JP5674894B2 - Induction heating cooker - Google Patents

Induction heating cooker Download PDF

Info

Publication number
JP5674894B2
JP5674894B2 JP2013220898A JP2013220898A JP5674894B2 JP 5674894 B2 JP5674894 B2 JP 5674894B2 JP 2013220898 A JP2013220898 A JP 2013220898A JP 2013220898 A JP2013220898 A JP 2013220898A JP 5674894 B2 JP5674894 B2 JP 5674894B2
Authority
JP
Japan
Prior art keywords
top plate
infrared rays
infrared
body layer
induction heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013220898A
Other languages
Japanese (ja)
Other versions
JP2014013780A (en
Inventor
博史 山崎
博史 山崎
彰 森井
彰 森井
永田 滋之
滋之 永田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2013220898A priority Critical patent/JP5674894B2/en
Publication of JP2014013780A publication Critical patent/JP2014013780A/en
Application granted granted Critical
Publication of JP5674894B2 publication Critical patent/JP5674894B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、電磁誘導を利用して加熱調理を行う、誘導加熱調理器に関するものである。   The present invention relates to an induction heating cooker that performs cooking using electromagnetic induction.

誘導加熱調理器においては、その調理温度をいかに正確に測定できるかが重要な課題である。誘導加熱調理器の温度測定に関しては、耐久性に強く、応答速度の高い、非接触型の赤外線センサが多く使用されている。
従来、非接触型の赤外線センサにより被加熱物体の温度を検出する方法として、測定対象とする被加熱物体である加熱皿や鍋が放射する赤外線を直接検出することで温度を測定していた。それゆえ、被加熱物体自身の正確な温度を測定することは困難であった。
In an induction heating cooker, how to accurately measure the cooking temperature is an important issue. Regarding the temperature measurement of induction heating cookers, non-contact infrared sensors that are durable and have a high response speed are often used.
Conventionally, as a method of detecting the temperature of an object to be heated by a non-contact type infrared sensor, the temperature is measured by directly detecting infrared rays emitted from a heating pan or pan that is an object to be heated. Therefore, it has been difficult to measure the exact temperature of the heated object itself.

なぜならば、被加熱物体の温度をT、その赤外線の放射率をεとすると、赤外線センサを用いた場合には、この被加熱物体の温度はT×ε^(1/4)(^(1/4)は4乗根を示す)と測定されてしまうからである。温度誤差を調整する場合には、この放射率εの4乗根分だけ補正すればよいが、被加熱物体の材質により放射率εは異なるため、特定の材質の被加熱物体の放射率εに合わせて補正するよう定めてしまうと、異なる材質の被加熱物体が用いられた場合には、正確な温度が測定できないことになる。   This is because when the temperature of the heated object is T and the emissivity of the infrared ray is ε, the temperature of the heated object is T × ε ^ (1/4) (^ (1 / 4) indicates the fourth power root). When adjusting the temperature error, it is only necessary to correct the fourth root of the emissivity ε. However, since the emissivity ε differs depending on the material of the object to be heated, the emissivity ε of the object to be heated of a specific material is set. If it is determined to be corrected together, an accurate temperature cannot be measured when a heated object of a different material is used.

そこで、被加熱物体が放射する赤外線を直接検出せずに正確に温度を検知する誘導加熱調理器として、以下の特許文献が知られている。
以下の特許文献に提示された誘導加熱調理器は、被加熱物体と被加熱物体が載置される天板との間に黒体層を設け、熱伝導により被加熱物体と同じ温度になった黒体層から放射される赤外線を検出し、それに応じた温度信号を出力する。黒体層の放射率は一定であるので、黒体層から発せられる赤外線を、赤外線を透過する天板を通して赤外線センサで検出することで、測定対象または被加熱物体の材質に左右されない高精度な温度測定が可能となる。
Therefore, the following patent documents are known as induction heating cookers that accurately detect the temperature without directly detecting the infrared rays emitted from the heated object.
In the induction heating cooker presented in the following patent document, a black body layer is provided between the object to be heated and the top plate on which the object to be heated is placed, and the temperature becomes the same as that of the object to be heated due to heat conduction. Infrared rays emitted from the black body layer are detected and a temperature signal corresponding to the detected infrared rays is output. Since the emissivity of the black body layer is constant, the infrared rays emitted from the black body layer are detected by an infrared sensor through a top plate that transmits infrared rays, so that it is highly accurate regardless of the material to be measured or the object to be heated. Temperature measurement is possible.

特開2003−121261JP2003-121261A

しかしながら、黒体層を天板上に形成した場合、黒体層が照明や入射光などの外部熱源からの赤外線を多く吸収し、赤外線センサに向けて再放射してしまうため、外部熱源からの赤外線の影響を大きく受け、被加熱物の温度が正確に求められないという問題が生じていた。   However, when the black body layer is formed on the top plate, the black body layer absorbs a lot of infrared rays from an external heat source such as illumination and incident light, and re-radiates toward the infrared sensor. There has been a problem that the temperature of the object to be heated cannot be accurately determined due to the influence of infrared rays.

