JPH11221583A - Tmah廃液の超臨界水酸化処理方法 - Google Patents

Tmah廃液の超臨界水酸化処理方法

Info

Publication number
JPH11221583A
JPH11221583A JP2698698A JP2698698A JPH11221583A JP H11221583 A JPH11221583 A JP H11221583A JP 2698698 A JP2698698 A JP 2698698A JP 2698698 A JP2698698 A JP 2698698A JP H11221583 A JPH11221583 A JP H11221583A
Authority
JP
Japan
Prior art keywords
waste liquid
tmah
supercritical water
water oxidation
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2698698A
Other languages
English (en)
Other versions
JP3495904B2 (ja
Inventor
Shinichirou Kawasaki
慎一朗 川崎
Akira Suzuki
明 鈴木
Tomoyuki Iwamori
智之 岩森
Taro Oe
太郎 大江
Hiroshi Suzukaki
裕志 鈴垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP02698698A priority Critical patent/JP3495904B2/ja
Publication of JPH11221583A publication Critical patent/JPH11221583A/ja
Application granted granted Critical
Publication of JP3495904B2 publication Critical patent/JP3495904B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

(57)【要約】 【課題】 半導体製造工場からの廃液に含まれる難分解
性のTMAHを効率よく分解処理する。 【解決手段】 テトラ・メチル・アンモニウム・ハイド
ロオキサイドを含む廃液を、反応温度550〜650
℃、反応圧力23〜25MPaの条件下で、酸化剤とし
て酸素又は過酸化水素水を用いて超臨界水酸化処理す
る。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、テトラ・メチル・
アンモニウム・ハイドロオキサイドを含む廃液を分解処
理する方法、詳しくは超臨界水酸化法で処理する方法に
関するものである。
【0002】
【従来技術】半導体製造工場や液晶製造工場においてエ
ッチングレジスト(以下単に「レジスト」という)の洗
浄剤として使用され、排出されるテトラ・メチル・アン
モニウム・ハイドロオキサイド(以下単に「TMAH」
という)は強塩基性を示し、生物処理法では処理が難か
しい難分解性物質である。
【0003】すなわち、このTMAHは、これ自体が難
分解性であると共に、ユースポイントにおいて約2%の
高濃度で使用されている。これに対しTMAHのみを含
む廃水を活性汚泥法で処理できるのは最高0.3〜0.
5%という低濃度のものに限られため、生物処理するに
は高倍率で希釈することが必要になって、処理量の増大
を招くからである。また、生物処理はもともと処理に時
間がかかるという欠点もある。
【0004】これらのことから、現在は、上記TMAH
廃液の処理はほとんどがエバポレータなどの濃縮設備に
よつて廃液量を減らした後、焼却処分されており、処理
に高いコストを費やしているのが現状である。
【0005】なお、TMAHは高価な溶媒であるため再
利用されている事例もあるが、これは、レジストを洗浄
した高濃度のTMAH廃液はレジストとの分離が技術的
に簡単でないという問題があるため再利用の対象とされ
ておらず、TMAH洗浄後の洗浄純水に含まれるTMA
Hだけが、エバポレータ等での濃縮を介して再利用され
ているにすぎない。
【0006】
【発明が解決すべき課題】上述のように、処理に時間が
かかり、大量の稀釈を要するなどの理由で、生物処理す
ることは困難とされている半導体製造工場からの廃液に
含まれるTMAHは、高いコストをかけて濃縮し焼却処
理されているが、この焼却処理においても更に検討すべ
き課題が指摘される。例えば、TMAHの焼却に伴って
これに含まれている窒素が大気汚染を引き起こす有害な
NOxガスとなるため、大掛かりな排ガス処理(脱硝処
理)設備が必要になる。また、この設備は焼却炉の炉壁
や配管の腐食を避けるために耐酸性,耐食性の材を用い
る必要がある。
【0007】本発明者は以上のような半導体製造工場か
らの廃液に含まれる難分解性のTMAHの処理について
種々検討を重ね、上記問題点を解決することができる本
発明をなすに至ったものである。
【0008】すなわち、本発明者は、近年、水の臨界点
(374℃、22MPa)を超えた超臨界水中で有機物
の酸化処理を行う方法として提案されている超臨界水酸
化処理法に注目した(特公平1‐38532号公報、米
国特許第41l3446号公報、米国特許第43381
99号公報、米国特許第4543l90号公報)。
【0009】この処理法によれば、水の臨界点(温度3
74℃、圧力22MPa)以上において、超臨界水の存
在下で処理対象物の理論酸素量程度の酸化剤(空気、液
体酸素、過酸化水素水、溶存酸素など)を供給するだけ
で、処理対象有機物を完全に分解できる処理方法であ
り、廃液や廃棄物中の有機物(炭素、水素)は完全に二
酸化炭素と水に分解されて、窒素化合物については窒素
ガスに、また、酸を生成するハロゲン元素については中
和剤を同時に供給することで無機塩の形まで分解され
る。
【0010】ところで超臨界水酸化処理を工業的規模で
実施する設備においては、酸化剤として、安価であるこ
と、取扱に危険がなく簡易な設備で容易に利用できるこ
となどの理由から空気の使用が望まれるが、本発明者が
検討を重ねたところ、上記のTMAH廃液の超臨界水酸
化処理に酸化剤として空気を用いた場合には、反応温度
にもよるが、含有窒素の相当部分が窒素ガスとならずに
処理流体中に亜硝酸,硝酸やアンモニアが多く含まれて
しまうという問題を知見した。
【0011】この現象が現れる理由は現時点において理
論的に必ずしも明らかでないが、純酸素等を用いた場合
と空気を用いた場合の違いである空気中の窒素ガスの存
在が影響するものと推定される。しかしいずれにしてT
MAH廃液の工業的な処理設備において、処理水中にア
ンモニアや硝酸等のN化合物が多量に含まれてしまうこ
とは問題であり、後段にアンモニアや硝酸を処理する設
備が更に必要になることの負担が大きい。
【0012】本発明者はこのような知見に基づいて更に
鋭意検討を重ね、以下の発明を提案するものである。
【0013】
【課題を解決するための手段】本発明は、超臨界水酸化
処理法を用いてTMAHを含む廃液を処理するに際し、
反応温度550〜650℃、好ましくは600〜650
℃、圧力23〜25MPaの条件下で、酸化剤として酸
素又は過酸化水素水を用いてTMAHを超臨界水酸化処
理することを特徴とする。反応温度は550℃未満で
は、処理水に未分解物としてTOC成分が残留する可能
性があり、650℃を越えると、反応器の材質の選定が
難しくなるという問題を招くため上記の範囲とすること
がよい。圧力は23MPa未満では超臨界水の密度が低
下するため滞留時間が短くなり未分解物が生成される可
