JP2003243141A - Cooker - Google Patents

Cooker

Info

Publication number
JP2003243141A
JP2003243141A JP2003004478A JP2003004478A JP2003243141A JP 2003243141 A JP2003243141 A JP 2003243141A JP 2003004478 A JP2003004478 A JP 2003004478A JP 2003004478 A JP2003004478 A JP 2003004478A JP 2003243141 A JP2003243141 A JP 2003243141A
Authority
JP
Japan
Prior art keywords
light
wavelength
heated
reflectance
emissivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003004478A
Other languages
Japanese (ja)
Inventor
Tadashi Miki
匡 三木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003004478A priority Critical patent/JP2003243141A/en
Publication of JP2003243141A publication Critical patent/JP2003243141A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/06Control, e.g. of temperature, of power
    • H05B6/062Control, e.g. of temperature, of power for cooking plates or the like
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2213/00Aspects relating both to resistive heating and to induction heating, covered by H05B3/00 and H05B6/00
    • H05B2213/07Heating plates with temperature control means

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Radiation Pyrometers (AREA)
  • Induction Heating Cooking Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cooker equipped with a temperature detection sensor capable of accurately detecting temperature without being affected by emissivity of a heated object. <P>SOLUTION: There is provided the cooker equipped with a temperature detection system unaffected by emissivity by measuring reflectance as light from a light-emitting means 7 reflected by the heated object 11 is received by a light-receiving means 9 and correcting infrared volume of an infrared sensor 8 with the emissivity converted from the reflectance. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、加熱調理機器の温
度センサに関するものであり、電磁誘導式による調理器
の鍋温度検知や、電子レンジでの調理物の温度センサと
して応用することができる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a temperature sensor for heating and cooking equipment, and can be applied to a pan temperature detection of a cooking device by an electromagnetic induction type, or a temperature sensor for a food item in a microwave oven.

【0002】[0002]

【従来の技術】従来、加熱調理器では被加熱物である食
品の温度や鍋温度を温度センサにより検知することによ
り、調理の進行度合いを検知して加熱制御を行って最適
な調理具合に仕上げたり、調理物や調理器の温度が急に
上昇した場合の電源オフなどの安全対策を行っている。
2. Description of the Related Art Conventionally, in a heating cooker, the temperature of a food to be heated or a pan temperature is detected by a temperature sensor to detect the progress of cooking and control heating to finish an optimum cooking condition. We also take safety measures such as turning off the power when the temperature of cooked food or cooker suddenly rises.

【0003】こうした加熱調理器の温度センサとして
は、サーミスタなどの温度センサなどの熱伝導により雰
囲気温度を検出するセンサ構成が一般的であるが、放射
温度計として知られている様に、物体の発する赤外線を
瞬時に感知して温度を計測する焦電センサやサーモパイ
ルなどの赤外線センサによる放射温度方式を応用した構
成も提案されている。この赤外線センサ方式では、赤外
線が瞬時にセンサに到達するため、熱伝導により検知を
行う場合に比べ、応答性が非常に良い利点がある。
As a temperature sensor for such a heating cooker, a sensor structure such as a temperature sensor such as a thermistor for detecting the ambient temperature by heat conduction is generally used. A configuration applying a radiation temperature method using an infrared sensor such as a pyroelectric sensor or a thermopile that instantaneously senses infrared rays emitted to measure temperature has been proposed. In this infrared sensor method, infrared rays reach the sensor instantaneously, and therefore, there is an advantage that the response is very good as compared with the case where detection is performed by heat conduction.

【0004】赤外線センサ方式における原理は、被加熱
物は温度が上昇するほど、より多くの赤外線を放出す
る。従って、この赤外線量を検出素子により、起電力の
発生量や抵抗値の変化量として検出する事により温度に
換算するものである。
The principle of the infrared sensor system is that, as the temperature of the object to be heated rises, more infrared rays are emitted. Therefore, the amount of infrared rays is converted into temperature by detecting the amount of electromotive force generated and the amount of change in resistance value by the detection element.

【0005】[0005]

【特許文献1】特開平03−184295号公報[Patent Document 1] Japanese Patent Laid-Open No. 03-184295

【特許文献2】特開平01−124726号公報[Patent Document 2] Japanese Patent Application Laid-Open No. 01-124726

【0006】[0006]

【発明が解決しようとする課題】しかしながら、赤外線
センサ方式では、対象物からの赤外線の放射効率を示す
放射率の差が計測上の課題となる。一般には、被加熱物
の温度が同じでも放射率が高ければ放射される赤外線量
は多く、放射率が小さければ赤外線量は減少する。従っ
て、赤外線センサでは、基準量の赤外線量に比べて、温
度の低いために赤外線量が少ないのか、放射率が小さい
ため赤外線量が少ないのかを判別する方法がない。
However, in the infrared sensor system, the difference in emissivity indicating the radiation efficiency of infrared rays from the object is a measurement problem. Generally, if the emissivity is high even if the object to be heated is the same, the amount of infrared rays emitted is large, and if the emissivity is small, the amount of infrared rays is reduced. Therefore, in the infrared sensor, there is no method for determining whether the infrared ray amount is small because the temperature is lower than the reference infrared ray amount or the infrared ray amount is small because the emissivity is small.

