JPH098132A - Semiconductor element and its manufacturing method - Google Patents

Semiconductor element and its manufacturing method

Info

Publication number
JPH098132A
JPH098132A JP15442995A JP15442995A JPH098132A JP H098132 A JPH098132 A JP H098132A JP 15442995 A JP15442995 A JP 15442995A JP 15442995 A JP15442995 A JP 15442995A JP H098132 A JPH098132 A JP H098132A
Authority
JP
Japan
Prior art keywords
substrate
diffusion region
opening
oxide film
polysilicon layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15442995A
Other languages
Japanese (ja)
Inventor
Mitsuyuki Yamamoto
光之 山本
Koichi Kudo
興一 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm Co Ltd
Original Assignee
Rohm Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co Ltd filed Critical Rohm Co Ltd
Priority to JP15442995A priority Critical patent/JPH098132A/en
Publication of JPH098132A publication Critical patent/JPH098132A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE: To increase the radius of curvature of a junction surface and to effectively suppress current concentration at a PN junction periphery edge part by spreading the a diffusion region larger than a depth for a reference edge prescribed by an inner periphery edge at the surface side of the substrate of an opening. CONSTITUTION: A diffusion region 2 of a semiconductor element is spread to a substrate surface larger than a depth Yj for a reference edge 4c prescribed by an inner edge part at the side of a substrate 1 at a second opening part with a larger radius of curvature than the periphery edge part. That is, the diffusion region is formed so that Xj>=Yj can be established with the spread of the diffusion region in side direction from the reference edge 4c as Xj. The diffusion region 2 is formed so that it spread to the substrate surface larger than the depth for the reference edge 4c prescribed by a peripheral edge at the side of the substrate 1 of a second opening part 4b. Further, the radius of curvature of the peripheral edge part of the junction surface for demarcating the diffusion region 2 is formed to have a larger value than the depth of the diffusion region 2, thus suppressing the current concentration at a part for forming the curved surface of the PN junction surface.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は拡散領域の周縁部におけ
る接合面の基板表面への拡がりを増大させ、以て電流集
中に起因する耐圧性を向上させた半導体素子及びその製
造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device in which the spread of the bonding surface at the peripheral portion of the diffusion region to the surface of the substrate is increased, and the withstand voltage due to current concentration is improved, and a method of manufacturing the same.

【0002】[0002]

【従来の技術】半導体基板内へ不純物を導入することに
より形成したPN接合面から成る半導体素子は、バイポ
ーラやMOSの個別デバイスや集積回路等の種々の半導
体素子に必須要素として利用されている。不純物の基板
内への導入は、形成するPN接合面の深さやプロファイ
ル形状に応じて熱拡散やイオン注入等を適宜組み合わし
て実施されている。
2. Description of the Related Art A semiconductor element having a PN junction surface formed by introducing impurities into a semiconductor substrate is used as an essential element for various semiconductor elements such as bipolar and MOS individual devices and integrated circuits. The introduction of impurities into the substrate is carried out by appropriately combining thermal diffusion, ion implantation, etc. according to the depth and profile shape of the PN junction surface to be formed.

【0003】一般に、熱拡散により不純物を基板内に導
入することにより拡散領域を形成する場合、不純物は縦
方向、即ち基板表面に直交する基板の内方向、に拡散さ
れると共に、基板の表面に平行な横方向にも拡散され、
その結果曲面状の周縁部から成るPN接合面により画成
された拡散領域が形成される。より具体的には、例え
ば、図3に示すように、N型のエピタキシャル層11が
形成された半導体基板の表面にSiO2の熱酸化膜12
を形成し、熱酸化膜に不純物導入のための開口13を形
成して、開口13を介して基板内11に不純物としての
ホウ素を導入する場合、不純物は基板の縦方向(x)の
みならず、横方向(y)へも同時に拡散し、形成される
PN接合面14はその周縁部で熱酸化膜12の下面に入
り込んだ状態で終端する形状に形成され、基板11内に
拡散領域15を画成している。
Generally, when the diffusion region is formed by introducing impurities into the substrate by thermal diffusion, the impurities are diffused in the vertical direction, that is, in the inward direction of the substrate orthogonal to the surface of the substrate, and at the same time, on the surface of the substrate. It is also diffused in the horizontal direction,
As a result, a diffusion region defined by the PN junction surface composed of the curved peripheral portion is formed. More specifically, for example, as shown in FIG. 3, a thermal oxide film 12 of SiO 2 is formed on the surface of the semiconductor substrate on which the N type epitaxial layer 11 is formed.
When an opening 13 for introducing impurities is formed in the thermal oxide film and boron as an impurity is introduced into the substrate 11 through the opening 13, the impurities are not limited to the vertical direction (x) of the substrate. At the same time, the PN junction surface 14 which is diffused in the lateral direction (y) is formed so as to terminate in a state where it enters the lower surface of the thermal oxide film 12 at the peripheral edge thereof, and the diffusion region 15 is formed in the substrate 11. Defined.

【0004】[0004]

【発明が解決しようとする課題】半導体基板11内へ不
純物を熱拡散により導入したときの、不純物の横(y)
方向への拡散距離yjを正確に把握することは難しい
が、一般的には、縦(x)方向への拡散距離xjに対し
てほぼ80%、即ちyj=0.8xj、程度と一般に考
えられている。
When impurities are introduced into the semiconductor substrate 11 by thermal diffusion, the lateral (y) of the impurities is introduced.
Although it is difficult to accurately grasp the diffusion distance yj in the direction, it is generally considered to be about 80% of the diffusion distance xj in the vertical (x) direction, that is, yj = 0.8xj. ing.

【0005】このため、不純物の拡散により形成される
PN接合面は、比較的浅く形成された場合にはその周縁
部における曲率半径は小さいが、深く形成するに従い曲
率半径は増大されることになる。しかるに、比較的浅い
拡散領域でPN接合面の周縁部の曲率半径が小さく形成
された場合、素子の使用に際して、この接合面の周縁部
で電流集中が発生しやすく、耐圧が低下するため、使用
や過負荷試験で素子破壊が起こりやすくなる等の問題が
生じる。
Therefore, the PN junction surface formed by the diffusion of impurities has a small radius of curvature at its peripheral portion when it is formed relatively shallow, but the radius of curvature increases as it is formed deeper. . However, when the radius of curvature of the peripheral portion of the PN junction surface is formed to be small in a relatively shallow diffusion region, current concentration is likely to occur at the peripheral portion of the junction surface when the element is used, and the withstand voltage is lowered. Also, problems such as easy breakdown of the device occur in the overload test.

【0006】他方、熱拡散に代えてまたはこれと共にイ
オン注入法により基板表面に比較的浅く拡散層を形成す
る方法も広く用いられているが、この方法によってもや
はり、PN接合面の周縁部での曲率半径を一定以上大き
くすることはできない。従って、本発明の目的は、拡散
領域の周縁部における接合面の曲率半径を増大させ以て
電流集中に起因する耐圧性を向上させた半導体素子及び
その製造方法を得ることにある。
On the other hand, a method of forming a relatively shallow diffusion layer on the substrate surface by an ion implantation method instead of or together with the thermal diffusion is also widely used, but this method also results in the peripheral portion of the PN junction surface. The radius of curvature of cannot be increased beyond a certain level. Therefore, it is an object of the present invention to obtain a semiconductor element and a method for manufacturing the same in which the radius of curvature of the bonding surface at the peripheral portion of the diffusion region is increased to improve the withstand voltage due to current concentration.

【0007】[0007]

【課題を解決するための手段】本発明によれば、半導体
基板と、基板内にこれと反対の導電型に形成された拡散
領域と、基板の表面に形成された酸化膜と、酸化膜に形
成された開口を介して拡散領域に接続された電極配線
と、から成り、拡散領域は開口の基板表面側の内周縁に
より規定される基準縁に対し深さよりも大きく基板表面
に拡がっていることを特徴とする半導体素子が提供され
る。
According to the present invention, a semiconductor substrate, a diffusion region having a conductivity type opposite to that of the semiconductor substrate, an oxide film formed on the surface of the substrate, and an oxide film are formed. Electrode wiring connected to the diffusion area through the formed opening, and the diffusion area extends to the substrate surface by a depth larger than the reference edge defined by the inner peripheral edge of the opening on the substrate surface side. A semiconductor device is provided.

【0008】上記の開口は、酸化膜の表面側に形成され
た第1開口部分と、基板側に第1開口部分より小さな開
口断面に形成された第2開口部分と、で構成できる。本
発明によれば、更に、半導体基板の表面にポリシリコン
層をパターン形成し、ポリシリコン層の少なくとも外周
を被覆埋設するように酸化膜を成長形成すると共にポリ
シリコン層の上面中央部が露出されるように第1開口部
分を酸化膜に形成し、第1開口部分を介して前記ポリシ
リコン層内に不純物を拡散すると共に基板の表面に拡散
させて拡散領域を形成し、次いで、ポリシリコン層に酸
化を施して酸化膜に一体化させ、次いで、一体化された
酸化膜の部分に第2開口部分を形成して拡散領域を露出
させる、ことから成ることを特徴とする半導体素子の製
造方法が提供される。
The opening can be composed of a first opening portion formed on the surface side of the oxide film and a second opening portion formed on the substrate side in an opening cross section smaller than the first opening portion. According to the present invention, further, a polysilicon layer is patterned on the surface of the semiconductor substrate, an oxide film is grown to cover and embed at least the outer periphery of the polysilicon layer, and the central portion of the upper surface of the polysilicon layer is exposed. The first opening portion is formed in the oxide film so that the impurity is diffused into the polysilicon layer through the first opening portion and is diffused to the surface of the substrate to form a diffusion region, and then the polysilicon layer is formed. To form an integrated oxide film, and then form a second opening in the integrated oxide film portion to expose the diffusion region. Will be provided.

【0009】[0009]

【発明の作用】基板への不純物は第1開口部分よりも大
径に形成されたポリシリコン層を介して拡散されるの
で、基板表面に比較的浅いにも拘らず周縁部にて大きな
曲率半径で側方に拡がった拡散層が形成される。この場
合、ポリシリコンはシリコン結晶よりもより大きな不純
物、例えばホウ素(B)、に関する拡散速度を有するの
で、ポリシリコン層を介在させることにより基板表面で
横方向への拡散幅を増大させることができる。
Since the impurities to the substrate are diffused through the polysilicon layer formed to have a diameter larger than that of the first opening portion, the radius of curvature is large at the peripheral edge portion although the substrate surface is relatively shallow. A diffusion layer spreading laterally is formed. In this case, since polysilicon has a diffusion rate with respect to impurities larger than that of silicon crystals, for example, boron (B), the lateral diffusion width can be increased on the substrate surface by interposing the polysilicon layer. .

【0010】形成された拡散領域は、基板側に形成され
た第2開口部分の基板側の周縁により規定される基準縁
に対して深さよりも大きく基板表面に拡がり、周縁部に
より大きな曲率半径が付与される。このため、素子の使
用に際して、従来の素子にしばしば発生したようなPN
接合周縁部での電流集中を有効に抑えることが可能にな
り、以て素子の耐圧性を向上させることができる。
The diffusion region formed spreads over the substrate surface by a depth larger than the reference edge defined by the peripheral edge of the second opening formed on the substrate side on the substrate side, and has a larger radius of curvature on the peripheral edge portion. Granted. Therefore, when the device is used, the PN that often occurs in the conventional device.
It is possible to effectively suppress the current concentration at the peripheral edge of the junction, thereby improving the withstand voltage of the element.

【0011】[0011]

【実施例】次に、本発明による半導体素子にちて、図1
及び図2を参照しながら実施例に従い詳細に説明する。
本発明による半導体素子は、図1に断面を示すように、
表面にN-型のエピタキシャル層が形成されたN+型の半
導体基板1と、基板1の表面にこれと反対の導電型に形
成された拡散領域2と、基板1の表面に形成された酸化
膜3と、酸化膜3にその表面側に形成された第1開口部
分4aと基板側に形成された第2開口部分4bとから成
る開口4と、開口を介して拡散領域2に接続された導電
性の金属から成る電極部5と、から成っている。第1図
の実施例では、第2開口部分4bを包囲する酸化膜3内
には未酸化のポリシリコンから成る残存ポリシリコン層
6aが埋設状に残存している。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, referring to FIG.
2 will be described in detail according to an embodiment.
The semiconductor device according to the present invention has a cross section as shown in FIG.
An N + type semiconductor substrate 1 having an N type epitaxial layer formed on the surface thereof, a diffusion region 2 having a conductivity type opposite to that of the diffusion region 2 formed on the surface of the substrate 1, and an oxidation formed on the surface of the substrate 1. The film 3 is connected to the diffusion region 2 through the opening 4, which is composed of the film 3, the first opening 4a formed on the surface side of the oxide film 3 and the second opening 4b formed on the substrate side. And an electrode portion 5 made of a conductive metal. In the embodiment shown in FIG. 1, the remaining polysilicon layer 6a made of unoxidized polysilicon is buried in the oxide film 3 surrounding the second opening 4b.

【0012】ここで、本発明の半導体素子の拡散領域2
はその周縁部でより大きな曲率半径で第2開口部分の基
板1側の内周縁により規定される基準縁4cに対し深さ
Yjよりも大きく基板表面に拡がっていることを特徴と
している。即ち、拡散領域は、基準縁4cからの横方向
への拡散領域の拡がりをXjとすれば、Xj≧Yjの関
係が成立するような大きさに形成されている。
Here, the diffusion region 2 of the semiconductor device of the present invention.
Has a larger radius of curvature at its peripheral edge portion and spreads over the substrate surface by a depth greater than the depth Yj with respect to the reference edge 4c defined by the inner peripheral edge of the second opening portion on the substrate 1 side. That is, the diffusion region is formed in such a size that the relation of Xj ≧ Yj is established, where Xj is the spread of the diffusion region in the lateral direction from the reference edge 4c.

【0013】本発明の半導体素子は、上述したように、
拡散領域2が第2開口部分4bの基板1側の周縁により
規定される基準縁4cに対し深さよりも大きく基板表面
に拡がるように形成され、拡散領域2を画成する接合面
の周縁部の曲率半径を拡散領域2の深さに対してより大
きな値に形成されている。このため、PN接合面の周縁
部の曲面を成す部分での電流集中の発生を有効に抑える
ことが可能になり、以てより高い耐圧性を得ることがで
きる。
The semiconductor device of the present invention, as described above,
The diffusion region 2 is formed so as to extend over the substrate surface by a depth greater than the reference edge 4c defined by the peripheral edge of the second opening portion 4b on the substrate 1 side. The radius of curvature is formed to have a larger value with respect to the depth of the diffusion region 2. For this reason, it is possible to effectively suppress the occurrence of current concentration in the portion forming the curved surface of the peripheral portion of the PN junction surface, and thus it is possible to obtain higher withstand voltage.

【0014】次に、本発明の素子の製造方法について説
明する。先ず、例えばN+の導電型のシリコンから成る
出発基板の表面にN-の導電型のエピタキシャル層を成
長形成して半導体基板1を準備する。基板1を準備した
ら、基板1の表面に熱酸化膜3aを約800オングスト
ロームの均一な層厚に形成し、これに写真蝕刻法により
約φ8μmのサイズの開口を形成後、開口が形成された
基板1の表面及び酸化膜3aの表面にポリシリコン膜を
蒸着により開口部にて約2000オングストロームの膜
厚になるように形成し、形成したポリシリコン膜を写真
蝕刻法によるエッチングを施すことにより、図2(a)
に示すように、開口に位置合せされた約φ12μmの大
径部を有するポリシリコン層6をパターン形成する。
尚、ポリシリコン層6の層厚は形成する素子の設計等に
応じて、例えば、約500ー5000オングストローム
の範囲で適宜設定可能である。
Next, a method of manufacturing the element of the present invention will be described. First, a semiconductor substrate 1 is prepared by growing and forming an epitaxial layer of N conductivity type on the surface of a starting substrate made of, for example, N + conductivity type silicon. After the substrate 1 is prepared, a thermal oxide film 3a is formed on the surface of the substrate 1 to have a uniform layer thickness of about 800 Å, and an opening having a size of about 8 μm is formed by photolithography on the substrate. A polysilicon film is formed on the surface of No. 1 and the surface of the oxide film 3a by vapor deposition so as to have a film thickness of about 2000 angstroms at the opening, and the formed polysilicon film is etched by a photo-etching method. 2 (a)
As shown in FIG. 3, a polysilicon layer 6 having a large diameter portion of about φ12 μm aligned with the opening is patterned.
The layer thickness of the polysilicon layer 6 can be appropriately set in the range of about 500 to 5000 angstroms according to the design of the element to be formed and the like.

【0015】次いで、基板1の表面の酸化膜3aを熱成
長させてポリシリコン層6の外周を埋設させた後、ポリ
シリコン層6の上面中央部が露出するように酸化膜3に
エッチングを施して約φ6μmのサイズの第1開口部分
4aを形成する。このように酸化膜3に第1開口部分4
aを形成したら、不純物としてのほう素(B)を約11
50℃及び約360分の拡散条件で第1開口部分を介し
てポリシリコン層6内に熱拡散させると、ポリシリコン
層6に導入された不純物は更に基板1の表面に向けて拡
散され、図2(b)に示すように、基板1の表面にポリ
シリコン層6からの不純物による拡散領域2が形成され
る。
Next, after the oxide film 3a on the surface of the substrate 1 is thermally grown to fill the outer periphery of the polysilicon layer 6, the oxide film 3 is etched so that the central portion of the upper surface of the polysilicon layer 6 is exposed. As a result, the first opening portion 4a having a size of about φ6 μm is formed. As described above, the first opening 4 is formed in the oxide film 3.
After forming a, boron (B) as an impurity is added to about 11
When thermally diffusing into the polysilicon layer 6 through the first opening portion under the diffusion condition of 50 ° C. and about 360 minutes, the impurities introduced into the polysilicon layer 6 are further diffused toward the surface of the substrate 1, As shown in FIG. 2B, a diffusion region 2 due to impurities from the polysilicon layer 6 is formed on the surface of the substrate 1.

【0016】このとき、基板1への不純物は第1開口部
分4aよりも大径に形成されたポリシリコン層6を介し
て拡散されるので、基板1の表面には周縁部が側方に拡
がった浅い拡散層2が大きな曲率半径で形成される。
尚、ポリシリコン層6への不純物の導入は、上述のよう
な熱拡散に代えて、イオン注入法を用いて行ってもよ
い。
At this time, the impurities into the substrate 1 are diffused through the polysilicon layer 6 formed to have a diameter larger than that of the first opening portion 4a, so that the peripheral edge portion spreads laterally on the surface of the substrate 1. The shallow diffusion layer 2 is formed with a large radius of curvature.
The impurity may be introduced into the polysilicon layer 6 by using an ion implantation method instead of the thermal diffusion as described above.

【0017】次いで、第1開口部分4a側からポリシリ
コン層6を酸化させることにより、ポリシリコン層6
は、図2(c)に示すように、その上面中央部側から酸
化が進行し、周縁部6aを残してすでに形成されている
酸化膜3と一体化される。この酸化の進行が基板1の拡
散領域2の表面に至った後に酸化を終了する。次いで、
酸化により酸化膜3に一体化された部分にエッチングを
施して第1開口部分よりも小さな開口断面の第2開口部
分4bを形成して拡散層2の表面を第1開口部分4側に
露出させた後、図2(d)に示すように、第1及び第2
開口部分4a及び4bから成る開口4により画成された
基板1の表面、即ち拡散領域2の表面、にAl等の導電
性金属を蒸着により形成し、他の必要な配線と共に電極
配線5を形成することにより本発明の半導体素子が得ら
れる。
Then, the polysilicon layer 6 is oxidized from the side of the first opening portion 4a to thereby form the polysilicon layer 6
As shown in FIG. 2 (c), the oxidation progresses from the central portion of the upper surface, and is integrated with the oxide film 3 already formed leaving the peripheral edge portion 6a. After the progress of this oxidation reaches the surface of the diffusion region 2 of the substrate 1, the oxidation is completed. Then
By etching, the portion integrated with the oxide film 3 is etched to form a second opening portion 4b having an opening cross section smaller than the first opening portion to expose the surface of the diffusion layer 2 to the first opening portion 4 side. Then, as shown in FIG. 2D, the first and second
A conductive metal such as Al is formed by vapor deposition on the surface of the substrate 1 defined by the openings 4 including the opening portions 4a and 4b, that is, the surface of the diffusion region 2, and the electrode wiring 5 is formed together with other necessary wirings. By doing so, the semiconductor device of the present invention can be obtained.

【0018】尚、上述の実施例ではポリシリコン層の酸
化に際して、酸化膜内に残存ポリシリコン層を残存させ
たが、必ずしもこれを残存させる必要はないことはいう
までもない。また、上述の実施例では、ポリシリコン層
を周縁部上部が突出したフランジ状に形成したが、本発
明はこれに限定されることなく円筒状に形成することに
より素子を製造してもよい。
Although the remaining polysilicon layer is left in the oxide film during the oxidation of the polysilicon layer in the above-mentioned embodiments, it goes without saying that it is not always necessary to leave it. Further, in the above-described embodiment, the polysilicon layer is formed in the shape of a flange with the upper peripheral portion protruding, but the present invention is not limited to this, and the element may be manufactured by forming it in the shape of a cylinder.

【0019】[0019]

【発明の効果】素子の使用に際して、従来の素子にしば
しば発生したようなPN接合周縁部での電流集中を有効
に抑えることが可能になり、以て素子の耐圧性を向上さ
せることができる。
When the device is used, it is possible to effectively suppress the current concentration at the peripheral edge of the PN junction, which often occurs in the conventional device, so that the withstand voltage of the device can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の半導体素子の断面図である。FIG. 1 is a sectional view of a semiconductor device of the present invention.

【図2】本発明の半導体素子の製造方法の工程を示す図
である。
FIG. 2 is a diagram showing steps of a method for manufacturing a semiconductor device of the present invention.

【図3】基板への不純物導入により形成される一般的な
接合面のプロファイルを示す断面図である。
FIG. 3 is a cross-sectional view showing a profile of a general bonding surface formed by introducing impurities into a substrate.

【符号の説明】[Explanation of symbols]

1 半導体基板 2 拡散領域 3 酸化膜 4a 第1開口部分 4b 第2開口部分 4c 基準縁 5 電極配線 6 ポリシリコン層 6a 残存ポリシリコン層 1 Semiconductor Substrate 2 Diffusion Region 3 Oxide Film 4a First Opening Portion 4b Second Opening Portion 4c Reference Edge 5 Electrode Wiring 6 Polysilicon Layer 6a Remaining Polysilicon Layer

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】半導体基板と、前記基板内にこれと反対の
導電型に形成された拡散領域と、前記基板の表面に形成
された酸化膜と、前記酸化膜に形成された開口を介して
前記拡散領域に接続された電極配線と、から成り、前記
拡散領域は前記開口の基板表面側の内周縁により規定さ
れる基準縁に対し深さよりも大きく基板表面に拡がって
いることを特徴とする半導体素子。
1. A semiconductor substrate, a diffusion region having a conductivity type opposite to that of the semiconductor substrate, an oxide film formed on a surface of the substrate, and an opening formed in the oxide film. An electrode wiring connected to the diffusion region, wherein the diffusion region extends to the substrate surface by a depth larger than a reference edge defined by the inner peripheral edge of the opening on the substrate surface side. Semiconductor device.
【請求項2】前記開口は前記酸化膜の表面側に形成され
た第1開口部分と、基板側に前記第1開口部分より小さ
な開口断面に形成された第2開口部分とから成る請求項
1に記載の半導体素子。
2. The opening comprises a first opening portion formed on the surface side of the oxide film, and a second opening portion formed on the substrate side in an opening cross section smaller than the first opening portion. The semiconductor device according to 1.
【請求項3】半導体基板の表面にポリシリコン層をパタ
ーン形成し、前記ポリシリコン層の少なくとも外周を被
覆埋設するように酸化膜を成長形成すると共に前記ポリ
シリコン層の上面中央部が露出されるように第1開口部
分を酸化膜に形成し、前記第1開口部分を介して前記ポ
リシリコン層内に不純物を拡散すると共に前記基板の表
面に拡散させて拡散領域を形成し、次いで、前記ポリシ
リコン層に酸化を施して前記酸化膜に一体化させ、次い
で、一体化された酸化膜の部分に第2開口部分を形成し
て前記拡散領域を露出させる、ことから成ることを特徴
とする半導体素子の製造方法。
3. A polysilicon layer is patterned on the surface of a semiconductor substrate, an oxide film is grown to cover and fill at least the outer periphery of the polysilicon layer, and the central portion of the upper surface of the polysilicon layer is exposed. Forming the first opening portion in the oxide film as described above, diffusing impurities into the polysilicon layer through the first opening portion, and diffusing into the surface of the substrate to form a diffusion region. A semiconductor characterized in that a silicon layer is oxidized to be integrated with the oxide film, and then a second opening is formed in the integrated oxide film to expose the diffusion region. Device manufacturing method.
JP15442995A 1995-06-21 1995-06-21 Semiconductor element and its manufacturing method Pending JPH098132A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15442995A JPH098132A (en) 1995-06-21 1995-06-21 Semiconductor element and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15442995A JPH098132A (en) 1995-06-21 1995-06-21 Semiconductor element and its manufacturing method

Publications (1)

Publication Number Publication Date
JPH098132A true JPH098132A (en) 1997-01-10

Family

ID=15583992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15442995A Pending JPH098132A (en) 1995-06-21 1995-06-21 Semiconductor element and its manufacturing method

Country Status (1)

Country Link
JP (1) JPH098132A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6297880B1 (en) 1998-01-29 2001-10-02 Therma-Wave, Inc. Apparatus for analyzing multi-layer thin film stacks on semiconductors

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6297880B1 (en) 1998-01-29 2001-10-02 Therma-Wave, Inc. Apparatus for analyzing multi-layer thin film stacks on semiconductors

Similar Documents

Publication Publication Date Title
US6828626B2 (en) Semiconductor device with vertical transistors
JP2748898B2 (en) Semiconductor device and manufacturing method thereof
JPH0586673B2 (en)
US4473941A (en) Method of fabricating zener diodes
US6207974B1 (en) Process for manufacture of a p-channel MOS gated device with base implant through the contact window
JP2997377B2 (en) Semiconductor device and manufacturing method thereof
JPH10233515A (en) Schottky barrier semiconductor device and its manufacturing method
JPH08227897A (en) Semiconductor device and manufacture thereof
JP3921764B2 (en) Manufacturing method of semiconductor device
JP2001036074A (en) Semiconductor device and its manufacture
JPH098132A (en) Semiconductor element and its manufacturing method
JPS60241261A (en) Semiconductor device and manufacture thereof
JPS6156607B2 (en)
JPH03201564A (en) Lateral semiconductor device
JPS60244036A (en) Semiconductor device and manufacture thereof
JP2679636B2 (en) Semiconductor device and manufacturing method thereof
JPH04364736A (en) Semiconductor integrated circuit device
JP2001284585A (en) Field effect transistor
JPH11289082A (en) Semiconductor device and its manufacture
JPS62298170A (en) Manufacture of semiconductor device
JPS60241249A (en) Semiconductor device
JPS59161067A (en) Manufacture of bipolar type semiconductor device
JPS60140759A (en) Manufacture of semiconductor device
JPH0845952A (en) Manufacture of bipolar transistor
JPS63249370A (en) Semiconductor device and its manufacture