能性があり、25MPaを越えると耐圧構造を強化する
必要があるため配管や反応器の肉厚をかなり厚くするこ
とを要し、コスト的に不利になるという問題を招くため
上記の範囲とされることがよい。
【0014】ここで供給する酸化剤の量は、TMAHを
酸化分解するのに必要な理論酸素量の約1〜1.5倍と
され、反応時間は約l分程度で二酸化炭素、水、窒素ガ
スにまで完全分解することができる。
【0015】上記の超臨界水酸化処理においては、TM
AH自体の酸化熱で反応温度を持続保持することが好ま
しく、処理廃液中のTMAHの濃度が薄い場合には、超
臨界水酸化反応器に供給する前段において濃度を10〜
20wt%程度まで濃縮する操作を行うようにしてもよ
い。また、処理廃液中のTMAHだけでは熱量が不足す
る場合には、補助燃料を供給してもよい。この補助燃料
としては、アルコール等を用いることもできるが、半導
体や液晶工場からの廃液を処理する場合にあっては、こ
れらの工場から同時に排出されるアンモニア廃液、剥離
剤として使用されている有機溶剤(例えば、N‐メチル
−2−ピロリドン、アセトン等)、工場内で発生する汚
泥などを用いることもできる。この工場排出廃液等を補
助燃料として利用する場合には、複数の廃棄物を一括に
処理できるという効率的な処理が実現できる。補助燃料
の供給は、TMAH廃液に予め混合してもよいし、供給
系の途中で合流させるようにしてもよい。
【0016】上記の処理において、TMAH廃液(補助
燃料を供給する場合を含む:以下において同じ)と酸素
の超臨界水酸化反応器への供給は、混合した状態で供給
してもよいし、二重管ノズル等を用いて反応器への噴霧
供給時に混合するようにしてもよい。またTMAH廃液
は供給の途中で必要に応じて予熱してもよい。
【0017】
【発明の実施の形態】実施形態1 図1は本発明方法を実施するための用いられる装置の概
要を模式図で表したものである。
【0018】この図1において、超臨界水酸化反応器5
に対して、TMAH廃液の供給系は次のように構成され
ている。
【0019】すなわち、TMAH廃液は、TMAH廃液
供給ポンプ1により加圧されて供給配管11を介して超
臨界水酸化反応器5に該液を供給するように接続されて
いると共に、その供給径路の途中で、同じく図示しない
加圧手段により水の臨界圧に加圧された状態の酸素(又
は過酸化水素水)が次のように混合される。すなわち、
予めボンベ等に加圧充填して準備されている酸素を、配
管21を介して上記原液の供給配管11の原液と合流混
合させ、合流管3を通して超臨界水酸化反応器5に供給
される。なお上記TMAH廃液は供給系の途中で反応器
5の処理流体の熱を用いて必要により予熱してもよい。
【0020】超臨界水酸化反応器5は、既知のベッセル
型と称される縦筒型の反応器であっても、パイプ型(管
型)と称される型式のものであってもよいが、図1中の
符号5で示しているのはパイプ型の反応器である。
【0021】超臨界水酸化反応器5に導入(供給)され
た上記TMAH廃液と酸素の混合物は、酸素の存在によ
り酸化反応して自燃・発熱し、超臨界水酸化反応を起こ
す。この際、酸化剤として酸素を用いた反応にあって
は、超臨界水酸化反応で生成される処理流体中にアンモ
ニアあるいは硝酸態窒素は生成されず、窒素はN2 ガス
となる。
【0022】超臨界水酸化反応器5から、排出系を構成
する排出管6を通して排出された処理流体は、図示しな
い減圧装置などを含んで構成される分離器7で気体と液
体に気液分離され、N2 ,CO2 の排ガスは排ガス排出
配管8を介して大気に放出され、液体(水)は水排出配
管9を介して河川,海洋等に排出される。
【0023】この実施形態によれば、超臨界水酸化反応
を反応温度を550〜650℃、圧力を22〜25MP
aの範囲で行うことで、廃液中のTMAHの窒素分はア
ンモニアや硝酸態窒素とならずにN2 ガスとなり、NO
xの排ガス処理設備を設けることなく所定の排出基準値
以下の良好な処理を有効に実施することができる。
【0024】なお、図1には、供給系の合流管3に補助
燃料を補助燃料供給ポンプ4から供給配管41を介して
供給できるようにしており、TMAH廃液の発熱量が不
足する場合にはこの補助燃料を供給することができる。
【0025】
【実施例】図1の連続処理装置を用いて、TMAH廃液
の超臨界水酸化を行った処理条件について下記表1に示
す。
【0026】
【表1】
【0027】上記のTMAH廃液を、酸化剤として酸素
を用いて超臨界水酸化処理した場合の結果について下記
表2に示す。
【0028】また比較のために酸化剤として空気を用い
た場合の結果について下記表3に示す。
【0029】
【表2】
【0030】
【表3】
【0031】これらの表3から分かるように、超臨界水
酸化処理の酸化剤として空気を用いると、反応場に供給
された空気に多量の窒素が存在するため、TMAH中の
窒素分をN2 まで完全分解することを阻害する結果が生
じている。すなわち、反応温度が低い場合には、分解さ
れないアンモニアが残留し、反応温度が高い場合は硝
酸、亜硝酸が生成している。なお、表3から分かるよう
に、空気を酸化剤として用いた場合であっても、反応温
度を600℃近傍に制御することができれば、アンモニ
ア、硝酸及び亜硝酸が生成しない処理を行うことは可能
であるが、温度制御を厳しく行う必要があり、このため
には、処理水のpHや処理ガスのNOxなどのモニタリ
ング機構、モニタリング値によって供給側の供給量の制
御機構などが必要になる。
【0032】これに対し、表2に示すように酸化剤とし
て窒素を含まない酸素を用いている本発明の実施例によ
れば、反応温度によらず有機物、窒素分ともにCO2
2まで完全分解できていることが分かる。したがっ
て、反応温度を厳しく制御するような機構は必要なく、
簡易な設備、簡易な運転が可能となる。
【0033】よって、本発明は難分解性物質であるTM
AH廃液処理に対して、非常に有効な手段であることが
分かる。
【0034】
【発明の効果】本発明によれば、生物処理では分解する
ことが困難なTMAH廃液を超臨界水酸化処理を行うこ
とで、以下の効果が得られる。
【0035】反応時間約l分と短時間で、有機物はすべ
て二酸化炭素と水に分解され、窒素分はすべて窒素ガス
にまで分解されるため、焼却処理を行った場合に発生す
るNOxガスを処理するための排カス設備が不要とな
る。
【0036】超臨界水酸化する際の酸化剤として空気を
用いた場合には、窒素除去率が悪くなるが、本発明にお
いては酸素あるいは過酸化水素水を用いることで有機
物、窒素分をCO2 ,N2 までの完全分解が実現でき
る。
【0037】本発明を半導体製品の製造工場等に適用し
た場合には、TMAH廃液の他に同時に発生するアンモ
ニア廃液や剥離剤などの有機溶媒を補助燃料として利用
したり、あるいは補助燃料としてではなく、同時に分解
処理する対象とできるので、効率的な処理が実現され
て、半導体製造工場等の廃液処理法として極めて有益で
ある。
【図面の簡単な説明】
【図1】図1は本発明を実施するために用いる超臨界水
酸化反応装置の構成概要を示した図である。
【符号の説明】
1・・・TMAH廃液供給ポンプ 11・・・廃液供給配管 21・・・酸素供給配管 3・・・合流管 4・・・補助燃料供給ポンプ 41・・・補助燃料供給配管 5・・・超臨界水酸化反応器 6・・・排出管 7・・・分離器 8・・・排ガス排出管 9・・・水排出管
───────────────────────────────────────────────────── フロントページの続き (72)発明者 大江 太郎 埼玉県戸田市川岸1丁目4番9号 オルガ ノ株式会社総合研究所内 (72)発明者 鈴垣 裕志 埼玉県戸田市川岸1丁目4番9号 オルガ ノ株式会社総合研究所内

