JP2004033910A - 有機酸洗浄排液の処理方法および装置 - Google Patents
有機酸洗浄排液の処理方法および装置 Download PDFInfo
- Publication number
- JP2004033910A JP2004033910A JP2002194421A JP2002194421A JP2004033910A JP 2004033910 A JP2004033910 A JP 2004033910A JP 2002194421 A JP2002194421 A JP 2002194421A JP 2002194421 A JP2002194421 A JP 2002194421A JP 2004033910 A JP2004033910 A JP 2004033910A
- Authority
- JP
- Japan
- Prior art keywords
- concentration
- liquid
- hydrothermal
- organic acid
- reactor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/54—Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
- Heat Treatment Of Water, Waste Water Or Sewage (AREA)
- Treatment Of Water By Oxidation Or Reduction (AREA)
Abstract
【課題】簡単な操作により処理することができ、環境汚染性が低く、しかも有価物の回収が容易な有機酸洗浄排液の処理方法および装置を提供する。
【解決手段】有機酸洗浄排液の高濃度排液L1を第1膜分離装置2で濃縮し、その透通液L5と低濃度排液L6を第2膜分離装置4で濃縮し、これらの濃縮液を蒸発濃縮装置6で濃縮し、高濃縮液を水熱反応装置7で超臨界または亜臨界状態で水熱反応し、処理流体を固体分離器8に導入して固形物を分離し、冷却器9で冷却したのち、気液分離器11および固液分離器14で分離する。
【選択図】 図1
【解決手段】有機酸洗浄排液の高濃度排液L1を第1膜分離装置2で濃縮し、その透通液L5と低濃度排液L6を第2膜分離装置4で濃縮し、これらの濃縮液を蒸発濃縮装置6で濃縮し、高濃縮液を水熱反応装置7で超臨界または亜臨界状態で水熱反応し、処理流体を固体分離器8に導入して固形物を分離し、冷却器9で冷却したのち、気液分離器11および固液分離器14で分離する。
【選択図】 図1
Description
【0001】
【発明の属する技術分野】
本発明は有機酸洗浄排液を水熱反応により処理する方法および装置に関するものである。
【0002】
【従来の技術】
ボイラ、熱交換器その他のプラントの金属表面に付着した酸化物スケール等のスケールを洗浄除去する方法として、有機酸(塩を含む)を主成分とする有機酸洗浄剤で化学洗浄して除去する方法がある。この化学洗浄に用いられる有機酸としてはクエン酸、ヒドロオキシ酢酸、リンゴ酸等のオキシカルボン酸、ギ酸、シュウ酸、マロン酸等の飽和カルボン酸、エチレンジアミン四酢酸(EDTA)等のアミノポリカルボン酸などが利用されている。有機酸洗浄剤にはこのような有機酸のほか、還元剤、腐食抑制剤、その他の添加剤が添加されている。
【0003】
有機酸洗浄はこのような有機酸洗浄剤をスケールの付着した金属表面と接触させることにより、スケール成分を洗浄剤中に溶出させて除去する。このような洗浄により生成する有機酸洗浄排液は、残留する有機酸および添加剤のほか、スケールの溶出によって生成する有機酸塩その他の塩ならびに不溶性固形物などが含まれる。
【0004】
従来の有機酸洗浄排液の処理法としては逆浸透膜等の分離膜を用いる膜分離法により濃縮し、濃縮液を焼却等により処理する方法が提案されている(特開平3−154687号)。
しかしこの方法では、有機酸排液に含まれているイオウ化合物や窒素化合物が燃焼によりSOxやNOxとなって排出され、環境を汚染するおそれがある。また洗浄排液中に含まれる金属イオン特に鉄イオンは燃焼により酸化物となるが、焼却灰と混合した状態で排出され、その再利用が困難である。
【0005】
【発明が解決しようとする課題】
本発明の課題は、簡単な操作により処理することができ、環境汚染性が低く、しかも有価物の回収が容易な有機酸洗浄排液の処理方法および装置を提供することである。
【0006】
【課題を解決するための手段】
本発明は次の有機酸洗浄排液の処理方法および装置である。
(1) 有機酸洗浄排液を濃縮する濃縮工程と、
濃縮液を水の超臨界または亜臨界状態で水熱反応により酸化分解する水熱反応工程と、
水熱反応処理流体から固形物を分離する分離工程とを含む有機酸洗浄排液の処理方法。
(2) 濃縮工程が膜分離工程および/または蒸発濃縮工程である上記(1)記載の方法。
(3) 濃縮工程が高濃度排液を膜分離する第1の膜分離工程、低濃度排液を膜分離する第2の膜分離工程、ならびに第1および第2の膜分離による濃縮液を濃縮する蒸発濃縮工程である上記(2)記載の方法。
(4) 分離工程で分離した固形物から金属酸化物を回収する上記(1)ないし(3)のいずれかに記載の方法。
(5) 有機酸洗浄排液を濃縮する濃縮装置と、
濃縮液を水の超臨界または亜臨界状態で水熱反応により酸化分解する水熱反応装置と、
水熱反応処理流体から固形物を分離する固体分離器とを含む有機酸洗浄排液の処理装置。
(6) 濃縮装置が膜分離装置および/または蒸発濃縮装置である上記(5)記載の装置。
(7) 水熱反応装置が付着物除去手段および/または固形物排出手段を有する上記(5)または(6)記載の装置。
(8) 水熱処理流体の冷却手段を固体分離器の前および/または後に有する上記(5)ないし(7)のいずれかに記載の装置。
【0007】
有機酸洗浄排液の成分を検討したところ、有機酸洗浄剤は主成分が有機酸であり、添加剤その他の成分も大部分は有機物が使用されているため、酸化による処理が可能であることがわかった。この場合水熱反応を採用することにより、有機物はほぼ完全に酸化分解し、分解後はスケール成分を中心とする無機物が残留し、炭素分も残留しないため、有価物としての回収利用が容易であることがわかった。
【0008】
本発明において処理の対象となる被処理液は有機酸洗浄排液である。洗浄に用いられる有機酸としてはクエン酸、ヒドロオキシ酢酸、リンゴ酸等のオキシカルボン酸、ギ酸、シュウ酸、マロン酸等の飽和カルボン酸、エチレンジアミン四酢酸(EDTA)等のアミノポリカルボン酸などがあげられる。このような有機酸洗浄排液は、前記有機酸(塩を含む)を主成分とする洗浄剤により、金属(主として鉄)スケールの付着した金属表面を洗浄する有機酸洗浄により生成する洗浄排液である。洗浄剤には有機酸のほかに無機酸、各種添加剤等が含まれていてもよい。このような有機酸洗浄剤の洗浄対象は限定されないが、主として酸化鉄スケールが付着する発電用ボイラのように、純粋な成分のスケールが付着する金属表面を洗浄した洗浄排液に本発明の処理を適用すると、酸化鉄等を純粋な形で回収できるので好ましい。
【0009】
このような有機酸洗浄排液には洗浄剤を金属表面に接触させる洗浄工程から排出される高濃度排液と、被処理液から高濃度排液を排出した後の水洗工程等から排出される低濃度排液とが生じる場合がある。これらは混合して本発明の処理に供してもよいが、高濃度排液と低濃度排液とを別々に濃縮すると、それぞれの濃度に適した条件で濃縮を行うことができるので好ましい。
【0010】
濃縮工程は被処理液(有機酸洗浄排液)を水熱反応に適した濃度まで濃縮する工程である。水熱反応工程は超臨界または亜臨界状態で反応が行われるため、被処理液をその温度まで昇温する必要がある。この場合被処理液量が多いと昇温に要する熱量が多くなるため、可能な限り高濃度に維持するのが好ましい。また被処理液に含まれる有機物は酸化分解の際発熱するため、高濃度に濃縮するほど発熱量が多くなり、加熱のための熱入力が少なくなる。このため加熱の面からは高濃度である方が好ましいが、濃縮操作、その後の操作性等の面からはあまり高濃度にするのは好ましくない。このような観点から水熱反応工程に供給する被処理液濃度を5〜25%、好ましくは10〜15%とするように濃縮を行うのが好ましい。
【0011】
濃縮工程における濃縮手段としては被処理液を上記濃度にまで濃縮できる手段であれば制限なく採用できるが、膜分離、蒸発濃縮またはこれらの組合せを採用するのが好ましい。このうち膜分離は比較的低濃度な被処理液を濃縮するのに適し、蒸発濃縮は比較的高濃度な被処理液を濃縮するのに適している。これらはどちらか一方を採用することもできるが、膜分離により濃縮した後、蒸発濃縮を行うと、それぞれの適性に合った濃縮を行うことができるので好ましい。また膜分離を採用する場合、高濃度な被処理液を第1の膜分離手段で濃縮し、その分離液を低濃度な被処理液とともに第2の膜分離手段で分離し、これらの濃縮液を蒸発濃縮により濃縮するのが好ましい。
【0012】
膜分離工程に使用する膜分離装置としては、被処理液に含まれている有機酸(塩)その他の成分を分離できるような分離膜として、例えば逆浸透膜を用いる装置が適している。モジュールとしては平膜、スパイラル、チューブラ、中空糸など任意の形状の分離膜を用いるものが使用できる。これらのモジュールは分離膜により濃縮液室と透過液室を区画し、濃縮液室に被処理液を加圧下に供給して膜分離を行い、透過液室側から透過液を流出させるものが好ましいが、透過液室側を吸引して膜分離を行うものでもよい。
【0013】
蒸発濃縮工程で使用する蒸発濃縮装置は被処理液を蒸発により濃縮できるものであれば制限なく、液膜式、浸管式、フラッシュ式など、任意の蒸発濃縮装置を用いることができるが、加熱した被処理液を熱交換部を通して循環し、発生蒸気を必要によりミストを除去して圧縮し、熱交換部に供給することにより、循環する被処理液を加熱する循環式のものが好ましい。このような循環式の蒸発濃縮装置は最初に加熱を行えば、その後は圧縮のためのエネルギーを加えるだけで蒸発濃縮を行うことができ好ましい。被処理液の加熱に必要な熱は濃縮装置および/または水熱反応装置から排出される処理物から回収して使用することができる。
【0014】
濃縮工程では被処理液を上記のような濃縮装置に導入して、それぞれの濃縮手段により濃縮を行って、前記水熱反応に適した濃度にまで濃縮する。蒸発濃縮のように加熱を必要とする場合は、後工程の水熱反応工程で生じる余熱により加熱を行うことができる。濃縮工程で濃縮された濃縮液は水熱反応工程へ送って水熱反応に供する。濃縮工程で生成する分離液はそのまま、または適当な後処理後、処理水として排出される。
【0015】
水熱反応工程では濃縮工程で得られる被処理液の濃縮液を水熱反応装置に導入して水熱反応により有機物の酸化分解を行う。このとき前述のように凝縮液の膜分離による濃縮液を合せて水熱反応により酸化分解することができる。水熱反応装置は被処理液の濃縮液を水の超臨界または亜臨界状態で水熱反応により酸化分解するように構成される。
【0016】
水熱反応は、超臨界または亜臨界状態の高温高圧の水および酸化剤の存在下に濃縮液を酸化反応により酸化分解する反応である。ここで超臨界状態とは374℃以上、22MPa以上の状態である。また亜臨界状態とは例えば374℃以上、2.5MPa以上22MPa未満あるいは374℃未満、22MPa以上の状態、あるいは374℃以下、22MPa未満であっても臨界点に近い高温高圧状態をいう。
【0017】
このような水熱反応は被処理液の濃縮液および凝縮液の濃縮液等の被反応物が酸化剤と混合した状態で水熱反応装置に導入されて行われ、これらの混合物が反応器内部で水熱反応を受ける。酸化剤としては、空気、酸素、液体酸素、過酸化水素水、硝酸、亜硝酸、硝酸塩、亜硝酸塩等を用いることができる。酸化剤は、被処理液の濃縮液と混合されて供給されてもよいし、供給口を二重管ノズルにして複層流として供給してもよい。また必要により触媒や中和剤等が添加される場合があるが、これらも被反応物と混合して、あるいは別々に反応器に供給することができる。
【0018】
本発明で用いられる水熱反応装置は超臨界または亜臨界状態で水熱反応を行うように、耐熱、耐圧材料により、実質的に垂直方向に配置した筒状反応器で形成される。反応熱だけでは超臨界または亜臨界状態に達しない場合には外部加熱手段を設けることができる。反応器の形状は円筒、だ円筒、多角筒のものを用いることができ、下端部はコーン状とすることができる。このような水熱反応装置により超臨界または亜臨界状態で水熱反応を行うと、被反応物の有機物は酸化剤により酸化されて最終的に水と二酸化炭素に分解され、あるいは加水分解により低分子化し、無機物は固体あるいは溶融状態で分離する。反応生成物は固形物を分離後、冷却、減圧され、ガス分と液分に分離される。
【0019】
上記の水熱反応装置は従来より水熱反応に用いられているものをそのまま用いることができるが、特開平11−156186号に示されているように、上部に逆流を伴う混合反応域、下部に栓状流反応域(プラグフロー反応域)を形成する実質的に垂直な反応器に、さらに上部に設けられた噴射装置から被反応物と酸化剤の混合流を下向流で噴射して上部の混合反応域で逆流を伴う混合流を形成して水熱反応を行い、下部の栓状流反応域で平行な下向栓流を形成して追加の水熱反応を行う構造のものが好ましい。
【0020】
水熱反応装置の材質は制限されないが、ハステロイ、インコネル、ステンレス等の耐食性の材質が好ましい。水熱反応装置には耐腐食性ライナーを設けるのが好ましい。耐腐食性ライナーは特に限定されず、特開平11−156186号に開示されたような耐腐食性ライナーと圧力負荷壁との間に間隙が存在するような耐腐食性ライナーを用いることができる。
【0021】
水熱反応装置には水熱反応処理流体を排出口から排出する前に冷却するための冷却手段を設けることができる。冷却手段は特に限定されないが、反応器内に水を導入して冷却し、無機塩を溶解してその排出を促進することができる。また、反応器内に酸やアルカリを含む水を導入して冷却し、アルカリや酸の中和を行うことができる。固体の付着性が著しい場合には、反応器の内壁に付着した固体を除去するための機械的除去装置を設けることができる。固体除去のための機械的除去装置は特に限定されないが、特開平11−156186号で開示された切欠窓部分を含む実質的に円筒状のスクレーパが好適である。
【0022】
水熱反応装置から排出される処理流体中の固形物を分離する分離手段を設けることができる。特に、超臨界状態の反応流体中では無機塩類が溶解せずに固体として含まれているため、不溶化している無機物は容易に分離することができ、これにより、固形物および処理水の再利用が容易になる。固形物分離手段は特に限定されず、水熱反応装置から処理流体を導入する流入口および固体を除去した流体を排出する流出口を備えた容器と、容器内に配設されて前記処理流体に含まれている前記固体を除去し、排出する手段とを備えたものが使用できる。固体除去手段としてはフィルタ、サイクロン等の通常の固体分離手段が使用できる。なお、冷却、減圧の工程で、固体分離や気液分離の手段を含むこともできる。
【0023】
水熱反応装置による反応開始の手段は特に制限されない。通常、反応器は反応開始にあたって所定の反応温度付近に予熱される。予熱は加熱装置を反応器に設けるか、あるいは濃縮液および/または酸化剤供給路に設けて加熱された水や空気を導入して実施することができる。また、通常、反応器に水や酸化剤を供給し、通常設けられる圧力調整弁によって所定の圧力に加圧される。所定の温度、圧力に調整された後、被反応物である濃縮液を含む流体を供給して水熱反応を開始する。反応によって有機物が分解され、反応熱が発生する。水熱反応装置上部(反応器上部)に逆流を伴う混合反応域を設けた場合、ここで逆流を伴う混合作用で被反応物、酸化剤および反応器内容物などが十分に混合されるため、流体の温度が上昇する。これにより供給される被反応物は速やかに水熱反応を開始し、安定した反応が継続されることになる。反応流体は反応器内を下向きに移動し、栓状流反応域で継続反応した後、排出口から排出される。反応器の長さ:直径の比は1:1〜100:1が好ましい。
【0024】
水熱反応装置を出た処理流体は、固体を分離した後、冷却して減圧され気液分離される。反応器内で冷却して液体が生成している場合は反応装置を出た段階で固体とともに液体と分離し、必要によりさらに冷却および気液分離を行う。最終的に生成した水、気体、固体は、そのままエネルギー回収されたり、物質として再利用されたり、そのままあるいは追加処理されて廃棄される。
【0025】
上記の処理では予め濃縮工程において被処理液である有機酸洗浄排液を濃縮することにより、高濃度の濃縮液を水熱反応工程に導入して酸化分解を行うことができる。このため被反応物の熱量により反応器内を600℃以上の高温にしてアンモニアを分解することができ、外部から加える熱量を少なくして高分解率で有機物およびアンモニアを分解することが可能になる。アンモニアは窒素ガスとして排出され、硝酸または亜硝酸の生成は少なく、またイオウ化合物は硫酸にまで酸化されるため、亜硫酸ガスの生成は少なく、環境に対する汚染のおそれは少ない。
【0026】
【発明の効果】
以上の通り、本発明によれば、有機酸洗浄排液を濃縮工程で濃縮後、濃縮液を超臨界または亜臨界状態で水熱反応により酸化分解するようにしたので、簡単な操作により処理することができ、環境汚染性が低く、しかも有価物の回収が容易な有機酸洗浄排液の処理方法および装置を得ることができる。
【0027】
【発明の実施の形態】
以下、本発明の実施形態を図面により説明する。
図1は実施形態の有機酸洗浄排液の処理装置を示すフロー図である。
【0028】
図1において、1は高濃度排液貯槽、2は第1膜分離装置、3は低濃度排液貯槽、4は第2膜分離装置、5は濃縮液貯槽、6は蒸発濃縮装置、7は水熱反応装置、8は固体分離器、9は冷却器、11は気液分離器、12、13は減圧器、14は固液分離器であり、ラインL1〜L24が図のように連絡している。ここではポンプ、弁等は省略して図示されている。第1および第2膜分離装置2、4はそれぞれ逆浸透膜からなる分離膜2a、4aにより濃縮液室2b、4bおよび透過液室2c、4cに区画されている。
【0029】
図1の装置による有機酸洗浄排液の処理方法は次の通りである。まず高濃度排液および低濃度排液をそれぞれラインL1、L6から高濃度排液貯槽1および低濃度排液貯槽3に導入して貯留し、ラインL3、L8から加圧ポンプ(図示せず)により加圧して第1および第2膜分離装置2、4の濃縮液室2b、4bに供給し、膜分離を行う。このとき各排液中の水を主成分とする透過液が分離膜2a、4aを透過して透過液室2c、4cに入り、ラインL5、L10から取り出される。ラインL5から取り出される透過液は低濃度排液貯槽3に入って第2膜分離装置4に供給され、さらに膜分離を受ける。ラインL10から取り出される透過液は分離液として系外に排出され、そのまま、または後処理後放出され、あるいは再利用される。濃縮液室2b、4bに残留する濃縮液はラインL2、L7から高濃度および低濃度排液貯槽1、3に循環する。
【0030】
上記の膜分離操作の継続により濃縮液の濃度が高くなった段階で、それぞれの貯槽1、3から濃縮液をラインL4、L9を通して濃縮液貯槽5に導入して貯留する。高濃度および低濃度排液貯槽1、3には新たに高濃度排液および低濃度排液を導入して上記の操作を繰り返す。濃縮液貯槽5の濃縮液はラインL11から蒸発濃縮装置6に送って蒸発濃縮を行い、高濃縮液をラインL12から水熱反応装置7に送って水熱反応を行う。蒸発濃縮装置6で発生する蒸気を凝縮させて生成する凝縮液はラインL13から分離液として取り出され、そのまま、または後処理後放流され、あるいは再利用される。
【0031】
水熱反応装置7ではラインL12から高濃度排液を供給し、その過程でラインL14から酸化剤を注入して混合流の状態で供給して、水の超臨界または亜臨界状態で水熱反応を行い、被反応物中の有機物その他の被酸化物を酸化分解する。水熱反応処理を行った処理流体はラインL15から固体分離器8に入り、固体を分離し、L16から処理固形物として取り出す。分離した流体はL17から冷却器9に導入して冷却し、蒸気を液化し、気液混合流をラインL18から気液分離器11に送って気液分離する。分離した気体はラインL19から減圧器12に送って減圧し、ラインL20から処理ガスとして排出する。分離した液体はラインL21から減圧器13に入って減圧し、ラインL22から固液分離器14に送って固液分離する。ここで分離した液体はラインL23から処理水として取り出し、そのまま、または後処理後放流し、あるいは再利用する。分離した固体はラインL24から処理固形物として取り出し、ラインL16から取り出される処理固形物とともにそのまま、または後処理後排棄され、あるいは再利用される。
【0032】
上記の処理において、ラインL10から得られる透過液およびラインL13から得られる凝縮液はそれぞれの処理条件の選択によっては高純度の処理水として得ることができるから、そのまま、または簡単な後処理により再利用が可能である。水熱反応装置7では有機物その他の被酸化性物質はほぼ完全に酸化分解するので炭素のような焼却灰は発生せず、無機成分のみが処理固形物として回収できる。ラインL20から得られる処理ガスおよびラインL23から得られる処理水も有機物等は分解されたガスまたは水として得られる。
【0033】
上記の水熱反応処理において、生成する処理流体中の固形物が酸化鉄のような単一成分である場合には水熱反応装置7から超臨界状態で処理流体を取り出し、固体分離器8で固体を分離すると、固体は容易に分離することができる。しかし混合流体中の固形物が酸化鉄のような不溶性成分と、食塩、硫酸のような水溶性塩とを含む場合には固体分離器8を省略し、処理流体を冷却器9で冷却して蒸気を液化すると、水溶性塩は液体(水)中に溶解するため固液分離器14で分離される。この場合には水熱反応装置の下部に冷却器を設けて水を導入して冷却し、一部の蒸気を液化した状態で取り出すことができる。
【0034】
処理流体中に食塩が含まれる場合、あるいは被反応物中のイオウ化合物が酸化されて硫酸が生成する場合などにおいては、このような形で処理水中に溶解するので、このような水溶性塩を除去すれば処理水の再利用が可能である。被反応物中のアンモニアは窒素ガスに分解され、亜硫酸ガス、亜硝酸ガス等も生成しないので処理ガスはそのまま排気することができるが、有害ガスが含まれる場合には簡単な後処理により処理ガスの排出または再利用が可能である。
【0035】
図2は蒸発濃縮装置を示す構成図である。蒸発濃縮装置6は循環式の蒸発濃縮装置であり、ラインL11から熱交換器15を介してラインL26が連絡する濃縮液21と蒸気22を収容する本体23の上部に、複数の熱交換管24を垂直方向に配置した熱交換部25、およびさらにその上に分配部26を有し、本体23の下部からラインL31を通してポンプ27により濃縮液21を分配部26に送り、分配器28により被処理液を熱交換管24の内壁に沿って膜状に流下させて循環するように構成されている。また本体23の上部と熱交換部25間に設けられたミスト除去部材29を通して、本体23上部から蒸気22をラインL32に吸引し、コンプレッサ30で圧縮して熱交換部25の熱交換管24の外側に供給するように構成されている。ラインL31からラインL12が分岐している。なお、蒸発濃縮装置としては上記循環式の装置のほか、ドラムドライヤーなどの装置も使用できる。
【0036】
上記の蒸発濃縮装置6は次のように運転される。すなわちラインL11から送られる濃縮液は熱交換器15を通して加熱し、蒸発濃縮装置6の本体23に導入する。蒸発濃縮装置6ではポンプ27を駆動することによりラインL31を通して濃縮液21を分配部26に送り、分配器28により熱交換管24の内壁に膜状に分配して流下させることにより水分を蒸発させ、蒸気22および濃縮液21を本体23に循環させる。一方、蒸気22はミスト除去部材29を通してミストを除去し、コンプレッサ30により圧縮してラインL32から熱交換部25に供給する。圧縮により温度上昇した蒸気22は熱交換管24の外側に至り、熱交換管24の内壁を膜状に流下する濃縮液21を加熱して蒸発させ、自身は凝縮して凝縮水となり、ラインL33から熱交換器15に入って新しい濃縮液と熱交換してラインL13から取り出される。
【0037】
上記の蒸発濃縮工程では、運転開始時に熱交換器15に蒸気等の熱源を供給して濃縮液を加熱して蒸発を開始すれば、その後はコンプレッサ30の圧縮によって温度上昇させて蒸発を行い、濃縮液21を効率よく濃縮することができる。高濃縮液はラインL12から水熱反応工程に送られる。ミスト除去部材29で除去されたミストはそのまま本体23に戻り、凝縮水の汚染を防止する。
【0038】
図3は水熱反応装置を示す垂直断面図である。水熱反応装置7は耐熱、耐圧性材料により下部が円錐状となった円筒状の反応器31を有し、この反応器31は上から逆流を伴う完全混合反応域32、プラグフロー反応域33および冷却域34が形成されている。反応器31の上部に噴射装置35が設けられている。噴射装置35は下端部に噴射口36を有する小円筒状の噴射ノズル37と混合部38からなる。混合部38の噴射ノズル37は反応装置7の上部から噴射口36が反応器31内に下向きに開口するように取り付けられている。混合部38に設けられた被反応物導入部39および酸化剤導入部40に、それぞれラインL12およびL14が連絡している。
【0039】
反応器31の内壁には耐腐食性のライナー41が形成されている。反応器31のライナー41の内側に間隔を保って下部が円錐状となった円筒からなるスクレーパ42が回転可能に設けられており、反応器31の下端部の小径部43に挿入されたスクレーパ42の小径部44に連絡する駆動機構45により回転させられるようになっている。反応器31の小径部43の中央部を通して下から冷却水路46が立ち上がっている。反応器31の下端部の小径部43には反応流体取出部47が設けられており、ラインL15が連絡している。
【0040】
上記の装置における水熱反応は、ラインL12から高濃縮液を供給し、ラインL14から酸化剤を供給して噴射装置35の混合部38で混合し、混合物を噴射ノズル37の噴射口36から反応器31内に下向流で噴射して、超臨界または亜臨界の状態で水熱反応を行う。この間駆動機構45によりスクレーパ42を回転させて、反応器31の内壁に付着する固形物を剥離し、冷却水路46から冷却水を反応器31の下部に吹き込んで冷却し、液化した液体に可溶性成分を溶解させ流下させる。処理流体は液体および固体とともにラインL15から取り出される。
【0041】
上記の水熱反応では反応器31の上部に逆流を伴う完全混合反応域32、その下部にプラグフロー反応域33、さらにその下部に冷却域34が形成される。逆流を伴う完全混合反応域32とプラグフロー反応域33が水熱反応域であり、冷却水によって冷却される冷却域34では水熱反応は起こらない。逆流を伴う完全混合反応域32では下向流bとともに、逆流である上向流cが形成されており、噴射口36から噴射される噴射流aは循環する下向流bと混合して循環し、噴射直後に被反応物と酸化剤の混合物が循環流中に均一に分散する。このため混合物は循環流の熱を受けて直ちに超臨界または亜臨界状態になるため水熱反応が進行し、逆流を伴う完全混合反応域32中を循環する間に被反応物の大部分が分解する。
【0042】
逆流を伴う完全混合反応域32の循環流のうち、噴射流aに相当する量はプラグフロー反応域33に移り、下向流dを形成する。プラグフロー反応域33における下向流は実質的に平行流であり、緩速流として流下し、その間水熱反応は継続し、残余の被反応物は分解される。
【0043】
冷却域34では冷却水路46から吹込まれる冷却水eにより冷却されて超臨界温度以下になることにより反応物中の液成分が液化し、塩等の可溶性成分を溶解し、固形物を分散させた状態で反応物とともにラインL15から処理流体として取り出される。処理流体から超臨界状態で固形物を除去する場合には冷却水路46を省略することができる。
【0044】
図4は固体分離器を示す垂直断面図である。固体分離器8は流体導入部51を有する中空状の分離器50の上部に取付けられる蓋52に複数のフィルタ53a、53bが設けられて、それぞれの内側上部に弁54a、54bを有する洗浄流体供給路55a、55bが連絡している。フィルタ53a、53bの両方の上部に連通する流体取出部56にラインL17が連絡している。分離器50の下部に形成された固形物取出部57にはシャッタ58が設けられ、ラインL16に連絡している。分離器50にはフィルタ53a、53bに代え、あるいはこれらとともに流体導入部51にサイクロン59を設けることができる。
【0045】
上記の装置による固体分離方法は次の通り行われる。すなわちラインL15から送られる水熱反応処理流体は流体導入部51から分離器50に入り、フィルタ53a、53bによって固形物が分離され、流体取出部56からラインL17に取り出される。サイクロン59がある場合はサイクロン59でも固形物が分離されて下に落下する。
【0046】
フィルタ53a、53bは両方を使用して固形物の濾過分離が行われるが、フィルタ53a、53bが目詰まりしたときは弁54a、54bのどちらか一方を開いて一方の洗浄流体供給路55a、55bから洗浄流体を送って一方のフィルタ53a、53bを洗浄する。これにより処理流体の流れを止めることなく洗浄を行うことができる。剥離した固形物はシャッタ58を開いて固形物取出部57からラインL16へ排出する。
【0047】
【実施例】
以下、本発明の実施例について説明する。
実施例1
火力発電所ボイラをクエン酸3重量%およびグリコール酸3重量%の有機酸洗浄液で洗浄した洗浄排液を逆浸透膜を有する2段式の膜分離装置で濃縮し、濃縮液を蒸発濃縮することなく水熱反応装置に導入して水熱反応を行った。
【0048】
実施例2
実施例1において2段式の膜分離装置で濃縮した濃縮液をさらに図2の装置を用いて蒸発濃縮し、得られた高濃縮液を水熱反応装置に導入して水熱反応を行った。
【0049】
上記実施例1、2における水熱反応装置に導入する被処理液(濃縮液、高濃縮液)の性状を表1に、水熱反応の処理条件を表2に、処理水の性状を表3に、処理ガスの性状を表4に示す。分離した固形物は実施例1、2ともFe3O4で、純度は99重量%以上であり、回収して利用可能であった。
【0050】
【表1】
【0051】
【表2】
【0052】
【表3】
【0053】
【表4】
【図面の簡単な説明】
【図1】実施形態の有機酸洗浄排液の処理装置を示すフロー図である。
【図2】蒸発濃縮装置の構成図である。
【図3】水熱反応装置の垂直断面図である。
【図4】固体分離器の垂直断面図である。
【符号の説明】
1 高濃度排液貯槽
2 第1膜分離装置
3 低濃度排液貯槽
4 第2膜分離装置
5 濃縮液貯槽
6 蒸発濃縮装置
7 水熱反応装置
8 固体分離器
9 冷却器
11 気液分離器
12、13 減圧器
14 固液分離器
15 熱交換器
21 濃縮液
22 蒸気
23 本体
24 熱交換管
25 熱交換部
26 分配部
27 ポンプ
28 分配器
29 ミスト除去部材
30 コンプレッサ
31 反応器
32 完全混合反応域
33 プラグフロー反応域
34 冷却域
35 噴射装置
36 噴射口
37 噴射ノズル
38 混合部
39 被反応物導入部
40 酸化剤導入部
41 ライナー
42 スクレーパ
43、44 小径部
45 駆動機構
46 冷却水路
47 反応流体取出部
50 分離器
51 流体導入部
52 蓋
53a、53a フィルタ
54a、54b 弁
55a、55b 洗浄流体供給路
56 流体取出部
57 固形物取出部
58 シャッタ
59 サイクロン
【発明の属する技術分野】
本発明は有機酸洗浄排液を水熱反応により処理する方法および装置に関するものである。
【0002】
【従来の技術】
ボイラ、熱交換器その他のプラントの金属表面に付着した酸化物スケール等のスケールを洗浄除去する方法として、有機酸(塩を含む)を主成分とする有機酸洗浄剤で化学洗浄して除去する方法がある。この化学洗浄に用いられる有機酸としてはクエン酸、ヒドロオキシ酢酸、リンゴ酸等のオキシカルボン酸、ギ酸、シュウ酸、マロン酸等の飽和カルボン酸、エチレンジアミン四酢酸(EDTA)等のアミノポリカルボン酸などが利用されている。有機酸洗浄剤にはこのような有機酸のほか、還元剤、腐食抑制剤、その他の添加剤が添加されている。
【0003】
有機酸洗浄はこのような有機酸洗浄剤をスケールの付着した金属表面と接触させることにより、スケール成分を洗浄剤中に溶出させて除去する。このような洗浄により生成する有機酸洗浄排液は、残留する有機酸および添加剤のほか、スケールの溶出によって生成する有機酸塩その他の塩ならびに不溶性固形物などが含まれる。
【0004】
従来の有機酸洗浄排液の処理法としては逆浸透膜等の分離膜を用いる膜分離法により濃縮し、濃縮液を焼却等により処理する方法が提案されている(特開平3−154687号)。
しかしこの方法では、有機酸排液に含まれているイオウ化合物や窒素化合物が燃焼によりSOxやNOxとなって排出され、環境を汚染するおそれがある。また洗浄排液中に含まれる金属イオン特に鉄イオンは燃焼により酸化物となるが、焼却灰と混合した状態で排出され、その再利用が困難である。
【0005】
【発明が解決しようとする課題】
本発明の課題は、簡単な操作により処理することができ、環境汚染性が低く、しかも有価物の回収が容易な有機酸洗浄排液の処理方法および装置を提供することである。
【0006】
【課題を解決するための手段】
本発明は次の有機酸洗浄排液の処理方法および装置である。
(1) 有機酸洗浄排液を濃縮する濃縮工程と、
濃縮液を水の超臨界または亜臨界状態で水熱反応により酸化分解する水熱反応工程と、
水熱反応処理流体から固形物を分離する分離工程とを含む有機酸洗浄排液の処理方法。
(2) 濃縮工程が膜分離工程および/または蒸発濃縮工程である上記(1)記載の方法。
(3) 濃縮工程が高濃度排液を膜分離する第1の膜分離工程、低濃度排液を膜分離する第2の膜分離工程、ならびに第1および第2の膜分離による濃縮液を濃縮する蒸発濃縮工程である上記(2)記載の方法。
(4) 分離工程で分離した固形物から金属酸化物を回収する上記(1)ないし(3)のいずれかに記載の方法。
(5) 有機酸洗浄排液を濃縮する濃縮装置と、
濃縮液を水の超臨界または亜臨界状態で水熱反応により酸化分解する水熱反応装置と、
水熱反応処理流体から固形物を分離する固体分離器とを含む有機酸洗浄排液の処理装置。
(6) 濃縮装置が膜分離装置および/または蒸発濃縮装置である上記(5)記載の装置。
(7) 水熱反応装置が付着物除去手段および/または固形物排出手段を有する上記(5)または(6)記載の装置。
(8) 水熱処理流体の冷却手段を固体分離器の前および/または後に有する上記(5)ないし(7)のいずれかに記載の装置。
【0007】
有機酸洗浄排液の成分を検討したところ、有機酸洗浄剤は主成分が有機酸であり、添加剤その他の成分も大部分は有機物が使用されているため、酸化による処理が可能であることがわかった。この場合水熱反応を採用することにより、有機物はほぼ完全に酸化分解し、分解後はスケール成分を中心とする無機物が残留し、炭素分も残留しないため、有価物としての回収利用が容易であることがわかった。
【0008】
本発明において処理の対象となる被処理液は有機酸洗浄排液である。洗浄に用いられる有機酸としてはクエン酸、ヒドロオキシ酢酸、リンゴ酸等のオキシカルボン酸、ギ酸、シュウ酸、マロン酸等の飽和カルボン酸、エチレンジアミン四酢酸(EDTA)等のアミノポリカルボン酸などがあげられる。このような有機酸洗浄排液は、前記有機酸(塩を含む)を主成分とする洗浄剤により、金属(主として鉄)スケールの付着した金属表面を洗浄する有機酸洗浄により生成する洗浄排液である。洗浄剤には有機酸のほかに無機酸、各種添加剤等が含まれていてもよい。このような有機酸洗浄剤の洗浄対象は限定されないが、主として酸化鉄スケールが付着する発電用ボイラのように、純粋な成分のスケールが付着する金属表面を洗浄した洗浄排液に本発明の処理を適用すると、酸化鉄等を純粋な形で回収できるので好ましい。
【0009】
このような有機酸洗浄排液には洗浄剤を金属表面に接触させる洗浄工程から排出される高濃度排液と、被処理液から高濃度排液を排出した後の水洗工程等から排出される低濃度排液とが生じる場合がある。これらは混合して本発明の処理に供してもよいが、高濃度排液と低濃度排液とを別々に濃縮すると、それぞれの濃度に適した条件で濃縮を行うことができるので好ましい。
【0010】
濃縮工程は被処理液(有機酸洗浄排液)を水熱反応に適した濃度まで濃縮する工程である。水熱反応工程は超臨界または亜臨界状態で反応が行われるため、被処理液をその温度まで昇温する必要がある。この場合被処理液量が多いと昇温に要する熱量が多くなるため、可能な限り高濃度に維持するのが好ましい。また被処理液に含まれる有機物は酸化分解の際発熱するため、高濃度に濃縮するほど発熱量が多くなり、加熱のための熱入力が少なくなる。このため加熱の面からは高濃度である方が好ましいが、濃縮操作、その後の操作性等の面からはあまり高濃度にするのは好ましくない。このような観点から水熱反応工程に供給する被処理液濃度を5〜25%、好ましくは10〜15%とするように濃縮を行うのが好ましい。
【0011】
濃縮工程における濃縮手段としては被処理液を上記濃度にまで濃縮できる手段であれば制限なく採用できるが、膜分離、蒸発濃縮またはこれらの組合せを採用するのが好ましい。このうち膜分離は比較的低濃度な被処理液を濃縮するのに適し、蒸発濃縮は比較的高濃度な被処理液を濃縮するのに適している。これらはどちらか一方を採用することもできるが、膜分離により濃縮した後、蒸発濃縮を行うと、それぞれの適性に合った濃縮を行うことができるので好ましい。また膜分離を採用する場合、高濃度な被処理液を第1の膜分離手段で濃縮し、その分離液を低濃度な被処理液とともに第2の膜分離手段で分離し、これらの濃縮液を蒸発濃縮により濃縮するのが好ましい。
【0012】
膜分離工程に使用する膜分離装置としては、被処理液に含まれている有機酸(塩)その他の成分を分離できるような分離膜として、例えば逆浸透膜を用いる装置が適している。モジュールとしては平膜、スパイラル、チューブラ、中空糸など任意の形状の分離膜を用いるものが使用できる。これらのモジュールは分離膜により濃縮液室と透過液室を区画し、濃縮液室に被処理液を加圧下に供給して膜分離を行い、透過液室側から透過液を流出させるものが好ましいが、透過液室側を吸引して膜分離を行うものでもよい。
【0013】
蒸発濃縮工程で使用する蒸発濃縮装置は被処理液を蒸発により濃縮できるものであれば制限なく、液膜式、浸管式、フラッシュ式など、任意の蒸発濃縮装置を用いることができるが、加熱した被処理液を熱交換部を通して循環し、発生蒸気を必要によりミストを除去して圧縮し、熱交換部に供給することにより、循環する被処理液を加熱する循環式のものが好ましい。このような循環式の蒸発濃縮装置は最初に加熱を行えば、その後は圧縮のためのエネルギーを加えるだけで蒸発濃縮を行うことができ好ましい。被処理液の加熱に必要な熱は濃縮装置および/または水熱反応装置から排出される処理物から回収して使用することができる。
【0014】
濃縮工程では被処理液を上記のような濃縮装置に導入して、それぞれの濃縮手段により濃縮を行って、前記水熱反応に適した濃度にまで濃縮する。蒸発濃縮のように加熱を必要とする場合は、後工程の水熱反応工程で生じる余熱により加熱を行うことができる。濃縮工程で濃縮された濃縮液は水熱反応工程へ送って水熱反応に供する。濃縮工程で生成する分離液はそのまま、または適当な後処理後、処理水として排出される。
【0015】
水熱反応工程では濃縮工程で得られる被処理液の濃縮液を水熱反応装置に導入して水熱反応により有機物の酸化分解を行う。このとき前述のように凝縮液の膜分離による濃縮液を合せて水熱反応により酸化分解することができる。水熱反応装置は被処理液の濃縮液を水の超臨界または亜臨界状態で水熱反応により酸化分解するように構成される。
【0016】
水熱反応は、超臨界または亜臨界状態の高温高圧の水および酸化剤の存在下に濃縮液を酸化反応により酸化分解する反応である。ここで超臨界状態とは374℃以上、22MPa以上の状態である。また亜臨界状態とは例えば374℃以上、2.5MPa以上22MPa未満あるいは374℃未満、22MPa以上の状態、あるいは374℃以下、22MPa未満であっても臨界点に近い高温高圧状態をいう。
【0017】
このような水熱反応は被処理液の濃縮液および凝縮液の濃縮液等の被反応物が酸化剤と混合した状態で水熱反応装置に導入されて行われ、これらの混合物が反応器内部で水熱反応を受ける。酸化剤としては、空気、酸素、液体酸素、過酸化水素水、硝酸、亜硝酸、硝酸塩、亜硝酸塩等を用いることができる。酸化剤は、被処理液の濃縮液と混合されて供給されてもよいし、供給口を二重管ノズルにして複層流として供給してもよい。また必要により触媒や中和剤等が添加される場合があるが、これらも被反応物と混合して、あるいは別々に反応器に供給することができる。
【0018】
本発明で用いられる水熱反応装置は超臨界または亜臨界状態で水熱反応を行うように、耐熱、耐圧材料により、実質的に垂直方向に配置した筒状反応器で形成される。反応熱だけでは超臨界または亜臨界状態に達しない場合には外部加熱手段を設けることができる。反応器の形状は円筒、だ円筒、多角筒のものを用いることができ、下端部はコーン状とすることができる。このような水熱反応装置により超臨界または亜臨界状態で水熱反応を行うと、被反応物の有機物は酸化剤により酸化されて最終的に水と二酸化炭素に分解され、あるいは加水分解により低分子化し、無機物は固体あるいは溶融状態で分離する。反応生成物は固形物を分離後、冷却、減圧され、ガス分と液分に分離される。
【0019】
上記の水熱反応装置は従来より水熱反応に用いられているものをそのまま用いることができるが、特開平11−156186号に示されているように、上部に逆流を伴う混合反応域、下部に栓状流反応域(プラグフロー反応域)を形成する実質的に垂直な反応器に、さらに上部に設けられた噴射装置から被反応物と酸化剤の混合流を下向流で噴射して上部の混合反応域で逆流を伴う混合流を形成して水熱反応を行い、下部の栓状流反応域で平行な下向栓流を形成して追加の水熱反応を行う構造のものが好ましい。
【0020】
水熱反応装置の材質は制限されないが、ハステロイ、インコネル、ステンレス等の耐食性の材質が好ましい。水熱反応装置には耐腐食性ライナーを設けるのが好ましい。耐腐食性ライナーは特に限定されず、特開平11−156186号に開示されたような耐腐食性ライナーと圧力負荷壁との間に間隙が存在するような耐腐食性ライナーを用いることができる。
【0021】
水熱反応装置には水熱反応処理流体を排出口から排出する前に冷却するための冷却手段を設けることができる。冷却手段は特に限定されないが、反応器内に水を導入して冷却し、無機塩を溶解してその排出を促進することができる。また、反応器内に酸やアルカリを含む水を導入して冷却し、アルカリや酸の中和を行うことができる。固体の付着性が著しい場合には、反応器の内壁に付着した固体を除去するための機械的除去装置を設けることができる。固体除去のための機械的除去装置は特に限定されないが、特開平11−156186号で開示された切欠窓部分を含む実質的に円筒状のスクレーパが好適である。
【0022】
水熱反応装置から排出される処理流体中の固形物を分離する分離手段を設けることができる。特に、超臨界状態の反応流体中では無機塩類が溶解せずに固体として含まれているため、不溶化している無機物は容易に分離することができ、これにより、固形物および処理水の再利用が容易になる。固形物分離手段は特に限定されず、水熱反応装置から処理流体を導入する流入口および固体を除去した流体を排出する流出口を備えた容器と、容器内に配設されて前記処理流体に含まれている前記固体を除去し、排出する手段とを備えたものが使用できる。固体除去手段としてはフィルタ、サイクロン等の通常の固体分離手段が使用できる。なお、冷却、減圧の工程で、固体分離や気液分離の手段を含むこともできる。
【0023】
水熱反応装置による反応開始の手段は特に制限されない。通常、反応器は反応開始にあたって所定の反応温度付近に予熱される。予熱は加熱装置を反応器に設けるか、あるいは濃縮液および/または酸化剤供給路に設けて加熱された水や空気を導入して実施することができる。また、通常、反応器に水や酸化剤を供給し、通常設けられる圧力調整弁によって所定の圧力に加圧される。所定の温度、圧力に調整された後、被反応物である濃縮液を含む流体を供給して水熱反応を開始する。反応によって有機物が分解され、反応熱が発生する。水熱反応装置上部(反応器上部)に逆流を伴う混合反応域を設けた場合、ここで逆流を伴う混合作用で被反応物、酸化剤および反応器内容物などが十分に混合されるため、流体の温度が上昇する。これにより供給される被反応物は速やかに水熱反応を開始し、安定した反応が継続されることになる。反応流体は反応器内を下向きに移動し、栓状流反応域で継続反応した後、排出口から排出される。反応器の長さ:直径の比は1:1〜100:1が好ましい。
【0024】
水熱反応装置を出た処理流体は、固体を分離した後、冷却して減圧され気液分離される。反応器内で冷却して液体が生成している場合は反応装置を出た段階で固体とともに液体と分離し、必要によりさらに冷却および気液分離を行う。最終的に生成した水、気体、固体は、そのままエネルギー回収されたり、物質として再利用されたり、そのままあるいは追加処理されて廃棄される。
【0025】
上記の処理では予め濃縮工程において被処理液である有機酸洗浄排液を濃縮することにより、高濃度の濃縮液を水熱反応工程に導入して酸化分解を行うことができる。このため被反応物の熱量により反応器内を600℃以上の高温にしてアンモニアを分解することができ、外部から加える熱量を少なくして高分解率で有機物およびアンモニアを分解することが可能になる。アンモニアは窒素ガスとして排出され、硝酸または亜硝酸の生成は少なく、またイオウ化合物は硫酸にまで酸化されるため、亜硫酸ガスの生成は少なく、環境に対する汚染のおそれは少ない。
【0026】
【発明の効果】
以上の通り、本発明によれば、有機酸洗浄排液を濃縮工程で濃縮後、濃縮液を超臨界または亜臨界状態で水熱反応により酸化分解するようにしたので、簡単な操作により処理することができ、環境汚染性が低く、しかも有価物の回収が容易な有機酸洗浄排液の処理方法および装置を得ることができる。
【0027】
【発明の実施の形態】
以下、本発明の実施形態を図面により説明する。
図1は実施形態の有機酸洗浄排液の処理装置を示すフロー図である。
【0028】
図1において、1は高濃度排液貯槽、2は第1膜分離装置、3は低濃度排液貯槽、4は第2膜分離装置、5は濃縮液貯槽、6は蒸発濃縮装置、7は水熱反応装置、8は固体分離器、9は冷却器、11は気液分離器、12、13は減圧器、14は固液分離器であり、ラインL1〜L24が図のように連絡している。ここではポンプ、弁等は省略して図示されている。第1および第2膜分離装置2、4はそれぞれ逆浸透膜からなる分離膜2a、4aにより濃縮液室2b、4bおよび透過液室2c、4cに区画されている。
【0029】
図1の装置による有機酸洗浄排液の処理方法は次の通りである。まず高濃度排液および低濃度排液をそれぞれラインL1、L6から高濃度排液貯槽1および低濃度排液貯槽3に導入して貯留し、ラインL3、L8から加圧ポンプ(図示せず)により加圧して第1および第2膜分離装置2、4の濃縮液室2b、4bに供給し、膜分離を行う。このとき各排液中の水を主成分とする透過液が分離膜2a、4aを透過して透過液室2c、4cに入り、ラインL5、L10から取り出される。ラインL5から取り出される透過液は低濃度排液貯槽3に入って第2膜分離装置4に供給され、さらに膜分離を受ける。ラインL10から取り出される透過液は分離液として系外に排出され、そのまま、または後処理後放出され、あるいは再利用される。濃縮液室2b、4bに残留する濃縮液はラインL2、L7から高濃度および低濃度排液貯槽1、3に循環する。
【0030】
上記の膜分離操作の継続により濃縮液の濃度が高くなった段階で、それぞれの貯槽1、3から濃縮液をラインL4、L9を通して濃縮液貯槽5に導入して貯留する。高濃度および低濃度排液貯槽1、3には新たに高濃度排液および低濃度排液を導入して上記の操作を繰り返す。濃縮液貯槽5の濃縮液はラインL11から蒸発濃縮装置6に送って蒸発濃縮を行い、高濃縮液をラインL12から水熱反応装置7に送って水熱反応を行う。蒸発濃縮装置6で発生する蒸気を凝縮させて生成する凝縮液はラインL13から分離液として取り出され、そのまま、または後処理後放流され、あるいは再利用される。
【0031】
水熱反応装置7ではラインL12から高濃度排液を供給し、その過程でラインL14から酸化剤を注入して混合流の状態で供給して、水の超臨界または亜臨界状態で水熱反応を行い、被反応物中の有機物その他の被酸化物を酸化分解する。水熱反応処理を行った処理流体はラインL15から固体分離器8に入り、固体を分離し、L16から処理固形物として取り出す。分離した流体はL17から冷却器9に導入して冷却し、蒸気を液化し、気液混合流をラインL18から気液分離器11に送って気液分離する。分離した気体はラインL19から減圧器12に送って減圧し、ラインL20から処理ガスとして排出する。分離した液体はラインL21から減圧器13に入って減圧し、ラインL22から固液分離器14に送って固液分離する。ここで分離した液体はラインL23から処理水として取り出し、そのまま、または後処理後放流し、あるいは再利用する。分離した固体はラインL24から処理固形物として取り出し、ラインL16から取り出される処理固形物とともにそのまま、または後処理後排棄され、あるいは再利用される。
【0032】
上記の処理において、ラインL10から得られる透過液およびラインL13から得られる凝縮液はそれぞれの処理条件の選択によっては高純度の処理水として得ることができるから、そのまま、または簡単な後処理により再利用が可能である。水熱反応装置7では有機物その他の被酸化性物質はほぼ完全に酸化分解するので炭素のような焼却灰は発生せず、無機成分のみが処理固形物として回収できる。ラインL20から得られる処理ガスおよびラインL23から得られる処理水も有機物等は分解されたガスまたは水として得られる。
【0033】
上記の水熱反応処理において、生成する処理流体中の固形物が酸化鉄のような単一成分である場合には水熱反応装置7から超臨界状態で処理流体を取り出し、固体分離器8で固体を分離すると、固体は容易に分離することができる。しかし混合流体中の固形物が酸化鉄のような不溶性成分と、食塩、硫酸のような水溶性塩とを含む場合には固体分離器8を省略し、処理流体を冷却器9で冷却して蒸気を液化すると、水溶性塩は液体(水)中に溶解するため固液分離器14で分離される。この場合には水熱反応装置の下部に冷却器を設けて水を導入して冷却し、一部の蒸気を液化した状態で取り出すことができる。
【0034】
処理流体中に食塩が含まれる場合、あるいは被反応物中のイオウ化合物が酸化されて硫酸が生成する場合などにおいては、このような形で処理水中に溶解するので、このような水溶性塩を除去すれば処理水の再利用が可能である。被反応物中のアンモニアは窒素ガスに分解され、亜硫酸ガス、亜硝酸ガス等も生成しないので処理ガスはそのまま排気することができるが、有害ガスが含まれる場合には簡単な後処理により処理ガスの排出または再利用が可能である。
【0035】
図2は蒸発濃縮装置を示す構成図である。蒸発濃縮装置6は循環式の蒸発濃縮装置であり、ラインL11から熱交換器15を介してラインL26が連絡する濃縮液21と蒸気22を収容する本体23の上部に、複数の熱交換管24を垂直方向に配置した熱交換部25、およびさらにその上に分配部26を有し、本体23の下部からラインL31を通してポンプ27により濃縮液21を分配部26に送り、分配器28により被処理液を熱交換管24の内壁に沿って膜状に流下させて循環するように構成されている。また本体23の上部と熱交換部25間に設けられたミスト除去部材29を通して、本体23上部から蒸気22をラインL32に吸引し、コンプレッサ30で圧縮して熱交換部25の熱交換管24の外側に供給するように構成されている。ラインL31からラインL12が分岐している。なお、蒸発濃縮装置としては上記循環式の装置のほか、ドラムドライヤーなどの装置も使用できる。
【0036】
上記の蒸発濃縮装置6は次のように運転される。すなわちラインL11から送られる濃縮液は熱交換器15を通して加熱し、蒸発濃縮装置6の本体23に導入する。蒸発濃縮装置6ではポンプ27を駆動することによりラインL31を通して濃縮液21を分配部26に送り、分配器28により熱交換管24の内壁に膜状に分配して流下させることにより水分を蒸発させ、蒸気22および濃縮液21を本体23に循環させる。一方、蒸気22はミスト除去部材29を通してミストを除去し、コンプレッサ30により圧縮してラインL32から熱交換部25に供給する。圧縮により温度上昇した蒸気22は熱交換管24の外側に至り、熱交換管24の内壁を膜状に流下する濃縮液21を加熱して蒸発させ、自身は凝縮して凝縮水となり、ラインL33から熱交換器15に入って新しい濃縮液と熱交換してラインL13から取り出される。
【0037】
上記の蒸発濃縮工程では、運転開始時に熱交換器15に蒸気等の熱源を供給して濃縮液を加熱して蒸発を開始すれば、その後はコンプレッサ30の圧縮によって温度上昇させて蒸発を行い、濃縮液21を効率よく濃縮することができる。高濃縮液はラインL12から水熱反応工程に送られる。ミスト除去部材29で除去されたミストはそのまま本体23に戻り、凝縮水の汚染を防止する。
【0038】
図3は水熱反応装置を示す垂直断面図である。水熱反応装置7は耐熱、耐圧性材料により下部が円錐状となった円筒状の反応器31を有し、この反応器31は上から逆流を伴う完全混合反応域32、プラグフロー反応域33および冷却域34が形成されている。反応器31の上部に噴射装置35が設けられている。噴射装置35は下端部に噴射口36を有する小円筒状の噴射ノズル37と混合部38からなる。混合部38の噴射ノズル37は反応装置7の上部から噴射口36が反応器31内に下向きに開口するように取り付けられている。混合部38に設けられた被反応物導入部39および酸化剤導入部40に、それぞれラインL12およびL14が連絡している。
【0039】
反応器31の内壁には耐腐食性のライナー41が形成されている。反応器31のライナー41の内側に間隔を保って下部が円錐状となった円筒からなるスクレーパ42が回転可能に設けられており、反応器31の下端部の小径部43に挿入されたスクレーパ42の小径部44に連絡する駆動機構45により回転させられるようになっている。反応器31の小径部43の中央部を通して下から冷却水路46が立ち上がっている。反応器31の下端部の小径部43には反応流体取出部47が設けられており、ラインL15が連絡している。
【0040】
上記の装置における水熱反応は、ラインL12から高濃縮液を供給し、ラインL14から酸化剤を供給して噴射装置35の混合部38で混合し、混合物を噴射ノズル37の噴射口36から反応器31内に下向流で噴射して、超臨界または亜臨界の状態で水熱反応を行う。この間駆動機構45によりスクレーパ42を回転させて、反応器31の内壁に付着する固形物を剥離し、冷却水路46から冷却水を反応器31の下部に吹き込んで冷却し、液化した液体に可溶性成分を溶解させ流下させる。処理流体は液体および固体とともにラインL15から取り出される。
【0041】
上記の水熱反応では反応器31の上部に逆流を伴う完全混合反応域32、その下部にプラグフロー反応域33、さらにその下部に冷却域34が形成される。逆流を伴う完全混合反応域32とプラグフロー反応域33が水熱反応域であり、冷却水によって冷却される冷却域34では水熱反応は起こらない。逆流を伴う完全混合反応域32では下向流bとともに、逆流である上向流cが形成されており、噴射口36から噴射される噴射流aは循環する下向流bと混合して循環し、噴射直後に被反応物と酸化剤の混合物が循環流中に均一に分散する。このため混合物は循環流の熱を受けて直ちに超臨界または亜臨界状態になるため水熱反応が進行し、逆流を伴う完全混合反応域32中を循環する間に被反応物の大部分が分解する。
【0042】
逆流を伴う完全混合反応域32の循環流のうち、噴射流aに相当する量はプラグフロー反応域33に移り、下向流dを形成する。プラグフロー反応域33における下向流は実質的に平行流であり、緩速流として流下し、その間水熱反応は継続し、残余の被反応物は分解される。
【0043】
冷却域34では冷却水路46から吹込まれる冷却水eにより冷却されて超臨界温度以下になることにより反応物中の液成分が液化し、塩等の可溶性成分を溶解し、固形物を分散させた状態で反応物とともにラインL15から処理流体として取り出される。処理流体から超臨界状態で固形物を除去する場合には冷却水路46を省略することができる。
【0044】
図4は固体分離器を示す垂直断面図である。固体分離器8は流体導入部51を有する中空状の分離器50の上部に取付けられる蓋52に複数のフィルタ53a、53bが設けられて、それぞれの内側上部に弁54a、54bを有する洗浄流体供給路55a、55bが連絡している。フィルタ53a、53bの両方の上部に連通する流体取出部56にラインL17が連絡している。分離器50の下部に形成された固形物取出部57にはシャッタ58が設けられ、ラインL16に連絡している。分離器50にはフィルタ53a、53bに代え、あるいはこれらとともに流体導入部51にサイクロン59を設けることができる。
【0045】
上記の装置による固体分離方法は次の通り行われる。すなわちラインL15から送られる水熱反応処理流体は流体導入部51から分離器50に入り、フィルタ53a、53bによって固形物が分離され、流体取出部56からラインL17に取り出される。サイクロン59がある場合はサイクロン59でも固形物が分離されて下に落下する。
【0046】
フィルタ53a、53bは両方を使用して固形物の濾過分離が行われるが、フィルタ53a、53bが目詰まりしたときは弁54a、54bのどちらか一方を開いて一方の洗浄流体供給路55a、55bから洗浄流体を送って一方のフィルタ53a、53bを洗浄する。これにより処理流体の流れを止めることなく洗浄を行うことができる。剥離した固形物はシャッタ58を開いて固形物取出部57からラインL16へ排出する。
【0047】
【実施例】
以下、本発明の実施例について説明する。
実施例1
火力発電所ボイラをクエン酸3重量%およびグリコール酸3重量%の有機酸洗浄液で洗浄した洗浄排液を逆浸透膜を有する2段式の膜分離装置で濃縮し、濃縮液を蒸発濃縮することなく水熱反応装置に導入して水熱反応を行った。
【0048】
実施例2
実施例1において2段式の膜分離装置で濃縮した濃縮液をさらに図2の装置を用いて蒸発濃縮し、得られた高濃縮液を水熱反応装置に導入して水熱反応を行った。
【0049】
上記実施例1、2における水熱反応装置に導入する被処理液(濃縮液、高濃縮液)の性状を表1に、水熱反応の処理条件を表2に、処理水の性状を表3に、処理ガスの性状を表4に示す。分離した固形物は実施例1、2ともFe3O4で、純度は99重量%以上であり、回収して利用可能であった。
【0050】
【表1】
【0051】
【表2】
【0052】
【表3】
【0053】
【表4】
【図面の簡単な説明】
【図1】実施形態の有機酸洗浄排液の処理装置を示すフロー図である。
【図2】蒸発濃縮装置の構成図である。
【図3】水熱反応装置の垂直断面図である。
【図4】固体分離器の垂直断面図である。
【符号の説明】
1 高濃度排液貯槽
2 第1膜分離装置
3 低濃度排液貯槽
4 第2膜分離装置
5 濃縮液貯槽
6 蒸発濃縮装置
7 水熱反応装置
8 固体分離器
9 冷却器
11 気液分離器
12、13 減圧器
14 固液分離器
15 熱交換器
21 濃縮液
22 蒸気
23 本体
24 熱交換管
25 熱交換部
26 分配部
27 ポンプ
28 分配器
29 ミスト除去部材
30 コンプレッサ
31 反応器
32 完全混合反応域
33 プラグフロー反応域
34 冷却域
35 噴射装置
36 噴射口
37 噴射ノズル
38 混合部
39 被反応物導入部
40 酸化剤導入部
41 ライナー
42 スクレーパ
43、44 小径部
45 駆動機構
46 冷却水路
47 反応流体取出部
50 分離器
51 流体導入部
52 蓋
53a、53a フィルタ
54a、54b 弁
55a、55b 洗浄流体供給路
56 流体取出部
57 固形物取出部
58 シャッタ
59 サイクロン
Claims (8)
- 有機酸洗浄排液を濃縮する濃縮工程と、
濃縮液を水の超臨界または亜臨界状態で水熱反応により酸化分解する水熱反応工程と、
水熱反応処理流体から固形物を分離する分離工程とを含む有機酸洗浄排液の処理方法。 - 濃縮工程が膜分離工程および/または蒸発濃縮工程である請求項1記載の方法。
- 濃縮工程が高濃度排液を膜分離する第1の膜分離工程、低濃度排液を膜分離する第2の膜分離工程、ならびに第1および第2の膜分離による濃縮液を濃縮する蒸発濃縮工程である請求項2記載の方法。
- 分離工程で分離した固形物から金属酸化物を回収する請求項1ないし3のいずれかに記載の方法。
- 有機酸洗浄排液を濃縮する濃縮装置と、
濃縮液を水の超臨界または亜臨界状態で水熱反応により酸化分解する水熱反応装置と、
水熱反応処理流体から固形物を分離する固体分離器とを含む有機酸洗浄排液の処理装置。 - 濃縮装置が膜分離装置および/または蒸発濃縮装置である請求項5記載の装置。
- 水熱反応装置が付着物除去手段および/または固形物排出手段を有する請求項5または6記載の装置。
- 水熱処理流体の冷却手段を固体分離器の前および/または後に有する請求項5ないし7のいずれかに記載の装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002194421A JP2004033910A (ja) | 2002-07-03 | 2002-07-03 | 有機酸洗浄排液の処理方法および装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002194421A JP2004033910A (ja) | 2002-07-03 | 2002-07-03 | 有機酸洗浄排液の処理方法および装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004033910A true JP2004033910A (ja) | 2004-02-05 |
Family
ID=31703123
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002194421A Pending JP2004033910A (ja) | 2002-07-03 | 2002-07-03 | 有機酸洗浄排液の処理方法および装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2004033910A (ja) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006055729A (ja) * | 2004-08-19 | 2006-03-02 | Kurita Water Ind Ltd | フィルタリングシステム、それを有する水熱処理装置及びフィルタリング方法 |
NL1035729C2 (en) * | 2008-07-21 | 2010-01-22 | Stichting Wetsus Ct Of Excelle | Method and system for supercritical removal or an inorganic compound. |
CN104649515A (zh) * | 2015-01-16 | 2015-05-27 | 北京交通大学 | 一种高盐度高氨氮稀土生产废水的处理工艺方法及装置 |
CN104692580A (zh) * | 2015-03-23 | 2015-06-10 | 内蒙古天一环境技术有限公司 | 一种新型发酵类制药废水综合处理系统及方法 |
CN104710046A (zh) * | 2015-03-23 | 2015-06-17 | 内蒙古天一环境技术有限公司 | 一种新型稀土废水综合处理系统及方法 |
CN104710045A (zh) * | 2015-03-23 | 2015-06-17 | 内蒙古天一环境技术有限公司 | 一种新型印染废水综合处理系统及方法 |
CN104773891A (zh) * | 2015-03-23 | 2015-07-15 | 王冰 | 一种新型炼油废水综合处理系统及方法 |
KR101549959B1 (ko) * | 2014-09-12 | 2015-09-03 | 한국에너지기술연구원 | 초임계수를 이용한 폐액 처리 시스템 및 처리 방법 |
CN105858944A (zh) * | 2015-01-19 | 2016-08-17 | 王冰 | 一种新型零污染排放污水综合处理系统及方法 |
JP2021038124A (ja) * | 2019-09-04 | 2021-03-11 | 株式会社東芝 | セラミックスからの金属回収方法 |
-
2002
- 2002-07-03 JP JP2002194421A patent/JP2004033910A/ja active Pending
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006055729A (ja) * | 2004-08-19 | 2006-03-02 | Kurita Water Ind Ltd | フィルタリングシステム、それを有する水熱処理装置及びフィルタリング方法 |
JP4604170B2 (ja) * | 2004-08-19 | 2010-12-22 | 栗田工業株式会社 | フィルタリングシステム、それを有する水熱処理装置及びフィルタリング方法 |
NL1035729C2 (en) * | 2008-07-21 | 2010-01-22 | Stichting Wetsus Ct Of Excelle | Method and system for supercritical removal or an inorganic compound. |
WO2010011136A1 (en) * | 2008-07-21 | 2010-01-28 | Stichting Wetsus Centre Of Excellence For Sustainable Water Technology | Method and system for supercritical removal of an inorganic compound |
KR101549959B1 (ko) * | 2014-09-12 | 2015-09-03 | 한국에너지기술연구원 | 초임계수를 이용한 폐액 처리 시스템 및 처리 방법 |
CN104649515A (zh) * | 2015-01-16 | 2015-05-27 | 北京交通大学 | 一种高盐度高氨氮稀土生产废水的处理工艺方法及装置 |
CN104649515B (zh) * | 2015-01-16 | 2016-11-30 | 北京交通大学 | 一种高盐度高氨氮稀土生产废水的处理工艺方法及装置 |
CN105858944A (zh) * | 2015-01-19 | 2016-08-17 | 王冰 | 一种新型零污染排放污水综合处理系统及方法 |
CN104692580A (zh) * | 2015-03-23 | 2015-06-10 | 内蒙古天一环境技术有限公司 | 一种新型发酵类制药废水综合处理系统及方法 |
CN104710046A (zh) * | 2015-03-23 | 2015-06-17 | 内蒙古天一环境技术有限公司 | 一种新型稀土废水综合处理系统及方法 |
CN104710045A (zh) * | 2015-03-23 | 2015-06-17 | 内蒙古天一环境技术有限公司 | 一种新型印染废水综合处理系统及方法 |
CN104773891A (zh) * | 2015-03-23 | 2015-07-15 | 王冰 | 一种新型炼油废水综合处理系统及方法 |
JP2021038124A (ja) * | 2019-09-04 | 2021-03-11 | 株式会社東芝 | セラミックスからの金属回収方法 |
JP7337609B2 (ja) | 2019-09-04 | 2023-09-04 | 株式会社東芝 | セラミックスからの金属回収方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101860295B1 (ko) | 진공증발을 이용한 탈황폐수 처리장치 및 그 방법 | |
US6709602B2 (en) | Process for hydrothermal treatment of materials | |
JP2004033910A (ja) | 有機酸洗浄排液の処理方法および装置 | |
CN214004100U (zh) | 含盐废水处理装置 | |
CN105601017A (zh) | 一种高浓度有机废水及污泥的近零排放处理系统及方法 | |
CN111491699B (zh) | 用于废物处理的系统、方法和技术 | |
KR102431449B1 (ko) | 과열증기를 이용한 활성탄 재생장치의 폐수 처리 장치 및 그의 폐수 처리 방법 | |
JP5050447B2 (ja) | 化学洗浄廃液の処理方法 | |
JP2002273494A (ja) | 無機塩を含む有機性固形物、特に下水汚泥の処理方法 | |
CN109173642A (zh) | 一种湿法烟气脱硝后含亚硝酸盐和硝酸盐吸收液的处理系统及方法 | |
JPH11253745A (ja) | アンモニアの回収方法及び回収装置 | |
KR100555649B1 (ko) | 배기가스 처리방법 및 처리장치 | |
JP2002102672A (ja) | 水熱反応装置および方法 | |
JP2002273482A (ja) | し尿および/または浄化槽汚泥の処理方法および装置 | |
JP4355246B2 (ja) | 有機性廃棄物の高温高圧処理装置 | |
JP2004340769A (ja) | 有機酸除染廃液の処理方法および装置 | |
JPH08224572A (ja) | クローズドシステムの超純水製造および排水処理方法 | |
JP3495904B2 (ja) | Tmah廃液の超臨界水酸化処理方法 | |
JP2001259696A (ja) | し尿および/または浄化槽汚泥の処理方法および装置 | |
JP2003245679A (ja) | 超臨界水酸化方法および超臨界酸化装置 | |
JP2003236594A (ja) | 汚泥の処理装置 | |
JP3801803B2 (ja) | 超臨界水酸化装置のスケール除去方法 | |
JP2009090168A (ja) | 濃縮装置 | |
JP2002119996A (ja) | し尿および/または浄化槽汚泥の処理方法および装置 | |
CN108675531A (zh) | 高盐高有机物废液的热化学处理系统及方法 |