JPH10233515A - Schottky barrier semiconductor device and its manufacturing method - Google Patents

Schottky barrier semiconductor device and its manufacturing method

Info

Publication number
JPH10233515A
JPH10233515A JP9351440A JP35144097A JPH10233515A JP H10233515 A JPH10233515 A JP H10233515A JP 9351440 A JP9351440 A JP 9351440A JP 35144097 A JP35144097 A JP 35144097A JP H10233515 A JPH10233515 A JP H10233515A
Authority
JP
Japan
Prior art keywords
schottky barrier
diffusion layer
region
semiconductor device
semiconductor substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9351440A
Other languages
Japanese (ja)
Inventor
Yasunori Usui
康典 碓氷
Tsuyoshi Ota
剛志 大田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP9351440A priority Critical patent/JPH10233515A/en
Publication of JPH10233515A publication Critical patent/JPH10233515A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66083Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices
    • H01L29/6609Diodes
    • H01L29/66143Schottky diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/872Schottky diodes

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress increase of VF at forward voltage application while reducing a leakage current at an SBD joint part at reverse voltage application. SOLUTION: The first conductive type semiconductor substrate, the second conductive type diffusion layers arrayed on the semiconductor substrate, and a Schottky barrier metal layer 17 which is brought into contact with the semiconductor substrate and diffusion layer are provided. With the depth from the main surface of the semiconductor substrate assumed as X, the width of diffusion layer is maximum value Lpmax in X<=0.4μm. Since the width Lpn of the second conductive type diffusion layer near the surface can be narrower and the maximum width Lpnmax of the diffusion layer at depth 0.4μm or deeper can be wider, the reverse direction leakage current at an SBD joint part when a reverse voltage is applied is less while the effective area of the SBD joint part is increased, so that a forward direction voltage drop VF at application of forward voltage is reduced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、PN接合とショ
ットキーバリアダイオード(以下、SBDと呼ぶ)接合
とを混在させたショットキーバリア半導体装置とその製
造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a Schottky barrier semiconductor device in which a PN junction and a Schottky barrier diode (hereinafter referred to as SBD) junction are mixed and a method of manufacturing the same.

【0002】[0002]

【従来の技術】以前より、PN接合とSBD接合とを混
在させることにより、逆電流が少なく、高耐圧でしかも
順電圧が低く、高速なダイオードである、いわゆるJB
S(Junction Barrier Controlled Schottky Rectifie
r)が知られている。また、さらに特性を改善したSP
INダイオードやMPS(Merged P−I−N Scho
ttky Rectifier)の研究が進められている。これら
は、バルク内に形成した複数のP+ 領域周囲に広がる空
間電荷領域(以下、空乏層という)同士を低電圧で電気
的に接続しやすく、即ちパンチスルーしやすくしたこと
により、ショットキーバリアメタル層に印加される電圧
を下げ、リーク電流を小さくしたものである。
2. Description of the Related Art Conventionally, by mixing a PN junction and an SBD junction, a so-called JB, which is a high-speed diode having a small reverse current, a high withstand voltage and a low forward voltage, has been developed.
S (Junction Barrier Controlled Schottky Rectifie
r) is known. SP with further improved characteristics
IN diode and MPS (Merged PIN Scho
ttky Rectifier) is being researched. These are advantageous in that a space charge region (hereinafter, referred to as a depletion layer) extending around a plurality of P + regions formed in the bulk is easily electrically connected to each other at a low voltage, that is, punch-through is facilitated. The voltage applied to the metal layer is reduced to reduce the leak current.

【0003】従来のMPSのPINとSBD部分の断面
構造を図10に示す。N- 領域1の表面層には椀状の断
面形状を有するP+ 領域15が複数配列され、さらにこ
れらの表面上にP+ 領域15と低抵抗接触するショット
キーバリアメタル層17が形成されている。図中、各P
+領域15とN-領域1との境界がPN接合部となり、各
+領域15の間のN-領域1とショットキーバリアメタ
ル層17が接する境界がSBD接合部に相当する。
FIG. 10 shows a cross-sectional structure of the PIN and SBD portions of a conventional MPS. A plurality of P + regions 15 having a bowl-shaped cross section are arranged in the surface layer of the N region 1, and a Schottky barrier metal layer 17 that makes low resistance contact with the P + region 15 is formed on these surfaces. I have. In the figure, each P
The boundary between the + region 15 and the N region 1 is a PN junction, and the boundary between the P + regions 15 where the N region 1 and the Schottky barrier metal layer 17 are in contact corresponds to the SBD junction.

【0004】このようにPN接合とSBD接合とを混在
させたMPSに、ショットキーバリアメタル層17をマ
イナス電位、N-領域1をプラス電位とする逆電圧を印
加すると、破線で示すようにPN接合部からN- 領域1
に空乏層19が広がり、各P+ 領域15周囲の空乏層1
9同士が結合する。
When a reverse voltage is applied to the MPS in which the PN junction and the SBD junction coexist in such a manner that the Schottky barrier metal layer 17 has a negative potential and the N region 1 has a positive potential, as shown by a broken line, N - region 1 from junction
Depletion layer 19 spreads over the depletion layer 1 around each P + region 15.
9 are combined.

【0005】この空乏層19同士の結合によってSBD
接合がピンチオフされ、ショットキーバリアメタル層1
7の電界強度の上昇が防止され、SBD接合部で発生す
るリーク電流が低くおさえられる。
Due to the coupling between the depletion layers 19, the SBD
The junction is pinched off and the Schottky barrier metal layer 1
7 is prevented from increasing, and the leakage current generated at the SBD junction is suppressed low.

【0006】[0006]

【発明が解決しようとする課題】上述するようなPN接
合とSBD接合とを混在させた従来のショットキーバリ
ア半導体装置において、SBD接合部のリーク電流をさ
らに小さくするには、隣接しあうP+ 領域15の間隔L
SBD をより狭くし、より低い逆電圧で各P+領域15周
囲に広がる空乏層19同士を結合させて、SBD接合を
ピンチオフしてやるとよい。
In the conventional Schottky barrier semiconductor device in which the PN junction and the SBD junction are mixed as described above, in order to further reduce the leakage current at the SBD junction, adjacent P + Interval L of region 15
Preferably, the SBD junction is pinched off by narrowing the SBD and coupling the depletion layers 19 extending around each P + region 15 with a lower reverse voltage.

【0007】しかし、図10からも分かるように、従来
のP+ 領域15の断面形状は椀状であるため、その結合
方向(図中、左右方向)の幅Lpnが表面近く(深さ0.
1μm〜0.3μm)で最大値となる。このため、LSB
D を狭くすると、半導体装置全体に占めるSBD接合部
の有効面積が減少する。よって、順電圧印加時には順方
向電圧降下VF が増大し、高速動作が損なわれてしま
う。
However, as can be seen from FIG. 10, since the cross-sectional shape of the conventional P + region 15 is bowl-shaped, the width Lpn in the coupling direction (left-right direction in the drawing) is near the surface (depth of 0. 0).
1 μm to 0.3 μm). Therefore, LSB
When D is reduced, the effective area of the SBD junction in the entire semiconductor device decreases. Therefore, when a forward voltage is applied, the forward voltage drop VF increases, and high-speed operation is impaired.