本発明は、このような問題を解決し、被加熱物体の温度を外部熱源からの影響に左右されず、迅速かつ正確に測定する誘導加熱調理器を提供することを目的とする。   An object of the present invention is to solve such problems and to provide an induction heating cooker that measures the temperature of an object to be heated quickly and accurately without being influenced by the influence of an external heat source.

本発明の誘導加熱調理器は被加熱物を上面に載置する天板と、前記天板の下方に配置され、被加熱物を加熱する誘導加熱手段と、前記天板の下方に配置され、前記天板から放射される赤外線を検知する温度測定手段と、前記温度測定手段の出力に基づいて、前記誘導加熱手段を制御する制御手段と、前記天板の上面に形成され、前記被加熱物からの熱伝導による温度上昇に起因した赤外線を一定の放射率で下方に放射する赤外線放射層と、前記被加熱物が載置される領域を除く前記天板の底面を覆い、前記赤外線放射層および前記天板を通過する波長帯の赤外線を通過させずに反射させ、前記波長帯の赤外線以外の赤外線を通過させる光学フィルタ層と、備えるものである。 Induction heating cooker of the present invention includes a top plate for placing an object to be heated on the upper surface is disposed below the top plate, an induction heating means for heating an object, it is disposed below the top plate , a temperature measuring means for detecting infrared radiation from the top plate, based on the output of the temperature measuring means, and control means for controlling the induction heating means, are formed on the upper surface of the top plate, the object to be heated An infrared radiation layer that radiates infrared rays caused by a temperature rise due to heat conduction from an object downward at a constant emissivity; and a bottom surface of the top plate excluding a region where the object to be heated is placed; and the infrared radiation it is reflected without passing through the infrared wavelength band that passes through the layer and the top plate, an optical filter layer that passes infrared than the infrared of the wavelength band, in which comprises a.

本発明の誘導加熱調理器によれば、被加熱物が載置される天板上の領域を、赤外線を減衰する赤外線減衰層で覆ったため、対象被加熱物体の赤外線の放射率の違いによらずに、また、外部熱源からの影響も左右されずに、対象被加熱物体の温度を迅速かつ正確に測定することができる。   According to the induction heating cooker of the present invention, the region on the top plate on which the object to be heated is placed is covered with the infrared attenuation layer that attenuates infrared rays. In addition, the temperature of the object to be heated can be measured quickly and accurately without being affected by the influence of the external heat source.

本発明の実施の形態1に係る誘導加熱調理器の構成を示す断面図である。It is sectional drawing which shows the structure of the induction heating cooking appliance which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る誘導加熱調理器における放射温度計測を説明する図である。It is a figure explaining the radiation temperature measurement in the induction heating cooking appliance which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る誘導加熱調理器における放射温度計測を説明する図である。It is a figure explaining the radiation temperature measurement in the induction heating cooking appliance which concerns on Embodiment 1 of this invention. 従来技術に係る誘導加熱調理器における放射温度計測を説明する図である。It is a figure explaining the radiation temperature measurement in the induction heating cooking appliance which concerns on a prior art. 本発明の実施の形態2に係る誘導加熱調理器の構成を示す断面図である。It is sectional drawing which shows the structure of the induction heating cooking appliance which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係る誘導加熱調理器における黒体の分光放射輝度を示すグラフである。It is a graph which shows the spectral radiance of the black body in the induction heating cooking appliance which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係る誘導加熱調理器における天板の分光透過率を示すグラフである。It is a graph which shows the spectral transmittance of the top plate in the induction heating cooking appliance which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係る誘導加熱調理器における天板下の分光放射輝度を示すグラフである。It is a graph which shows the spectral radiance under a top plate in the induction heating cooking appliance which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係る誘導加熱調理器における天板下の分光放射輝度を拡大して示すグラフである。It is a graph which expands and shows the spectral radiance under a top plate in the induction heating cooking appliance which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係る誘導加熱調理器における光学フィルタの特性を示すグラフである。It is a graph which shows the characteristic of the optical filter in the induction heating cooking appliance which concerns on Embodiment 2 of this invention.

