JPS60140759A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS60140759A
JPS60140759A JP25011783A JP25011783A JPS60140759A JP S60140759 A JPS60140759 A JP S60140759A JP 25011783 A JP25011783 A JP 25011783A JP 25011783 A JP25011783 A JP 25011783A JP S60140759 A JPS60140759 A JP S60140759A
Authority
JP
Japan
Prior art keywords
layer
film
type
emitter
base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25011783A
Other languages
Japanese (ja)
Inventor
Takaaki Nakada
孝明 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP25011783A priority Critical patent/JPS60140759A/en
Publication of JPS60140759A publication Critical patent/JPS60140759A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Bipolar Transistors (AREA)

Abstract

PURPOSE:To obtain a high-frequency transistor, noise characteristics thereof are improved, by preparing an emitter layer constituting a bipolar transistor by a polycrystalline Si layer, forming the emitter layer to a fine shape exceeding the limit obtained through a photoetching method and bringing a base region to low resistivity. CONSTITUTION:An N<-> type layer 2 is grown on an N<+> type semiconductor substrate 1 in an epitaxial manner, a P type base layer 3 is diffused and formed to the surface layer section of the layer 2, insulating films 4 are shaped to the peripheral section of the substrate 1, and a polycrystalline Si layer 8 containing an N type impurity is deposited on the whole surface containing the insulating films 4. A photo-resist film 10 using an Si3N4 film 9 as an underlay is formed at the central section of the surface of the layer 8, the Si layer 8 positioned on the region 3 is over-etched, and the thin columnar layer 8 is left only under the film 9. The peripheral section of the layer 8 is buried with an oxide film 12 connected to the films 4, the film 10 is removed, and P<+> type base regions 11 having high impurity concentration and low resistivity are diffused and shaped into the base layer 3 as using the residual film 9 as a mask while the impurity in the layer 8 is diffused under the film 9 to form an N type emitter layer 13.

Description

【発明の詳細な説明】 イ、産業上の利用分野 本発明は、半導体装置、特に高周波バイポーラトランジ
スタの製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION A. Field of Industrial Application The present invention relates to a method for manufacturing a semiconductor device, particularly a high frequency bipolar transistor.

口、従来技術 高周波バイポーラトランジスタの雑音特性を改善するに
は、fTを高くすることはもちろん、ベース抵抗の低減
を計る必要がある。そのため、一般に、エミッタ形状の
微細化、及びエミッタ、ベースコンタクト窓の距離の縮
小が行なわれている。
In order to improve the noise characteristics of conventional high frequency bipolar transistors, it is necessary not only to increase fT but also to reduce base resistance. Therefore, in general, the shape of the emitter is miniaturized and the distance between the emitter and the base contact window is reduced.

通常は、第1図(a)に示す様に、半導体基板lの一生
面側に形成したエピタキシャル層2に、ベース層3を形
成した後、絶縁層4でおおい、第1図(b)に示す様に
、写真蝕刻法によシできる限シ微細化したエミツタ窓5
を形成する。その後、第1図(c)に示す様に、エミツ
タ層6を拡散した後、ベースコンタクト窓7をエミツタ
窓5との距離ができる限シ近くなるように形成していた
。しかしながら、通常利用可能な写真蝕刻法は、現状で
は光の波長よシ制限されて、最小寸法1μm程度が限界
であシ、またマスクの位置合せ精度にも限界がある。
Usually, as shown in FIG. 1(a), a base layer 3 is formed on the epitaxial layer 2 formed on the whole surface side of the semiconductor substrate l, and then covered with an insulating layer 4, as shown in FIG. 1(b). As shown, the emitter window 5 is made as fine as possible by photolithography.
form. Thereafter, as shown in FIG. 1(c), after the emitter layer 6 was diffused, the base contact window 7 was formed so as to be as close to the emitter window 5 as possible. However, the commonly available photolithography method is currently limited by the wavelength of light, and has a minimum dimension of about 1 μm, and there is also a limit to the accuracy of mask alignment.

従って、第1図(blのエミツタ窓5の寸法は、1μm
程度を得るのが限界であシ、また、第1図(c)のエミ
ツタ窓5とベースコンタクト窓7の距離も、1μm以上
必要であったため、このことが高周波バイポーラトラン
ジスタの雑音特性を制限する大きな要因であった。
Therefore, the dimension of the emitter window 5 in FIG. 1 (bl) is 1 μm.
Moreover, the distance between the emitter window 5 and the base contact window 7 in FIG. 1(c) must be at least 1 μm, which limits the noise characteristics of high-frequency bipolar transistors. That was a big factor.

ハ0発明の目的 本発明は、上記制限を取り去り、さらに雑音特性の改善
が可能な半導体装置の製造方法を提供するものである。
OBJECT OF THE INVENTION The present invention provides a method for manufacturing a semiconductor device that eliminates the above limitations and further improves noise characteristics.

二1発明の構成 本発明による半導体装置の製造方法は、半導体基板に直
接またはエピタキシャル層に形成したベース層の上に薄
い不純物ドープポリシリコン層と、このポリシリコン層
の上にシリコン窒化膜を形成し、写真蝕刻法によシ前記
シリコン窒化膜を微細形状に残した後、前記不純物ドー
プポリシリコンをオーバーエツチングしてさらに微細化
し、写真蝕刻法で用いたフォトレジストをマスクに絽出
し九ペース層表面に高S度にイオン注入し、前記シリコ
ン窒化膜をマスクにしてベース層表面及び不純物ドープ
ポリシリコン側面を酸化した後、不純物ドープポリシリ
コンから不純物を拡散してエミツタ層を形成し、最後に
ベースコンタクト窓を形成するものである。この結果、
写真蝕刻法で得られる限界以上の微細形状のエミツタ層
を形成することが可能となシ、また、エミツタ層近傍ま
で高濃度にイオン注入されたベース層が広がっているた
め、ベースコンタクト窓を必ずしもエミッタに近づける
ことなくベース抵抗の低減ができ、高周波での雑音特性
の改善が可能となる。
21 Structure of the Invention The method for manufacturing a semiconductor device according to the present invention includes forming a thin impurity-doped polysilicon layer on a base layer formed directly on a semiconductor substrate or as an epitaxial layer, and a silicon nitride film on this polysilicon layer. After leaving the silicon nitride film in a fine shape by photolithography, the impurity-doped polysilicon was overetched to make it even finer, and the photoresist used in the photolithography was used as a mask to form a nine-paste layer. After implanting ions into the surface with a high S degree and oxidizing the base layer surface and the side surfaces of the impurity-doped polysilicon using the silicon nitride film as a mask, impurities are diffused from the impurity-doped polysilicon to form an emitter layer, and finally, This forms the base contact window. As a result,
It is possible to form an emitter layer with a finer shape than the limit obtained by photolithography, and since the base layer with high concentration of ions implanted extends to the vicinity of the emitter layer, the base contact window is not necessarily formed. The base resistance can be reduced without bringing it close to the emitter, making it possible to improve noise characteristics at high frequencies.

ホ、実施例 つぎに実施例によシ本発明を説明する。E, Example Next, the present invention will be explained with reference to examples.

第2図1alないしfelは1本発明の一実施例のNP
Nトランジスタを製造する製造工程順の断面図である。
FIG. 2 1al to fel are NPs of an embodiment of the present invention.
FIG. 3 is a cross-sectional view showing the order of manufacturing steps for manufacturing an N transistor.

まず第2図(alに示す様に、N+半専体基板lの主面
に形成したN−エピタキシャル層2内に、イオン注入法
もしくは熱拡散法等でP型代−ス層3を形成する。その
後zooox程度の厚さのヒ素もしくはリン等N型不純
物を含んだ多結晶シリコン層8及び100OX程度の厚
さのシリコン窒化膜9を形成する。次に第2図(b)に
示す様に、通常のフォトリソグラフィ技術を利用して1
μm巾程鹿の形状に7オトレジストlOを残し、それを
マスクとしてシリコン窒化膜9をドライエツチングする
。次に、第2図(C1に示す様に、シリコン窒化膜9を
マスクに多結晶シリコン層8をオーバーエツチングし、
例えば、0.6μm程度に加工する。その後、フォトレ
ジストlOをマスクとして、ボロン等P型不純物を高濃
度にイオン注入し、低抵抗ペース領域iiを形成する。
First, as shown in FIG. 2 (al), a P-type substituent layer 3 is formed in the N- epitaxial layer 2 formed on the main surface of the N+ semi-dedicated substrate l by ion implantation or thermal diffusion. Thereafter, a polycrystalline silicon layer 8 containing an N-type impurity such as arsenic or phosphorus having a thickness of about 0x and a silicon nitride film 9 having a thickness of about 100x are formed.Next, as shown in FIG. 2(b), , using normal photolithography technology.
A layer of photoresist lO is left in the shape of a deer with a width of .mu.m, and the silicon nitride film 9 is dry-etched using it as a mask. Next, as shown in FIG. 2 (C1), the polycrystalline silicon layer 8 is over-etched using the silicon nitride film 9 as a mask.
For example, it is processed to about 0.6 μm. Thereafter, using the photoresist lO as a mask, P-type impurities such as boron are ion-implanted at a high concentration to form a low-resistance space region ii.

次に第2図(diに示す様に、シリコン窒化膜9をマス
クに、露出しているベース表面及び多結晶シリコン層側
面を選択的に2000A程度熱酸化し、酸化膜12を形
成する。
Next, as shown in FIG. 2(di), using the silicon nitride film 9 as a mask, the exposed base surface and side surfaces of the polycrystalline silicon layer are selectively thermally oxidized at about 2000A to form an oxide film 12.

続いて、熱処理により不純物を含む多結晶シリコン層8
から不純物を拡散し、エミツタ層13を形成する。最後
に第2図(e)に示す様に、シリコン窒化膜9を除去し
て、ベースコンタクト窓を形成した後、アルミニウム等
を用いて、エミッタ引出し電極14、及びベース引出し
電極15を形成する。
Subsequently, a polycrystalline silicon layer 8 containing impurities is formed by heat treatment.
An emitter layer 13 is formed by diffusing impurities. Finally, as shown in FIG. 2(e), after removing the silicon nitride film 9 and forming a base contact window, an emitter lead electrode 14 and a base lead electrode 15 are formed using aluminum or the like.

へ9発明の効果 以上の様に、第2図1alに示すエミツタ層13は、多
結晶シリコン層よシ形成されて、0.4μm程度と非常
に微細な形状となシ、またエミッタ・ベースコンタクト
間で、比較的高比抵抗のペース領域は0.3μm程度で
、他は低比抵抗の高濃度ベース領域11であるため、ベ
ース抵抗の大幅に低減されたパイボーラド2ンジスタと
なp、優れた低雑音特性を有する。なお、上側では、半
導体基板の一主面側に形成したエピタキシャル層にベー
ス層を形成した例を説明したが、基板に直接ベース層を
形成することもできるし、また本発明は、同様にPNP
トランジスタに適用可能であることは言うまでもない。
9. Effects of the Invention As described above, the emitter layer 13 shown in FIG. In between, the pace region with relatively high resistivity is about 0.3 μm, and the rest is the high concentration base region 11 with low resistivity, making it a pieborad 2 transistor with significantly reduced base resistance. Has low noise characteristics. In addition, although the example in which the base layer is formed on the epitaxial layer formed on one main surface side of the semiconductor substrate has been described above, the base layer can also be formed directly on the substrate, and the present invention similarly applies to PNPs.
Needless to say, it can be applied to transistors.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(clは従来の半導体装置の製造工程順
の断面図、第2図1alないしくe)は本発明の一実施
例KmるNPN )ランジスタの製造工程について説明
するための工程順の断面図である。 ■・・・・・・半導体基板、2・・・・・・エピタキシ
ャル層、3・・・・・・ベース層、4・・・・・・絶縁
膜、5・・・・・・エミッタ窓、6.13・・・・・・
エミツタ層、7・・・・・・ベースコンタクト窓、8・
・・・・・多結晶ポリシリコン、9・・川・窒化膜% 
IO・・・・・・フォトレジス)、11・・・・・・低
抵抗ベース領域、12・・・・・・酸化膜、14・旧・
・エミッタ引出し電極、15・・・・・・ベース引出し
電極。 篤 l 図 (e) ( 篤 2 図
Figures 1(a) to 1(cl) are cross-sectional views in the order of the manufacturing process of a conventional semiconductor device, and Figures 2(a) to 1(e) are cross-sectional views of an embodiment of the present invention (Km) for explaining the manufacturing process of an NPN transistor. It is a sectional view of process order. ■... Semiconductor substrate, 2... Epitaxial layer, 3... Base layer, 4... Insulating film, 5... Emitter window, 6.13...
Emitter layer, 7...Base contact window, 8.
... Polycrystalline polysilicon, 9... river nitride film%
IO... photoresist), 11... low resistance base region, 12... oxide film, 14... old...
・Emitter extraction electrode, 15...Base extraction electrode. Atsushi 1 Figure (e) (Atsushi 2 Figure

Claims (1)

【特許請求の範囲】[Claims] 半導体基板上または該基板の一生面側に形成したエピタ
キシャル層の上に多結晶シリコン層を形、成する工程と
、前記多結晶シリコン層の上にフォトレジスIf用いて
選択的にシリコン窒化膜を形成する工程と、前記多結晶
シリコン層tオーバーエツチングする工程と、このオー
バーエツチングにより露出しfc鰭ベース層表面に前記
フォトレジストをマスクとしてイオノ注入する工程と、
前記露出したベース層表面および多結晶シリコ/側面を
選択的に酸化する工程と、熱処理により前記多結晶クリ
コン層から前記ベース層に不純物を拡散しエミッタl−
を形成する工程とを含むことkt¥f徴とする半導体装
置の製造方法。
A step of forming a polycrystalline silicon layer on a semiconductor substrate or an epitaxial layer formed on the entire surface side of the substrate, and selectively forming a silicon nitride film on the polycrystalline silicon layer using a photoresist If. a step of over-etching the polycrystalline silicon layer t; and a step of ion-implanting the surface of the fc fin base layer exposed by the over-etching using the photoresist as a mask;
A step of selectively oxidizing the exposed base layer surface and polycrystalline silicon/side surfaces, and a heat treatment to diffuse impurities from the polycrystalline silicon layer into the base layer to form an emitter l-
A method of manufacturing a semiconductor device, comprising: a step of forming a semiconductor device.
JP25011783A 1983-12-27 1983-12-27 Manufacture of semiconductor device Pending JPS60140759A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25011783A JPS60140759A (en) 1983-12-27 1983-12-27 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25011783A JPS60140759A (en) 1983-12-27 1983-12-27 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS60140759A true JPS60140759A (en) 1985-07-25

Family

ID=17203073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25011783A Pending JPS60140759A (en) 1983-12-27 1983-12-27 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS60140759A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01108772A (en) * 1987-09-26 1989-04-26 Samsung Semiconductor & Teleommun Co Ltd Manufacture of bipolar transistor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01108772A (en) * 1987-09-26 1989-04-26 Samsung Semiconductor & Teleommun Co Ltd Manufacture of bipolar transistor

Similar Documents

Publication Publication Date Title
US4408387A (en) Method for producing a bipolar transistor utilizing an oxidized semiconductor masking layer in conjunction with an anti-oxidation mask
US5086005A (en) Bipolar transistor and method for manufacturing the same
JP3098848B2 (en) Self-aligned planar monolithic integrated circuit vertical transistor process
US4191595A (en) Method of manufacturing PN junctions in a semiconductor region to reach an isolation layer without exposing the semiconductor region surface
JPS62290173A (en) Manufacture of semiconductor integrated circuit device
JPH0581051B2 (en)
JPS60140759A (en) Manufacture of semiconductor device
JPH0366815B2 (en)
JPS5866358A (en) Semiconductor device and manufacture thereof
JPH0136710B2 (en)
JP2626300B2 (en) Method for manufacturing semiconductor device
JP2745946B2 (en) Method for manufacturing semiconductor integrated circuit
JP3068733B2 (en) Method for manufacturing semiconductor device
JP2594697B2 (en) Method for manufacturing semiconductor device
JP2674964B2 (en) Method for manufacturing semiconductor device
JP3104335B2 (en) Method for manufacturing semiconductor device
JPS5966168A (en) Manufacture of semiconductor device
JPS639150A (en) Manufacture of semiconductor device
JPH05218306A (en) Semiconductor integrated circuit and manufacture thereof
JPH0579186B2 (en)
JPH06188259A (en) Manufacture of semiconductor device
JPS6295871A (en) Manufacture of semiconductor device
JPS59198758A (en) Manufacture of semiconductor device
JPH05211153A (en) Manufacture of semiconductor device
JPS6222451A (en) P-n junction isolation method of semiconductor substrate