【0008】本発明は、このような従来の問題に鑑みて
なされたものであり、その目的は、PN接合とSBD接
合とを混在させたショットキーバリア半導体装置におい
て、順電圧印加時におけるVF の増大なしに、逆電圧印
加時におけるSBD接合部のリーク電流を低減させるこ
とである。
The present invention has been made in view of such a conventional problem, and an object of the present invention is to provide a Schottky barrier semiconductor device in which a PN junction and an SBD junction are mixed, in order to reduce the VF when a forward voltage is applied. An object of the present invention is to reduce the leakage current at the SBD junction when a reverse voltage is applied without increasing the voltage.

【0009】[0009]

【課題を解決するための手段】本発明のショットキーバ
リア半導体装置の第1の特徴は、第1導電型の半導体基
板と、前記半導体基板に複数配列された第2導電型の拡
散層と、前記半導体基板及び前記拡散層と接触するショ
ットキーバリアメタル層とを有し、この半導体基板主表
面からの深さをXとおいた場合、X≧0.4μmにおい
て、前記拡散層の幅は最大値Lpnmaxをとることであ
る。
A first feature of the Schottky barrier semiconductor device of the present invention is that a semiconductor substrate of a first conductivity type, a plurality of diffusion layers of a second conductivity type arranged on the semiconductor substrate, When the semiconductor substrate and the Schottky barrier metal layer in contact with the diffusion layer are provided, and a depth from the main surface of the semiconductor substrate is defined as X, when X ≧ 0.4 μm, the width of the diffusion layer is a maximum value. Lpnmax.

【0010】上記第1の特徴によれば、第2導電型の拡
散層の最大幅Lpnmaxが、従来より深い場所、即ち基板
主表面から0.4μm以上深い位置に形成される。よっ
て、逆電圧印加時に発生する空乏層の結合によるSBD
接合のピンチオフも深さ0.4μm以上で起こる。この
構造においては、基板表面近くの第2導電型の拡散層の
幅Lpnを狭くし、深さ0.4μm以上での拡散層の最大
幅Lpnmaxを広げれば、逆電圧印加時におけるSBD接
合部の逆方向リーク電流を小さくするとともに、SBD
接合部の有効面積を広げ、順電圧印加時における順方向
電圧降下VFを下げることもできる。
According to the first feature, the maximum width Lpnmax of the diffusion layer of the second conductivity type is formed at a position deeper than the conventional one, that is, at a position at least 0.4 μm deeper than the main surface of the substrate. Therefore, SBD due to depletion layer coupling generated when a reverse voltage is applied
The pinch-off of the junction also occurs at a depth of 0.4 μm or more. In this structure, if the width Lpn of the diffusion layer of the second conductivity type near the substrate surface is narrowed and the maximum width Lpnmax of the diffusion layer at a depth of 0.4 μm or more is widened, the SBD junction at the time of applying a reverse voltage is formed. In addition to reducing the reverse leakage current, the SBD
It is also possible to increase the effective area of the junction and reduce the forward voltage drop VF when a forward voltage is applied.

【0011】本発明のショットキーバリア半導体装置の
第2の特徴は、上記第1の特徴を有する当該半導体装置
において、前記拡散層が、その幅がLpnmaxである領域
を深さ方向に対し所定厚み以上有していることである。
According to a second feature of the Schottky barrier semiconductor device of the present invention, in the semiconductor device having the above-mentioned first feature, the diffusion layer is formed by forming a region having a width of Lpnmax by a predetermined thickness in a depth direction. That is what we have.

【0012】上記第2の特徴に示すように、基板の深い
領域に形成する最大幅Lpnmaxを有する拡散層の領域
は、一定厚み以上を有するものであればよく、それ以外
の拡散層の幅は狭くてよい。
As described in the second feature, the region of the diffusion layer having the maximum width Lpnmax formed in the deep region of the substrate only needs to have a certain thickness or more. It may be narrow.

【0013】本発明のショットキーバリア半導体装置の
第3の特徴は、上記第1の特徴を有する当該半導体装置
において、前記拡散層が、前記半導体基板の主表面に垂
直な方向にとった断面形状を多角形状とすることであ
る。
A third feature of the Schottky barrier semiconductor device of the present invention is that in the semiconductor device having the first feature, a cross-sectional shape of the diffusion layer taken in a direction perpendicular to a main surface of the semiconductor substrate. Is a polygonal shape.

【0014】本発明のショットキーバリア半導体装置の
第4の特徴は、上記第1の特徴を有する当該半導体装置
において、前記拡散層が、前記半導体基板の主表面に垂
直な方向にとった断面形状を壺状とすることである。
A fourth feature of the Schottky barrier semiconductor device of the present invention is that, in the semiconductor device having the first feature, the diffusion layer has a sectional shape taken in a direction perpendicular to a main surface of the semiconductor substrate. In a pot shape.

【0015】上記第3または第4の特徴に示すように、
当該拡散層の断面形状を壺状或いは多角形状とすれば、
前記拡散層は、基板表面近くの幅Lpnが狭く、深い領域
に最大幅Lpnmaxを有する断面形状となり、逆電圧印加
時におけるSBD接合部の逆方向リーク電流を小さくす
るとともに、SBD接合部の有効面積を増大させ、順電
圧印加時における順方向電圧降下VFを下げることがで
き、上記第1の特徴および作用を有するショットキーバ
リア半導体を提供できる。
As shown in the third or fourth feature,
If the cross-sectional shape of the diffusion layer is pot-shaped or polygonal,
The diffusion layer has a cross-sectional shape having a narrow width Lpn near the substrate surface and a maximum width Lpnmax in a deep region, reduces a reverse leakage current of the SBD junction when a reverse voltage is applied, and reduces an effective area of the SBD junction. And the forward voltage drop VF when a forward voltage is applied can be reduced, and a Schottky barrier semiconductor having the above-described first feature and operation can be provided.

【0016】また、本発明のショットキーバリア半導体
装置の製造方法の第1の特徴は、第1導電型の半導体基
板に、所定値以上の幅を有する複数の第2導電型の第1
の拡散層を形成する工程と、前記第1の拡散層に接続す
るように、前記第1の拡散層の上に前記所定値以下の幅
の第2導電型の第2の拡散層を形成する工程とを有する
ことである。
A first feature of the method of manufacturing a Schottky barrier semiconductor device according to the present invention is that a first conductive type semiconductor substrate is provided with a plurality of second conductive type first substrates having a width equal to or more than a predetermined value.
Forming a second diffusion layer of the second conductivity type having a width equal to or less than the predetermined value on the first diffusion layer so as to be connected to the first diffusion layer. Process.

【0017】上記本発明の製造方法の第1の特徴によれ
ば、第1導電型の半導体基板中に、浅い領域で幅が狭
く、深い領域で最大幅を有する第2導電型の拡散層を形
成することができる。このような構造の拡散層を有する
ショットキーバリア半導体装置では、基板の浅い領域で
の拡散層の幅が狭いため、SBD接合部の有効面積を狭
めることなく基板の比較的深い位置で、逆電圧印加時の
空乏層の結合およびこれによるSBD接合のピンチオフ
を起こすことができる。よって、順電圧印加時における
順方向電圧降下VFを増大させることなく、逆電圧印加
時におけるSBD接合部の逆方向リーク電流を小さくす
ることができる。
According to the first feature of the manufacturing method of the present invention, a diffusion layer of a second conductivity type having a narrow width in a shallow region and a maximum width in a deep region is provided in a semiconductor substrate of the first conductivity type. Can be formed. In a Schottky barrier semiconductor device having a diffusion layer having such a structure, the width of the diffusion layer is small in a shallow region of the substrate. Therefore, the reverse voltage can be reduced at a relatively deep position of the substrate without reducing the effective area of the SBD junction. The depletion layer can be coupled at the time of application and pinch-off of the SBD junction can be caused. Therefore, the reverse leakage current at the SBD junction when the reverse voltage is applied can be reduced without increasing the forward voltage drop VF when the forward voltage is applied.

【0018】本発明のショットキーバリア半導体装置の
製造方法の第2の特徴は、上記第1の特徴を有する当該
製造方法において、前記第1の拡散層、および第2の拡
散層が、イオン加速エネルギーの異なる2回以上のイオ
ン注入工程によって形成されることである。
According to a second feature of the method of manufacturing a Schottky barrier semiconductor device of the present invention, in the manufacturing method having the above-mentioned first feature, the first diffusion layer and the second diffusion layer are formed by ion acceleration. It is formed by two or more ion implantation steps having different energies.

【0019】上記製造方法の第2の特徴によれば、拡散
層の幅や深さに大きな影響を与えるイオン加速エネルギ
ーを変えて2回以上のイオン注入工程を行うので、上記
第1の特徴を有する製造方法を簡易に実現することがで
きる。
According to the second feature of the above-mentioned manufacturing method, two or more ion implantation steps are performed by changing the ion acceleration energy which greatly affects the width and depth of the diffusion layer. The manufacturing method can be easily realized.

【0020】本発明のショットキーバリア半導体装置の
製造方法の第3の特徴は、上記第1の特徴を有する当該
製造方法において、前記第1の拡散層、および第2の拡
散層が、前記半導体基板の主表面に垂直な方向に対し
て、異なる角度の2回以上のイオン注入工程によって形
成されることである。
A third feature of the method of manufacturing a Schottky barrier semiconductor device according to the present invention is that, in the manufacturing method having the first feature, the first diffusion layer and the second diffusion layer are formed of the semiconductor. It is formed by two or more ion implantation steps at different angles with respect to a direction perpendicular to the main surface of the substrate.

【0021】上記製造方法の第3の特徴によれば、イオ
ン注入時の注入角を変えることにより、注入イオンの到
達領域の位置を変えることができるため、拡散領域の断
面形状を壺状や多角形等種々の形状とすることができ、
上記第1の特徴を有する製造方法を簡易に実現すること
ができる。
According to the third feature of the manufacturing method, since the position of the region where the implanted ions reach can be changed by changing the implantation angle at the time of ion implantation, the cross-sectional shape of the diffusion region can be changed to a pot-like shape or a multiple shape. It can be various shapes such as square,
The manufacturing method having the first feature can be easily realized.

【0022】[0022]

【発明の実施の形態】以下、本発明の実施の形態につい
て図面を用いて説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0023】(第1の実施の形態)図1(a)は本発明
の第1の実施の形態にかかるショットキーバリア半導体
装置の平面図である。図1(b)は図1(a)のA−
A’に沿ってみた断面図である。
(First Embodiment) FIG. 1A is a plan view of a Schottky barrier semiconductor device according to a first embodiment of the present invention. FIG. 1 (b) is a cross-sectional view of FIG.
It is sectional drawing seen along A '.

【0024】図1(a)のように、半導体装置表面には
ショットキーバリアメタル層17が形成されており、こ
のショットキーバリアメタル層17の下層にあたるN-
領域1の表面層に複数のP+領域15がストライプ状に
形成されている。各P+領域15のうち便宜的なハッチ
ングが施された中央領域は、ショットキーバリアメタル
層17に直接接している上層部分を示す。
As shown in FIG. 1A, a Schottky barrier metal layer 17 is formed on the surface of the semiconductor device, and an N layer below this Schottky barrier metal layer 17 is formed.
A plurality of P + regions 15 are formed in a stripe shape on the surface layer of region 1. The central region of each P + region 15 which is conveniently hatched indicates an upper layer portion directly in contact with Schottky barrier metal layer 17.

【0025】A−A’に沿って断面図を見ると、図1
(b)のように、P+領域15は、ショットキーバリア
メタル層17と接している上層部分の幅Lpnに比べ、底
部のP+領域15の幅Lpnが長い形状になっており、最
大幅Lpnmaxが最下部にある。P+領域15中、最大幅L
pnmaxを有する領域は、基板主表面からの深さLdより
下層に形成されている。
Looking at a cross-sectional view along AA ', FIG.
As in (b), P + region 15, than the width Lpn of the upper portion in contact with the Schottky barrier metal layer 17, the width Lpn of the bottom of the P + region 15 has become a long shape, the maximum width Lpnmax Is at the bottom. Maximum width L in P + region 15
The region having pnmax is formed below the depth Ld from the main surface of the substrate.

【0026】具体的なスケールは、所望の特性(耐圧、
動作速度、IR等)により設計すれば良い。例えば、第
1の実施の形態においては、深さLdは1μm、上層の
+領域15の幅Lpnは0.7μm、LSBDは2.5μm
と設計することができる。なお、Ldは、少なくとも
0.4μm以上とすることが好ましい。
The specific scale is based on desired characteristics (withstand voltage,
Operating speed, IR, etc.). For example, in the first embodiment, the depth Ld is 1 μm, the width Lpn of the upper P + region 15 is 0.7 μm, and the LSBD is 2.5 μm.
And can be designed. Ld is preferably at least 0.4 μm or more.

【0027】このように、P+領域15の幅Lpnを浅い
領域で細く、深い領域で広くし、特にP+領域15の最
大幅Lpnmaxが0.4μm以上の深さで形成されるよう
にすれば、逆電位を印加した際、P+領域15周囲に形
成される空乏層19の結合が、N-領域1の従来より深
い部分で起こる。最大幅Lpnmaxを広げれば、空乏層1
9の結合をより低電圧で起こし、SBD接合のピンチオ
フが可能になり、逆方向リーク電流を減少させることが
できる。また、基板表面近くでは、P+領域15の幅Lp
nが狭いため、相対的にSBD接合部の有効面積を広く
できる。よって順電圧印加時の電流密度が下がるので、
順方向電圧降下VF を下げることもできる。
As described above, the width Lpn of the P + region 15 is reduced in the shallow region and widened in the deep region. In particular, the maximum width Lpnmax of the P + region 15 is formed at a depth of 0.4 μm or more. For example, when a reverse potential is applied, coupling of the depletion layer 19 formed around the P + region 15 occurs in a deeper portion of the N region 1 than in the conventional case. If the maximum width Lpnmax is increased, the depletion layer 1
9 occurs at a lower voltage, pinch-off of the SBD junction becomes possible, and the reverse leakage current can be reduced. In the vicinity of the substrate surface, the width Lp of the P + region 15
Since n is small, the effective area of the SBD joint can be relatively widened. Therefore, the current density at the time of forward voltage application decreases,
The forward voltage drop VF can be reduced.

【0028】図2(a)、図2(b)は図1(a)の応
用パターン平面図である。図1(a)には、P+領域1
5の平面形状がストライプ状の場合を例示したが、この
他にも図2(a)、図2(b)に示すように、P+領域
15の平面形状が矩形であってもよい。またこの場合、
ショットキーバリアメタル層17と接するP+領域15
のハッチング部分を図2(a)に示すように短冊状、あ
るいは図2(b)に示すようにP+領域15の中央に矩
形状としてもよい。
FIGS. 2A and 2B are plan views of the applied pattern of FIG. 1A. FIG. 1A shows the P + region 1
Although the example in which the plane shape of 5 is a stripe shape is illustrated, the plane shape of the P + region 15 may be rectangular as shown in FIGS. 2 (a) and 2 (b). Also in this case,
P + region 15 in contact with Schottky barrier metal layer 17
May be formed in a strip shape as shown in FIG. 2A or a rectangular shape in the center of the P + region 15 as shown in FIG. 2B.

【0029】次に、第1の実施の形態におけるショット
キーバリア半導体装置の製造方法を図面を用いて説明す
る。図3(a)乃至図3(d)は、第1の実施の形態に
かかるショットキーバリア半導体装置の製造方法を示し
た断面図である。
Next, a method of manufacturing the Schottky barrier semiconductor device according to the first embodiment will be described with reference to the drawings. 3A to 3D are cross-sectional views illustrating a method for manufacturing the Schottky barrier semiconductor device according to the first embodiment.

【0030】最初に、N-領域1に所定間隔をあけて幅
LpnmaxのP+領域15を形成する。即ち、まず、N-
域1の表面にレジスト膜を塗布形成し、これをパターニ
ングして、レジストパターン5を得、このレジストパタ
ーン5をマスクとして、P型不純物のイオン注入を行
い、N-領域1の表面層にP+領域15の基礎となるイオ
ン注入層、P+領域15aを形成する(図3(a))。
不要なレジストパターン5はその後除去する。
First, a P + region 15 having a width Lpnmax is formed at a predetermined interval in the N - region 1. That is, first, a resist film is applied and formed on the surface of the N region 1, and is patterned to obtain a resist pattern 5. P-type impurities are ion-implanted using the resist pattern 5 as a mask to form an N region. ion implantation layer underlying the P + region 15 in one of the surface layer to form a P + region 15a (Figure 3 (a)).
Unnecessary resist pattern 5 is thereafter removed.

【0031】次に、表面にN-領域1と同一の層1’を
エピタキシャル成長させる(図3(b))。この工程に
より、P+領域15aは、実質的にN-領域1中に埋めら
た状態となる。
Next, the same layer 1 'as that of the N - region 1 is epitaxially grown on the surface (FIG. 3B). By this step, P + region 15a is substantially buried in N region 1.

【0032】N-領域1表面のP+領域15a上に相当す
る領域に、P+領域15aの幅より狭い幅Lpnの開孔を
有するレジストパターン5を形成する。このレジストパ
ターン5をマスクとして、2回目のP型不純物のイオン
注入を行い、P+領域15bを形成する。注入条件は、
新たに形成されるP+領域15bが前工程で形成したP+
領域15aに接するような条件とする(図3
(c))。不要となったレジストパターン5はその後除
去する。
In a region corresponding to P + region 15a on the surface of N - region 1, a resist pattern 5 having an opening having a width Lpn smaller than the width of P + region 15a is formed. Using this resist pattern 5 as a mask, a second ion implantation of a P-type impurity is performed to form a P + region 15b. The injection conditions are
The newly formed P + region 15b is formed by the P + formed in the previous process.
The condition is such that it is in contact with the area 15a (FIG. 3
(C)). The unnecessary resist pattern 5 is thereafter removed.

【0033】さらに、アニールを行い、P+領域15a
と15bを活性化し、連続する拡散層であるP+領域1
5を形成する(図3(d))。この後、表面にショット
キーバリアメタル層17を形成すれば、図1(b)に示
すショットキーバリア半導体装置を得ることができる。
Further, annealing is performed to form a P + region 15a.
And 15b are activated to form a P + region 1 which is a continuous diffusion layer.
5 is formed (FIG. 3D). Thereafter, if a Schottky barrier metal layer 17 is formed on the surface, the Schottky barrier semiconductor device shown in FIG. 1B can be obtained.

【0034】なお、図3(a)、図3(c)に示すイオ
ン注入の2工程のうちの片方或いは両方を、トレンチを
形成する工程とそのトレンチに埋込層を形成する工程と
に代えても同様なショットキーバリア半導体装置を得る
ことができる。図4(a)〜図4(c)は、その一例を
示す工程図である。以下、この工程を簡単に説明する。
One or both of the two ion implantation steps shown in FIGS. 3A and 3C are replaced with a step of forming a trench and a step of forming a buried layer in the trench. Thus, a similar Schottky barrier semiconductor device can be obtained. FIGS. 4A to 4C are process diagrams showing an example. Hereinafter, this step will be briefly described.

【0035】1回目のイオン注入を行い、N-領域1表
面層に幅Lpnmaxを有するP+領域15aを形成し、さら
にN-領域と同一のエピタキシャル層を表面に形成する
工程までは、上述した方法と同一の方法を用いることが
できる。この後、N-領域1表面にレジストパターンを
形成し、これをマスクとしてN-領域1のエッチングを
行い、P+領域15a中央に相当する領域上に幅Lpnよ
りやや狭い幅を有するトレンチを形成する。不要となっ
たレジストはその後除去する(図4(a))。
The first ion implantation is performed, the P + region 15a having the width Lpnmax is formed in the surface layer of the N region 1, and the same epitaxial layer as the N region is formed on the surface. The same method can be used. Thereafter, N - region 1 to form a resist pattern on the surface, this N as a mask - etched regions 1, forming a trench having a slightly narrower width than the width Lpn on a region corresponding to the central P + region 15a I do. The unnecessary resist is thereafter removed (FIG. 4A).

【0036】次に、マスクを用いず、2回目のイオン注
入を行い、N-領域1表面層にP+領域15bを形成す
る。なお、P+領域15bは、P+領域15aと接するよ
うに注入条件を選択する。この後、アニールを行いイオ
ン注入層を活性化し、P+領域15aとP+領域15bを
連続なP+領域15とする(図4(b))。
Next, a second ion implantation is performed without using a mask to form a P + region 15b in the surface layer of the N region 1. The implantation condition is selected so that the P + region 15b is in contact with the P + region 15a. Thereafter, annealing is performed to activate the ion-implanted layer, so that the P + region 15a and the P + region 15b become continuous P + regions 15 (FIG. 4B).

【0037】なお、アニール前もしくは後、SBD形成
領域上のP+領域15bをエッチング除去する。最後
に、基板表面にショットキーバリアメタル17を形成す
る(図4(c))。
Before or after annealing, the P + region 15b on the SBD formation region is removed by etching. Finally, a Schottky barrier metal 17 is formed on the substrate surface (FIG. 4C).

【0038】上述の方法で作製するショットキーバリア
半導体装置に逆電位を印加した場合の空乏層19の様子
を図4(c)中に示す。図1(b)に示したショットキ
ーバリア半導体装置の場合と同様、P+領域15周囲に
形成される空乏層19の結合が、N-領域1の深い部分
で起こり、ここでSBD接合をピンチオフできる。基板
表面近傍のP+領域15の幅は狭いため、SBD接合部
の有効面積を相対的に広くできる。よって、従来よりも
低電圧の逆電圧印加で、空乏層の結合によるSBD接合
のピンチオフを可能とし、逆方向リーク電流を減少させ
ることができるとともに、順電圧印加時の順方向電圧降
下VF を下げることもできる。
FIG. 4C shows the state of the depletion layer 19 when a reverse potential is applied to the Schottky barrier semiconductor device manufactured by the above-described method. As in the case of the Schottky barrier semiconductor device shown in FIG. 1B, the coupling of the depletion layer 19 formed around the P + region 15 occurs in a deep portion of the N region 1, where the SBD junction is pinched off. it can. Since the width of the P + region 15 near the substrate surface is small, the effective area of the SBD junction can be relatively widened. Therefore, by applying a reverse voltage of a lower voltage than in the prior art, pinch-off of the SBD junction due to the coupling of the depletion layer is enabled, the reverse leakage current can be reduced, and the forward voltage drop VF when a forward voltage is applied is reduced. You can also.

【0039】(第2の実施の形態)次に、図5乃至図8
を参照し、第2の実施の形態について説明する。
(Second Embodiment) Next, FIGS.
A second embodiment will be described with reference to FIG.

【0040】図5、6は第2の実施の形態を説明するた
めの工程断面図、図7は不純物イオンB+ をN- 領域1
に打ち込んだ際の、加速エネルギーと注入イオンの停止
位置の関係を示す対数グラフである。
[0040] Figure 5 and 6 showing cross-sectional process for explaining the second embodiment, FIG. 7 is an impurity ion B + N - region 1
6 is a logarithmic graph showing the relationship between the acceleration energy and the stop position of implanted ions when implanted in FIG.

【0041】まず、図5(a)に示すように、N- 領域
1の表面に厚み約0.1μmのSiO2層3を形成す
る。さらに表面にレジスト膜を形成し、このレジスト膜
を2μm間隔に幅2μmになるようにパターニングをす
る。このレジストパターン5をマスクとして、ドーズ量
1×1016cm-2のB+ 不純物イオンを、加速エネルギ
ー300KeV、表面からみた垂線に対する注入角度θ
を0〜6°とする条件で打ち込む。図7から求めた、こ
の条件における注入イオンの停止位置9は、基板主表面
からの深さ約0.71μmの位置となる。
First, as shown in FIG. 5A, an SiO 2 layer 3 having a thickness of about 0.1 μm is formed on the surface of the N region 1. Further, a resist film is formed on the surface, and the resist film is patterned so as to have a width of 2 μm at intervals of 2 μm. Using this resist pattern 5 as a mask, a B + impurity ion having a dose of 1 × 10 16 cm −2 is implanted at an acceleration energy of 300 KeV and an implantation angle θ with respect to a vertical line viewed from the surface.
At 0 to 6 °. The stop position 9 of the implanted ions under this condition obtained from FIG. 7 is a position at a depth of about 0.71 μm from the main surface of the substrate.

【0042】次に、図5(b)に示すように、同じレジ
ストパターン5をマスクとして用い、ドーズ量1×10
15cm-2 のB+ 不純物イオンを、加速エネルギー40
KeV、注入角度θを0〜6°とする条件で打ち込む。
これによる停止位置13は、図7より、深さ約0.13
μmの位置となる。
Next, as shown in FIG. 5B, using the same resist pattern 5 as a mask, a dose of 1 × 10
15 cm -2 B + impurity ions are accelerated at an energy of 40
The implantation is performed under the conditions of KeV and an implantation angle θ of 0 to 6 °.
The stop position 13 due to this is approximately 0.13 in depth from FIG.
μm.

【0043】図5(c)に示すように、不要となったレ
ジストを除去し、その後B+ の活性化のために900℃
以上、好ましくは1000℃で30分以上アニール処理
を行い、P+領域15を形成する。こうして得られたP+
領域15は、最大深さ約1.2μmを有し、表面から
0.71μmの深さに最大幅Lpnmax約2.8μmを有
する壺状の断面形状となる。
As shown in FIG. 5C, the unnecessary resist is removed, and then 900 ° C. is activated for activating B +.
As described above, the annealing treatment is preferably performed at 1000 ° C. for 30 minutes or more to form the P + region 15. The P + thus obtained
The region 15 has a maximum depth of about 1.2 μm, and has a pot-shaped cross-sectional shape having a maximum width Lpnmax of about 2.8 μm at a depth of 0.71 μm from the surface.

【0044】このようにN- 領域1の表面内部に壺状の
+ 領域15を複数配列形成した後、SiO2膜3を除
去し、P+ 領域15と低抵抗接触するショットキーバリ
アメタル層17を表面に形成する。なお、ショットキー
バリアメタル層17は、Al、Mo、Au、Ti、N
i、V等を含む単層で構成されているが、複数層であっ
ても良い。以上の工程により、図6に示すようなPN接
合とSBD接合とが混在するショットキーバリア半導体
装置が実現される。
After arranging a plurality of pot-shaped P + regions 15 inside the surface of N - region 1 as described above, the SiO 2 film 3 is removed, and a Schottky barrier metal layer which makes low resistance contact with P + region 15 is formed. 17 is formed on the surface. The Schottky barrier metal layer 17 is made of Al, Mo, Au, Ti, N
It is composed of a single layer containing i, V, etc., but may be composed of multiple layers. Through the above steps, a Schottky barrier semiconductor device in which a PN junction and an SBD junction are mixed as shown in FIG. 6 is realized.

【0045】図6に示すように、第2の実施の形態にお
けるショットキーバリア半導体装置によれば、P+ 領域
15の結合方向(図中、左右方向)における断面の幅
は、深さ0.71μmで最大幅Lpnmax となり、図のよ
うに逆電圧が印加された時、ここで各P+ 領域15から
広がる空乏層19が結合され、SBD接合をピンチオフ
する。
As shown in FIG. 6, according to the Schottky barrier semiconductor device of the second embodiment, the width of the cross section of the P + region 15 in the coupling direction (the left-right direction in the drawing) has a depth of 0.1 mm. When the reverse voltage is applied as shown in the figure, the depletion layer 19 extending from each P + region 15 is coupled to pinch off the SBD junction when the reverse voltage is applied as shown in the figure.

【0046】図8は、第2の実施の形態におけるショッ
トキーバリア半導体装置と図10に示した従来のショッ
トキーバリア半導体装置との電流電圧特性(IR −VR
特性(Ta =25℃))を比較したグラフである。とも
に同一サイズのチップを使用した場合の値を示す。図
中、白丸が第2の実施の形態によるショットキーバリア
半導体装置のIR −VR 特性であり、黒丸が従来技術に
よるそれである。従来のショットキーバリア半導体装置
では、VR が約0.5V付近でピンチオフ(図中、×
印)し、リーク電流IR が増加しなくなるのに対し、第
2の実施の形態によるものではVRが約0.2Vでピン
チオフしている。
FIG. 8 shows current-voltage characteristics (IR-VR) of the Schottky barrier semiconductor device according to the second embodiment and the conventional Schottky barrier semiconductor device shown in FIG.
6 is a graph comparing characteristics (Ta = 25 ° C.). Both values are for the case where chips of the same size are used. In the figure, the white circles are the IR-VR characteristics of the Schottky barrier semiconductor device according to the second embodiment, and the black circles are those according to the prior art. In the conventional Schottky barrier semiconductor device, pinch-off occurs when VR is about 0.5 V (in FIG.
(Marked), and the leak current IR does not increase. On the other hand, in the second embodiment, the pinch-off occurs when VR is about 0.2 V.

【0047】このように、従来のものよりも第2の実施
の形態にかかるショットキーバリア半導体装置の方が明
らかにリーク電流IR が小さくなっている。VR =10
VでのIR を比較すると、従来の半導体装置では4.5
μAなのに対し、第2の実施の形態によるものでは1.
5μAとなり、1/3に低減されている。
As described above, the Schottky barrier semiconductor device according to the second embodiment has a clearly lower leak current IR than the conventional device. VR = 10
Comparing the IR at V, it is 4.5 in the conventional semiconductor device.
In contrast to μA, in the second embodiment, 1.A.
5 μA, which is reduced to 1/3.

【0048】一方、SBD接合部のLSBD に関しては従
来と同様な大きさを取ることができるので、順電圧印加
時のVF をほぼ同一にすることができる。100μA時
のVF を比較すると、従来の半導体装置が0.11V、
第2の実施の形態によるものが0.12Vとなる。
On the other hand, the LSBD at the SBD junction can have the same size as the conventional one, so that the VF when the forward voltage is applied can be made substantially the same. Comparing the VF at 100 μA, the conventional semiconductor device is 0.11 V,
The voltage according to the second embodiment is 0.12V.

【0049】(第3の実施の形態)図9は、本発明の第
3の実施の形態を説明するための断面構造図である。第
2の実施の形態との違いは、2回のイオン注入工程の
際、注入角度θを垂線に対して+30°から1回、−3
0°から1回、双方とも加速エネルギー300KeVで
ドーズ量1×1016 cm-2のB+ 不純物イオンを打ち
込むところであり、その後の工程は第2の実施の形態と
同様である。
(Third Embodiment) FIG. 9 is a sectional structural view for explaining a third embodiment of the present invention. The difference from the second embodiment is that, during the two ion implantation steps, the implantation angle θ is changed once from + 30 ° to the perpendicular, and −3.
Once from 0 °, B + impurity ions with a dose of 1 × 10 16 cm −2 are implanted at an acceleration energy of 300 KeV in both cases, and the subsequent steps are the same as in the second embodiment.

【0050】図9に示すように、第3の実施の形態によ
れば、1回目のイオン注入工程による注入イオンの停止
位置9と2回目のイオン注入工程による注入イオンの停
止位置13の線が、注入角度に依存して斜めとなり、そ
の結果P+ 領域15の断面構造は同図に示すような星型
の多角形状となる。P+ 領域15の幅は深さ0.5μm
の所でLpnmax となり、Lpnmaxの幅が第2の実施の形
態の場合より12%程長くなるため、よりピンチオフ効
果を強くできる。
As shown in FIG. 9, according to the third embodiment, the line between the implantation ion stop position 9 in the first ion implantation step and the implantation ion stop position 13 in the second ion implantation step is shown. , Becomes oblique depending on the implantation angle, and as a result, the sectional structure of the P + region 15 becomes a star-shaped polygonal shape as shown in FIG. P + region 15 has a depth of 0.5 μm
At this point, Lpnmax is obtained, and the width of Lpnmax is about 12% longer than in the second embodiment, so that the pinch-off effect can be further enhanced.

【0051】以上、本発明のショットキーバリア半導体
装置について、実施の形態に沿って説明したが、本発明
はこれらに限定されるものでなく、断面幅Lpnが表面よ
り深さ0.4μm以上で最大値となる断面構造を持った
+領域15が形成されれば良い。例えばP+領域15を
形成するために行うイオン注入の回数は3回以上であっ
てもよい。また、イオン注入時の注入角は上述した角度
に限定されることなく+60°から−60°まで種々の
角度を組み合わせることができる。さらに、P+ 領域1
5の断面形状は、壺型、星型等に限定されることなく、
種々の多角形状をとることができる。
As described above, the Schottky barrier semiconductor device of the present invention has been described in accordance with the embodiments. However, the present invention is not limited to these, and the cross-sectional width Lpn is 0.4 μm or more from the surface. What is necessary is that the P + region 15 having the maximum cross-sectional structure be formed. For example, the number of times of ion implantation for forming the P + region 15 may be three or more. Further, the implantation angle at the time of ion implantation is not limited to the above-described angle, and various angles from + 60 ° to −60 ° can be combined. Further, P + region 1
The cross-sectional shape of 5 is not limited to a pot shape, a star shape, etc.
Various polygonal shapes can be taken.

【0052】[0052]

【発明の効果】以上のように、本発明のショットキーバ
リア半導体装置は、第1導電型の半導体基板と、前記半
導体基板に複数配列された第2導電型の拡散層と、前記
半導体基板及び前記拡散層と接触するショットキーバリ
アメタル層とを有し、この半導体基板主表面からの深さ
をXとおいた場合、X≧0.4μmにおいて、前記拡散
層の幅は最大値Lpmaxをとる。よって、SBD接合部の
有効面積が減少しないので、順電圧印加時のVF の増大
を防ぐことができるとともに、より低電圧の逆電圧印加
で空乏層によるSBD接合のピンチオフが可能になるの
で、逆方向リーク電流をより減少させることができる。
As described above, according to the Schottky barrier semiconductor device of the present invention, a semiconductor substrate of a first conductivity type, a diffusion layer of a second conductivity type arranged in a plurality on the semiconductor substrate, the semiconductor substrate and The semiconductor device has a Schottky barrier metal layer in contact with the diffusion layer, and when the depth from the main surface of the semiconductor substrate is defined as X, the width of the diffusion layer takes a maximum value Lpmax when X ≧ 0.4 μm. Therefore, since the effective area of the SBD junction does not decrease, it is possible to prevent an increase in VF when a forward voltage is applied, and it is possible to pinch off the SBD junction by a depletion layer by applying a lower reverse voltage. Directional leakage current can be further reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施の形態にかかるショットキ
ーバリア半導体装置の平面図および断面図である。
FIG. 1 is a plan view and a sectional view of a Schottky barrier semiconductor device according to a first embodiment of the present invention.

【図2】本発明の第1の実施の形態にかかるショットキ
ーバリア半導体装置の応用パターン例を示す当該装置の
平面図である。
FIG. 2 is a plan view of the Schottky barrier semiconductor device according to the first embodiment of the present invention, showing an application pattern example of the device.

【図3】本発明の第1の実施の形態にかかるショットキ
ーバリア半導体装置の製造方法を説明するための各工程
における当該装置の断面図である。
3A to 3C are cross-sectional views of the Schottky barrier semiconductor device according to the first embodiment of the present invention in respective steps for explaining the method of manufacturing the device.

【図4】本発明の第1の実施の形態にかかる別のショッ
トキーバリア半導体装置の例を説明するための各工程に
おける当該装置の断面図である。
FIGS. 4A to 4C are cross-sectional views of the Schottky barrier semiconductor device according to the first embodiment of the present invention in respective steps for describing an example of the device.

【図5】本発明の第2の実施の形態にかかるショットキ
ーバリア半導体装置の製造方法を説明するための各工程
における当該装置の断面図である。
FIGS. 5A to 5C are cross-sectional views of a Schottky barrier semiconductor device according to a second embodiment of the present invention in respective steps for describing a method of manufacturing the device.

【図6】本発明の第2の実施の形態にかかるショットキ
ーバリア半導体装置の断面図である。
FIG. 6 is a sectional view of a Schottky barrier semiconductor device according to a second embodiment of the present invention.

【図7】イオン注入工程における加速エネルギーとB+
イオンのバルク中での注入停止位置との関係を示す対数
グラフである。
FIG. 7 shows acceleration energy and B + in the ion implantation process.
6 is a logarithmic graph showing the relationship between the ion and the implantation stop position in the bulk.

【図8】第2の実施の形態にかかるショットキーバリア
半導体装置と従来の当該装置での各IR −VR 特性を示
すグラフである。
FIG. 8 is a graph showing IR-VR characteristics of the Schottky barrier semiconductor device according to the second embodiment and a conventional device.

【図9】本発明の第3の実施の形態にかかるショットキ
ーバリア半導体装置の断面図である。
FIG. 9 is a sectional view of a Schottky barrier semiconductor device according to a third embodiment of the present invention.

【図10】従来のショットキーバリア半導体装置の断面
図である。
FIG. 10 is a cross-sectional view of a conventional Schottky barrier semiconductor device.

【符号の説明】[Explanation of symbols]

1 N- 領域 3 SiO2膜 5 レジストパターン 9,13 注入イオン停止位置 15 P+ 領域 17 ショットキーバリアメタル層 19 空乏層REFERENCE SIGNS LIST 1 N region 3 SiO 2 film 5 resist pattern 9, 13 Stopped position of implanted ions 15 P + region 17 Schottky barrier metal layer 19 depletion layer

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 第1導電型の半導体基板と、 前記半導体基板に複数配列された第2導電型の拡散層
と、 前記半導体基板及び前記拡散層と接触するショットキー
バリアメタル層とを有し、 この半導体基板主表面からの深さをXとおいた場合、 X≧0.4μmにおいて、前記拡散層の幅は最大値Lpn
maxをとることを特徴とするショットキーバリア半導体
装置。
A semiconductor substrate of a first conductivity type; a plurality of diffusion layers of a second conductivity type arranged on the semiconductor substrate; and a Schottky barrier metal layer in contact with the semiconductor substrate and the diffusion layer. Assuming that the depth from the main surface of the semiconductor substrate is X, when X ≧ 0.4 μm, the width of the diffusion layer is the maximum value Lpn
A Schottky barrier semiconductor device having a maximum value.
【請求項2】 前記拡散層は、その幅がLpnmaxである
領域を、深さ方向に対し所定厚み以上有していることを
特徴とする請求項1記載のショットキーバリア半導体装
置。
2. The Schottky barrier semiconductor device according to claim 1, wherein the diffusion layer has a region having a width of Lpnmax having a predetermined thickness or more in a depth direction.
【請求項3】 前記拡散層は、前記半導体基板の主表面
に垂直な方向にとった断面形状が、多角形状であること
を特徴とする請求項1記載のショットキーバリア半導体
装置。
3. The Schottky barrier semiconductor device according to claim 1, wherein the diffusion layer has a polygonal cross section taken in a direction perpendicular to the main surface of the semiconductor substrate.
【請求項4】 前記拡散層は、前記半導体基板の主表面
に垂直な方向にとった断面形状が、壺状であることを特
徴とする請求項1記載のショットキーバリア半導体装
置。
4. The Schottky barrier semiconductor device according to claim 1, wherein the diffusion layer has a pot-like cross section taken in a direction perpendicular to a main surface of the semiconductor substrate.
【請求項5】 第1導電型の半導体基板に、所定値以上
の幅を有する複数の第2導電型の第1の拡散層を形成す
る工程と、 前記第1の拡散層に接続するように、前記第1の拡散層
の上に前記所定値以下の幅の第2導電型の第2の拡散層
を形成する工程とを有することを特徴とするショットキ
ーバリア半導体装置の製造方法。
5. A step of forming a plurality of first diffusion layers of a second conductivity type having a width equal to or more than a predetermined value on a semiconductor substrate of the first conductivity type, and a step of connecting to the first diffusion layers. Forming a second diffusion layer of a second conductivity type having a width equal to or less than the predetermined value on the first diffusion layer.
【請求項6】 前記第1の拡散層、および第2の拡散層
は、イオン加速エネルギーの異なる2回以上のイオン注
入工程によって形成することを特徴とする請求項5に記
載のショットキーバリア半導体装置の製造方法。
6. The Schottky barrier semiconductor according to claim 5, wherein the first diffusion layer and the second diffusion layer are formed by two or more ion implantation processes having different ion acceleration energies. Device manufacturing method.
【請求項7】 前記第1の拡散層、および第2の拡散層
は、前記半導体基板の主表面に垂直な方向に対して、異
なる角度の2回以上のイオン注入工程によって形成する
ことを特徴とするショットキーバリア半導体装置の製造
方法。
7. The semiconductor device according to claim 1, wherein the first diffusion layer and the second diffusion layer are formed by two or more ion implantation steps at different angles with respect to a direction perpendicular to a main surface of the semiconductor substrate. A method for manufacturing a Schottky barrier semiconductor device.
JP9351440A 1996-12-19 1997-12-19 Schottky barrier semiconductor device and its manufacturing method Pending JPH10233515A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9351440A JPH10233515A (en) 1996-12-19 1997-12-19 Schottky barrier semiconductor device and its manufacturing method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP8-339945 1996-12-19
JP33994596 1996-12-19
JP9351440A JPH10233515A (en) 1996-12-19 1997-12-19 Schottky barrier semiconductor device and its manufacturing method

Publications (1)

Publication Number Publication Date
JPH10233515A true JPH10233515A (en) 1998-09-02

Family

ID=26576570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9351440A Pending JPH10233515A (en) 1996-12-19 1997-12-19 Schottky barrier semiconductor device and its manufacturing method

Country Status (1)

Country Link
JP (1) JPH10233515A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002314099A (en) * 2001-04-09 2002-10-25 Denso Corp Schottky diode and its manufacturing method
JP2007324218A (en) * 2006-05-30 2007-12-13 Toshiba Corp Semiconductor rectifying device
JP2008541459A (en) * 2005-05-11 2008-11-20 クリー インコーポレイテッド Silicon carbide junction barrier Schottky diode with suppressed minority carrier injection
JP4889645B2 (en) * 2005-09-08 2012-03-07 三菱電機株式会社 Manufacturing method of semiconductor device
WO2013153909A1 (en) * 2012-04-12 2013-10-17 富士電機株式会社 Wide band gap semiconductor device and manufacturing method therefor
JP2015173158A (en) * 2014-03-11 2015-10-01 住友電気工業株式会社 Wide bandgap semiconductor device
CN113066867A (en) * 2021-03-15 2021-07-02 无锡新洁能股份有限公司 High-reliability silicon carbide MOSFET device and process method thereof
IT202100002333A1 (en) * 2021-02-03 2022-08-03 St Microelectronics Srl JBS DEVICE WITH IMPROVED ELECTRICAL PERFORMANCE, AND JBS DEVICE MANUFACTURING PROCESS
CN115602735A (en) * 2022-12-12 2023-01-13 苏州锴威特半导体股份有限公司(Cn) Silicon carbide junction barrier Schottky diode and manufacturing method thereof
CN116344591A (en) * 2023-05-29 2023-06-27 深圳腾睿微电子科技有限公司 Silicon carbide semiconductor device having JBS cell structure

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002314099A (en) * 2001-04-09 2002-10-25 Denso Corp Schottky diode and its manufacturing method
JP2008541459A (en) * 2005-05-11 2008-11-20 クリー インコーポレイテッド Silicon carbide junction barrier Schottky diode with suppressed minority carrier injection
US8901699B2 (en) 2005-05-11 2014-12-02 Cree, Inc. Silicon carbide junction barrier Schottky diodes with suppressed minority carrier injection
JP4889645B2 (en) * 2005-09-08 2012-03-07 三菱電機株式会社 Manufacturing method of semiconductor device
JP2007324218A (en) * 2006-05-30 2007-12-13 Toshiba Corp Semiconductor rectifying device
US9230958B2 (en) 2012-04-12 2016-01-05 Fuji Electric Co., Ltd. Wide band gap semiconductor apparatus and fabrication method thereof
WO2013153909A1 (en) * 2012-04-12 2013-10-17 富士電機株式会社 Wide band gap semiconductor device and manufacturing method therefor
JP2015173158A (en) * 2014-03-11 2015-10-01 住友電気工業株式会社 Wide bandgap semiconductor device
IT202100002333A1 (en) * 2021-02-03 2022-08-03 St Microelectronics Srl JBS DEVICE WITH IMPROVED ELECTRICAL PERFORMANCE, AND JBS DEVICE MANUFACTURING PROCESS
EP4040507A1 (en) 2021-02-03 2022-08-10 STMicroelectronics S.r.l. Jbs device with improved electrical performances, and manufacturing process of the jbs device
CN113066867A (en) * 2021-03-15 2021-07-02 无锡新洁能股份有限公司 High-reliability silicon carbide MOSFET device and process method thereof
CN115602735A (en) * 2022-12-12 2023-01-13 苏州锴威特半导体股份有限公司(Cn) Silicon carbide junction barrier Schottky diode and manufacturing method thereof
CN116344591A (en) * 2023-05-29 2023-06-27 深圳腾睿微电子科技有限公司 Silicon carbide semiconductor device having JBS cell structure
CN116344591B (en) * 2023-05-29 2023-09-01 深圳腾睿微电子科技有限公司 Silicon carbide semiconductor device having JBS cell structure

Similar Documents

Publication Publication Date Title
JP5154347B2 (en) Superjunction semiconductor device and method of manufacturing superjunction semiconductor device
JP3157357B2 (en) Semiconductor device
US6770539B2 (en) Vertical type MOSFET and manufacturing method thereof
US7220644B2 (en) Single-pole component manufacturing
US6855614B2 (en) Sidewalls as semiconductor etch stop and diffusion barrier
JP2007515080A (en) Planarization method in the manufacture of superjunction devices
JPH1197716A (en) Mos control diode and manufacture of the same
JPH10233515A (en) Schottky barrier semiconductor device and its manufacturing method
US4191595A (en) Method of manufacturing PN junctions in a semiconductor region to reach an isolation layer without exposing the semiconductor region surface
JPH11340241A (en) Semiconductor element diode and its manufacture
JPH09232599A (en) Semiconductor device and manufacture thereof
JP2678550B2 (en) Zener diode with reference diode and protection diode
JP2006186040A (en) Semiconductor device and its manufacturing method
US6215167B1 (en) Power semiconductor device employing field plate and manufacturing method thereof
JP3173186B2 (en) Schottky barrier semiconductor device manufacturing method
KR100317604B1 (en) Schottky barrier diode and method for fabricating the same
JP2686125B2 (en) Static induction type switching element and method of manufacturing the same
KR0175407B1 (en) Method of manufacturing lateral transistor with three emitter regions
JPH06338514A (en) Semiconductor device
JPH098132A (en) Semiconductor element and its manufacturing method
JPS63138771A (en) Schottky barrier type semiconductor device and manufacture thereof
KR100454075B1 (en) Method of manufacturing bipolar transistor in semiconductor device
JP2004511912A (en) Protection diode for improving the immunity of radio frequency power transistors and a self-determining method for manufacturing the protection diode
JPH02292818A (en) Manufacture of semiconductor device
JPH0677465A (en) Semiconductor device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040921

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050201