実施の形態1.
図1は、本発明の実施の形態1に係る誘導加熱調理器の構成を示す断面図である。同図に示すように、実施の形態1に係る誘導加熱調理器は、本体1の上部に配置され、被加熱物である調理容器4を載置する天板2と、本体1の前面の上端部に配置され、各操作スイッチ(図示せず)が設けられた操作パネル3と、操作パネル3の近傍に配置され、機器のオン/オフや設定温度を表示する表示部5と、本体1内部に配置され被加熱物を誘導加熱する加熱コイル7と、加熱コイル7に通電する高周波の交番電流の大きさを制御し、調理容器4に流れる渦電流の大きさを制御する制御手段6と、天板2上に形成され、放射率の低い材質からなる白体層9と、天板2の下方で調理容器4の底面を臨むように配置され、調理容器4および天板2の温度を非接触で検知する赤外線センサ8とを備えている。
ここで、天板2は、ガラスやセラミックスなどの耐熱性材料から構成されている。また、操作パネル3に設けられた各操作スイッチには、機器のオン/オフスイッチや、天板2上に載置される調理容器4の加熱温度を設定するスイッチなどがある。
Embodiment 1 FIG.
1 is a cross-sectional view showing a configuration of an induction heating cooker according to Embodiment 1 of the present invention. As shown in the figure, the induction heating cooker according to the first embodiment is arranged on the upper portion of the main body 1, and the top plate 2 on which the cooking container 4 that is the object to be heated is placed, and the upper end of the front surface of the main body 1. An operation panel 3 provided with each operation switch (not shown), a display unit 5 arranged in the vicinity of the operation panel 3 for displaying on / off of the device and set temperature, and the inside of the main body 1 A heating coil 7 that is arranged inductively heating the object to be heated, a control means 6 that controls the magnitude of the high-frequency alternating current that is passed through the heating coil 7, and controls the magnitude of the eddy current flowing in the cooking vessel 4; The white body layer 9 made of a material having a low emissivity is formed on the top plate 2 and disposed so as to face the bottom surface of the cooking container 4 below the top plate 2. And an infrared sensor 8 for detecting by contact.
Here, the top plate 2 is made of a heat resistant material such as glass or ceramics. In addition, each operation switch provided on the operation panel 3 includes an on / off switch of the device, a switch for setting the heating temperature of the cooking container 4 placed on the top plate 2, and the like.

次に、動作について説明する。本体1に設けられた操作パネル3上のスイッチ入力を制御手段6が検知すると、加熱コイル7が駆動を開始し、天板2上の調理容器4を誘導加熱すると共に、表示部5に加熱オン状態である旨の表示を行う。誘導加熱された調理容器4から白体層9に熱伝導が起こり、温められた白体層で発生した赤外線が天板2を通して、赤外線センサ8に到達する。到達した赤外線量に応じて、制御手段6は、加熱コイル7の駆動制御を行う。
天板2上の定位置に調理容器4を載置した状態で、図2に示すように天板2と白体層9越しに調理容器4の底面を臨むように、赤外線センサ8は設置されている。このとき赤外線センサ8で受光する赤外線量に基づいて、調理容器4の温度が測定できる。
Next, the operation will be described. When the control means 6 detects the switch input on the operation panel 3 provided in the main body 1, the heating coil 7 starts to drive, induction heating the cooking container 4 on the top 2, and heating on the display unit 5. The status is displayed. Heat conduction occurs in the white body layer 9 from the cooking container 4 heated by induction, and the infrared rays generated in the warm white body layer reach the infrared sensor 8 through the top plate 2. The control means 6 performs drive control of the heating coil 7 according to the amount of infrared rays that has reached.
With the cooking container 4 placed at a fixed position on the top plate 2, the infrared sensor 8 is installed so that the bottom surface of the cooking container 4 faces the top plate 2 and the white body layer 9 as shown in FIG. ing. At this time, the temperature of the cooking container 4 can be measured based on the amount of infrared light received by the infrared sensor 8.

この測定は、以下に示す理論による。加熱コイル7の加熱によって、調理容器4の底面で発生した熱10は、赤外線として放射されると同時に、白体層9の底部11に向けて熱伝導する。調理容器4の底面から放射された赤外線は、放射率の低い(即ち赤外線反射率が高い)白体層9を通過できず、赤外線センサ8には到達しない。一方、白体層9の底部11に向けた熱伝導によって、白体層9の底部11は、調理容器4の底面で発生した熱10とほぼ同じ温度まで上昇し、そこから一定の放射率で赤外線12が放射される。この赤外線12が天板2を通して、赤外線センサ8に到達する。このため、赤外線センサ8で受光する赤外線の単位面積当たりの赤外線量、即ち熱量Q1は、下記の(1)の式となる。   This measurement is based on the following theory. The heat 10 generated on the bottom surface of the cooking container 4 by the heating of the heating coil 7 is radiated as infrared rays and simultaneously conducts heat toward the bottom 11 of the white body layer 9. Infrared rays emitted from the bottom surface of the cooking vessel 4 cannot pass through the white body layer 9 having a low emissivity (that is, having a high infrared reflectance) and do not reach the infrared sensor 8. On the other hand, the heat conduction toward the bottom 11 of the white body layer 9 causes the bottom 11 of the white body layer 9 to rise to substantially the same temperature as the heat 10 generated on the bottom surface of the cooking vessel 4, and from there at a constant emissivity. Infrared rays 12 are emitted. The infrared rays 12 reach the infrared sensor 8 through the top plate 2. For this reason, the amount of infrared rays per unit area of infrared rays received by the infrared sensor 8, that is, the amount of heat Q1, is expressed by the following equation (1).

Figure 0005674894
ここで、容器温度Tmと白体層9の温度とが等しいと仮定。
以上より、実際の赤外線センサ8の出力は(2)の式となり、
Figure 0005674894
Here, it is assumed that the container temperature Tm and the temperature of the white body layer 9 are equal.
From the above, the actual output of the infrared sensor 8 is the equation (2).

Figure 0005674894
よって、白体層9の温度Tmは、
Figure 0005674894
となる。このように、白体層9の温度を求めることができる。
Figure 0005674894
Therefore, the temperature Tm of the white body layer 9 is
Figure 0005674894
It becomes. Thus, the temperature of the white body layer 9 can be obtained.

しかし、実際は外部熱源からの影響を受けるため、(3)式では正確な温度は求められない。そこで、外部熱源からの影響も考慮した調理容器4の温度の求め方とその理論について、図3を用いて説明する。
外部熱源13から放射された単位面積あたり熱量Qe1を持つ赤外線14が、白体層9表面の入射部15に入射すると、この熱量Qe1の赤外線14は白体層9で吸収され、熱量Qe2の熱16に変換される。熱平衡時放射率と吸収率とは等しいことから、熱量Qe2は下記の(4)式となる。
Qe2=εw・Qe1 ‥ ‥ ‥ ‥ ‥ ‥ ‥ (4)
However, since it is actually affected by an external heat source, the exact temperature cannot be obtained from equation (3). Therefore, how to obtain the temperature of the cooking vessel 4 and the theory in consideration of the influence from the external heat source will be described with reference to FIG.
When the infrared ray 14 having the heat quantity Qe1 radiated from the external heat source 13 is incident on the incident portion 15 on the surface of the white body layer 9, the infrared ray 14 having the heat quantity Qe1 is absorbed by the white body layer 9, and the heat of the heat quantity Qe2 is obtained. 16 is converted. Since the emissivity at the time of thermal equilibrium is equal to the absorption rate, the heat quantity Qe2 is expressed by the following equation (4).
Qe2 = εw · Qe1 (4)

放射率εの低い(通常0.2以下)白体層9では、熱量Qe1から熱量Qe2に吸収される割合が小さく、反射される割合が大きい。つまり放射率εwの値が小さいため、外部熱源13からの赤外線14がほとんど吸収されない。吸収されたわずかの赤外線14は、白体層9の入射部15から底部17に向けて熱伝導する。この熱伝導によって、白体層9の底部11の温度が上昇し、そこから一定の放射率で赤外線12が放射される。この赤外線12が天板2を通して、赤外線センサ8に到達する。よって、白体層9の底部17から放射される赤外線18の単位面積当たりの熱量Qewは、下記(5)式となる。   In the white body layer 9 having a low emissivity ε (usually 0.2 or less), the rate of absorption from the amount of heat Qe1 to the amount of heat Qe2 is small, and the rate of reflection is large. That is, since the value of the emissivity εw is small, the infrared rays 14 from the external heat source 13 are hardly absorbed. The slight infrared ray 14 absorbed is thermally conducted from the incident part 15 to the bottom part 17 of the white body layer 9. Due to this heat conduction, the temperature of the bottom 11 of the white body layer 9 rises, and infrared rays 12 are radiated therefrom at a constant emissivity. The infrared rays 12 reach the infrared sensor 8 through the top plate 2. Therefore, the heat quantity Qew per unit area of the infrared ray 18 radiated from the bottom portion 17 of the white body layer 9 is expressed by the following equation (5).

Figure 0005674894
Figure 0005674894

つまり、赤外線センサ8へ到達する全放射熱量Q'は上記の(1)式と(5)式とが合計され、下記の(6)式となる。

Figure 0005674894
(6)式から、実際の赤外線センサ8の出力は、
Figure 0005674894
となることから、白体層9の温度Tmは、(8)式のように求めることができる。
Figure 0005674894
That is, the total amount of radiant heat Q ′ reaching the infrared sensor 8 is the sum of the above formulas (1) and (5), resulting in the following formula (6).
Figure 0005674894
From the equation (6), the actual output of the infrared sensor 8 is
Figure 0005674894
Therefore, the temperature Tm of the white body layer 9 can be obtained as shown in Equation (8).
Figure 0005674894

また、以上の式より、白体層9の温度Tmは、白体層9の底部17の温度Tewの影響を受けることがわかる。しかし、本実施の形態の誘導加熱調理器は、天板2上に白体層9を設けているので、従来よりも外部熱源13からの赤外線14の影響を受け難くなっている。このことを、従来の黒体層の場合と比較して説明する。   From the above formula, it can be seen that the temperature Tm of the white body layer 9 is affected by the temperature Tew of the bottom 17 of the white body layer 9. However, since the induction heating cooker of this Embodiment has provided the white body layer 9 on the top plate 2, it is hard to receive the influence of the infrared rays 14 from the external heat source 13 conventionally. This will be described in comparison with the conventional black body layer.

従来の黒体層の場合も、調理容器4の底面からの熱に加え、外部熱源13からの赤外線14の影響を受ける。外部熱源13からの赤外線量について、図4を用いて説明する。外部熱源13から放射された赤外線14が、黒体層19の入射部22に入射する。入射した赤外線14は、放射率の高い(即ち赤外線吸収率の高い)黒体層19を通過することができないため、黒体層19で吸収され、熱23に変換される。変換された熱23は、黒体層19の底部24へ熱伝導され、黒体層19の底部24は、黒体層19の入射部22とほぼ同じ温度まで上昇する。この温度上昇によって、黒体層19の底部24から一定の放射率で赤外線25が放射される。この赤外線25が天板2を通して、赤外線センサ8に到達する。よって、黒体層19の底部24から放射される赤外線25の単位面積あたりの熱量Qebは、下記(9)の式であらわされる。

Figure 0005674894
放射率εの高い(通常0.95以上)黒体層19は、黒体層19の放射率εbの値が大きいため、外部熱源13からの赤外線の多くを吸収する。 The conventional black body layer is also affected by the infrared rays 14 from the external heat source 13 in addition to the heat from the bottom surface of the cooking vessel 4. The amount of infrared rays from the external heat source 13 will be described with reference to FIG. Infrared rays 14 radiated from the external heat source 13 enter the incident portion 22 of the black body layer 19. Since the incident infrared ray 14 cannot pass through the black body layer 19 having a high emissivity (that is, a high infrared absorption factor), it is absorbed by the black body layer 19 and converted into heat 23. The converted heat 23 is thermally conducted to the bottom 24 of the black body layer 19, and the bottom 24 of the black body layer 19 rises to substantially the same temperature as the incident portion 22 of the black body layer 19. Due to this temperature rise, infrared rays 25 are emitted from the bottom 24 of the black body layer 19 at a constant emissivity. The infrared rays 25 reach the infrared sensor 8 through the top plate 2. Therefore, the amount of heat Qeb per unit area of the infrared rays 25 radiated from the bottom 24 of the black body layer 19 is expressed by the following equation (9).
Figure 0005674894
The black body layer 19 having a high emissivity ε (usually 0.95 or more) absorbs most of infrared rays from the external heat source 13 because the emissivity εb of the black body layer 19 is large.

よって、外部熱源13からの赤外線14の影響を白体層9の場合と黒体層19の場合で比較すると、(5)式および(9)式から下記(10)式となり、

Figure 0005674894
天板2上に白体層9を形成した方が、天板2上に黒体層19を形成した場合に比べ、放射率比分、赤外線センサ8に到達する赤外線の熱量が少ないことがわかる。つまり、天板2上に白体層9を形成した方が、外部熱源13からの赤外線14の多くを反射させるので、外部熱源13からの赤外線14がほとんど吸収されず、外部熱源13に基づく赤外線18は赤外線センサ8ではほとんど受光されない。このように、赤外線センサ8で検出できる赤外線のほとんどは、調理容器4の底面で発生した熱10に基づく赤外線12であるため、外部熱源13からの影響に左右されずに、調理容器4の温度を正確に測定することができる。 Therefore, when the influence of the infrared ray 14 from the external heat source 13 is compared between the case of the white body layer 9 and the case of the black body layer 19, the following expression (10) is obtained from the expressions (5) and (9).
Figure 0005674894
It can be seen that when the white body layer 9 is formed on the top plate 2, the amount of heat of infrared rays reaching the infrared sensor 8 is smaller than when the black body layer 19 is formed on the top plate 2. That is, when the white body layer 9 is formed on the top plate 2, most of the infrared rays 14 from the external heat source 13 are reflected, so that the infrared rays 14 from the external heat source 13 are hardly absorbed and the infrared rays based on the external heat source 13 are used. 18 is hardly received by the infrared sensor 8. Thus, most of the infrared rays that can be detected by the infrared sensor 8 are infrared rays 12 based on the heat 10 generated on the bottom surface of the cooking vessel 4, so that the temperature of the cooking vessel 4 is not affected by the influence from the external heat source 13. Can be measured accurately.

実施の形態2.
次に、実施の形態2に係る誘導加熱調理器を説明する。図5は、実施の形態2に係る誘導加熱調理器の構成を示す断面図である。この実施の形態2が図1に示す実施の形態1と異なるのは、天板2上に白体層9ではなく黒体層19が形成され、調理容器4が載置される領域を除く、天板2の底面が赤外線の特定波長帯を反射する光学フィルタ層26で覆われている点である。その他の構成については実施の形態1と同一又は同等である。なお、実施の形態1と同一又は同等な構成部分については同一符号を付し、その説明は省略する。
Embodiment 2. FIG.
Next, an induction heating cooker according to Embodiment 2 will be described. FIG. 5 is a cross-sectional view showing the configuration of the induction heating cooker according to the second embodiment. The second embodiment is different from the first embodiment shown in FIG. 1 except that the black body layer 19 is formed on the top plate 2 instead of the white body layer 9, and the region where the cooking container 4 is placed is excluded. The bottom surface of the top plate 2 is covered with an optical filter layer 26 that reflects a specific wavelength band of infrared rays. Other configurations are the same as or equivalent to those of the first embodiment. In addition, the same code | symbol is attached | subjected about the component which is the same as that of Embodiment 1, or equivalent, and the description is abbreviate | omitted.

次に、動作について説明する。本体1に設けられた操作パネル3上のスイッチ入力を制御手段6が検知すると、加熱コイル7が駆動を開始し天板2上の調理容器4を誘導加熱すると共に、表示部5に加熱オン状態である旨の表示を行う。誘導加熱によって調理容器4の底面で発生した熱10は、黒体層19の底部に熱伝導され、黒体層19の底部は調理容器4とほぼ同じ温度まで上昇し、そこから一定の放射率で赤外線が下方に放射される。この赤外線が天板2を通して、赤外線センサ8に到達する。到達した赤外線量に応じて、制御手段6は、加熱コイル7の駆動制御を行う。ここで、調理容器4が載置される領域には光学フィルタ層26が設けられていないので、黒体層19の底部から天板2を通して放射される赤外線が光学フィルタ層26の影響を受けることはない。   Next, the operation will be described. When the control means 6 detects a switch input on the operation panel 3 provided in the main body 1, the heating coil 7 starts to drive, induction heating the cooking container 4 on the top 2, and the display unit 5 is in a heating-on state. Is displayed. The heat 10 generated on the bottom surface of the cooking container 4 by induction heating is conducted to the bottom of the black body layer 19, and the bottom of the black body layer 19 rises to substantially the same temperature as the cooking container 4, from which a constant emissivity is obtained. Infrared rays are emitted downward. The infrared rays reach the infrared sensor 8 through the top plate 2. The control means 6 performs drive control of the heating coil 7 according to the amount of infrared rays that has reached. Here, since the optical filter layer 26 is not provided in the region where the cooking container 4 is placed, infrared rays radiated from the bottom of the black body layer 19 through the top plate 2 are affected by the optical filter layer 26. There is no.

一方、外部熱源から放射された赤外線が黒体層19に入射すると、この赤外線は黒体層19に吸収され、熱に変換される。この熱が黒体層19の底部へ熱伝導され、黒体層19の底部から一定の放射率で赤外線が放射される。後述する天板2の特性により、黒体層19の底部から放射された赤外線のうち特定波長帯の赤外線が天板2を通過する。しかしながら、天板2の底面には、赤外線の特定波長帯を反射する光学フィルタ層26が設けられているため、天板2の底面に到達した特定波長帯の赤外線は天板2の底面で全て反射し、天板2を通過することはない。その結果、外部熱源に起因した赤外線が天板2を通過して赤外線センサ8に到達することを効果的に防止することができる。   On the other hand, when infrared rays emitted from an external heat source enter the black body layer 19, the infrared rays are absorbed by the black body layer 19 and converted into heat. This heat is conducted to the bottom of the black body layer 19, and infrared rays are emitted from the bottom of the black body layer 19 with a constant emissivity. Due to the characteristics of the top plate 2 described later, infrared rays in a specific wavelength band among the infrared rays radiated from the bottom of the black body layer 19 pass through the top plate 2. However, since the optical filter layer 26 that reflects the specific wavelength band of infrared rays is provided on the bottom surface of the top plate 2, all infrared rays in the specific wavelength band that reach the bottom surface of the top plate 2 are all on the bottom surface of the top plate 2. It is reflected and does not pass through the top plate 2. As a result, it is possible to effectively prevent infrared rays caused by the external heat source from reaching the infrared sensor 8 through the top 2.

光学フィルタ層26が反射する赤外線の特定波長帯は、黒体層19と天板2を経て赤外線センサ8に到達する赤外線の波長帯である。黒体層19と天板2を通過する赤外線の波長帯について、図6〜9を用いて説明する。
図6に、黒体層19の赤外線波長毎の分光放射輝度を示す。また、図7に天板2の透過率特性の例を示す。そして、図6の分光放射輝度と図7の透過率とを乗算した分光放射輝度が、黒体層19と天板2を通過した後の分光放射輝度となる。黒体層19と天板2を通過した後の分光放射輝度のグラフを図8に示し、その横軸を拡大させたグラフを図9に示す。図9より、黒体層19と天板2を通過後の放射輝度は、1.75〜4.25μmの範囲に分布している。これが、黒体層19と天板2を通過する赤外線の波長帯である。
The specific wavelength band of infrared light reflected by the optical filter layer 26 is the wavelength band of infrared light that reaches the infrared sensor 8 through the black body layer 19 and the top plate 2. The infrared wavelength band that passes through the black body layer 19 and the top plate 2 will be described with reference to FIGS.
FIG. 6 shows the spectral radiance of the black body layer 19 for each infrared wavelength. FIG. 7 shows an example of transmittance characteristics of the top 2. The spectral radiance obtained by multiplying the spectral radiance of FIG. 6 by the transmittance of FIG. 7 is the spectral radiance after passing through the black body layer 19 and the top plate 2. A graph of spectral radiance after passing through the black body layer 19 and the top plate 2 is shown in FIG. 8, and a graph in which the horizontal axis is enlarged is shown in FIG. From FIG. 9, the radiance after passing through the black body layer 19 and the top plate 2 is distributed in the range of 1.75 to 4.25 μm. This is an infrared wavelength band that passes through the black body layer 19 and the top plate 2.

よって、図10に示すように、1.75〜4.25μmの範囲の波長帯の赤外線を反射しそれ以外の波長帯の赤外線を通過させる光学フィルタ層26を、被加熱物が載置される領域を除く、天板2の底面に形成することで、外部熱源からの赤外線のうち、天板2を通過できる波長帯の赤外線は、光学フィルタ層26で反射してしまう。このため、外部熱源からの赤外線がほとんど天板2を通過できず、外部熱源に基づく赤外線は赤外線センサ8ではほとんど受光されない。
このように、赤外線センサ8で検出できる赤外線のほとんどは、調理容器4の底面で発生した熱に基づく赤外線であるため、外部熱源からの影響に左右されずに、調理容器4の温度を正確に測定することができる。
Therefore, as shown in FIG. 10, the object to be heated is placed on the optical filter layer 26 that reflects infrared light in the wavelength band of 1.75 to 4.25 μm and transmits infrared light in the other wavelength bands. By forming on the bottom surface of the top plate 2 excluding the region, infrared light in a wavelength band that can pass through the top plate 2 out of infrared rays from the external heat source is reflected by the optical filter layer 26. For this reason, almost no infrared rays from the external heat source can pass through the top plate 2, and infrared rays based on the external heat source are hardly received by the infrared sensor 8.
Thus, most of the infrared rays that can be detected by the infrared sensor 8 are infrared rays based on the heat generated on the bottom surface of the cooking vessel 4, so that the temperature of the cooking vessel 4 can be accurately determined without being influenced by the influence of the external heat source. Can be measured.

なお、図6、図8、図9に示すように、分光放射輝度は黒体層19の温度が高いほど増えているが、いずれの温度であっても光学フィルタ層26が反射する赤外線の波長範囲内に収まっている。よって、黒体層の温度が何度であっても、外部熱源13の影響を受けずに調理容器4の温度を正確に測定することができる。   As shown in FIGS. 6, 8, and 9, the spectral radiance increases as the temperature of the black body layer 19 increases, but the wavelength of infrared rays reflected by the optical filter layer 26 at any temperature. It is within the range. Therefore, the temperature of the cooking container 4 can be accurately measured without being affected by the external heat source 13 regardless of the temperature of the black body layer.

また、本実施の形態では、黒体層19と天板2が配置されている誘導加熱調理器の場合を例に示しているが、これに限定するものではなく、異なる材質の被加熱物体が載置されても一定の放射率で赤外線を発する層と、被加熱物を載置する天板が配置されている誘導加熱調理器であれば、それらの層を通過し赤外線センサ8に到達する赤外線の波長帯が透過しないように光学フィルタ層の透過率を設定することで、本実施の形態と同様に調理容器4の温度を正確に測定できる。   Moreover, in this Embodiment, although the case of the induction heating cooking appliance with which the black body layer 19 and the top plate 2 are arrange | positioned is shown as an example, it is not limited to this, The to-be-heated object of a different material is shown. If it is an induction heating cooker in which a layer that emits infrared rays with a constant emissivity and a top plate on which an object to be heated is placed, the infrared sensor 8 passes through these layers and reaches the infrared sensor 8. By setting the transmittance of the optical filter layer so as not to transmit the infrared wavelength band, the temperature of the cooking container 4 can be accurately measured as in the present embodiment.

また、光学フィルタ層ではなく、塗装や遮蔽層を用いた場合も赤外線の反射を防ぐことは出来るが、赤外線を吸収するため、熱に変換されて赤外線として放射し、赤外線センサへ妨害を与えてしまうため、光学フィルタ層のような効果は得られない。さらに、塗装や遮蔽層の場合、赤外線の反射・透過・吸収がどの程度の割合で起こるかが明確でないため補正が困難であり、よって、光学フィルタ層のように、外部熱源からの影響に左右されずに、調理容器の温度を正確に測定することはできない。
一方、光学フィルタ層は赤外線を吸収せず、さらに、透過率を設定することで、必要のない赤外線をほとんど反射させるよう補正が可能なので、外部熱源からの影響に左右されずに、調理容器の温度を正確に測定することができる。
In addition, it is possible to prevent reflection of infrared rays by using a paint or shielding layer instead of an optical filter layer, but in order to absorb infrared rays, it is converted into heat and emitted as infrared rays, which interfere with infrared sensors. Therefore, an effect like an optical filter layer cannot be obtained. Furthermore, in the case of a coating or shielding layer, it is not clear how much infrared reflection / transmission / absorption occurs, so it is difficult to correct it. Therefore, like an optical filter layer, it is affected by the influence from an external heat source. Otherwise, the temperature of the cooking container cannot be measured accurately.
On the other hand, the optical filter layer does not absorb infrared rays, and furthermore, by setting the transmittance, it can be corrected to reflect almost no unnecessary infrared rays. The temperature can be measured accurately.

本発明の活用例として、誘導加熱を行う様々な装置の温度検出への適用が可能である。   As an application example of the present invention, application to temperature detection of various apparatuses that perform induction heating is possible.

1 本体、2 天板、3 操作パネル、4 調理容器、5 表示部、6 制御手段、7
加熱コイル、8 赤外線センサ、9 白体層、10,16,23 熱、11,17,2
0,24 底部、12,14,18,21,25 赤外線、13 外部熱源、15,22
入射部、19 黒体層、26 光学フィルタ層。
1 main body, 2 top plate, 3 operation panel, 4 cooking container, 5 display section, 6 control means, 7
Heating coil, 8 Infrared sensor, 9 White body layer, 10, 16, 23 Heat, 11, 17, 2
0, 24 Bottom, 12, 14, 18, 21, 25 Infrared, 13 External heat source, 15, 22
Incident part, 19 black body layer, 26 optical filter layer.

Claims (2)

被加熱物を上面に載置する天板と、
前記天板の下方に配置され、被加熱物を加熱する誘導加熱手段と、
前記天板の下方に配置され、前記天板から放射される赤外線を検知する温度測定手段と、
前記温度測定手段の出力に基づいて、前記誘導加熱手段を制御する制御手段と、
前記天板の上面に形成され、前記被加熱物からの熱伝導による温度上昇に起因した赤外線を一定の放射率で下方に放射する赤外線放射層と、
前記被加熱物が載置される領域を除く前記天板の底面を覆い、前記赤外線放射層および前記天板を通過する波長帯の赤外線を通過させずに反射させ、前記波長帯の赤外線以外の赤外線を通過させる光学フィルタ層と
を備えることを特徴とする誘導加熱調理器。
A top plate for placing an object to be heated on the top surface;
An induction heating means disposed below the top plate for heating an object to be heated;
A temperature measuring means disposed below the top plate and detecting infrared rays radiated from the top plate;
Control means for controlling the induction heating means based on the output of the temperature measuring means;
An infrared radiation layer that is formed on the top surface of the top plate, and radiates infrared rays at a constant emissivity downward due to temperature rise due to heat conduction from the object to be heated;
Covers the bottom surface of the top plate excluding the region where the object to be heated is placed , reflects the infrared radiation layer and the infrared light in the wavelength band passing through the top plate without passing through, and other than the infrared light in the wavelength band An optical filter layer that transmits infrared rays ;
An induction heating cooker comprising:
前記光学フィルタ層で通過させずに反射させる赤外線の波長帯は、1.75〜4.25μmであることを特徴とする請求項1記載の誘導加熱調理器。 The induction heating cooker according to claim 1, wherein the wavelength band of infrared rays reflected without passing through the optical filter layer is 1.75 to 4.25 µm.
JP2013220898A 2013-10-24 2013-10-24 Induction heating cooker Active JP5674894B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013220898A JP5674894B2 (en) 2013-10-24 2013-10-24 Induction heating cooker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013220898A JP5674894B2 (en) 2013-10-24 2013-10-24 Induction heating cooker

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2010127873A Division JP5459080B2 (en) 2010-06-03 2010-06-03 Induction heating cooker

Publications (2)

Publication Number Publication Date
JP2014013780A JP2014013780A (en) 2014-01-23
JP5674894B2 true JP5674894B2 (en) 2015-02-25

Family

ID=50109312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013220898A Active JP5674894B2 (en) 2013-10-24 2013-10-24 Induction heating cooker

Country Status (1)

Country Link
JP (1) JP5674894B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7288224B1 (en) 2022-06-16 2023-06-07 鳴海製陶株式会社 glass top plate for cooker

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005108586A (en) * 2003-09-30 2005-04-21 Nippon Electric Glass Co Ltd Electric cooker
JP4497225B2 (en) * 2008-04-21 2010-07-07 パナソニック株式会社 Induction heating cooker

Also Published As

Publication number Publication date
JP2014013780A (en) 2014-01-23

Similar Documents

Publication Publication Date Title
JP2002075624A (en) Induction heating cooker
JP2006318925A (en) Heating cooker
JP2013251254A (en) Heating cooker
JP5459080B2 (en) Induction heating cooker
JP2004111055A (en) Heating cooker
JP5728413B2 (en) Induction heating cooker
JP5315089B2 (en) Induction heating cooker
JP5674894B2 (en) Induction heating cooker
JP4077501B2 (en) Cooker
JP2009170433A (en) Induction-heating cooker
JP5185454B1 (en) Cooker
JP5286141B2 (en) Induction heating cooker
JP2009176751A (en) Induction heating cooker
JP4443947B2 (en) Induction heating cooker
JP5210967B2 (en) Induction heating cooker
JP2009266506A (en) Induction heating cooker
JP5209399B2 (en) Induction heating cooker
JP2016091868A (en) Induction heating cooker
JP2015076128A (en) Cooking heater
JP6303135B2 (en) Induction heating cooker
JP2004241220A (en) Induction heating cooking device
JP4151639B2 (en) Induction heating cooker
JP5492690B2 (en) Induction heating cooker
JP4535177B2 (en) Induction heating cooker
JP2010113846A (en) Induction heating cooker

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131024

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20140326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140722

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20140801

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140918

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141222

R150 Certificate of patent or registration of utility model

Ref document number: 5674894

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250