Claims (3)

    【特許請求の範囲】
  1. 【請求項1】 テトラ・メチル・アンモニウム・ハイド
    ロオキサイド(TMAH)を含む廃液を、反応温度55
    0〜650℃、反応圧力23〜25MPaの条件下で、
    酸化剤として酸素又は過酸化水素水を用いて超臨界水酸
    化処理することを特徴とするTMAH廃液の処理方法。
  2. 【請求項2】 請求項1において、TMAHを含む廃液
    が、半導体製品の製造に用いるエッチングレジストの洗
    浄廃液であることを特徴とするTMAH廃液の処理方
    法。
  3. 【請求項3】 請求項1又は2において、TMAHを含
    む廃液と共に、補助燃料を供給することを特徴とするT
    MAH廃液の処理方法。
JP02698698A 1998-02-09 1998-02-09 Tmah廃液の超臨界水酸化処理方法 Expired - Fee Related JP3495904B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02698698A JP3495904B2 (ja) 1998-02-09 1998-02-09 Tmah廃液の超臨界水酸化処理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02698698A JP3495904B2 (ja) 1998-02-09 1998-02-09 Tmah廃液の超臨界水酸化処理方法

Publications (2)

Publication Number Publication Date
JPH11221583A true JPH11221583A (ja) 1999-08-17
JP3495904B2 JP3495904B2 (ja) 2004-02-09

Family

ID=12208498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02698698A Expired - Fee Related JP3495904B2 (ja) 1998-02-09 1998-02-09 Tmah廃液の超臨界水酸化処理方法

Country Status (1)

Country Link
JP (1) JP3495904B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100474191B1 (ko) * 2001-02-02 2005-03-08 가부시키가이샤 닛폰 쇼쿠바이 폐수의 처리 방법 및 처리 장치
KR100770823B1 (ko) 2006-09-01 2007-10-26 한화석유화학 주식회사 질소함유 유기화합물의 분해 방법 및 장치
US7879301B2 (en) 2004-04-27 2011-02-01 Canon Kabushiki Kaisha Microfluidic element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100474191B1 (ko) * 2001-02-02 2005-03-08 가부시키가이샤 닛폰 쇼쿠바이 폐수의 처리 방법 및 처리 장치
US7879301B2 (en) 2004-04-27 2011-02-01 Canon Kabushiki Kaisha Microfluidic element
KR100770823B1 (ko) 2006-09-01 2007-10-26 한화석유화학 주식회사 질소함유 유기화합물의 분해 방법 및 장치

Also Published As

Publication number Publication date
JP3495904B2 (ja) 2004-02-09

Similar Documents

Publication Publication Date Title
US5124051A (en) Process for treatment of contaminated waste water or groundwater
JP2002273494A (ja) 無機塩を含む有機性固形物、特に下水汚泥の処理方法
JP4224817B2 (ja) 1,4−ジオキサンの処理方法
JPH07116650A (ja) 高濃度アンモニア含有水からアンモニアをガス状で分離、処理する方法
JP3495904B2 (ja) Tmah廃液の超臨界水酸化処理方法
JPH09159798A (ja) 泡除染および除染廃液処理の方法
JP2004033910A (ja) 有機酸洗浄排液の処理方法および装置
JP3506171B2 (ja) Toc成分の除去方法及び装置
JPH11300334A (ja) 土壌中のダイオキシン類等の有機塩素化合物の分解除去方法
CN100413787C (zh) 一种高效催化臭氧氧化去除水中难降解有机污染物的方法
JP3345285B2 (ja) 超臨界水酸化装置の起動方法、停止方法
KR100398799B1 (ko) 질소 함유 유기물을 포함하는 폐수의 처리공정
JP2002102672A (ja) 水熱反応装置および方法
US5837148A (en) Nitrate recovery plant
JP2001137888A (ja) 有機性廃水の処理方法
JPH11226583A (ja) アンモニアや有機態窒素を含む有機物の超臨界水酸化方法及び装置
JPH09299966A (ja) 超臨界水酸化処理方法及び装置
JP6663302B2 (ja) 有機酸溶液分解装置、及び有機酸溶液分解方法
KR100770823B1 (ko) 질소함유 유기화합물의 분해 방법 및 장치
JP2000070896A (ja) 有機性廃棄物の処理方法および排水処理方法
JP2003236569A (ja) 水熱酸化反応方法
JP3710675B2 (ja) 窒素原子含有有機物の処理方法および処理装置
JPH02245285A (ja) アンモニア含有廃水の処理方法
JPH11114584A (ja) 水処理方法および水処理装置
JP2000167570A (ja) 排水の処理方法

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20071121

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20081121

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091121

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20091121

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20101121

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131121

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees