JPH1027606A - 水素吸蔵合金電極の製造方法 - Google Patents

水素吸蔵合金電極の製造方法

Info

Publication number
JPH1027606A
JPH1027606A JP8182143A JP18214396A JPH1027606A JP H1027606 A JPH1027606 A JP H1027606A JP 8182143 A JP8182143 A JP 8182143A JP 18214396 A JP18214396 A JP 18214396A JP H1027606 A JPH1027606 A JP H1027606A
Authority
JP
Japan
Prior art keywords
hydrogen storage
storage alloy
thermoplastic resin
precursor
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8182143A
Other languages
English (en)
Inventor
Atsushi Furukawa
淳 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Battery Co Ltd
Original Assignee
Furukawa Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Battery Co Ltd filed Critical Furukawa Battery Co Ltd
Priority to JP8182143A priority Critical patent/JPH1027606A/ja
Publication of JPH1027606A publication Critical patent/JPH1027606A/ja
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

(57)【要約】 【課題】 水素吸蔵合金電極の表面に熱可塑性樹脂結着
剤の膜が形成されることを防止し、もって、電解液の浸
透性に優れた水素吸蔵合金電極を得ることができる水素
吸蔵合金電極の製造方法を提供する。 【解決手段】 水素吸蔵合金粉末と熱可塑性樹脂とを必
須成分として含む合剤スラリーを導電性多孔シートに塗
着したのち、合剤スラリーを乾燥して水素吸蔵合金電極
前駆体を形成し、その後、当該前駆体を加熱して熱可塑
性樹脂を溶融させたのち当該前駆体を所定厚みまで圧延
する。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、ニッケル水素二次
電池の水素吸蔵合金電極の製造方法に関し、更に詳しく
は、電解液の浸透性に優れた水素吸蔵合金電極の製造方
法に関する。
【0002】
【従来の技術】ニッケル水素二次電池は、水素を負極活
物質として動作するものであり、可逆的に水素を吸蔵・
放出することができる水素吸蔵合金粉末を導電性多孔シ
ートに担持させて成る負極と、通常、正極活物質として
動作するニッケル水酸化物を導電基材に担持して成る正
極とをセパレータを介してアルカリ電解液中に配置して
構成される。
【0003】ここで、上記した負極は、通常以下のよう
にして製造される。すなわち、まず、所定粒径の水素吸
蔵合金粉末と、熱可塑性樹脂から成る結着剤粉末とを所
定の割合で混合して混合粉末を調製し、ここに、増粘剤
水溶液を加え、前記混合粉末が分散した合剤スラリーを
調製する。そして、この合剤スラリーを導電性多孔シー
トに塗着することにより、導電性多孔シートの両面を被
覆するスラリー層が形成される。
【0004】ついで、乾燥手段により、当該導電性多孔
シートのスラリー層を乾燥することにより、導電性多孔
シートに水素吸蔵合金粉末を主成分とする合剤層が担持
されて成る水素吸蔵合金電極前駆体が形成される。次
に、前記前駆体にロールにより圧延処理が施され、合剤
層の密度が高められるとともに、全体の厚み調整が行わ
れる。
【0005】その後、所定厚みとなった水素吸蔵合金電
極前駆体に対して、加熱処理が行われて、目的とする水
素吸蔵合金電極が得られる。この加熱処理は、合剤層に
含まれている前記熱可塑性樹脂結着剤の融点よりも少し
高い温度まで前記前駆体を加熱する処理である。この加
熱処理においては、合剤層中の熱可塑性樹脂結着剤が溶
融して互いにネットワーク状に結着する。その後、その
状態を保持したまま冷却過程で凝固し、そのときに、水
素吸蔵合金粉末が、形成されたネットワークの中で強固
に結着されることになる。このため、得られた水素吸蔵
合金電極は、堅牢であり、水素吸蔵合金粉末合剤の脱落
が少なく、取り扱いが容易となる。
【0006】
【発明が解決しようとする課題】ところで、前記した水
素吸蔵合金電極前駆体に圧延処理を施すと、厚み方向に
おける圧縮変形は、中心部におけるよりも合剤層の表面
部において特に大きくなる。すなわち、合剤層の表面部
が特に圧縮される。このため、合剤層の表面部では、結
着剤の延展が激しく進んで、そこに目の細かい網膜状体
が形成されやすくなる。
【0007】この状態で、加熱処理が施されると、表面
部に形成されている前記網膜状体が溶融しながら結着が
進行するので、当該表面部には前記結着剤の膜が形成さ
れやすくなる。そのため、水素吸蔵合金電極前駆体に圧
延処理を施したのち加熱処理を施して得た水素吸蔵合金
電極は、表面部に結着剤の膜が形成されているので、表
面部からの合剤層の脱落は防止され、全体としては堅牢
であるが、しかし他方では電池に組み込んで、電解液を
注入する際、当該膜が、電極表面から電極内部への電解
液の浸透を阻害するようになる。このため、当該電極を
組み込んだ電池は、電解液の注入に時間がかかることが
あり、電池の生産効率の低下をまねく。また、表面の膜
により電解液の浸透が阻害されるので、担持されている
合剤層の内部に電解液が充分に浸透するまでに要する時
間が多くなり、電池の初期活性化が遅延するという問題
も生じる。
【0008】本発明は、水素吸蔵合金電極における上記
した問題を解決し、水素吸蔵合金電極の表面に熱可塑性
樹脂結着剤の膜が形成されることを防止し、もって、電
解液の浸透性に優れた水素吸蔵合金電極を得ることがで
きる水素吸蔵合金電極の製造方法の提供を目的とする。
【0009】
【課題を解決するための手段】上記目的を達成するため
に、本発明では、水素吸蔵合金粉末と熱可塑性樹脂とを
必須成分として含む合剤スラリーを導電性多孔シートに
塗着したのち、当該合剤スラリーを乾燥して水素吸蔵合
金電極前駆体を形成し、その後、当該前駆体を加熱して
前記熱可塑性樹脂を溶融させたのち当該前駆体を所定厚
みまで圧延することを特徴とする水素吸蔵合金電極の製
造方法が提供される。
【0010】また、本発明の水素吸蔵合金電極の製造方
法においては、前記加熱時の温度を、用いる熱可塑性樹
脂の融点よりも5〜50℃高い温度に設定することが好
ましい。更に、本発明の水素吸蔵合金電極の製造方法に
おいては、前記熱可塑性樹脂をポリフッ化ビニリデン、
ポリエチレン、ポリプロピレン、ポリテトラフルオロエ
チレンとすることが好ましい。
【0011】本発明による水素吸蔵合金電極の製造方法
は、熱可塑性樹脂結着剤が水素吸蔵合金粉末合剤層中に
均一に分散している状態で加熱溶融させたのち圧延処理
を行っているので、水素吸蔵合金電極の表面に熱可塑性
樹脂結着剤の膜が形成されることを抑制することができ
る。
【0012】
【発明の実施の形態】本発明の水素吸蔵合金電極の製造
方法においては、まず、従来法と同様にして所定粒径の
水素吸蔵合金粉末と、熱可塑性樹脂から成る結着剤粉末
とを所定の割合で混合して混合粉末を製造する。このと
き、前記熱可塑性樹脂としては、例えば、ポリフッ化ビ
ニリデン、ポリエチレン、ポリプロピレン、ポリテトラ
フルオロエチレンが好適なものとしてあげられる。ま
た、最終的に得られる水素吸蔵合金電極の導電性を向上
させるために、前記混合粉末には、ニッケル粉末のよう
な導電材粉末を添加することが好ましい。
【0013】ついで、前記混合粉末を、例えばイオン交
換水にメチルセルロース,カルボキシメチルセルロー
ス,エチレンオキシドのような水溶性樹脂増粘剤を溶解
して成る増粘剤水溶液に加えて、当該混合粉末が分散し
た合剤スラリーを調製する。そして、この合剤スラリー
を導電性多孔シートに塗着することにより、導電性多孔
シートの両面を被覆するスラリー層を形成し、その後、
従来法と同様にして乾燥処理を行い水素吸蔵合金粉末合
剤層を担持して成る水素吸蔵合金電極前駆体を製造す
る。
【0014】ここで、前記導電性多孔シートとしては、
通常の水素吸蔵合金電極に用いられている多孔シートで
あれば何であってもよく格別限定されるものではない
が、例えば、ニッケルから成るパンチングメタルシー
ト、表面に厚み4μm程度のニッケルメッキが施された
軟鉄からなるパンチングメタルシートなどが用いられ
る。本発明においては、上記したようにして得られた水
素吸蔵合金電極前駆体に対して、まず、加熱処理が行わ
れる。
【0015】この加熱処理の手順としては、所定の加熱
手段、例えば、赤外線ヒータ炉に前記前駆体を導入し、
所定の処理温度に所定時間保持することにより行われ
る。このとき、前記処理温度は、合剤層に含有されてい
る熱可塑性樹脂結着剤の種類によっても異なるが前記合
剤層に含まれている熱可塑性樹脂結着剤の融点よりも少
し高い温度、例えば、5〜50℃程度高い温度に設定さ
れることが好ましい。あまり高い温度にすると結着剤が
流動して合剤層から流出するようになるからである。ま
た、当該加熱処理は、水素吸蔵合金電極前駆体を構成す
る金属が酸化しないように、例えば、窒素雰囲気のよう
な非酸化性雰囲気で行うことが好ましい。
【0016】このように加熱処理が施されると、前記前
駆体の合剤層中に均一に分散している熱可塑性樹脂結着
剤が溶融して互いに連結し、その後冷却の過程で凝固す
ることにより、合剤層中において、均一に分布した当該
結着剤のネットワークが形成され、合剤層の各粉末は相
互に強く結着する。その後、加熱処理が終了した水素吸
蔵合金電極前駆体は、従来通り所定の圧力で厚み方向に
圧延処理され、厚みが調整されて所望の水素吸蔵合金電
極となる。
【0017】本発明では、上述のように圧延処理の前に
加熱処理を行うので、熱可塑性樹脂結着剤は、水素吸蔵
合金粉末合剤層中に均一に分散した状態のまま溶融し
て、互いにネットワーク状に結着する。つまり、表面部
の結着剤が網膜状体になっていない状態で溶融されるの
で、水素吸蔵合金電極表面において電解液の浸透を阻害
する結着剤の膜を形成する不都合は回避される。そし
て、結着剤のネットワークが合剤層中に均一に分布した
状態で圧延処理が施されるので、前記ネットワークの網
状構造はそのまま保持され、その結着力は維持される。
したがって、本発明の水素吸蔵合金電極は、水素吸蔵合
金粉末合剤層の脱落を防止する充分な結着力を確保しつ
つ、電解液の浸透性を良好に保つことができる。
【0018】以上のようにして得られた水素吸蔵合金電
極は、公知のセパレータ,正極板,アルカリ電解液と組
み合わされて、ニッケル水素二次電池に組み込まれる。
【0019】
【実施例】
実施例1 まず、アーク溶解法で、組成:MmNi3.3 Co1.0
0.4 Al0.3 (ただし、Mmはミッシュメタルを表
す)で示される水素吸蔵合金を溶製し、そのインゴット
をボールミルで粉砕して、150メッシュ(タイラー
篩)下の合金粉末を得た。その後、上記合金粉末100
重量部に導電材として平均粒径0.6μmのニッケル粉
末を10重量部、熱可塑性樹脂結着剤としてポリフッ化
ビニリデン(融点150℃)2重量部を添加混合し、こ
れに1%カルボキシメチルセルロース水溶液を20重量
部加えて合剤スラリーを調製した。
【0020】ついで、厚み0.06mm,幅150m
m,長さ500mmであり、直径1.5mmの開口が千
鳥格子模様をなして複数穿設されている軟鉄製のパンチ
ングメタルシートを用意した。尚、このパンチングメタ
ルシートの表面には厚み4μmのニッケルメッキを施し
た。また、このパンチングメタルシートの開口率は38
%とした。
【0021】次に、パンチングメタルシートに前記合剤
スラリーを塗着したのち、当該パンチングメタルシート
を乾燥炉中に導入し、乾燥炉を通過する過程でスラリー
層の乾燥を行い、合剤層を担持した水素吸蔵合金電極前
駆体を形成した。尚、当該前駆体の表面から裏面までの
寸法、すなわち当該前駆体の厚みは0.7mmとした。
【0022】ついで、この前駆体を、炉内を窒素雰囲気
に保った赤外線ヒータ炉に導入し、170℃で30分間
加熱する加熱処理を施して合剤層中の熱可塑性樹脂結着
剤を溶融させた。そして、加熱処理終了後、炉内温度が
100℃以下に下がったところで、前駆体を大気中に取
り出した。その後、加熱処理が終了した前駆体を厚みが
0.35mmになるまでロールにより圧延処理を行って
水素吸蔵合金電極を製造した。尚、この電極の気孔率は
約20%であった。
【0023】ついで、以上のようにして得られた水素吸
蔵合金電極を、Ni(OH)2 を活物質とする公知の非
焼結式ニッケル極、公知のセパレータと組み合わせて巻
回し、渦巻状の極板群を形成した。そして、当該極板群
をAA型ニッケル水素二次電池用の外装缶に挿入し、電
解液未注入の電池前駆体を組み立てた。ここで、当該電
池前駆体は100個組み立てた。尚、当該電池前駆体の
短絡の有無を調査したが、いずれも短絡の発生は認めら
れなかった。
【0024】次に、NaOHを7重量%,LiOHを1
重量%,KOHを25重量%含むアルカリ水溶液から成
る電解液(2.0cc)を前記電池前駆体内に滴下し、
当該電池前駆体を遠心器により1000rpmで5秒間
回転させることにより、前記電解液の注液操作を行っ
た。その後、極板群上部において極板群内部に浸透せず
遊離した電解液の有無を調べ、電解液が遊離している電
池前駆体の個数を計数した。そして、電池前駆体の全数
(100個)に対する電解液が遊離している電池前駆体
の個数の割合を求め、この割合を電解液浸透不良品率
(%)として表1に示した。尚、この電解液浸透不良品
率が低いほど、電解液の浸透性は優れていることを示
す。
【0025】次に、前記電池前駆体を封口して密閉し、
定格容量1200mAhのAA型ニッケル水素二次電池
を組み立てた。得られたニッケル水素二次電池に対し
て、温度20℃において0.2Cで充放電(活性化処
理)を1サイクル行い、そのときの放電容量を測定し
た。その結果を初回の放電容量として表1に併記した。
【0026】比較例1 水素吸蔵合金電極前駆体に対し、圧延処理を施したのち
加熱処理を施したことを除いては実施例1と同様にして
水素吸蔵合金電極を製造し、当該水素吸蔵合金電極を用
いてニッケル水素二次電池を製造した。当該電池に対し
て、実施例1と同様にして、電解液浸透不良品率、初回
の放電容量を測定し、その結果を表1に併記した。
【0027】
【表1】 表1の結果から以下のことが明らかとなる。
【0028】すなわち、実施例1のニッケル水素二次電
池は、電解液浸透不良品率が0%であり、電解液の遊離
が発生していないことを示しているのに対して、比較例
1のニッケル水素二次電池は、電解液浸透不良品率が2
3%と高く、電解液の浸透性が不良であることを示して
いる。これは、実施例1における水素吸蔵合金電極は、
加熱処理後に圧延処理を施して製造したので、当該電極
表面において結着剤の膜が形成されることが抑制されて
おり、電解液の浸透性に優れているからである。それに
対し、比較例1における水素吸蔵合金電極は、圧延処理
後に加熱処理を施して製造したので、圧延処理時に前駆
体表面に網膜状体が形成され、つづく加熱処理時に当該
網膜状体が溶融して電極表面に膜が形成されてしまい、
それにより電解液の浸透性が阻害されているからであ
る。
【0029】また、実施例1の電池の初回の放電容量は
1170mAhと高く、初回の充放電(1回の活性化処
理)で、定格容量の95%以上の容量を取り出すことが
できたことを示していることがわかる。それに対し、比
較例1の電池は、初回の放電容量が1020mAhと実
施例1に比べ低い値を示している。これは、実施例1の
電池においては、上述のように電解液の浸透性に優れた
水素吸蔵合金電極を採用しているので、当該電池に電解
液を注液すると、当該電解液は直ちに水素吸蔵合金電極
の内部に浸透し、電池反応が良好に進行する状態となる
からである。それに対し、比較例1の電池においては、
上述のように電解液の浸透性が阻害されている水素吸蔵
合金電極を採用しているので、当該電池に電解液を注液
しても、当該電解液は水素吸蔵合金電極の内部に直ぐに
は浸透していかず、電池反応が良好に進行する状態とは
なっていないからである。
【0030】
【発明の効果】以上の説明で明らかなように、本発明で
は、熱可塑性樹脂結着剤を含む水素吸蔵合金粉末合剤層
を担持して成る水素吸蔵合金電極前駆体を加熱処理した
後に圧延処理することにより水素吸蔵合金電極を得る。
つまり、前駆体の表面に結着剤の網膜状体が形成されて
いない状態で加熱が行われるので、電極の表面に、電解
液の浸透を阻害する結着剤の膜が形成されることは抑制
される。しかも、前記結着剤は、水素吸蔵合金電極中に
おいて均一に分布した状態を保って互いに融着してネッ
トワークを形成しているので、水素吸蔵合金粉末合剤層
の脱落を防止する充分な結着力を確保しつつ電解液の浸
透性を良好に保つことができる。よって、本発明による
水素吸蔵合金電極を組み込んだ電池は、電解液の浸透性
に優れ、初期活性化に要する時間が短い。そのため、電
解液注入工程および電池の初期活性化工程にかかる時間
を短縮することができ、電池生産の高効率化に寄与す
る。また、電解液が電極中に充分に浸透するので、電池
反応が良好な状態で進行し、電池特性の安定化にも寄与
する。

Claims (3)

    【特許請求の範囲】
  1. 【請求項1】 水素吸蔵合金粉末と熱可塑性樹脂とを必
    須成分として含む合剤スラリーを導電性多孔シートに塗
    着したのち、当該合剤スラリーを乾燥して水素吸蔵合金
    電極前駆体を形成し、その後、当該前駆体を加熱して前
    記熱可塑性樹脂を溶融させたのち当該前駆体を所定厚み
    まで圧延することを特徴とする水素吸蔵合金電極の製造
    方法。
  2. 【請求項2】 前記加熱時の温度が、用いる熱可塑性樹
    脂の融点よりも5〜50℃高い請求項1の水素吸蔵合金
    電極の製造方法。
  3. 【請求項3】 前記熱可塑性樹脂がポリフッ化ビニリデ
    ン、ポリエチレン、ポリプロピレン、ポリテトラフルオ
    ロエチレンである請求項1の水素吸蔵合金電極の製造方
    法。
JP8182143A 1996-07-11 1996-07-11 水素吸蔵合金電極の製造方法 Pending JPH1027606A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8182143A JPH1027606A (ja) 1996-07-11 1996-07-11 水素吸蔵合金電極の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8182143A JPH1027606A (ja) 1996-07-11 1996-07-11 水素吸蔵合金電極の製造方法

Publications (1)

Publication Number Publication Date
JPH1027606A true JPH1027606A (ja) 1998-01-27

Family

ID=16113114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8182143A Pending JPH1027606A (ja) 1996-07-11 1996-07-11 水素吸蔵合金電極の製造方法

Country Status (1)

Country Link
JP (1) JPH1027606A (ja)

Similar Documents

Publication Publication Date Title
EP0851520B1 (en) Nickel-hydrogen secondary battery and process for producing electrode therefor
US6103319A (en) Battery electrode substrate and process for producing the same
US5064735A (en) Cadium electrode and process for its production
US5360687A (en) Hydrogen-occulusion electrode
JP3363670B2 (ja) アルカリ蓄電池用非焼結式ニッケル電極及びその製造方法並びにアルカリ蓄電池
JP2008192320A (ja) 水素吸蔵合金電極およびその製造方法ならびにアルカリ蓄電池
JP4437338B2 (ja) アルカリ蓄電池用正極
JP2982199B2 (ja) 水素吸蔵合金電極、その製造法およびその電極を用いた密閉形アルカリ蓄電池
JPH1027606A (ja) 水素吸蔵合金電極の製造方法
JP4743997B2 (ja) 水素吸蔵合金電極
JP2733231B2 (ja) 水素吸蔵合金電極の製造法
JP2623409B2 (ja) 水素吸蔵電極並びにその製造法
JP3454606B2 (ja) アルカリ蓄電池用正極活物質の製造方法
JP5309479B2 (ja) アルカリ蓄電池
US20170200946A1 (en) Alloy powder for electrodes, negative electrode for nickel-metal hydride storage batteries using same, and nickel-metal hydride storage battery
JP2010050011A (ja) ニッケル水素蓄電池およびその製造方法
JPH097591A (ja) 水素吸蔵合金及びその製造方法並びにそれを用いた水素吸蔵合金電極
JP3374995B2 (ja) ニッケル電極の製造方法
JP2008269888A (ja) ニッケル水素蓄電池
JP2001266860A (ja) ニッケル−水素蓄電池
JP2001338677A (ja) アルカリ蓄電池の製造方法
JP2003068293A (ja) 非焼結式正極、その製造方法および前記正極を用いたアルカリ蓄電池
JP2002042801A (ja) 水素吸蔵合金電極およびその製造方法
JPH10302781A (ja) 角形電池に使用する極板の製造方法とこの極板を使用してなる角形電池
JP2004281195A (ja) 水素吸蔵合金電極及びこれを用いたニッケル水素蓄電池