【0007】放射温度計などの赤外線センサ方式では、
この課題に対して、予め調べて置いた放射率εをユーザ
が入力したり、対象物の基準温度での赤外線量で補正し
たり、放射率εは一定のままで計測温度は相対温度とし
て利用するなどの方法が取られていた。
In an infrared sensor system such as a radiation thermometer,
To solve this problem, the user inputs the emissivity ε that has been checked in advance and corrects it with the infrared ray amount at the reference temperature of the target object, or the emissivity ε remains constant and the measured temperature is used as the relative temperature. The method of doing was taken.

【0008】しかし、測定する対象が余り変わらない監
視用などの用途ではこうした方法が使えるが、放射率は
対象物の色や材質、表面状態などにより様々に変わるた
め、調理のたびに被加熱物が千差万別に変わるような加
熱調理器では、こうした方法では実用にならなかった。
かといって、放射率を補正せずに、赤外線量から温度へ
の換算を行えば、検知温度は全くズレてしまうといった
問題が発生する。
However, such a method can be used in applications such as monitoring in which the object to be measured does not change much, but the emissivity changes variously depending on the color, material, surface condition, etc. of the object, so that the object to be heated is cooked each time it is cooked. Such a method could not be put to practical use in a heating cooker in which the number varies depending on the variety.
However, if the amount of infrared rays is converted into temperature without correcting the emissivity, the detected temperature will be completely deviated.

【0009】[0009]

【課題を解決するための手段】上記課題を解決するため
に本発明は、赤外線センサにより調理物や鍋などの被加
熱物の温度を計測する加熱調理器において、前記被加熱
物に対して投光する発光手段と、前記被加熱物からの反
射光を受光する受光センサおよび反射検知回路と、前記
被加熱物から放射される赤外線量を検知する赤外線セン
サおよび放射検知回路と、前記受光センサおよび反射検
知回路の出力から換算された前記被加熱物の放射率、及
び前記赤外線センサの受光量から前記被加熱物の温度を
換算する演算制御部と、赤外線を透過する材質や検知部
に赤外線透過材をはめ込んだトッププレートをを備え、
前記演算制御部は、ある波長での放射率と反射率の相関
を演算式または換算テーブルの形で記憶し、前記受光セ
ンサおよび反射検知回路の出力から換算された前記被加
熱物の放射率を算出し、前記赤外線センサの受光量と前
記放射率から前記被加熱物の温度を換算してなるもので
ある。
In order to solve the above-mentioned problems, the present invention relates to a heating cooker for measuring the temperature of an object to be heated such as a cooking object or a pan by means of an infrared sensor. A light emitting unit that emits light, a light receiving sensor and a reflection detection circuit that receive reflected light from the object to be heated, an infrared sensor and a radiation detection circuit that detect the amount of infrared light emitted from the object to be heated, the light receiving sensor, and An operation control unit that converts the emissivity of the object to be heated converted from the output of the reflection detection circuit and the temperature of the object to be heated from the amount of light received by the infrared sensor, and infrared transmission through a material or detection unit that transmits infrared rays. Equipped with a top plate fitted with wood,
The arithmetic control unit stores the correlation between the emissivity at a certain wavelength and the reflectance in the form of an arithmetic expression or a conversion table, and calculates the emissivity of the object to be heated converted from the outputs of the light receiving sensor and the reflection detection circuit. The temperature is calculated and the temperature of the object to be heated is converted from the amount of light received by the infrared sensor and the emissivity.

【0010】[0010]

【発明の実施の形態】請求項1記載の発明では、発光手
段から被加熱物で反射した反射光を受光手段で検出する
ことにより、被加熱物の温度測定部位の反射率を測定
し、予めプログラム等しておいた反射率と放射率の換算
式により被加熱物の放射率を随時測定し、この放射率を
用いて赤外線センサの検知温度を補正することにより、
被加熱物の放射率に影響されない正確な温度検知を行う
ものである。即ち、本願発明は、酸化金属表面など熱が
透過しない物質のときに、物質の放射率εと反射率Rの
間に、ε=1―Rの関係が成立すること(参考文献「赤
外線工学」久野治義著、電子情報通信学会編)に着眼し
たものであり、本願発明の対象の如く、取換え可能で、
かつ鍋底等の形状が比較的同一な部分の温度検出に上記
関係を利用し、従来為し得なかった迅速かつ正確な温度
検出を可能としたものである。
According to the first aspect of the invention, the reflectance of the temperature measurement portion of the object to be heated is measured in advance by detecting the reflected light reflected by the object to be heated from the light emitting means, and measuring the reflectance in advance. By measuring the emissivity of the object to be heated at any time using the conversion formula of reflectance and emissivity that has been programmed, etc., and by using this emissivity to correct the detection temperature of the infrared sensor,
The temperature is accurately detected without being affected by the emissivity of the object to be heated. That is, according to the present invention, in the case of a substance such as a metal oxide surface that does not allow heat to permeate, the relation of ε = 1-R is established between the emissivity ε and the reflectance R of the substance (reference document “infrared engineering”). Hisashi Harunoyoshi, edited by The Institute of Electronics, Information and Communication Engineers), and is replaceable as the subject of the present invention.
Moreover, the above relationship is used to detect the temperature of a portion having a relatively same shape such as the bottom of the pot, which enables quick and accurate temperature detection which could not be achieved in the past.

【0011】請求項2記載の発明では、反射光の波長と
して、600nm〜1000nmの波長を利用すること
により、被加熱物の色や外光などの影響を低減でき、L
EDなどの光源を使って反射率の測定できる方式となっ
ているものである。
According to the second aspect of the present invention, by using a wavelength of 600 nm to 1000 nm as the wavelength of the reflected light, it is possible to reduce the influence of the color of the object to be heated, external light, etc.
It is a system that can measure the reflectance using a light source such as an ED.

【0012】請求項3記載の発明では、反射光の波長域
として、第2の発明よりも更に波長の長い1000nm
〜2000nmの近赤外の波長を利用することにより、
被加熱物の色や外光などの影響を更に低減でき、より正
確な反射率の測定ができる方式となっているものであ
る。
According to the third aspect of the invention, the wavelength range of the reflected light is 1000 nm, which has a longer wavelength than that of the second aspect.
By utilizing the near infrared wavelength of ~ 2000 nm,
This is a system that can further reduce the influence of the color of the object to be heated, external light, etc., and can measure the reflectance more accurately.

【0013】請求項4記載の発明では、反射光の波長と
して、第3の発明よりも更に赤外線センサの波長に近い
2000nm以上の赤外線の波長領域を利用することに
より、赤外線センサの受光する赤外線波長域の放射率と
非常に相関の高い換算のできる方式になっているもので
ある。
According to the fourth aspect of the invention, as the wavelength of the reflected light, the infrared wavelength range of 2000 nm or more, which is closer to the wavelength of the infrared sensor than that of the third invention, is utilized, so that the infrared wavelength received by the infrared sensor is It is a method that allows conversion with a very high correlation with the emissivity of the region.

【0014】請求項5記載の発明では、反射率の測定波
長の分光手段として、フォトトランジスタなどの受光セ
ンサ自体の受光感度波長域を使って分光することによ
り、簡易な構成で波長域の限定ができ、反射率の測定が
可能になっているものである。
In the fifth aspect of the present invention, the wavelength band is limited with a simple structure by performing the spectral analysis by using the light receiving sensitivity wavelength band of the light receiving sensor itself such as a phototransistor as the spectral measuring unit of the reflectance measurement wavelength. It is possible and the reflectance can be measured.

【0015】請求項6記載の発明では、反射率の測定波
長の分光手段として、発光手段にLEDまたはレーザな
どの狭波長域の光源を使用することにより、簡易な構成
で波長域の限定ができ、反射率の測定が可能になってい
るものである。
In a sixth aspect of the present invention, a light source in a narrow wavelength range such as an LED or a laser is used as the light emitting means as the spectral measuring means for measuring the reflectance, whereby the wavelength range can be limited with a simple structure. , The reflectance can be measured.

【0016】請求項7記載の発明では、反射率の測定波
長の分光手段として、一定波長域の波長を通過させる光
学的なバンドパスフィルタを使用することにより、より
正確な波長域の限定ができ、正確な反射率の測定が可能
になっているものである。
In the seventh aspect of the present invention, a more accurate wavelength range can be defined by using an optical bandpass filter that passes wavelengths in a fixed wavelength range as the spectral measuring means for measuring the reflectance wavelength. , Which enables accurate measurement of reflectance.

【0017】[0017]

【実施例】以下に本発明の一実施例について説明する。
図1は、本発明の一実施例の構成を示すブロック図であ
り、本実施例では、電磁誘導式の調理器において鍋底温
度を検知する場合の構成例を示す。図1の1は、加熱調
理器全体の制御や温度算出の演算などを行う演算制御部
であり、マイクロコンピュータとその周辺回路から構成
される。2は演算制御部1からの指示により鍋を加熱量
の制御を行う加熱制御部であり、3はユーザからの温度
設定値や調理コースの入力操作や現在の鍋温度表示など
を行う操作表示部である。7は鍋10の反射率を検知す
るための光源であり、9は鍋底から反射してきた光を受
光する受光センサである。また、4は光源7の発光や消
灯を制御する発光制御回路であり、6は受光センサ9の
出力を検知するための反射検知回路である。8は鍋底か
らの放射される赤外線量を検知する赤外線センサであ
り、5は赤外線センサ8からの出力を検出するための放
射検知回路である。10は加熱調理器のトッププレート
であり、赤外線を透過する材質や検知部に赤外線透過材
をはめ込んだものを使用する。
EXAMPLES An example of the present invention will be described below.
FIG. 1 is a block diagram showing the configuration of an embodiment of the present invention. In the present embodiment, an example of the configuration in the case of detecting the pot bottom temperature in an electromagnetic induction type cooker is shown. Reference numeral 1 in FIG. 1 is a calculation control unit that controls the entire cooking device and calculates temperature, and is composed of a microcomputer and its peripheral circuits. Reference numeral 2 is a heating control unit for controlling the heating amount of the pan according to an instruction from the arithmetic control unit 1, and 3 is an operation display unit for inputting a temperature set value and a cooking course from the user and displaying the current pan temperature. Is. Reference numeral 7 is a light source for detecting the reflectance of the pot 10, and 9 is a light receiving sensor for receiving the light reflected from the bottom of the pot. Reference numeral 4 is a light emission control circuit for controlling the light emission and extinction of the light source 7, and 6 is a reflection detection circuit for detecting the output of the light receiving sensor 9. Reference numeral 8 is an infrared sensor for detecting the amount of infrared rays radiated from the bottom of the pan, and 5 is a radiation detection circuit for detecting the output from the infrared sensor 8. Reference numeral 10 denotes a top plate of the heating cooker, which is made of a material that transmits infrared rays or has an infrared transparent material fitted in the detection portion.

【0018】また、図2は、赤外線センサ8で受光する
赤外線総量Wと、それを基に放射検知回路5および演算
制御部1で算出される換算温度Tの関係の一例を示す模
式図である。図2の21は放射率ε=1.0の場合の関
係式を示し、同様に22、23は放射率ε=0.5およ
びε=0.1の場合の関係式を示している。放射率εが
低い程、同じ温度における放射割合は小さいため、同じ
赤外線総量Wが検出される場合には、対象物質の温度は
放射率εが低い程T0→T1→T2のように高いと解釈
できることになる。
FIG. 2 is a schematic diagram showing an example of the relationship between the total amount W of infrared rays received by the infrared sensor 8 and the converted temperature T calculated by the radiation detection circuit 5 and the arithmetic control unit 1 based on the total amount W. . Reference numeral 21 in FIG. 2 shows a relational expression when the emissivity ε = 1.0, and similarly, 22 and 23 show relational expressions when the emissivity ε = 0.5 and ε = 0.1. The lower the emissivity ε, the smaller the emissivity at the same temperature. Therefore, when the same total infrared radiation amount W is detected, the temperature of the target substance is interpreted to be higher as T0 → T1 → T2 as the emissivity ε is lower. You can do it.

【0019】また、図3は、ある波長での放射率εと反
射率Rの相関の一例を表す模式図を示す。受光センサ9
の指向性や感度特性などの実験上の条件により、厳密に
はε=1―Rにはならない場合があるが、図3に示すよ
うに反射率Rが高い程放射率εは低く、反射率Rが低い
ほど放射率εは高い傾向を示す。
FIG. 3 is a schematic diagram showing an example of the correlation between the emissivity ε and the reflectance R at a certain wavelength. Light receiving sensor 9
Strictly speaking, ε = 1-R may not be obtained due to the experimental conditions such as the directivity and sensitivity characteristics of, but as shown in FIG. 3, the higher the reflectance R, the lower the emissivity ε and the reflectance ε. The lower the R, the higher the emissivity ε.

【0020】これらの図2及び図3のグラフは演算制御
部1に演算式または換算テーブルの形で記憶し、放射率
の算出や温度の算出に使用する。
The graphs of FIGS. 2 and 3 are stored in the arithmetic control unit 1 in the form of arithmetic expressions or conversion tables, and are used for calculating emissivity and temperature.

【0021】以上の内容を使って、図1のブロック図の
概略動作を説明する。演算制御部1は発光制御回路4に
指示し発光素子を点灯し、鍋底で反射した光を受光セン
サ9で受光し反射検知回路6で電圧量に変換し、演算制
御部1に入力して反射率を算出する。演算制御部1に
は、図3の反射率と放射率の相関関係を示す演算式31
が予め設定されており、この演算式を使って放射率εに
換算する。同時に、赤外線センサ8で鍋底から放射され
る赤外線を受光し、放射検知回路5で電圧量に変換して
演算制御部1に入力する。次に、演算制御部1には予め
図2に示すような赤外線量と放射率εから温度に換算す
るための温度算出式21〜23及び他の放射率εに対応
した温度算出式を記憶させておき、この温度算出式によ
り鍋底温度を算出する。算出された温度Tは表示操作部
3でユーザ表示を行ったり、加熱制御部2で設定温度と
比較して加熱量の増減などを行う。
The operation of the block diagram of FIG. 1 will be described with reference to the above contents. The arithmetic control unit 1 instructs the light emission control circuit 4 to turn on the light emitting element, receives the light reflected by the bottom of the pan by the light receiving sensor 9, converts it into a voltage amount by the reflection detection circuit 6, and inputs it to the arithmetic control unit 1 to reflect it. Calculate the rate. The arithmetic control unit 1 includes an arithmetic expression 31 showing the correlation between reflectance and emissivity in FIG.
Is preset and is converted into the emissivity ε using this arithmetic expression. At the same time, the infrared sensor 8 receives infrared rays radiated from the bottom of the pan, the radiation detection circuit 5 converts the infrared rays into a voltage amount, and inputs the voltage amount into the arithmetic control unit 1. Next, the calculation control unit 1 is made to store temperature calculation formulas 21 to 23 for converting the infrared ray amount and the emissivity ε into temperature as shown in FIG. 2 and temperature calculation formulas corresponding to other emissivity ε in advance. The pot bottom temperature is calculated by this temperature calculation formula. The calculated temperature T is displayed on the display operation unit 3 by the user, and the heating control unit 2 compares it with the set temperature to increase or decrease the heating amount.

【0022】最後に、反射率を検知する波長の選出方法
について説明する。図4には、物質の放射率と波長との
関係を示す放射率の波長特性の一例を表す模式図を示
す。図4に示すように、波長により放射率の大きく替わ
る波長特性を有する物質は選択放射体と呼ばれる。物質
の赤外線放射は対象物質の温度が数百度程度の場合に
は、図4の領域IVに示す領域に相当する大体3マイク
ロメートル付近以上の波長の赤外線の占める割合が多
い。従って、反射率から放射率を補正するには、赤外線
センサが実際に受光する領域IVでの放射率を知る必要
がある。つまり、波長特性の全く異なる波長領域での放
射率を調べても相関は小さくなる。それならば直接に領
域IVの反射率で測定すれば良いが、この領域は対象物
質の放射する赤外線を受けるため、つまり対象物質の温
度自体の影響で反射率が正確に測定できない。
Finally, a method of selecting the wavelength for detecting the reflectance will be described. FIG. 4 is a schematic diagram showing an example of the wavelength characteristic of the emissivity showing the relationship between the emissivity of a substance and the wavelength. As shown in FIG. 4, a substance having wavelength characteristics in which the emissivity largely changes depending on the wavelength is called a selective radiator. In the infrared radiation of a substance, when the temperature of the target substance is about several hundreds of degrees, there is a large proportion of infrared rays having a wavelength of approximately 3 micrometers or more, which corresponds to a region indicated by a region IV in FIG. Therefore, in order to correct the emissivity from the reflectance, it is necessary to know the emissivity in the area IV actually received by the infrared sensor. In other words, the correlation becomes small even if the emissivity in the wavelength region having completely different wavelength characteristics is examined. In that case, the reflectance can be directly measured by the reflectance of the region IV, but this region receives infrared rays emitted from the target substance, that is, the reflectance cannot be accurately measured due to the influence of the temperature itself of the target substance.

【0023】このような状況において、どの波長を反射
率の測定波長に選べば良いかの手段としては、次の手段
が考えられる。1つは、鍋色や室内の蛍光灯からの外光
などの影響の大きい可視光領域Iを避け、領域IIに相
当する近赤外波長の反射率から放射率を推定し補正を行
う方法である。領域IIでは、対象物中の水分や対象物
自体の材質による吸収が比較的小さく、反射率がばらつ
く要因を低減できる。この領域IIの受光素子として
は、シリコン組成の受光素子やインジウムガリウム砒素
インガリの組成の受光素子がある。特に、これらの受光
素子や発光素子は、一般の家電機器のリモコンや光通信
用のデバイスとして広く普及しているデバイスの流用が
可能なため、商業的な効果も期待できる。
In such a situation, the following means can be considered as means for selecting which wavelength should be selected as the reflectance measurement wavelength. One is a method of avoiding the visible light region I that is greatly affected by the pot color or the outside light from the indoor fluorescent lamp, and estimating the emissivity from the reflectance of the near infrared wavelength corresponding to the region II, and correcting it. is there. In the area II, the absorption of water in the object and the material of the object itself is relatively small, and the factor of variation in reflectance can be reduced. As the light receiving element in the region II, there are a light receiving element having a silicon composition and a light receiving element having a composition of indium gallium arsenide. In particular, these light-receiving elements and light-emitting elements can be used as remote controls for general household appliances and devices that are widely used as devices for optical communication, and therefore commercial effects can be expected.

【0024】もう1つの方法は、対象領域である領域I
Vでは、より近い領域IIIの反射率から補正する方法
である。この領域IIIでは、領域IVに近い放射率を
有する上、この領域の赤外線は数千度の物質からでない
と殆ど放射されないため、対象物自体の放射する赤外線
量の影響を受けにくくなり、反射率を正確に測れる。
Another method is the region I which is the target region.
In V, it is a method of correcting from the reflectance of the closer region III. The region III has an emissivity close to that of the region IV, and the infrared rays in this region are hardly emitted unless the substance is at a temperature of several thousand degrees. Can be measured accurately.

【0025】なお、本実施例では鍋温度を測定する構成
を示したが、本発明の方法は電子レンジの上部に設置し
て調理食品の温度検知を行う方法も可能である。特に、
本方法は温度計測とほぼリアルタイムに放射率εを算出
するため、予めεが設定できない場合や色々な対象物を
移動させながら温度検知を行う場合に特に効果がある。
In this embodiment, the structure for measuring the pot temperature is shown, but the method of the present invention may be installed in the upper part of the microwave oven to detect the temperature of the cooked food. In particular,
Since this method calculates emissivity ε almost in real time with temperature measurement, it is particularly effective when ε cannot be set in advance or when temperature detection is performed while moving various objects.

【0026】また、反射率を検知するための光源9から
の影響が発生する場合には、発光制御回路より、変調し
て赤外線センサの検知停止時間の間に発光するなどの時
分割で発光することにより反射センサの影響が出ないよ
うにする方法も可能である。
When the influence from the light source 9 for detecting the reflectance occurs, the light emission control circuit modulates and emits light in a time division manner such as emitting light during the detection stop time of the infrared sensor. Therefore, a method of preventing the influence of the reflection sensor is also possible.

【0027】更に、本願発明の構成は、調理分野のみな
らず、生産ラインにおける塗装工程における温度制御や
自動販売機の珈琲缶等の温度制御等への応用も考えられ
るものであり、被加熱物が取り換え可能であり、且つ取
り換えた被加熱物の反射面の形状が比較的同様な形状で
あれば、本願発明を応用することは容易である。
Further, the structure of the present invention is applicable not only to the cooking field but also to the temperature control in the coating process in the production line, the temperature control of the coffee can of the vending machine, and the like. Is replaceable, and if the shape of the reflective surface of the replaced object to be heated is relatively similar, it is easy to apply the present invention.

【0028】[0028]

【発明の効果】以上のように、請求項1記載の発明は、
赤外線センサにより調理物や鍋などの被加熱物の温度を
計測する加熱調理器において、前記被加熱物に対して投
光する発光手段と、前記被加熱物からの反射光を受光す
る受光センサおよび反射検知回路と、前記被加熱物から
放射される赤外線量を検知する赤外線センサおよび放射
検知回路と、前記受光センサおよび反射検知回路の出力
から換算された前記被加熱物の放射率、及び前記赤外線
センサの受光量から前記被加熱物の温度を換算する演算
制御部と、赤外線を透過する材質や検知部に赤外線透過
材をはめ込んだトッププレートをを備え、前記演算制御
部は、ある波長での放射率と反射率の相関を演算式また
は換算テーブルの形で記憶し、前記受光センサおよび反
射検知回路の出力から換算された前記被加熱物の放射率
を算出し、前記赤外線センサの受光量と前記放射率から
前記被加熱物の温度を換算してなることにより、被加熱
物の放射率に影響されない正確な温度検知が可能な温度
検知センサを備えた加熱調理器を実現することが可能と
なるものである。
As described above, the invention according to claim 1 is
In a heating cooker that measures the temperature of an object to be heated such as a cooking object or a pan with an infrared sensor, a light emitting means for projecting light on the object to be heated, a light receiving sensor for receiving reflected light from the object to be heated, and A reflection detection circuit, an infrared sensor and an emission detection circuit for detecting the amount of infrared rays emitted from the object to be heated, the emissivity of the object to be heated converted from the outputs of the light receiving sensor and the reflection detection circuit, and the infrared ray. An arithmetic and control unit for converting the temperature of the object to be heated from the amount of light received by the sensor, and a top plate in which an infrared transmitting material is fitted to a material or a detecting unit that transmits infrared rays, the arithmetic and control unit is provided at a certain wavelength. The correlation between the emissivity and the reflectance is stored in the form of an arithmetic expression or a conversion table, and the emissivity of the heated object converted from the outputs of the light receiving sensor and the reflection detection circuit is calculated, and the red value is calculated. A heating cooker equipped with a temperature detection sensor capable of accurate temperature detection without being affected by the emissivity of the object to be heated by converting the temperature of the object to be heated from the amount of light received by the line sensor and the emissivity. It can be realized.

【0029】また、請求項2記載の発明は、反射光の波
長として、600nm〜1000nmの波長を利用する
ことにより、被加熱物の色や外光などの影響を低減で
き、LEDなどの光源を使って反射率の測定できる方式
となっており、より正確な温度検知が可能な温度検知セ
ンサを備えた加熱調理器を実現することが可能となるも
のである。
Further, according to the second aspect of the present invention, by utilizing a wavelength of 600 nm to 1000 nm as the wavelength of the reflected light, it is possible to reduce the influence of the color of the object to be heated, external light, etc., and to use a light source such as an LED. It is a system in which the reflectance can be measured by using it, and it becomes possible to realize a heating cooker equipped with a temperature detection sensor capable of more accurate temperature detection.

【0030】また、請求項3記載の発明は、反射光の波
長域として、第2の発明よりも更に波長の長い1000
nm〜2000nmの近赤外の波長を利用することによ
り、被加熱物の色や外光などの影響を更に低減でき、よ
り正確な反射率の測定ができる方式となっており、更に
正確な温度検知が可能な温度検知センサを備えた加熱調
理器を実現することが可能となるものである。
In the invention according to claim 3, the wavelength range of the reflected light is 1000, which has a wavelength longer than that of the second invention.
By using the near-infrared wavelength of nm to 2000 nm, it is possible to further reduce the influence of the color of the object to be heated, external light, etc., and it becomes a method that can measure the reflectance more accurately. It is possible to realize a heating cooker including a temperature detection sensor capable of detecting.

【0031】また、請求項4記載の発明は、反射光の波
長として、第3の発明よりも更に赤外線センサの波長に
近い2000nm以上の赤外線の波長領域を利用するこ
とにより、赤外線センサの受光する赤外線波長域の放射
率と非常に相関の高い換算のできる方式になっており、
より正確な温度検知が可能な温度検知センサを備えた加
熱調理器を実現することが可能となるものである。
Further, according to the invention of claim 4, as the wavelength of the reflected light, the infrared ray wavelength region of 2000 nm or more, which is closer to the wavelength of the infrared ray sensor than that of the third aspect of the invention, is used so that the infrared ray sensor receives the light. It is a system that can be converted with a very high correlation with the emissivity in the infrared wavelength range,
It is possible to realize a heating cooker including a temperature detection sensor capable of more accurate temperature detection.

【0032】また、請求項5記載の発明は、反射率の測
定波長の分光手段として、フォトトランジスタなどの受
光センサ自体の受光感度波長域を使って分光することに
より、簡易な構成で波長域の限定ができ、正確な反射率
から放射率への換算が可能な可能な温度検知センサを備
えた加熱調理器を実現することが可能となるものであ
る。
Further, according to the fifth aspect of the present invention, as the spectral measuring means of the reflectance measurement wavelength, the light receiving sensitivity wavelength range of the light receiving sensor itself such as a phototransistor is used to perform the spectral analysis. It is possible to realize a heating cooker including a temperature detection sensor that can be limited and that can accurately convert reflectance to emissivity.

【0033】また、請求項6記載の発明は、反射率の測
定波長の分光手段として、発光手段にLEDまたはレー
ザなどの狭波長域の光源を使用することにより、簡易な
構成で波長域の限定ができ、正確な反射率から放射率へ
の換算が可能な可能な温度検知センサを備えた加熱調理
器を実現することが可能となるものである。
Further, according to the present invention, the light source in the narrow wavelength range such as LED or laser is used as the light emitting means as the spectroscopic means for measuring the wavelength of the reflectance, so that the wavelength range can be limited with a simple structure. Therefore, it is possible to realize a heating cooker equipped with a temperature detection sensor capable of performing accurate conversion from reflectance to emissivity.

【0034】また、請求項7記載の発明は、反射率の測
定波長の分光手段として、一定波長域の波長を通過させ
る光学的なバンドパスフィルタを使用することにより、
より正確な波長域の限定ができ、より正確な反射率から
放射率への換算が可能な可能な温度検知センサを備えた
加熱調理器を実現することが可能となるものである。
The invention according to claim 7 uses an optical band-pass filter for passing a wavelength in a fixed wavelength range as a spectroscopic unit for measuring the reflectance wavelength.
It is possible to realize a heating cooker equipped with a temperature detection sensor that can more accurately limit the wavelength range and can more accurately convert reflectance to emissivity.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す加熱調理器のブロック
FIG. 1 is a block diagram of a heating cooker showing an embodiment of the present invention.

【図2】受光赤外線量と換算温度Tの関係を放射率毎に
示した特性図
FIG. 2 is a characteristic diagram showing the relationship between the amount of received infrared light and the converted temperature T for each emissivity.

【図3】ある波長での放射率と反射率の関係を示した特
性図
FIG. 3 is a characteristic diagram showing the relationship between emissivity and reflectance at a certain wavelength.

【図4】ある物質の放射率の波長特性を示した特性図FIG. 4 is a characteristic diagram showing wavelength characteristics of emissivity of a substance.

【符号の説明】[Explanation of symbols]

1 演算制御部 2 加熱制御部 3 表示操作部 4 発光制御回路 5 放射検知回路 6 反射検知回路 7 光源 8 赤外線センサ 9 受光センサ 10 トッププレート 11 被加熱物 1 Arithmetic control unit 2 Heating control section 3 Display operation unit 4 Light emission control circuit 5 Radiation detection circuit 6 Reflection detection circuit 7 light source 8 infrared sensor 9 Light receiving sensor 10 top plate 11 Heated object

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 赤外線センサにより調理物や鍋などの被
加熱物の温度を計測する加熱調理器において、前記被加
熱物に対して投光する発光手段と、前記被加熱物からの
反射光を受光する受光センサおよび反射検知回路と、前
記被加熱物から放射される赤外線量を検知する赤外線セ
ンサおよび放射検知回路と、前記受光センサおよび反射
検知回路の出力から換算された前記被加熱物の放射率、
及び前記赤外線センサの受光量から前記被加熱物の温度
を換算する演算制御部と、赤外線を透過する材質や検知
部に赤外線透過材をはめ込んだトッププレートをを備
え、前記演算制御部は、ある波長での放射率と反射率の
相関を演算式または換算テーブルの形で記憶し、前記受
光センサおよび反射検知回路の出力から換算された前記
被加熱物の放射率を算出し、前記赤外線センサの受光量
と前記放射率から前記被加熱物の温度を換算してなる電
磁誘導方式の加熱調理器。
1. A heating cooker for measuring the temperature of an object to be heated such as a cooking object or a pan by an infrared sensor, and a light emitting means for projecting light on the object to be heated and reflected light from the object to be heated. A light receiving sensor and a reflection detecting circuit for receiving light, an infrared sensor and a radiation detecting circuit for detecting the amount of infrared rays emitted from the object to be heated, and radiation of the object to be heated converted from outputs of the light receiving sensor and the reflection detecting circuit. rate,
And an arithmetic control unit that converts the temperature of the object to be heated from the amount of light received by the infrared sensor, and a top plate in which an infrared transmitting material is fitted to a material or a detecting unit that transmits infrared, and the arithmetic control unit is The correlation between the emissivity at the wavelength and the reflectance is stored in the form of an arithmetic expression or a conversion table, and the emissivity of the heated object converted from the outputs of the light receiving sensor and the reflection detection circuit is calculated, and the infrared sensor An electromagnetic induction heating cooker in which the temperature of the object to be heated is converted from the amount of received light and the emissivity.
【請求項2】 反射率の測定波長として、受光センサの
素子としてシリコン組成の受光素子が利用できる600
nmから1000nm波長域を使用する請求項1記載の
加熱調理器。
2. A light receiving element having a silicon composition can be used as a light receiving sensor element for the reflectance measurement wavelength.
The cooking device according to claim 1, which uses a wavelength range from nm to 1000 nm.
【請求項3】 反射率の測定波長として、1000nm
から2000nm波長域を使用する請求項1記載の加熱
調理器。
3. The reflectance measurement wavelength is 1000 nm.
2. The cooking device according to claim 1, which uses a wavelength range from 1 to 2000 nm.
【請求項4】 反射率の測定波長として、2000nm
以上の波長域を使用する請求項1記載の加熱調理器。
4. The measurement wavelength of the reflectance is 2000 nm.
The heating cooker according to claim 1, which uses the above wavelength range.
【請求項5】 反射率の測定波長の分光手段として、受
光センサの受光感度波長域を使って分光する請求項1記
載の加熱調理器。
5. The cooking device according to claim 1, wherein the spectroscopic means for measuring the reflectance wavelength uses the wavelength range of the light-receiving sensitivity of the light-receiving sensor to perform the spectrum.
【請求項6】 反射率の測定波長の分光手段として、発
光手段にLEDまたはレーザなどの狭波長域の光源を使
用することにより分光する請求項1記載の加熱調理器。
6. The heating cooker according to claim 1, wherein a light source in a narrow wavelength range such as an LED or a laser is used as the light emitting means as the spectral measuring means for measuring the reflectance wavelength.
【請求項7】 反射率の測定波長の分光手段として、一
定波長域の波長を通過させる光学的なバンドパスフィル
タを使用することにより分光する請求項1記載の加熱調
理器。
7. The heating cooker according to claim 1, wherein an optical bandpass filter that passes a wavelength in a fixed wavelength range is used as a spectroscopic unit for measuring the reflectance measurement wavelength.
【請求項8】 赤外線センサが焦電センサである請求項
1記載の加熱調理器。
8. The cooking device according to claim 1, wherein the infrared sensor is a pyroelectric sensor.
【請求項9】 赤外線センサがサーモパイルである請求
項1記載の加熱調理器。
9. The cooking device according to claim 1, wherein the infrared sensor is a thermopile.
JP2003004478A 2003-01-10 2003-01-10 Cooker Pending JP2003243141A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003004478A JP2003243141A (en) 2003-01-10 2003-01-10 Cooker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003004478A JP2003243141A (en) 2003-01-10 2003-01-10 Cooker

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP3098598A Division JPH11225881A (en) 1998-02-13 1998-02-13 Heating cooking device

Publications (1)

Publication Number Publication Date
JP2003243141A true JP2003243141A (en) 2003-08-29

Family

ID=27785696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003004478A Pending JP2003243141A (en) 2003-01-10 2003-01-10 Cooker

Country Status (1)

Country Link
JP (1) JP2003243141A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5247914B1 (en) * 2012-05-31 2013-07-24 三菱電機株式会社 Cooker
CN110346045A (en) * 2018-04-03 2019-10-18 青岛海尔智能技术研发有限公司 A kind of gas-cooker anti-dry detection method, detection device and gas-cooker

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5247914B1 (en) * 2012-05-31 2013-07-24 三菱電機株式会社 Cooker
CN110346045A (en) * 2018-04-03 2019-10-18 青岛海尔智能技术研发有限公司 A kind of gas-cooker anti-dry detection method, detection device and gas-cooker

Similar Documents

Publication Publication Date Title
JPH11225881A (en) Heating cooking device
AU778756B2 (en) Cooktop control and monitoring system including detecting properties of a utensil through a solid-surface cooktop
JP4123036B2 (en) Cooker
TWI533761B (en) Induction heating conditioner
JP2009295456A (en) Induction cooker
JP2004227976A (en) Induction heating cooker
JP2003317920A (en) Induction heating cooking device
JP5341385B2 (en) Induction heating cooker
JP2003243141A (en) Cooker
JP5372839B2 (en) Induction heating cooker
JP4178966B2 (en) Cooker
JP5459080B2 (en) Induction heating cooker
JP2003249341A (en) Induction heating cooker
CN110848746A (en) Control method of gas stove and gas stove
CN103687120B (en) Induction heating cooking instrument
JP2010244999A (en) Induction heating cooker
JP5868483B2 (en) Induction heating cooker
JP5135386B2 (en) Induction heating cooker
JP2010032385A (en) Radiation thermometer and compensation method of emissivity thereof
JP2004241220A (en) Induction heating cooking device
JP5677263B2 (en) Induction heating cooker
JP5674894B2 (en) Induction heating cooker
JP2016091868A (en) Induction heating cooker
JP6506569B6 (en) Induction cooker
JP5492690B2 (en) Induction heating cooker

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Effective date: 20050708

Free format text: JAPANESE INTERMEDIATE CODE: A7421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051212

A131 Notification of reasons for refusal

Effective date: 20051220

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060213

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060516