JPH11199327A - 結晶配向セラミックスの製造方法 - Google Patents

結晶配向セラミックスの製造方法

Info

Publication number
JPH11199327A
JPH11199327A JP9369061A JP36906197A JPH11199327A JP H11199327 A JPH11199327 A JP H11199327A JP 9369061 A JP9369061 A JP 9369061A JP 36906197 A JP36906197 A JP 36906197A JP H11199327 A JPH11199327 A JP H11199327A
Authority
JP
Japan
Prior art keywords
phase
host
guest
temperature
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9369061A
Other languages
English (en)
Other versions
JP3629933B2 (ja
Inventor
Tsuguto Takeuchi
嗣人 竹内
Toshihiko Tani
俊彦 谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP36906197A priority Critical patent/JP3629933B2/ja
Publication of JPH11199327A publication Critical patent/JPH11199327A/ja
Application granted granted Critical
Publication of JP3629933B2 publication Critical patent/JP3629933B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

(57)【要約】 【課題】 使用する材料等の種類に関わらず確実に結晶
配向度の高いセラミックスを製造可能な,結晶配向セラ
ミックスの製造方法を提供すること。 【解決手段】 粒子配向した状態にあるホスト粒子をテ
ンプレートとしてホスト粒子とゲスト化合物原料とを混
合,加熱することにより,等方性ペロブスカイト型構造
を有するゲスト化合物からなる結晶配向セラミックスを
製造する方法において,ホスト粒子のホスト相とゲスト
化合物のゲスト相とをオーバーラップして存在させるた
め,あるいは,ホスト相とゲスト相との接触を妨げる第
3相の生成を抑制するため,ホスト相の消失及びゲスト
相の生成のタイミングを制御する手段としてのホスト相
消失遅延工程,ゲスト相生成促進工程及び第3相生成抑
制工程のいずれか1つを有する。

Description

【発明の詳細な説明】
【0001】
【技術分野】本発明は,誘電体材料,焦電体材料,圧電
体材料,強誘電体材料,磁性材料,イオン伝導性材料,
電子伝導性材料,熱電材料,耐磨耗性材料等の機能や特
性が結晶方位依存性を有する物質よりなる多結晶セラミ
ックスで特に結晶方位が配向した,結晶配向セラミック
スの製造方法に関する。
【0002】
【従来技術】結晶配向セラミックスの製造方法として以
下に示すものが挙げられる。ペロブスカイト構造の結晶
構造テンプレートとなり,形状異方性を有するホスト粒
子とゲスト化合物原料とを混合し,混合物となす。この
ゲスト化合物原料は,最終的にペロブスカイト構造を有
するゲスト化合物を合成し得る物質よりなる。あるいは
ホスト粒子も含めて最終的にペロブスカイト構造を有す
るゲスト化合物を合成し得る物質よりなる。
【0003】上記混合物をホスト粒子が粒子配向するよ
うに配向成形した後,加熱する。これにより,該ホスト
粒子をテンプレートとしてゲスト化合物が生成される。
よって,特定方位に結晶配向したゲスト化合物よりなる
多結晶バルクセラミックスを得ることができる(特願平
9−158069号,特願平9−148566号,特願
平9−124834号)。
【0004】上記製造方法における加熱過程では,ゲス
ト化合物が未だ生成されておらず,ゲスト化合物原料と
共にホスト粒子が主として存在するホスト相から,ゲス
ト化合物が生成され,該ゲスト化合物が主として存在す
るゲスト相という状態に移行する。このため,昇温と共
にホスト相の量は減少し,代わってゲスト相が増加す
る。そしてこの時,ホスト相とゲスト相との共存領域
(両者が共存可能な温度範囲)においてホスト粒子の表
面または内部で,ホスト粒子の結晶構造をテンプレート
としたゲスト化合物の少なくとも一部がエピタキシャル
生成し,ホスト粒子からゲスト化合物への結晶方位の転
写が行なわれる。この現象を表した測定結果として,図
3及び図4に記載した。
【0005】これは,ホスト粒子としてのBi4 Ti3
12(以下BITと省略する),ゲスト化合物材料とし
てBi2 3 ,Na2 CO3 ,TiO2 を使用し,ゲス
ト化合物(Bi0.5 Na0.5 )TiO3 (以下BNTと
省略する)を得たときのものである。得られたゲスト化
合物のX線回折パターンを無配向バルクセラミックスの
ものと共に図3に記載した。また,反応過程での温度に
伴う相変化曲線を図4に記載した。
【0006】ホスト相が消失した後は,エピタキシャル
生成したゲスト化合物が核となってオストワルド粒成長
が発生し,最終的には配向したゲスト化合物よりなる結
晶配向セラミックスが生成される。
【0007】上記製造方法によれば,チタン酸ビスマス
ナトリウム(Bi0.5 Na0.5 TiO3 ),チタン酸ビ
スマスナトリウムカリウム(Bi0.5 (Na,K)0.5
TiO3 ),チタン酸ストロンチウム(SrTi
3 ),チタン酸カルシウム(CaTiO3 )等よりな
り,これらの物質におけるペロブスカイト構造の{10
0}面(立方晶表示)が特定方向に著しく配向した結晶
配向セラミックスを得ることができる。
【0008】ここにペロブスカイト構造を有する化合物
は,圧電性,焦電性,熱電性,イオン伝導性,電子伝導
性,磁性,巨大磁気抵抗効果,電気光学効果等の様々な
特性を有し,またその多くは結晶方位に依存する。従っ
て,単結晶のように結晶方位の揃った多結晶バルクセラ
ミックを得ることができれば,これらの特性が飛躍的に
向上した材料を得ることができると考えられる。
【0009】上記製造方法を利用すれば,極めて製造コ
ストが高価となる単結晶製造に頼ることなく,安価で一
般的なセラミックス製造プロセスを利用して,ペロブス
カイト構造を有する結晶配向セラミックスを製造するこ
とが可能である。よって,上記製造方法によれば,結晶
が配向し,単結晶に近い優れた特性を有する材料を提供
することができる。また,結晶方位依存性を有する特性
を利用した優れたデバイスを作製することができる。
【0010】
【解決しようとする課題】しかしながら,上記製造方法
には以下にかかる問題がある。ここに上記加熱過程にお
けるホスト相の消失温度を温度Aとする。またゲスト相
の生成開始温度を温度Bとする。この場合,温度A以下
の領域はホスト相が安定して存在可能なホスト相安定温
度領域であり,温度B以上の領域はゲスト相安定温度領
域である。図5に示すごとく,温度A>温度Bが成立
し,かつホスト相とゲスト相との共存領域が充分に広い
場合には,上記製造方法によって結晶配向セラミックス
を得ることができる。
【0011】しかしながら,ホスト粒子,ゲスト化合物
材料の種類によっては,図6に示すごとく,温度Aと温
度Bとが近接することがある。あるいは,温度A<温度
Bとなることもある。これらの場合,ゲスト相の多くが
ホスト相の消失後に生成するため,ホスト粒子からゲス
ト化合物への結晶方位の転写が殆ど起こらない。結果的
にホスト粒子の結晶方位と無関係に生成した無配向ゲス
ト化合物が最終的な生成物の結晶配向を支配することと
なる。よってこの場合は,結晶配向セラミックスを得る
ことができない,あるいは結晶配向度の低い結晶配向セ
ラミックスしか得ることができなかった。
【0012】また,図7に示すごとく,ホスト相とゲス
ト相との共存領域は存在するが,該共存領域にペロブス
カイト構造に対する結晶整合を持たない第3相が共に存
在することがある。このようなケースで,特に第3相が
ホスト相とゲスト化合物原料との反応により生じる場合
には,第3相の発生がホスト相を減少させてしまう。更
に,第3相とホスト相との間には結晶整合性がないこと
から,第3相は無配向に生成してしまう。結果的にホス
ト相とゲスト相との間の結晶方位の転写が著しく阻害さ
れ,最終的に無配向あるいは結晶配向度の低いセラミッ
クスが生成されてしまう。
【0013】本発明は,かかる問題点に鑑み,使用する
材料等の種類に関わらず確実に結晶配向度の高いセラミ
ックスを製造可能な,結晶配向セラミックスの製造方法
を提供しようとするものである。
【0014】
【課題の解決手段】請求項1の発明は,粒子配向した状
態にあるホスト粒子をテンプレートとしてホスト粒子と
ゲスト化合物原料とを混合,加熱することにより,等方
性ペロブスカイト型構造を有するゲスト化合物からなる
結晶配向セラミックスを製造する方法において,上記ホ
スト粒子のホスト相と上記ゲスト化合物のゲスト相とを
オーバーラップして存在させるため,あるいは,上記ホ
スト相と上記ゲスト相との接触を妨げる第3相の生成を
抑制するため,上記ホスト相の消失及び上記ゲスト相の
生成のタイミングを制御する手段としてのホスト相消失
遅延工程,ゲスト相生成促進工程及び第3相生成抑制工
程のいずれか1つを有することを特徴とする結晶配向セ
ラミックスの製造方法にある。
【0015】上記ホスト粒子としては形状異方性を有す
るものを使用することが好ましい。例えば板状,柱状,
針状,鱗状の粉末のように,長軸寸法と短軸寸法との比
(アスペクト比)の大きい粒子状の材料を用いることが
好ましい。また,ホスト粒子の結晶における少なくとも
一つの結晶面の二次元結晶格子が,ゲスト化合物の結晶
における少なくとも一つの結晶面の二次元結晶格子と格
子整合性を有することが必要である。この条件を満たす
物質はゲスト化合物の生成においてテンプレートとして
作用することができる。
【0016】また,ホスト粒子とゲスト化合物原料とを
加熱するに当たり,両者に配向成形を施し,得られた成
形体を加熱して焼結させることが好ましい。これによ
り,より結晶配向度が高い結晶配向セラミックスを得る
ことができる。また,バルク体を容易に作製することが
できる。
【0017】本発明のタイミングを制御する手段はホス
ト粒子のホスト相からゲスト化合物のゲスト相への結晶
方位の転写を行わせるためにホスト粒子とゲスト化合物
の存在をオーバーラップさせる手段をいう。これはゲス
ト相の消失温度Aと生成温度Bが近接あるいはA<Bで
あるため,ホスト相からゲスト相への結晶方位の転写が
殆ど起こらない場合,さらにはオーバーラップが少なく
転写の割合が少ない場合等に有効である。この手段には
次の二つの方法がある。
【0018】ホスト相消失遅延工程は図5〜図7に示さ
れるホスト相の量の低下を遅らせたり,防いだりする工
程である。本工程の主な手法はホスト粒子のホスト相消
失温度域での消失を抑制するよう操作することである。
ゲスト相生成促進工程は図5〜図7に示されるゲスト相
の量が増加する時期を早める工程である。本工程の主な
手法はゲスト化合物をを生成し,ゲスト相が成長しやす
い温度域に早く達するよう温度を制御することである。
上記のホスト相消失遅延工程とゲスト相生成促進工程
は,同時に進行する場合もある。
【0019】このような工程として,ホスト粒子とゲス
ト化合物原料との加熱(特に昇温過程)の際に,ホスト
相安定温度領域からゲスト相安定温度領域までの間は急
速昇温させることが好ましい。前述した図6,図7にか
かる現象は各種反応が追従可能な充分緩やかな昇温速
度,例えば通常のセラミックスの焼成で行うような40
0℃/時以下の昇温速度で観察される現象である。
【0020】昇温速度を速めることで,図8に示すよう
に,ホスト相の反応は温度変化に追従できなくなり,ゲ
スト安定温度領域までホスト相の消失を防止することが
できる。この結果,ホスト相とゲスト相との共存可能な
温度領域が拡大し,ホスト相からゲスト相への結晶方位
の転写が可能となり,最終的に得られる結晶配向セラミ
ックスの結晶配向度を高めることができる。
【0021】次に,ホスト粒子とゲスト化合物原料との
加熱の際に,ホスト相以外を優先的に加熱することが好
ましい。これにより,ホスト相の温度を上げることなく
ゲスト相を構成する原料を加熱することができる。よっ
て,ホスト相とゲスト相の共存できる温度領域を広げる
ことができる。よって,最終的に得られる結晶配向セラ
ミックスの結晶配向度を高めることができる。
【0022】本発明の第3相生成抑制工程は図7に示す
ペロブスカイト構造と結晶整合を持たない第3相の生成
を抑制する工程である。本工程の主な手法は第3相が生
成する温度域とならないよう温度を制御することや,第
3相がホスト物質とゲスト化合物の原料あるいはゲスト
化合物との反応によって生成する場合はその反応を妨げ
ることである。
【0023】第3相は図7から知られるごとく特定の温
度領域でしか安定して存在することができない。そこで
昇温速度を速めることにより第3相が安定して存在可能
な温度領域を素早く通り抜けることができる。従って,
第3相の生成を抑制することができ,ホスト相のテンプ
レートとしての機能を維持することができる。よって,
最終的に得られるゲスト化合物の結晶配向度を高めるこ
とができる。なお,第3相が消失する温度以上であって
かつゲスト相安定温度領域に至るまで急速昇温を継続す
ることが好ましい。
【0024】また,上記昇温速度は通常のセラミックス
焼成に利用される400℃/時と比べて充分速くする必
要がある。また,特に1000℃/時以上とすることに
より,より結晶配向度が高い結晶配向セラミックスを得
ることができる。また,上記昇温速度は,使用するホス
ト粒子,ゲスト化合物原料,またこれらを充填する容器
等の熱容量,炉内形状等により決定される。
【0025】また,ホスト粒子とゲスト化合物原料との
加熱に当たっては,例えば電気炉を使用し,炉内をホス
ト相安定温度に予め加熱しておき,ここにホスト粒子と
ゲスト化合物とを挿入する方法がある。また,急速加熱
が可能な赤外線炉,高周波炉,マイクロ波炉等は昇温速
度を容易に制御することができるため,これらを使用す
ることも好ましい。
【0026】また,ホスト粒子とゲスト化合物原料との
加熱の際に,ホスト相以外を優先的に加熱することが好
ましい。この方法では直接的にホスト粒子を加熱しない
ため,第3相の生成を抑制することができる。これは前
述したごとく,第3相はホスト粒子と他の原料とが反応
して生成するためである。よって,ホスト相のテンプレ
ートとしての機能を維持することができ,最終的に得ら
れるゲスト化合物の結晶配向度を高めることができる。
【0027】ホスト相以外を優先的に加熱する方法とし
ては,マイクロ波加熱を利用することが好ましい。マイ
クロ波加熱とは,被加熱体の誘電損失による発熱を利用
して加熱する方法である。従って,ホスト粒子以外の原
料での誘電損失が最大となるようにマイクロ波の周波数
を選択することにより,ホスト粒子以外の原料を優先加
熱することができる。
【0028】また,この場合,ホスト粒子は優先加熱さ
れたその他の原料からの輻射熱,熱伝導により加熱され
るため,ゲスト安定温度領域に達するまでの昇温速度を
より急速にすることが好ましい。また,この場合の昇温
速度は上述の場合と同様に1000℃/時以上とするこ
とがより好ましい。
【0029】本発明により結晶配向セラミックスが得ら
れる物質の一例として,圧電性,強誘電性,誘電性等に
優れた材料が多く知られる鉛を含むペロブスカイト化合
物が考えられる。これらの物質では,鉛の反応性が高い
ためホスト粒子の消失温度が低下し,温度Aと温度Bと
が近接あるいは温度A<温度Bとなるケースが多い。ま
たは,鉛を含む第3相が生成するケースが多い。本発明
の方法を用いることにより,これらの物質から産業上の
利用価値が高い鉛系ペロブスカイト材料よりなる結晶配
向度に優れたバルクセラミックスを作製することが可能
である。
【0030】本発明の作用につき,以下に説明する。本
発明にかかる製造方法において,その加熱過程では以下
のような機構にてゲスト化合物よりなる結晶配向セラミ
ックスが生成される。ホスト粒子とゲスト化合物原料と
の加熱過程では,ゲスト化合物が未だ生成されておら
ず,ホスト粒子が主として存在するホスト相から,ゲス
ト化合物が生成され,該ゲスト化合物が主として存在す
るゲスト相という状態に移行する。
【0031】ホスト相とゲスト相との共存領域において
ホスト粒子の表面または内部でホスト粒子の結晶構造を
テンプレートとしたゲスト化合物のエピタキシャル生成
が発生し,ホスト粒子からゲスト化合物への結晶方位の
転写が行なわれる。ホスト相が消失した後は,エピタキ
シャル生成したゲスト化合物が核となって無配向に生成
したゲスト化合物を取り込みながらオストワルド粒成長
し,最終的には配向したゲスト化合物よりなる結晶配向
セラミックスが生成される。
【0032】そして,本発明にかかる製造方法において
は,ホスト相の消失を遅らせると共にゲスト相の生成を
早めている。このため,ホスト相とゲスト相とが共存状
態にある時間をより長くすることができる。よって,よ
り長時間に渡って確実にホスト粒子からゲスト化合物へ
の結晶方位の転写を行うことができ,一層確実に結晶配
向セラミックスを製造することができる。また,ホスト
粒子から結晶方位を転写されたゲスト化合物の生成量が
増大することから,より結晶配向度の高い結晶配向セラ
ミックスを得ることができる。
【0033】また,ホスト粒子,ゲスト化合物原料の種
類によっては,加熱過程において前述した図6に示すご
とく,ホスト相が消失する温度Aとゲスト粒子の生成が
始まる温度Bとが近接することがある。あるいは温度A
<温度Bとなる場合がある。このような場合でも,本発
明によればホスト相の消失が遅れるため,図8に示すご
とく,ホスト相とゲスト相とを共存可能な状態に保持す
ることができる。このため,ホスト相からゲスト相への
結晶方位の転写を行うことができる。
【0034】また,前述した図7に示すごとく第3相が
発生する場合においても,本発明によればホスト相の消
失が遅れるため,第3相が生じ難くなる。このため,前
述したごとき第3相によるホスト相とゲスト相との間の
結晶方位転写の阻害を解消することができる。
【0035】以上のように本発明によれば,使用する材
料等の種類に関わらず確実に結晶配向度の高いセラミッ
クスを製造可能な,結晶配向セラミックスの製造方法を
提供することができる。
【0036】
【発明の実施の形態】実施形態例 本発明の実施形態例にかかる結晶配向セラミックスの製
造方法及び得られた結晶配向セラミックスの性能につ
き,図1〜図9を用いて説明する。本例の製造方法の概
略について説明する。粒子配向した状態にあるホスト粒
子をテンプレートとして,等方性ペロブスカイト型構造
を有するゲスト化合物を生成させるが,この時ホスト相
の消失を遅らせると共にゲスト相の生成を早める。本例
においては,これを実現するために,ホスト粒子とゲス
ト化合物原料とよりなる圧延体を急速昇温する。
【0037】次に,本例にかかる製造方法により試料を
作製し,その性能について比較試料と共に説明する。本
例の製造方法において,ホスト粒子としてBi4 Ti3
12(以下BITと省略)板状粒子を,ゲスト化合物原
料としてPbO,NiO,TiO2 を使用した。なお,
ホスト粒子であるBIT板状粒子は参考試料に示すごと
きフラックス法により合成した。これらを用いて,(P
0.5 Bi0.5 )(Ni0.25Ti0.75)O3 (以下,P
BNTと省略する)組成のゲスト化合物よりなる結晶配
向セラミックスを作製した。
【0038】ホスト粒子とゲスト化合物原料とを,BI
T:PbO:NiO:TiO2 =15:60:30:4
5というモル比となるように秤量,混合し,混合物を得
た。上記混合物にエタノールとトルエンとを加えてボー
ルミル混合し,更にバインダーとしてポリビニルブチラ
ール,可塑剤としてジブチルフタレートを添加して混合
し,得られた均一なスラリーをドクターブレード装置に
よりテープ成形を施して,テープ成形体とした。次に,
上記テープ成形体を20枚重ねて圧着し,更に双ローラ
ーにより厚さが50%になるまで圧延し,圧延体を得
た。
【0039】上記圧延体を電気炉内に投入し,酸素雰囲
気中,温度400℃で脱脂した。続いてこれを炉内温度
を700〜1100℃に保持した電気炉内に投入し,圧
延体を急速に加熱した後(昇温速度は1500〜200
0℃/時),更に続けて酸素雰囲気中1150℃で10
時間保持した。以上により,試料1〜5にかかる焼結体
を得た(試料1:700℃まで急速加熱,試料2:80
0℃まで急速加熱,試料3:900℃まで急速加熱,試
料4:1000℃まで急速加熱,試料5:1100℃ま
で急速加熱)。また,上記圧延体を電気炉内に投入し,
酸素雰囲気中温度400℃で脱脂,続いて急速昇温を行
わずに200℃/時で昇温し,続けて酸素雰囲気中11
50℃で10時間保持し,比較試料にかかる焼結体を得
た。
【0040】また,図2に試料1〜5,比較試料の材料
系における加熱過程での相変化曲線を記載した。但し,
この相変化曲線を測定する際の昇温速度は200℃/時
とし,ホスト相(BIT),ゲスト相(PBNT)及び
第3相の各相変化曲線は,X線回折パターンにおけるB
ITの(0014)面に相当する回折線,PBNTの
(110)面に相当する回折線,第3相の最大強度を有
する回折線の強度を縦軸に,温度を横軸として記載し
た。回折線の強度が高ければ高い程,該回折線の発生源
となった相がより多く存在することになる。
【0041】本実施例にかかる製造方法においてBIT
を使用している。しかし,ゲスト化合物原料として鉛含
有の材料を使用しているため,ホスト相が消失する温度
Aが図4の線図と比べて著しく低く,温度700〜80
0℃の範囲にて既にBITが消失したことが分かった。
また,ゲスト相であるPBNTは800〜900℃にお
いて著しく生成され,ホスト相とゲスト相とが共存する
温度範囲が非常に狭いことが分かった。更に,温度A及
び温度Bの周辺温度では,第3相としてペロブスカイト
構造と結晶整合を持たないBi2 3 とPbOとの固溶
相の生成が確認された。
【0042】次に,試料1〜5,比較試料にかかる結晶
配向セラミックスの表面のX線回折パターンを測定して
図1に記載した。急速加熱されていない比較試料は{1
00}面(立方晶表示)配向が僅かに見られたものの,
後述するLotgering法により計算された{10
0}面(立方晶表示)結晶配向度は僅かに16%であっ
た。急速加熱を施した試料1〜5は,最も配向度の低い
試料1であっても結晶配向度が24%と比較試料の1.
5倍の結晶配向度を有していることが分かった。
【0043】このように,ホスト相とゲスト相との共存
温度領域の狭い材料系,ペロブスカイト構造と結晶整合
を持たない第3相が存在する材料系では,急速昇温する
ことにより,高い結晶配向度を有する結晶配向セラミッ
クスを作製できることが分かった。
【0044】また,急速昇温により温度700℃及び8
00℃まで加熱されて作製された。試料1及び試料2の
{100}面(立方晶表示)結晶配向度は各々24%及
び30%であった。このように,急速昇温によりホスト
相の消失温度が高温化し,更に急速昇温により到達した
温度が高くなる程に結晶配向度が高くなる傾向があるこ
とが分かった。なお,これらの試料1及び試料2の結晶
配向度が試料3〜試料5と比較してさほど高まらなかっ
たのは,急速加熱による到達温度がゲスト相の生成があ
まり活発でない700℃〜800℃であったためである
と考えられる。
【0045】次に,ゲスト相の生成が著しく活発になる
温度900℃,1000℃,1100℃までの急速昇温
を施した試料3〜5は,X線回折パターンの(h0
0),(00l[ゼロゼロエル])面に相当する回折線
のピークが著しく高くなった。また,{100}面(立
方晶表示)における結晶配向度は,試料3で49%,試
料4で53%,試料5で52%と,試料1,試料2に比
べて著しく高かった。これにより,急速昇温によりゲス
ト相の生成が著しく活発になる温度まで加熱することに
より,より高い結晶配向度を持った結晶配向セラミック
スを製造できることが分かった。なお,各試料1〜5,
比較試料の焼結体密度はいずれも相対密度98%以上で
あった。
【0046】このようにゲスト相安定温度領域まで急速
昇温を施すことで,PBNT系のような,ホスト相とゲ
スト相の共存温度領域の狭い材料系,ペロブスカイト構
造と結晶整合を持たない第3相を生成する材料系であっ
ても高い結晶配向度を有する結晶配向セラミックスが作
製できることが分かった。
【0047】なお,上記結晶配向度はLotgerin
g法により算出した。この方法はX線回折パターンから
結晶配向度を便宜的に求める方法であり,次式により決
定される。 特定面の結晶配向度(%)={(p−p0 )/(1−p
0 )}×100 p=Σ特定面I(hkl)/Σ全てI(hkl) p0 =Σ特定面I0 (h’k’l’)/Σ全てI
0 (h’k’l’) ここで,I(hkl),I0 (h’k’l’)は各々評
価試料及び標準無配向試料の(hkl)面,(h’k’
l’)面の回折線強度,『Σ特定面』は注目する配向面
に関連する回折線の強度和,『Σ全て』は全ての回折線
の強度和に相当する。
【0048】なお,本例では,正方晶系,あるいは菱面
体晶系ペロブスカイト構造を有する化合物として,PB
NT,あるいはCNTの{100}面(立方晶表示)結
晶配向度を計算するが,これらの場合正方晶系では(h
00),(00l[ゼロゼロエル])面が,菱面体晶系
では(h00)面が各々配向面に関連する特定面に相当
する。
【0049】次に,通常の粉末法により作製した無配向
のPBNTよりなるセラミックスとと試料3にかかる結
晶配向セラミックスとの特性を比較した。両セラミック
スを厚さ0.5mm×Φ11mmの円板上に加工し,両
面に金蒸着により電極を形成した。なお,試料1に関し
ては,配向面が円板面と平行になる様に加工した。
【0050】上記円板を温度100℃に保持したシリコ
ン油中で4kV/mmの電界を10分印加して,分極処
理を施した。その後,共振−反共振法により円板の圧電
定数を測定した。この測定によれば,試料3の比誘電率
は880,電気機械結合係数Kpは36%,圧電定数d
31は57pm/Vであった。無配向のセラミックスは
比誘電率は1020,電気機械結合係数Kpは32%,
圧電定数d31は56pm/Vであった。
【0051】正方晶系ペロブスカイト構造を有するPB
NTは,結晶配向により誘電率が低下したが,電気機械
結合係数,圧電定数が少し増加した。即ち,結晶配向に
より電気−機械の変換係数が向上したことが分かった。
これにより,結晶配向セラミックスを利用することによ
り,無配向の材料を使用する場合よりも高効率なアクテ
ュエータ,感圧素子等のデバイスを作製可能なことが分
かった。
【0052】次に,本例における作用効果につき説明す
る。本例では急速加熱を施すことにより,ホスト相の消
失を遅らせると共にゲスト相の生成を早めている。この
ため,前述した図7及び図2に示すごとく,第3相が生
じ難くなり,前述したごとき第3相によるホスト相とゲ
スト相との間の結晶方位転写の阻害が解消され,結晶配
向度の高い結晶配向セラミックスを確実に得ることがで
きる。
【0053】以上のように本例によれば,使用する材料
等の種類に関わらず確実に結晶配向度の高いセラミック
スを製造可能な,結晶配向セラミックスの製造方法を提
供することができる。
【0054】
【発明の効果】上記のごとく,本発明によれば,使用す
る材料等の種類に関わらず確実に結晶配向度の高いセラ
ミックスを製造可能な,結晶配向セラミックスの製造方
法を提供することができる。
【図面の簡単な説明】
【図1】実施形態例の試料1〜5,比較試料にかかる
(Pb0.5 Bi0.5 )(Ni0.25Ti0.75)O3 よりな
る結晶配向セラミックスのX線回折パターンを示す線
図。
【図2】実施形態例の試料1〜5,比較試料にかかる昇
温過程における相変化曲線を示す線図。
【図3】(Bi0.5 Na0.5 )TiO3 よりなる結晶配
向セラミックスと,粉末法により作製された無配向の多
結晶セラミックスとのX線回折パターンを示す線図。
【図4】BNT((Bi0.5 Na0.5 )TiO3 )生成
における相変化曲線を示す線図。
【図5】従来例にかかる,共存領域が広い材料系でのホ
スト相とゲスト相との相変化曲線を示す線図。
【図6】従来例にかかる,共存領域を持たない材料系で
のホスト相とゲスト相との相変化曲線を示す線図。
【図7】従来例にかかる,第3相が形成される材料系で
のホスト相とゲスト相及び第3相の相変化曲線を示す線
図。
【図8】本発明にかかる,共存領域を持たない材料系に
おいてホスト相の消失を遅らせると共にゲスト相の生成
を早めた状態でのホスト相とゲスト相との相変化曲線を
示す線図。
【図9】本発明にかかる,第3相が形成される材料系に
おいてホスト相の消失を遅らせると共にゲスト相の生成
を早めた状態でのホスト相,ゲスト相及び第3相の相変
化曲線を示す線図。

Claims (1)

    【特許請求の範囲】
  1. 【請求項1】 粒子配向した状態にあるホスト粒子をテ
    ンプレートとしてホスト粒子とゲスト化合物原料とを混
    合,加熱することにより,等方性ペロブスカイト型構造
    を有するゲスト化合物からなる結晶配向セラミックスを
    製造する方法において,上記ホスト粒子のホスト相と上
    記ゲスト化合物のゲスト相とをオーバーラップして存在
    させるため,あるいは,上記ホスト相と上記ゲスト相と
    の接触を妨げる第3相の生成を抑制するため,上記ホス
    ト相の消失及び上記ゲスト相の生成のタイミングを制御
    する手段としてのホスト相消失遅延工程,ゲスト相生成
    促進工程及び第3相生成抑制工程のいずれか1つを有す
    ることを特徴とする結晶配向セラミックスの製造方法。
JP36906197A 1997-12-27 1997-12-27 結晶配向セラミックスの製造方法 Expired - Fee Related JP3629933B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36906197A JP3629933B2 (ja) 1997-12-27 1997-12-27 結晶配向セラミックスの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36906197A JP3629933B2 (ja) 1997-12-27 1997-12-27 結晶配向セラミックスの製造方法

Publications (2)

Publication Number Publication Date
JPH11199327A true JPH11199327A (ja) 1999-07-27
JP3629933B2 JP3629933B2 (ja) 2005-03-16

Family

ID=18493462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36906197A Expired - Fee Related JP3629933B2 (ja) 1997-12-27 1997-12-27 結晶配向セラミックスの製造方法

Country Status (1)

Country Link
JP (1) JP3629933B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009107345A (ja) * 2000-06-21 2009-05-21 Seiko Epson Corp セラミックス膜およびその製造方法ならびに半導体装置、圧電素子およびアクチュエータ
JPWO2013140607A1 (ja) * 2012-03-23 2015-08-03 株式会社東芝 固体電解質、固体電解質の製造方法、電池及び電池パック
JP2015181120A (ja) * 2015-05-18 2015-10-15 株式会社東芝 固体電解質の製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009107345A (ja) * 2000-06-21 2009-05-21 Seiko Epson Corp セラミックス膜およびその製造方法ならびに半導体装置、圧電素子およびアクチュエータ
JPWO2013140607A1 (ja) * 2012-03-23 2015-08-03 株式会社東芝 固体電解質、固体電解質の製造方法、電池及び電池パック
US10892517B2 (en) 2012-03-23 2021-01-12 Kabushiki Kaisha Toshiba Solid electrolyte, manufacturing method of solid electrolyte, battery and battery pack
JP2015181120A (ja) * 2015-05-18 2015-10-15 株式会社東芝 固体電解質の製造方法

Also Published As

Publication number Publication date
JP3629933B2 (ja) 2005-03-16

Similar Documents

Publication Publication Date Title
Rehrig et al. Piezoelectric properties of zirconium-doped barium titanate single crystals grown by templated grain growth
JP4529219B2 (ja) 圧電セラミックス及びその製造方法
JP3975518B2 (ja) 圧電セラミックス
US6277254B1 (en) Ceramic compositions, physical vapor deposition targets and methods of forming ceramic compositions
JP3379387B2 (ja) 結晶配向セラミックス及びその製造方法
CN111133597B (zh) 极性纳米工程化的弛豫PbTiOi铁电晶体
JP2004300019A (ja) 結晶配向セラミックス及びその製造方法
JP3666182B2 (ja) 結晶配向セラミックスの製造方法
Jiten et al. (Na0. 5K0. 5) NbO3 nanocrystalline powders produced by high energy ball milling and corresponding ceramics
JP6094168B2 (ja) 圧電組成物および圧電素子
JP2002308672A (ja) 圧電セラミックの製造方法、圧電セラミック、および圧電セラミック素子
JP3629933B2 (ja) 結晶配向セラミックスの製造方法
Gaur et al. Enhanced piezoelectric properties in vanadium-modified lead-free (K0. 485Na0. 5Li0. 015)(Nb0. 88Ta0. 1V0. 02) O3 ceramics prepared from nanopowders
JP2884635B2 (ja) 圧電セラミックスおよびその製造方法
JP3557854B2 (ja) 結晶配向材料の製造方法
Gul et al. Influence of particle size and sintering temperatures on electrical properties of 0.94 Na0. 5Bi0. 5TiO3-0.06 BaTiO3 lead free ceramics
JPH10324569A (ja) 圧電体磁器組成物
JP2003020274A (ja) 圧電体ペーストならびにこれを用いた圧電体膜および圧電体部品
JPH0797260A (ja) 圧電セラミックの製法
JP3666179B2 (ja) 結晶配向セラミックス及びその製造方法
JP3236641B2 (ja) 複合強誘電性セラミックスの製造方法
JP2003063877A (ja) 多成分系圧電材料の製造方法
JPH0774341B2 (ja) ビスマス層状構造化合物薄膜の製造方法
KR950014355B1 (ko) 상경계 조성영역에서 압전성이 우수한 복합체 및 그 제조방법
JP2004175643A (ja) ケイ酸置換型強誘電体酸化物およびその製法

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040810

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041207

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081224

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091224

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101224

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101224

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111224

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111224

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121224

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121224

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121224

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121224

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees