to face the electronic circuit 50, and the temperature of the electronic circuit 50 from which light (heat) is radiated is acquired by the thermopile array 10. In the present embodiment, the compartment 21 partitions the monitored region A0 into the above four regions based on the temperature acquired by the thermopile array 10. More specifically, the compartment 21 is partitioned into four regions, the first detection region A1, the second detection region A2, the third detection region A3, and the fourth detection region A4, in order from the region having the highest temperature. Examples of the light source that applies heat to the electronic circuit 50 from the outside include, for example, an LED light source and a lamp that radiate infrared rays.
 上述の方法にて区画された第一検出領域A1、第二検出領域A2、第三検出領域A3、及び第四検出領域A4は、それぞれ下記の通りである。すなわち、第一検出領域A1は、集積回路51及びコンデンサ55が配置された領域である。第二検出領域A2は、トランジスタ53及びインダクタ54が配置された領域である。第三検出領域A3は、配線59が配置された領域である。第四検出領域A4は、その他の回路基板50A上の領域である。 The first detection area A1, the second detection area A2, the third detection area A3, and the fourth detection area A4 partitioned by the above method are as follows. That is, the first detection region A1 is a region in which the integrated circuit 51 and the capacitor 55 are arranged. The second detection region A2 is a region in which the transistor 53 and the inductor 54 are arranged. The third detection area A3 is an area in which the wiring 59 is arranged. The fourth detection area A4 is an area on the other circuit board 50A.
 なお、区画部21は、外部から熱が照射された電子回路の温度に基づいて監視対象領域A0を複数の検出領域(第一検出領域A1~第四検出領域A4)に区画するのではなく、特性取得部24によって取得される集積回路51、トランジスタ53、インダクタ54、コンデンサ55、コネクタ57、配線59、及び回路基板50Aのそれぞれの特性に基づいて監視対象領域A0を複数の検出領域(第一検出領域A1~第四検出領域A4)に区画してもよい。 The partition 21 does not partition the monitored region A0 into a plurality of detection regions (first detection region A1 to fourth detection region A4) based on the temperature of the electronic circuit irradiated with heat from the outside. A plurality of detection target areas A0 are detected in a plurality of detection areas (first) based on the characteristics of the integrated circuit 51, the transistor 53, the inductor 54, the capacitor 55, the connector 57, the wiring 59, and the circuit board 50A acquired by the characteristic acquisition unit 24. It may be divided into the detection area A1 to the fourth detection area A4).
 モジュール20は、監視対象物を構成する構成物品(集積回路51、トランジスタ53、インダクタ54、コンデンサ55、コネクタ57、及び配線59)の特性を取得する特性取得部24を備えてもよい。特性取得部24は、記憶部等に予め記憶された集積回路51、トランジスタ53、インダクタ54、コンデンサ55、コネクタ57、及び配線59に関する情報群からそれぞれの特性を取得してもよいし、入力インタフェイスから集積回路51、トランジスタ53、インダクタ54、コンデンサ55、コネクタ57、及び配線59の特性の入力を受け付けてもよい。集積回路51、トランジスタ53、インダクタ54、コンデンサ55、コネクタ57、及び配線59の特性の例には、それぞれの放射率あるいは反射率等が含まれる。区画部21は、取得された放射率あるいは反射率等に基づいて監視対象領域A0を区画し得る。 The module 20 may include a characteristic acquisition unit 24 that acquires the characteristics of the constituent articles (integrated circuit 51, transistor 53, inductor 54, capacitor 55, connector 57, and wiring 59) that make up the object to be monitored. The characteristic acquisition unit 24 may acquire the respective characteristics from the information groups related to the integrated circuit 51, the transistor 53, the inductor 54, the capacitor 55, the connector 57, and the wiring 59 stored in advance in the storage unit or the like, or the input inter-unit. The input of the characteristics of the integrated circuit 51, the transistor 53, the inductor 54, the capacitor 55, the connector 57, and the wiring 59 may be accepted from the face. Examples of the characteristics of the integrated circuit 51, the transistor 53, the inductor 54, the capacitor 55, the connector 57, and the wiring 59 include their respective emissivity or reflectance. The section 21 may partition the monitored area A0 based on the acquired emissivity, reflectance, or the like.
 補正部22は、検出領域(第一検出領域A1~第四検出領域A4)ごとに放射率を設定する。放射率は、それぞれの素子10Aから出力される出力値を補正するための係数である。本実施形態では、第一検出領域A1、第二検出領域A2、第三検出領域A3、及び第四検出領域A4の順番で低い放射率(例えば、0.20、0.60、0.80、0.95)が設定されている。すなわち、補正部22は、取得された温度が高いほど低い放射率を設定する。補正部22は、それぞれの素子10Aから出力される出力値を補正率に基づいて補正し、当該補正値を出力部23に出力する。 The correction unit 22 sets the emissivity for each detection area (first detection area A1 to fourth detection area A4). The emissivity is a coefficient for correcting the output value output from each element 10A. In the present embodiment, the emissivity is lower in the order of the first detection region A1, the second detection region A2, the third detection region A3, and the fourth detection region A4 (for example, 0.20, 0.60, 0.80, 0.95) is set. That is, the correction unit 22 sets a lower emissivity as the acquired temperature is higher. The correction unit 22 corrects the output value output from each element 10A based on the correction factor, and outputs the correction value to the output unit 23.
 より詳細には、補正部22は、第一検出領域A1(集積回路51及びコンデンサ55が配置された領域)を検出する素子10Aによって出力される出力値に補正率(例えば、0.20)を乗算し、当該乗算した値を出力部23に出力する。補正部22は、第二検出領域A2(トランジスタ53及びインダクタ54が配置された領域)を検出する素子10Aによって出力される出力値に補正率(例えば、0.60)を乗算し、当該乗算した値を出力部23に出力する。補正部22は、第三検出領域A3(配線59が配置された領域)を検出する素子10Aによって出力される出力値に補正率(例えば、0.80)を乗算し、当該乗算した値を出力部23に出力する。補正部22は、第四検出領域A4(その他の回路基板50A上の領域)を検出する素子10Aによって出力される出力値に補正率(例えば、0.95)を乗算し、当該乗算した値を出力部23に出力する。 More specifically, the correction unit 22 adds a correction factor (for example, 0.20) to the output value output by the element 10A that detects the first detection region A1 (the region where the integrated circuit 51 and the capacitor 55 are arranged). Multiply and output the multiplied value to the output unit 23. The correction unit 22 multiplies the output value output by the element 10A that detects the second detection region A2 (the region where the transistor 53 and the inductor 54 are arranged) by a correction factor (for example, 0.60), and the multiplication is performed. The value is output to the output unit 23. The correction unit 22 multiplies the output value output by the element 10A that detects the third detection area A3 (the area where the wiring 59 is arranged) by the correction factor (for example, 0.80), and outputs the multiplied value. Output to unit 23. The correction unit 22 multiplies the output value output by the element 10A that detects the fourth detection area A4 (the other area on the circuit board 50A) by the correction factor (for example, 0.95), and calculates the multiplied value. Output to the output unit 23.
 なお、補正部22は、上述した変形例の特性取得部24により反射率が取得できる場合には、反射率が高いほど低い放射率を設定する。 If the reflectance can be acquired by the characteristic acquisition unit 24 of the modified example described above, the correction unit 22 sets a lower emissivity as the reflectance is higher.
 出力部23は、補正部22によって補正された出力値を監視対象領域A0の監視結果(図4参照)として出力する。より詳細には、第一検出領域A1、第二検出領域A2、第三検出領域A3、及び第四検出領域A4における赤外線エネルギーを検出する素子10Aから出力された出力値であって、補正部22によって補正された補正出力値を監視対象領域A0の監視結果画像Sとして出力する。図4に示される監視結果画像Sでは、温度が高いほど明るい色で示される。出力部23は、監視結果画像Sを、例えば、天井走行車システムが配備される工場等の事務所に配置されるモニタ、監視装置、又は工場等の従業員が携帯する端末装置等に出力する。 The output unit 23 outputs the output value corrected by the correction unit 22 as a monitoring result (see FIG. 4) of the monitoring target area A0. More specifically, it is an output value output from the element 10A that detects infrared energy in the first detection region A1, the second detection region A2, the third detection region A3, and the fourth detection region A4, and is the output value of the correction unit 22. The corrected output value corrected by is output as the monitoring result image S of the monitoring target area A0. In the monitoring result image S shown in FIG. 4, the higher the temperature, the brighter the color. The output unit 23 outputs the monitoring result image S to, for example, a monitor, a monitoring device, or a terminal device carried by an employee of the factory or the like, which is arranged in an office such as a factory where the ceiling traveling vehicle system is installed. ..
 次に、主に図5を参照しながら、赤外線エネルギーを検出し、検出したエネルギー量に基づいた出力値を出力する複数の素子10Aが配列されたサーモパイルアレイ10を用いて電子回路50における監視対象領域A0の温度を監視する温度監視方法について説明する。温度監視方法は、図5に示されるように、仮設置ステップS1と、設置ステップS2と、区画ステップS3と、補正ステップS4と、出力ステップS5と、を含んでいる。 Next, mainly referring to FIG. 5, a monitoring target in the electronic circuit 50 is used by using a thermopile array 10 in which a plurality of elements 10A that detect infrared energy and output an output value based on the detected energy amount are arranged. A temperature monitoring method for monitoring the temperature of the region A0 will be described. As shown in FIG. 5, the temperature monitoring method includes a temporary installation step S1, an installation step S2, a partition step S3, a correction step S4, and an output step S5.
 仮設置ステップS1は、電子回路50に対向させてサーモパイルアレイ10を仮配置するステップである。例えば、作業者は、電子回路50を、サーモパイルアレイ10と光源とを対向させた状態で設置する。作業者は、このような設置状態において、サーモパイルアレイ10から電子回路50の温度状況を取得する。 The temporary installation step S1 is a step of temporarily arranging the thermopile array 10 so as to face the electronic circuit 50. For example, the operator installs the electronic circuit 50 with the thermopile array 10 and the light source facing each other. The operator acquires the temperature status of the electronic circuit 50 from the thermopile array 10 in such an installation state.
 設置ステップS2は、それぞれの素子から出力される出力値に基づいて、電子回路50に対するサーモパイルアレイ10の配置位置を調整し、監視対象領域A0を確定するステップである。例えば、作業者は、上記ステップS1において取得された電子回路50の温度状況に基づいて、サーモパイルアレイ10の配置位置を調整し、監視対象領域A0を確定する。 The installation step S2 is a step of adjusting the arrangement position of the thermopile array 10 with respect to the electronic circuit 50 based on the output value output from each element and determining the monitoring target area A0. For example, the operator adjusts the arrangement position of the thermopile array 10 based on the temperature condition of the electronic circuit 50 acquired in step S1 and determines the monitoring target area A0.
 設置ステップS2は、電子回路50の一部に既知の放射率の放射体を設置することによって監視対象領域A0を特定してもよい。具体的には、作業者は、比較的放射率の低い放射体(換言すれば、比較的反射率の高い反射体)を、例えば、集積回路51上に配置した状態で光源から熱を照射し、その時の温度状況をサーモパイルアレイ10によって取得する。このとき、サーモパイルアレイ10は、比較的放射率の低い放射体が設置された領域の温度が高く検出される。作業者は、この高温度領域を目印として、電子回路50に対するサーモパイルアレイ10の位置を調整し、監視対象領域A0を確定する。本実施形態では、正面視において電子回路50の全てが含まれるように監視対象領域A0が確定される。 In the installation step S2, the monitored area A0 may be specified by installing a radiator having a known emissivity in a part of the electronic circuit 50. Specifically, the operator irradiates heat from a light source with a radiator having a relatively low emissivity (in other words, a reflector having a relatively high reflectance) arranged on, for example, an integrated circuit 51. , The temperature condition at that time is acquired by the thermopile array 10. At this time, the thermopile array 10 detects that the temperature of the region where the radiator having a relatively low emissivity is installed is high. The operator adjusts the position of the thermopile array 10 with respect to the electronic circuit 50 using this high temperature region as a mark, and determines the monitored region A0. In the present embodiment, the monitoring target area A0 is determined so that all of the electronic circuits 50 are included in the front view.
 なお、設置ステップS2では、電子回路における既知の放射率部分に基づいて監視対象領域A0を確定してもよい。例えば、集積回路51の一部に金属製の覆いが設けられている場合、当該金属製の覆いに関する特性を予め調べておき、当該特性(例えば放射率)から算出される温度部分を目印として、電子回路50に対するサーモパイルアレイ10の位置を調整し、監視対象領域A0を確定してもよい。 In the installation step S2, the monitored area A0 may be determined based on the known emissivity portion in the electronic circuit. For example, when a metal cover is provided on a part of the integrated circuit 51, the characteristics related to the metal cover are investigated in advance, and the temperature portion calculated from the characteristics (for example, emissivity) is used as a mark. The position of the thermopile array 10 with respect to the electronic circuit 50 may be adjusted to determine the monitored area A0.
 区画ステップS3は、監視対象領域A0を複数の検出領域(第一検出領域A1~第四検出領域A4)に区画するステップである。区画ステップS3は、電子回路50に熱を作用させたときにそれぞれの素子10Aから出力される出力値に基づいて監視対象領域A0を複数の検出領域(第一検出領域A1~第四検出領域A4)に区画する。なお、具体的な区画方法は、区画部21において説明したとおりである。また、上述したとおり、区画ステップS3は、電子回路50において特性が既知の部分に基づいて複数の検出領域(第一検出領域A1~第四検出領域A4)に区画してもよい。 The partition step S3 is a step of partitioning the monitored area A0 into a plurality of detection areas (first detection area A1 to fourth detection area A4). In the partition step S3, the monitoring target area A0 is set to a plurality of detection areas (first detection area A1 to fourth detection area A4) based on the output value output from each element 10A when heat is applied to the electronic circuit 50. ). The specific sectioning method is as described in the sectioning section 21. Further, as described above, the partition step S3 may be partitioned into a plurality of detection regions (first detection region A1 to fourth detection region A4) based on a portion whose characteristics are known in the electronic circuit 50.
 補正ステップS4は、複数の検出領域(第一検出領域A1~第四検出領域A4)ごとに放射率を設定し、それぞれの素子10Aから出力される出力値を放射率に基づいて補正するステップである。なお、具体的な補正方法は、補正部22において説明したとおりである。 The correction step S4 is a step of setting the emissivity for each of a plurality of detection regions (first detection region A1 to fourth detection region A4) and correcting the output value output from each element 10A based on the emissivity. is there. The specific correction method is as described in the correction unit 22.
 出力ステップS5は、補正ステップS4によって補正された出力値を監視対象領域A0の監視結果として出力する。なお、具体的な補正方法は、出力部23において説明したとおりである。 The output step S5 outputs the output value corrected by the correction step S4 as the monitoring result of the monitoring target area A0. The specific correction method is as described in the output unit 23.
 上記実施形態の温度監視装置1及びこれを含む制御盤100、温度監視方法における作用効果について説明する。サーモパイルアレイ10を構成する素子10Aにおいては、実際には同じ温度状態にもかかわらず、電子部品の物性(例えば放射率)の違いによって赤外線エネルギーの検出値が異なる(すなわち、素子10Aから異なった出力値が出力される)場合がある。このような事象に対して、上記実施形態の温度監視装置1及びこれを含む制御盤100、温度監視方法では、監視対象領域A0を第一検出領域A1~第四検出領域A4の四つに区画し、当該区画された複数の検出領域ごとに異なる放射率を設定している。これにより、素子10Aによって検出された検出値がそのまま出力されるのではなく、放射率に基づいた適切な出力値(温度)に補正される。この結果、電子回路が様々な電子部品により構成される場合であっても電子部品ごとに正確に温度を監視することができる。 The operation and effect of the temperature monitoring device 1 of the above embodiment, the control panel 100 including the temperature monitoring device 1, and the temperature monitoring method will be described. In the element 10A constituting the thermopile array 10, the detected value of infrared energy differs due to the difference in the physical characteristics (for example, emissivity) of the electronic component even though the temperature is actually the same (that is, the output differs from the element 10A). The value may be output). In response to such an event, in the temperature monitoring device 1 of the above embodiment, the control panel 100 including the temperature monitoring device 1, and the temperature monitoring method, the monitored area A0 is divided into four areas, the first detection area A1 to the fourth detection area A4. However, different emissivity is set for each of the plurality of detection areas in the section. As a result, the detected value detected by the element 10A is not output as it is, but is corrected to an appropriate output value (temperature) based on the emissivity. As a result, even when the electronic circuit is composed of various electronic components, the temperature can be accurately monitored for each electronic component.
 上記実施形態の区画部21及び区画ステップS3では、電子回路50に熱を作用させたときにそれぞれの素子10Aから出力される出力値に基づいて監視対象領域A0を第一検出領域A1~第四検出領域A4の四つの検出領域に区画している。これにより、電子回路50に熱を実際に作用させたときの素子10Aの出力値から特定し得る放射率の設定が可能となる。これにより、電子部品ごとに正確な放射率を設定することができる。 In the compartment 21 and the compartment step S3 of the above embodiment, the monitored region A0 is set to the first detection regions A1 to 4 based on the output values output from the respective elements 10A when heat is applied to the electronic circuit 50. It is divided into four detection areas of the detection area A4. This makes it possible to set the emissivity that can be specified from the output value of the element 10A when heat is actually applied to the electronic circuit 50. This makes it possible to set an accurate emissivity for each electronic component.
 サーモパイルアレイ10による出力値は、サーモグラフィ装置のように出力値を実画像と重ね合わせた状態で出力(表示)されるわけではないので、電子回路50のどの部分の温度を検出しているのかが分かり難いという側面がある。このため、サーモパイルアレイ10によって取得可能な温度取得領域を所望の監視対象領域A0を設定することが難しい。そこで、上記実施形態の温度監視方法では、それぞれの素子10Aから出力される出力値に基づいて、電子回路50に対するサーモパイルアレイ10の配置位置を調整し、監視対象領域A0を確定する設置ステップS2を含んでいる。上記実施形態の温度監視方法では、それぞれの素子10Aから出力される出力値に基づいて、どの部分を検出しているのかが明確に判断がつく位置(例えば上記実施形態における高温度領域)を基準として、電子回路50に対するサーモパイルアレイ10の配置位置が調整される。これにより、電子回路50を適切に設定することが可能となる。 The output value of the thermopile array 10 is not output (displayed) in a state where the output value is superimposed on the actual image as in the thermography device, so which part of the electronic circuit 50 is detecting the temperature. There is an aspect that it is difficult to understand. Therefore, it is difficult to set a desired monitoring target area A0 as the temperature acquisition area that can be acquired by the thermopile array 10. Therefore, in the temperature monitoring method of the above embodiment, the installation step S2 is performed in which the arrangement position of the thermopile array 10 with respect to the electronic circuit 50 is adjusted based on the output value output from each element 10A, and the monitoring target area A0 is determined. Includes. In the temperature monitoring method of the above embodiment, a position (for example, a high temperature region in the above embodiment) at which it is possible to clearly determine which part is being detected is used as a reference based on the output value output from each element 10A. As a result, the arrangement position of the thermopile array 10 with respect to the electronic circuit 50 is adjusted. This makes it possible to appropriately set the electronic circuit 50.
 また、上記実施形態の設置ステップS2は、電子回路50の一部に既知の放射率の放射体を設置することによって監視対象領域A0を特定している。この温度監視方法では、それぞれの素子10Aから出力される出力値のうち、既知の放射率の放射体を設置した位置を基準として、電子回路50に対するサーモパイルアレイ10の配置位置が調整される。これにより、監視対象領域A0を適切に設定することが可能となる。 Further, in the installation step S2 of the above embodiment, the monitoring target area A0 is specified by installing a radiator having a known emissivity in a part of the electronic circuit 50. In this temperature monitoring method, among the output values output from each element 10A, the arrangement position of the thermopile array 10 with respect to the electronic circuit 50 is adjusted with reference to the position where the radiator having a known emissivity is installed. This makes it possible to appropriately set the monitoring target area A0.
 以上、一実施形態について説明したが、本発明の一側面は、上記実施形態に限られない。発明の一側面の趣旨を逸脱しない範囲で種々の変更が可能である。 Although one embodiment has been described above, one aspect of the present invention is not limited to the above embodiment. Various changes can be made without departing from the spirit of one aspect of the invention.
 上記実施形態では、複数の天井走行車が走行する天井走行車システムにおいて、複数の天井走行車を制御する制御盤に本願発明の一側面が適用される例を挙げて説明したが、例えば、各天井走行車に搭載される本体制御部、又は当該本体制御部に含まれる電子回路を監視する温度監視装置に適用されてもよい。本願発明の一側面は、機械又は設備を電気的に制御するための電気制御機器、電気機器、電気回路、及び電子回路等の少なくとも一つが搭載された制御盤であれば、どのような制御盤にも適用が可能である。 In the above embodiment, in the ceiling traveling vehicle system in which a plurality of ceiling traveling vehicles travel, an example in which one aspect of the present invention is applied to a control panel for controlling a plurality of ceiling traveling vehicles has been described. It may be applied to a main body control unit mounted on a ceiling-mounted vehicle or a temperature monitoring device for monitoring an electronic circuit included in the main body control unit. One aspect of the present invention is any control panel as long as it is equipped with at least one of an electric control device, an electric device, an electric circuit, an electronic circuit, etc. for electrically controlling a machine or equipment. It can also be applied to.
 上記実施形態の設置ステップS2では、電子回路50に光源から放射される熱を作用させる例を挙げて説明したが、例えば、作業者が発する体熱を利用してもよい。すなわち、作業者が電子回路50の前で作業することにより、サーモパイルアレイ10により検出される高温度領域を基準として、電子回路50に対するサーモパイルアレイ10の配置位置を調整し、監視対象領域A0を確定してもよい。 In the installation step S2 of the above embodiment, the example in which the heat radiated from the light source is applied to the electronic circuit 50 has been described, but for example, the body heat generated by the worker may be used. That is, when the operator works in front of the electronic circuit 50, the arrangement position of the thermopile array 10 with respect to the electronic circuit 50 is adjusted with reference to the high temperature region detected by the thermopile array 10, and the monitored area A0 is determined. You may.
 上記実施形態では、平面視において電子回路50の全てを含む領域に監視対象領域A0が設定されている例を挙げて説明したが、例えば、電子回路50の一部の領域に監視対象領域A0を設定してもよい。 In the above embodiment, the monitoring target area A0 is set in the area including all of the electronic circuit 50 in the plan view. For example, the monitoring target area A0 is set in a part of the electronic circuit 50. It may be set.
 1…温度監視装置、10…サーモパイルアレイ、10A…素子、20…モジュール、21…区画部、22…補正部、23…出力部、24…特性取得部、50…電子回路、100…制御盤、A0…監視対象領域、S1…仮設置ステップ、S2…設置ステップ、S3…区画ステップ、S4…補正ステップ、S5…出力ステップ。 1 ... Temperature monitoring device, 10 ... Thermopile array, 10A ... Element, 20 ... Module, 21 ... Section, 22 ... Correction, 23 ... Output, 24 ... Characteristic acquisition, 50 ... Electronic circuit, 100 ... Control panel, A0 ... Monitoring target area, S1 ... Temporary installation step, S2 ... Installation step, S3 ... Section step, S4 ... Correction step, S5 ... Output step.

Claims (10)

  1.  赤外線エネルギーを検出し、検出したエネルギー量に基づいた出力値を出力する複数の素子が配列されたサーモパイルアレイを用いて監視対象物における監視対象領域の温度を監視する温度監視方法であって、
     前記監視対象領域を複数の検出領域に区画する区画ステップと、
     前記複数の検出領域ごとに放射率を設定し、それぞれの前記素子から出力される出力値を、検出した前記検出領域の前記放射率に基づいて補正する補正ステップと、
     前記補正ステップによって補正された前記出力値を前記監視対象領域の監視結果として出力する出力ステップと、を含む、温度監視方法。
    It is a temperature monitoring method that monitors the temperature of the monitored area in the monitored object using a thermopile array in which a plurality of elements that detect infrared energy and output an output value based on the detected energy amount are arranged.
    A partition step that divides the monitored area into a plurality of detection areas, and
    A correction step in which an emissivity is set for each of the plurality of detection regions and the output value output from each of the elements is corrected based on the detected emissivity of the detection region.
    A temperature monitoring method including an output step of outputting the output value corrected by the correction step as a monitoring result of the monitoring target area.
  2.  前記区画ステップは、事前に前記監視対象物に外部から熱を作用させ、そのときにそれぞれの前記素子から出力される出力値に基づいて前記監視対象領域を前記複数の検出領域に区画する、請求項1記載の温度監視方法。 In the partition step, heat is applied to the monitored object from the outside in advance, and the monitored area is divided into the plurality of detection areas based on the output value output from each of the elements at that time. Item 1. The temperature monitoring method according to item 1.
  3.  前記区画ステップは、前記監視対象物において特性が既知の部分に基づいて前記監視対象領域を前記複数の検出領域に区画する、請求項1記載の温度監視方法。 The temperature monitoring method according to claim 1, wherein the section step divides the monitored area into a plurality of detection areas based on a portion of the monitored object whose characteristics are known.
  4.  それぞれの前記素子から出力される出力値に基づいて、前記監視対象物に対する前記サーモパイルアレイの配置位置を調整し、監視対象領域を確定する設置ステップを、更に含む、請求項1~3の何れか一項記載の温度監視方法。 Any of claims 1 to 3, further comprising an installation step of adjusting the arrangement position of the thermopile array with respect to the monitored object based on the output value output from each of the elements and determining the monitored area. The temperature monitoring method according to the first paragraph.
  5.  前記設置ステップは、前記監視対象物の一部に既知の放射率の放射体を設置することによって前記監視対象領域を特定する、請求項4記載の温度監視方法。 The temperature monitoring method according to claim 4, wherein the installation step specifies the monitored area by installing a radiator having a known emissivity on a part of the monitored object.
  6.  前記設置ステップは、前記監視対象物における既知の放射率部分に基づいて前記監視対象領域を特定する、請求項4記載の温度監視方法。 The temperature monitoring method according to claim 4, wherein the installation step identifies the monitored area based on a known emissivity portion of the monitored object.
  7.  赤外線エネルギーを検出し、検出したエネルギー量に基づいた出力値を出力する複数の素子が配列されたサーモパイルアレイと、
     前記サーモパイルアレイによって監視される監視対象物の監視対象領域を複数の検出領域に区画する区画部と、
     前記複数の検出領域ごとに放射率を設定し、それぞれの前記素子から出力される出力値を、検出した前記検出領域の前記放射率に基づいて補正する補正部と、
     前記補正部によって補正された出力値を前記監視対象領域の監視結果として出力する出力部と、を備える、温度監視装置。
    A thermopile array in which multiple elements that detect infrared energy and output an output value based on the detected energy amount are arranged.
    A compartment that divides the monitored area of the monitored object monitored by the thermopile array into a plurality of detection areas, and
    A correction unit that sets the emissivity for each of the plurality of detection regions and corrects the output value output from each of the elements based on the detected emissivity of the detection region.
    A temperature monitoring device including an output unit that outputs an output value corrected by the correction unit as a monitoring result of the monitoring target area.
  8.  前記区画部は、前記監視対象物に外部から熱を作用させたときにそれぞれの前記素子から出力される出力値に基づいて前記監視対象領域を前記複数の検出領域に区画する、請求項7記載の温度監視装置。 The seventh aspect of the invention, wherein the partitioning portion divides the monitoring target area into a plurality of detection areas based on an output value output from each of the elements when heat is applied to the monitored object from the outside. Temperature monitoring device.
  9.  前記監視対象物を構成する構成物品の特性を取得する特性取得部を更に備え、
     前記区画部は、前記特性取得部によって取得される前記構成物品の特性に基づいて前記監視対象領域を前記複数の検出領域に区画する、請求項7記載の温度監視装置。
    A characteristic acquisition unit for acquiring the characteristics of the constituent articles constituting the monitored object is further provided.
    The temperature monitoring device according to claim 7, wherein the compartment divides the monitored region into the plurality of detection regions based on the characteristics of the constituent article acquired by the characteristic acquisition unit.
  10.  請求項7~9の何れか一項記載の温度監視装置と、
     前記監視対象物としての電子回路と、を備え、
     前記温度監視装置は、前記電子回路に対向して配置されている、制御盤。
    The temperature monitoring device according to any one of claims 7 to 9,
    An electronic circuit as a monitoring object is provided.
    The temperature monitoring device is a control panel arranged so as to face the electronic circuit.
PCT/JP2020/028767 2019-09-13 2020-07-27 Temperature monitoring method, temperature monitoring device, and control panel WO2021049188A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-167661 2019-09-13
JP2019167661A JP2022163734A (en) 2019-09-13 2019-09-13 Temperature monitoring method, temperature monitoring device, and control panel

Publications (1)

Publication Number Publication Date
WO2021049188A1 true WO2021049188A1 (en) 2021-03-18

Family

ID=74866067

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/028767 WO2021049188A1 (en) 2019-09-13 2020-07-27 Temperature monitoring method, temperature monitoring device, and control panel

Country Status (3)

Country Link
JP (1) JP2022163734A (en)
TW (1) TW202127018A (en)
WO (1) WO2021049188A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57149927A (en) * 1981-03-12 1982-09-16 Jeol Ltd Measuring method for temperature distribution
US5764684A (en) * 1995-04-04 1998-06-09 Exergen Corporation Infrared thermocouple improvements
JPH1114576A (en) * 1997-06-25 1999-01-22 Toshiba Corp Method and apparatus for diagnosis of degradation of mounting board
JP2001041819A (en) * 1999-08-03 2001-02-16 Minolta Co Ltd A plurality of points measuring apparatus
JP2010175442A (en) * 2009-01-30 2010-08-12 Nippon Ceramic Co Ltd Thermopile type infrared detector
JP2012229925A (en) * 2011-04-25 2012-11-22 Panasonic Corp Emissivity measuring method, emissivity measuring device, inspection method, and inspection device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57149927A (en) * 1981-03-12 1982-09-16 Jeol Ltd Measuring method for temperature distribution
US5764684A (en) * 1995-04-04 1998-06-09 Exergen Corporation Infrared thermocouple improvements
JPH1114576A (en) * 1997-06-25 1999-01-22 Toshiba Corp Method and apparatus for diagnosis of degradation of mounting board
JP2001041819A (en) * 1999-08-03 2001-02-16 Minolta Co Ltd A plurality of points measuring apparatus
JP2010175442A (en) * 2009-01-30 2010-08-12 Nippon Ceramic Co Ltd Thermopile type infrared detector
JP2012229925A (en) * 2011-04-25 2012-11-22 Panasonic Corp Emissivity measuring method, emissivity measuring device, inspection method, and inspection device

Also Published As

Publication number Publication date
TW202127018A (en) 2021-07-16
JP2022163734A (en) 2022-10-27

Similar Documents

Publication Publication Date Title
US10151628B2 (en) Method for checking the functionality of a motor vehicle, and motor vehicle
US9192008B2 (en) Reduced-size modular LED washlight component
US20100259197A1 (en) Light control system and method for automatically rendering a lighting scene
US20190134903A1 (en) Heating lamp calibration
US20040066965A1 (en) Apparatus for testing infrared camera
EP2415623B1 (en) Method and apparatus for determining temperature and relative humidity for use in a vehicle HVAC system
WO2021049188A1 (en) Temperature monitoring method, temperature monitoring device, and control panel
MX2023008805A (en) Systems and methods for air temperature control including a2l sensors.
EP4164339A1 (en) Vehicular lamp system, power supply circuit
US7705983B2 (en) Wavelength displacement correcting system
MX2023008797A (en) Systems and methods for air temperature control including r-454b sensors.
WO2017042998A1 (en) In-vehicle stereo camera device and method for correcting same
JP2007112188A (en) Electric power steering device
JP2018200251A (en) Temperature distribution detection device and method
JP4161626B2 (en) air conditioner
WO2018066220A1 (en) Radiation heater device
KR102521337B1 (en) Power control device and power control method
US11118524B2 (en) System, method and apparatus for engine control
KR100687955B1 (en) Device for controlling the indoor-temperature in the passenger compartment of a motor vehicle
KR100500632B1 (en) Data corection method of ir camera
EP2372336B1 (en) Device and method for determining a vehicle component failure state based on the analysis of the thermographic map of the component itself.
KR101832137B1 (en) Sensor Test Apparatus and Sensing Correction Value Calculation Method in accordance with the Smoke Density
CN115955740A (en) Temperature prediction method for light-emitting module, and vehicle unit
KR102316804B1 (en) Apparatus and method for assisting temperature measurement in temperature measuring system
KR101582199B1 (en) Apparatus for testing efficiency of infra-red detector

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20864015

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20864015

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP