JPS60241249A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS60241249A
JPS60241249A JP59099184A JP9918484A JPS60241249A JP S60241249 A JPS60241249 A JP S60241249A JP 59099184 A JP59099184 A JP 59099184A JP 9918484 A JP9918484 A JP 9918484A JP S60241249 A JPS60241249 A JP S60241249A
Authority
JP
Japan
Prior art keywords
layer
impurity
diffusion
buried
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59099184A
Other languages
Japanese (ja)
Inventor
Takayuki Matsukawa
隆行 松川
Tsutomu Yoshihara
吉原 務
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP59099184A priority Critical patent/JPS60241249A/en
Publication of JPS60241249A publication Critical patent/JPS60241249A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/74Making of localized buried regions, e.g. buried collector layers, internal connections substrate contacts
    • H01L21/743Making of internal connections, substrate contacts

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Semiconductor Memories (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To obtain the titled device with a surface MOS type capacitor connected to a buried diffused layer in a short time with a small area by a method wherein a hole deep enough to reach the buried diffused layer is bored previously from the surface of the epitaxial grown layer, and diffusion is carried out via said hole. CONSTITUTION:A diffusion mask layer 4 having an aperture serving as the diffusion window is formed above the buried diffused layer 2, and an etching hole 9 is bored to the degree of reaching the diffused layer 2 from this aperture. Next, an impurity-mixed layer 10 is formed. The impurity of the layer 10 diffuses into the epitaxial layer 3 by heat-treatment and formed into an impurity diffused layer 5A. Then, the impurity-mixed layer 10 in the surface is etched over the whole, and the diffusion mask layer 4 is removed by etching. Finally, a gate dielectric layer 6 is formed by thermal oxidation, and a gate electrode layer 8 is formed.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は、半導体装置、特にMO8mメモリ装置に使
用するMO8型キャパシタに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a semiconductor device, particularly an MO8 type capacitor used in a MO8m memory device.

〔従来技術〕[Prior art]

従来、この種の装置として第1図(a)〜(d)に示す
ものがあった。第1図において、1はシリコン等の半導
体基板、2は埋込み拡散層、3はエピタキシャル成長層
、4は酸化膜等の拡散マスク層、5は拡散層、6はゲー
ト誘電体層、7はフィールド酸化膜、8はゲート電極層
である。
Conventionally, there have been devices of this type as shown in FIGS. 1(a) to 1(d). In FIG. 1, 1 is a semiconductor substrate such as silicon, 2 is a buried diffusion layer, 3 is an epitaxial growth layer, 4 is a diffusion mask layer such as an oxide film, 5 is a diffusion layer, 6 is a gate dielectric layer, and 7 is a field oxidation layer. The film 8 is a gate electrode layer.

次に従来のMO8型キャパシタの構造について説明する
。第1図(a)のように半導体基板1に所定の形状で埋
込み拡散層2を形成した後、エピタキシャル成長層3を
形成する。次いで、第1図(b)のように通常のプレー
ナ拡散技術に従って、例えばシリコン酸化膜等の拡散マ
スク層4を形成してその一部に拡散の窓となる開口部を
開ける。そして、第1図(C)のようにこの開口部から
不純物(半導体基板1がp型の時はp型のリンやヒ素、
牛導体基板1がp型の時はp型のホウ素)を少なくとも
その拡散I?45の先端が埋込み拡散層2に到達する以
上の深さまで熱拡散する。しかる後、拡散マスクJf&
4をエツチング除去してから通常のMOSプロセスに従
って、第1図(d)のようにフィールド酸化膜1.ゲー
ト銹屯体ノー6を形成した後、ケート市#層8を形成す
ると、MO8型キャパシタが形成できる。このMO8型
キャパシタの容量は、主としてエピタキシャル成長層3
とゲート電極層8の間のMO8容量と、埋込み拡散層2
と半心体基板10間の接合容量の和圧なることはいうま
でもな(・。
Next, the structure of a conventional MO8 type capacitor will be explained. After forming a buried diffusion layer 2 in a predetermined shape in a semiconductor substrate 1 as shown in FIG. 1(a), an epitaxial growth layer 3 is formed. Next, as shown in FIG. 1(b), a diffusion mask layer 4, such as a silicon oxide film, is formed using a conventional planar diffusion technique, and an opening serving as a diffusion window is formed in a portion of the diffusion mask layer 4. Then, as shown in FIG. 1(C), impurities (when the semiconductor substrate 1 is p-type, p-type phosphorus, arsenic,
When the conductive substrate 1 is p-type, at least the p-type boron) is diffused I? Thermal diffusion is performed to a depth greater than that at which the tip of 45 reaches the buried diffusion layer 2. After that, the diffusion mask Jf&
After removing the field oxide film 1.4 by etching, the field oxide film 1.4 is removed according to a normal MOS process as shown in FIG. After forming the gate layer 6, a gate layer 8 is formed to form an MO8 type capacitor. The capacitance of this MO8 type capacitor is mainly due to the epitaxial growth layer 3.
and the MO8 capacitance between the gate electrode layer 8 and the buried diffusion layer 2
Needless to say, it is the sum of the junction capacitance between and the half-core substrate 10 (・.

上記のように従来のMO8型キャパシタは拡散1+45
でMUSmキャパシタと埋込み拡散層2を接続するよう
に構成されているので、通常5〜10μmあるエピタキ
シャル成長層3の底まで拡散させるには非常に長時開裂
する上に、拡散層5が横方向にもエピタキシャル成長層
3の厚みの2倍以上に拡がってしまうため、パターンサ
イズの小さな旨集積MOSメモリには使えないという致
命的な欠点があった。
As mentioned above, the conventional MO8 type capacitor is diffused 1+45
Since it is configured to connect the MUSm capacitor and the buried diffusion layer 2, it takes a very long time to diffuse to the bottom of the epitaxial growth layer 3, which is usually 5 to 10 μm, and the diffusion layer 5 is Since the pattern size also expands to more than twice the thickness of the epitaxially grown layer 3, it has a fatal drawback that it cannot be used for an integrated MOS memory due to the small pattern size.

〔発明の概要〕[Summary of the invention]

この発明は、上記のような従来のものの欠点を除去する
ためになされたもので、拡散に先立って予めエピタキシ
ャル成長層の表面から埋込み拡散層に到達する程度の穴
をエツチングによって開けておき、この穴を介して拡散
することによって、短時間でしかも小さな占有面積で埋
込み拡散層と表面MO8型キャパシタを接続した半導体
装置を提供することを目的としている。以下この発明の
一実施例を図面九ついて或明する。
This invention was made in order to eliminate the drawbacks of the conventional ones as described above. Prior to diffusion, a hole is made in advance from the surface of the epitaxial growth layer to the extent that it reaches the buried diffusion layer. The object of the present invention is to provide a semiconductor device in which a buried diffusion layer and a surface MO8 type capacitor are connected in a short time and in a small occupied area by diffusion through the oxide layer. An embodiment of the present invention will be explained below with reference to drawing 9.

〔発明の実施例〕[Embodiments of the invention]

第2図(a)〜(e)はこの発明の一実施例を説明する
ための製造工程の断面図で、9は予め形成されたエツチ
ング穴、10は不純物を混入させたポリシリコンあるい
はSin、やSi3N、の層(以下不純物混入層という
)、5Aはこの不純物混入層10から拡散された不純物
拡散層である。
FIGS. 2(a) to 2(e) are cross-sectional views of the manufacturing process for explaining one embodiment of the present invention, in which 9 is a pre-formed etching hole, 10 is polysilicon or Sin mixed with impurities; and Si3N (hereinafter referred to as an impurity-mixed layer), 5A is an impurity diffusion layer diffused from this impurity-mixed layer 10.

この発明の装置は、例えば以下のようにして作ることが
できる。第2図(a)は、第1図(b)とほぼ同様で、
埋込み拡散層2の上部に拡散の窓となる開口部を持つ拡
散マスク層4が形成されたところである。次にこの開口
部から、異方性プラズマエツチング(C2C12F4や
CCI、ガスを用いて行うことができる)で第2図(b
)のように埋込み拡散層2に到達する程度にエツチング
穴9を開ける。
The device of the present invention can be made, for example, as follows. Figure 2(a) is almost the same as Figure 1(b),
A diffusion mask layer 4 having an opening serving as a diffusion window has been formed above the buried diffusion layer 2. This opening is then etched by anisotropic plasma etching (which can be done using C2C12F4 or CCI gas) as shown in Figure 2 (b).
), an etching hole 9 is made to reach the buried diffusion layer 2.

次に第2図(C)のように、過当な不純物(不純物のJ
T市型は埋込み拡散層2と同じ)を含有した不純物混入
層10を、例えばCV D (Chemical Va
porDeposition )法によって形成し、加
熱処理を加えると、不純物混入層10の不純物はエピタ
キシャル成長層3内にも拡散してエツチング穴90局面
に不純物拡散JH5Aが形成される。次いで、表面の不
純物混入層10を全面的に適当量エツチングし、拡散マ
スク層4もエツチング除去すれば、第2図(d)のよう
な構造が容易に得られる。その後、例えば熱酸化法によ
ってゲート誘電体層6を形成し、従来法と同様にゲート
電極層8を形成すると、第2図(e)のようにMO8型
キャパシタができ上る。
Next, as shown in Figure 2 (C), excessive impurities (impurity J
For example, CV
When formed by the porDeposition method and subjected to heat treatment, the impurities in the impurity doped layer 10 are also diffused into the epitaxial growth layer 3, forming impurity diffusion JH5A on the surface of the etching hole 90. Next, the impurity-containing layer 10 on the surface is etched by an appropriate amount over the entire surface, and the diffusion mask layer 4 is also etched away, thereby easily obtaining the structure shown in FIG. 2(d). Thereafter, a gate dielectric layer 6 is formed by, for example, a thermal oxidation method, and a gate electrode layer 8 is formed in the same manner as in the conventional method, thereby completing an MO8 type capacitor as shown in FIG. 2(e).

この発明によるMO8型キャパシタでは、不純物拡散層
5Aを介して上部のMO8構造と、内部の埋込み拡散N
2が電気的に接続されるため、基本的な動作は従来法と
全く同じになるが、この発明ではエツチングによって拡
散用の穴を開けるので、従来のような長時間拡散は不要
な上に、現在のリソグラフィ技術を用いただけでも占有
面積2μmφ以下で5μm以上の深さの埋込み拡散層2
との接続が可能で、1Mbitクラス以上の大規模MO
Sメモリにも容易に適用可能である。
In the MO8 type capacitor according to the present invention, the upper MO8 structure and the internal buried diffusion N are connected via the impurity diffusion layer 5A.
2 are electrically connected, the basic operation is exactly the same as the conventional method, but in this invention, holes for diffusion are made by etching, so long-term diffusion as in the conventional method is not necessary. Even using current lithography technology, a buried diffusion layer 2 with an occupied area of 2 μm or less and a depth of 5 μm or more can be created.
Large-scale MO of 1Mbit class or more
It is also easily applicable to S memory.

なお、上記実施例では不純物拡散Ji 5 Aを不純物
混入rf41Gの中に含有させた不純物の固体拡散を利
用して形成する場合について述べたが、第2図(b)の
エツチング穴9を開けた後に、まず気相拡散によってエ
ツチング穴90周面に不純物拡散を行って不純物拡散層
5Aを形成しても全く同じ効果が得られることはいうま
でもない。さらに1そのようにエツチング穴9を開けた
後に不純物拡散層5への形成を終えた場合には、第3図
の−ように不純物混入層10による穴埋めの前にゲート
銹電体層6を形成してエツチング穴9の側面部罠もMO
8構造を形成しても、上記実施例と同様の効果を奏する
In the above embodiment, the case was described in which the impurity diffusion Ji 5 A was formed using the solid diffusion of the impurity in which the impurity-diffusion Ji 5 A was contained in the impurity-mixed RF41G. It goes without saying that the same effect can be obtained by first diffusing impurities into the circumferential surface of the etching hole 90 by vapor phase diffusion to form the impurity diffusion layer 5A. Furthermore, if the formation of the impurity diffusion layer 5 is completed after forming the etching hole 9 in this way, the gate electric layer 6 is formed before filling the hole with the impurity mixed layer 10 as shown in FIG. The side trap of etching hole 9 is also MO.
Even if eight structures are formed, the same effects as in the above embodiment can be obtained.

〔発明の効果J 以上説明したよ5[、この発明は表面MO8構造と埋込
み拡散層の連絡をエピタキシャル成長)脅へのエツチン
グ穴形成後に行うようにしたので、短時間で、かつ占有
面積の小さな高8員MO8型キャパシタが構成できると
いう効果がある。
[Effects of the Invention] As explained above, this invention connects the surface MO8 structure and the buried diffusion layer after forming the etching holes in the epitaxial growth layer. This has the advantage that an 8-member MO8 type capacitor can be constructed.

44、図面の簡単な説明 第1図(a)〜(d)は従来の半導体装置を説明するた
めの製造工程を示す断面図、第2図(a)〜(e)はこ
の発明の一実施例による半導体装置を説明するための製
造工程を示す断面図、第3図はこの発明の他の実施例を
示す半導体装置の断面図である。
44. Brief description of the drawings FIGS. 1(a) to (d) are cross-sectional views showing the manufacturing process for explaining a conventional semiconductor device, and FIGS. 2(a) to (e) are one embodiment of the present invention. FIG. 3 is a cross-sectional view showing a manufacturing process for explaining a semiconductor device according to an example, and FIG. 3 is a cross-sectional view of a semiconductor device showing another embodiment of the present invention.

図中、1は半導体基板、2は埋込み拡散層、3はエピタ
キシャル成長層、5Aは不純物拡散層、6はゲート誘虫
体層、8はゲート屯検層、9はエツチング穴、10は不
純物混入層である。
In the figure, 1 is a semiconductor substrate, 2 is a buried diffusion layer, 3 is an epitaxial growth layer, 5A is an impurity diffusion layer, 6 is a gate dielectric layer, 8 is a gate dielectric layer, 9 is an etching hole, and 10 is an impurity mixed layer. be.

なお、図中の同一符号は同一または相当部分を示すO 代理人 大岩増雄 (外2名ン 第1図 (a) (b) 第1図 (c) ら (d) 第2図 (a) (b) 第2図 (c) 0 (cl) 0 第2図 (e) 第3図Note that the same symbols in the figures indicate the same or corresponding parts. Agent: Masuo Oiwa (2 others) Figure 1 (a) (b) Figure 1 (c) and others (d) Figure 2 (a) (b) Figure 2 (c) 0 (cl) 0 Figure 2 (e) Figure 3

Claims (1)

【特許請求の範囲】[Claims] 半導体基板上に埋込み拡散層と、エピタキシャル成長層
を備えたMO8型キャパシタにおいて、前記エピタキシ
ャル成長層に前記埋込み拡散層に届くエツチング穴を開
けた後、このエンチング穴の周面罠不純物拡散層を形成
して前記埋込み拡散ノーと接続せしめ、前記不純物拡散
層上に直接またはゲート誘電体層を介して不純物混入層
を形成しMO8型キャパシタを構成したことを特徴とす
る半導体装置。
In an MO8 type capacitor having a buried diffusion layer and an epitaxial growth layer on a semiconductor substrate, an etching hole is formed in the epitaxial growth layer to reach the buried diffusion layer, and then a trapping impurity diffusion layer is formed around the etched hole. A semiconductor device characterized in that an MO8 type capacitor is constructed by forming an impurity doped layer directly or via a gate dielectric layer on the impurity diffusion layer, connected to the buried diffusion node.
JP59099184A 1984-05-15 1984-05-15 Semiconductor device Pending JPS60241249A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59099184A JPS60241249A (en) 1984-05-15 1984-05-15 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59099184A JPS60241249A (en) 1984-05-15 1984-05-15 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS60241249A true JPS60241249A (en) 1985-11-30

Family

ID=14240561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59099184A Pending JPS60241249A (en) 1984-05-15 1984-05-15 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS60241249A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62282457A (en) * 1986-03-19 1987-12-08 テキサス インスツルメンツ インコ−ポレイテツド Method of forming groove in silicon substrate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62282457A (en) * 1986-03-19 1987-12-08 テキサス インスツルメンツ インコ−ポレイテツド Method of forming groove in silicon substrate

Similar Documents

Publication Publication Date Title
US4717682A (en) Method of manufacturing a semiconductor device with conductive trench sidewalls
JPS60241249A (en) Semiconductor device
JP3127951B2 (en) Semiconductor device and manufacturing method thereof
US5221634A (en) Method of making semiconductor device employing self diffusion of dopant from contact member for augmenting electrical connection to doped region in substrate
JPH0621479A (en) Semiconductor device and fabrication thereof
JP2890509B2 (en) Method for manufacturing semiconductor device
JPH0878433A (en) Semiconductor device
JP2654056B2 (en) Method for manufacturing semiconductor device
JPS61225851A (en) Semiconductor device and manufacture thereof
JPH06505127A (en) Bipolar transistor structure and its manufacturing method
JP2534667B2 (en) Semiconductor device and manufacturing method thereof
JPS58200553A (en) Semiconductor device
JPS60244036A (en) Semiconductor device and manufacture thereof
JP2624365B2 (en) Method for manufacturing semiconductor device
JPH04184978A (en) Manufacture of semiconductor device
JPH03157972A (en) Manufacture of semiconductor device
JPH05335329A (en) Semiconductor device and its manufacture
JPS60171738A (en) Semiconductor device
JPH02256242A (en) Semiconductor device and manufacture thereof
JPH0240921A (en) Manufacture of bipolar transistor
JPS59181612A (en) Semiconductor device and manufacture thereof
JPS63244762A (en) Semiconductor device and manufacture thereof
JPH098132A (en) Semiconductor element and its manufacturing method
JPH0738106A (en) Manufacture of semiconductor device
JPS61245572A (en) Semiconductor device