JPH09204659A - 磁気記録媒体の製造方法 - Google Patents

磁気記録媒体の製造方法

Info

Publication number
JPH09204659A
JPH09204659A JP1452096A JP1452096A JPH09204659A JP H09204659 A JPH09204659 A JP H09204659A JP 1452096 A JP1452096 A JP 1452096A JP 1452096 A JP1452096 A JP 1452096A JP H09204659 A JPH09204659 A JP H09204659A
Authority
JP
Japan
Prior art keywords
vacuum
magnetic
vapor deposition
vacuum chamber
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP1452096A
Other languages
English (en)
Inventor
Hiroyuki Sagawa
広行 佐川
Jota Ito
条太 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP1452096A priority Critical patent/JPH09204659A/ja
Publication of JPH09204659A publication Critical patent/JPH09204659A/ja
Withdrawn legal-status Critical Current

Links

Abstract

(57)【要約】 【課題】 蒸着初期部分における磁気特性の低下を抑
え、テープ原反の歩留まりの向上を図り、優れた生産効
率を得る。 【解決手段】 非磁性支持体4上に真空薄膜形成技術に
より強磁性金属薄膜を形成する際に、成膜を行う前の真
空排気時及び真空溶解時に真空槽1の内壁を温媒にて加
熱する。この温媒による加熱方法としては、例えば上記
真空槽1の壁面に設けられた循環パイプ中に上記温媒を
通水する方法等が挙げられる。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、非磁性支持体上に
真空薄膜形成技術により強磁性金属薄膜からなる磁性層
を成膜する際に用いて好適な磁気記録媒体の製造方法に
関する。
【0002】
【従来の技術】例えばビデオテープレコーダ等の磁気記
録の分野においては、高密度化が一層強く要求されてお
り、これに対応する磁気記録媒体として、金属、或いは
Co−Ni合金、Co−Cr合金、Co−O等の強磁性
金属材料を、メッキや真空薄膜形成技術(真空蒸着法や
スパッタリング法、イオンプレーティング法等)によっ
てポリエステルフィルムやポリアミド、ポリイミドフィ
ルム等の非磁性支持体上に直接被着せしめて磁性層を形
成する、いわゆる金属磁性薄膜型の磁気記録媒体が提案
され注目を集めている。
【0003】この金属磁性薄膜型の磁気記録媒体は、保
磁力や角形比等に優れ、磁性層の厚みを極めて薄くでき
る為、記録減磁や再生時の厚み損失が著しく小さく短波
長での電磁変換特性に優れるばかりでなく、磁性層中に
非磁性材であるバインダーを混入する必要がないため磁
性材料の充填密度を高めることができる等、数々の利点
を有している。即ち、この金属磁性薄膜型の磁気記録媒
体は、磁気特性的な優位さ故に高密度磁気記録の主流に
なると考えられる。
【0004】かかる金属磁性薄膜型の磁気記録媒体にお
いて、中でも真空蒸着法によって磁性層が形成される蒸
着テープは、高生産効率と安定した特性が得られるため
に、既にディジタルハンディカム用6.35ミリDVテ
ープやハイバンド8ミリ用MEテープ、ディジタルマイ
クロテープ(NTテープ)等として商品化されている。
【0005】この蒸着テープにおいて、磁性層は、例え
ば図8に示すような連続巻き取り式真空蒸着装置を用い
て形成される。
【0006】この連続巻き取り式真空蒸着装置では、底
部に設けられた排気口51aより排気され内部が所定の
真空度(例えば10-2Pa程度)に保たれた真空槽51
内で、該真空槽51の頭部に外付けされた電子銃56よ
り発せられる電子ビームX等によりるつぼ57内に充填
された磁性材料58を加熱して蒸発せしめ、その蒸気流
を、送りロール53から巻取りロール54に向かって搬
送され所定の温度(例えば−20℃)に冷却された冷却
キャン55の周面に沿って定速走行する非磁性支持体5
2上に蒸着させることによって磁性層を形成している。
【0007】このような蒸着に際し、磁気特性を制御す
るために、酸素ガス導入口59を介して上記非磁性支持
体52の表面に酸素ガスを導入して蒸着成分の一部を酸
化させる方法が一般に採用されている。即ち、酸素ガス
の導入量を増加させると磁性層の保磁力は増大し、飽和
磁化量は減少する傾向があるので、適当な磁気特性を有
する磁性層を形成することができる。
【0008】
【発明が解決しようとする課題】ところが、かかる蒸着
テープ等の磁気記録媒体において、蒸着初期部分の磁気
特性(例えば保磁力Hc)は一概に低い傾向があり、該
蒸着初期部分の保磁力は上述のような酸素ガスの導入量
を制御する方法では細密に調節することが困難な領域で
ある。
【0009】このため、このような磁気記録媒体では、
その磁気特性がテープ長さ方向で均一ではなくなる。例
えば、目的とする磁気特性として保磁力Hcを98KA
/mとする場合、図9に示すように、蒸着初期部分の保
磁力Hcが約25%も低く、目標値(98KA/m)が
達成されるまでに蒸着開始時からの長さが約1250m
(蒸着開始時からの時間にして約50分)も必要であ
り、テープ原反の歩留まりが悪く、生産効率上好ましい
とは言えない。
【0010】そこで、本発明は、このような実情に鑑み
て提案されたものであって、蒸着初期部分における磁気
特性の低下を抑え、テープ原反の歩留まりの向上を図
り、生産性に優れた磁気記録媒体の製造方法を提供する
事を目的とする。
【0011】
【課題を解決するための手段】本発明者等は、上述の目
的を達成せんものと鋭意研究の結果、蒸着初期における
磁気特性の低下は、真空槽の内壁や磁性材料表面等に吸
着した水蒸気ガスが磁気特性の向上を図るために蒸着時
に導入される酸素ガスや蒸発せしめられた磁性材料(金
属蒸気)と反応し、目的とする金属化合物が得られない
ことに起因することを明らかにし、上記真空槽の内壁を
温媒にて加熱して該真空槽の内壁や磁性材料表面等に吸
着した水蒸気ガスを速やかに真空槽内の空間に放出する
ことにより、水蒸気ガス分子が除去されて上記金属蒸気
と酸素ガスとの反応が良好に行われる雰囲気を保つこと
ができ、蒸着初期から安定した成膜を行うことが可能と
なることをみいだし、本発明を完成するに至ったもので
ある。
【0012】即ち、本発明の磁気記録媒体の製造方法
は、非磁性支持体上に真空薄膜形成技術により強磁性金
属薄膜を形成する磁気記録媒体の製造方法において、上
記強磁性金属薄膜を形成する際に、蒸着を行う前の真空
排気時及び真空溶解時に真空槽の内壁を温媒にて加熱す
ることを特徴とするものである。
【0013】本発明が適用される磁気記録媒体として
は、非磁性支持体上に真空薄膜形成技術により強磁性金
属薄膜が磁性層として形成される、いわゆる金属磁性薄
膜型の磁気記録媒体が挙げられる。
【0014】上記金属磁性薄膜型の磁気記録媒体におい
て、上記非磁性支持体や強磁性金属薄膜を構成する強磁
性材料等は従来よりこの種の磁気記録媒体において使用
されているものがいずれも使用可能であり、特に限定さ
れるものではない。
【0015】具体的に例示するならば、上記強磁性材料
としてはCo−Ni合金、Co−Cr合金、Co−O等
の強磁性金属材料が挙げられる。また、Fe,Co,N
i等の強磁性金属、Fe−Co,Co−O,Fe−Co
−Ni,Fe−Cu,Co−Cu,Co−Au,Co−
Pt,Mn−Bi,Mn−Al,Fe−Cr,Co−C
r,Ni−Cr,Fe−Co−Cr,Co−Ni−C
r,Fe−Co−Ni−Cr等の強磁性合金等も使用可
能である。
【0016】上記磁性層は、これら強磁性材料からなる
強磁性金属薄膜の単層膜であっても良いし、多層膜であ
っても良い。
【0017】また、上記非磁性支持体と上記強磁性金属
薄膜間、或いは多層膜の場合には、各層間の付着力の向
上、並びに保磁力の制御等のために、下地層、又は中間
層を設けても良い。更に、例えば磁性層表面近傍が耐食
性の改善等のために酸化物となっていても良い。
【0018】この強磁性金属薄膜を形成する手段として
は、真空下で上述の強磁性金属材料を加熱蒸発させ上記
非磁性支持体上に被着せしめる真空蒸着法が好適であ
る。
【0019】本発明においては、この強磁性金属薄膜を
形成する際に、蒸着を行う前の真空排気時及び真空溶解
時に真空槽の内壁を温媒にて加熱する。これにより、蒸
着初期から安定した成膜を行うことができ、蒸着初期部
分における磁気特性の低下が抑えられ、歩留まりが向上
する。
【0020】図2は、蒸着時の上記真空槽内の真空度と
得られた蒸着膜の磁気特性(ここでは保磁力Hc)をテ
ープ長さ方向における蒸着開始時からの長さで比較した
ものである。
【0021】図2より、蒸着初期においては所望の真空
状態が保たれておらず、高真空になるまでの間に形成さ
れた蒸着膜では十分な磁気特性(保磁力Hc)が得られ
ていないことが判る。
【0022】また、この蒸着初期の真空槽内に占めるガ
スの成分を解析したところ、質量18のH2 Oガス及び
質量17のOHガスなどの水蒸気ガスが主であった(図
3参照。)。なお、解析に際し、ANELVA社製の差
動排気四重極型質量分析装置(商品名:AGA−10
0)に、二段のフランジポートと三個の差圧バルブを結
合させて質量分析を行った。この時、一段目のフランジ
ポートには、別に排気装置を接続し、中真空度での感度
を維持した。
【0023】このことから、蒸着初期に、上記水蒸気ガ
スと磁気特性の向上を図るために導入される酸素ガスや
蒸着に使用される磁性材料の蒸気が反応し、目的とする
金属化合物が得られず、テープ長さ方向における蒸着開
始付近(蒸着初期部分)の磁気特性(保磁力Hc)が低
下したものと考えられる。
【0024】一般に、上述のような水蒸気ガスの放出速
度は非常に遅いことは広く知られている。
【0025】これは、N2 ガス等に比べて水蒸気ガス分
子の表面吸着エネルギーが非常に大きいために、真空度
が上がり蒸気圧が下がっても、真空槽の壁面や磁性材料
の表面からの水蒸気ガス分子の放出速度は遅く、徐々に
しか放出されず、高性能の排気システムを用いても高真
空になるまでには非常に時間がかかることによる。
【0026】これに対して、本発明では、真空槽の壁面
等に吸着した水蒸気ガスを速やかに上記真空槽内の空間
に放出してその放出速度を高める。これにより、該水蒸
気ガス分子の排出量が増え、該水蒸気ガスが効率よく排
気され除去される。この結果、蒸着開始時の真空槽内の
空間が磁気特性の向上のために導入される酸素ガスが9
9%の高純度となり、蒸発せしめられた磁性材料(金属
蒸気)とのみ良好に反応する雰囲気が得られる。これに
より、十分な磁気特性を蒸着初期から安定して得ること
が可能となり、テープ原反の歩留まりが著しく向上し生
産効率が向上する。
【0027】上記真空槽の壁面等に吸着した水蒸気ガス
を速やかに上記真空槽内の空間に放出して上述のような
酸素ガスと金属蒸気とが反応する雰囲気にする方法とし
ては、蒸着を行う前の真空排気時に、真空槽の内壁や蒸
着に使用される磁性材料が充填される容器(るつぼ)を
加熱して熱エネルギーを加え、上記水蒸気ガス分子の表
面吸着エネルギーを相対的に低下させ空間に飛び出しや
すくし、高真空用高性能排気システムにより上記真空槽
内の増加した相対的に高いガス濃度の水蒸気ガスを予め
排気して溶解時に発生する水蒸気ガスを少なくした後、
高純度の酸素ガス雰囲気下で蒸着を開始する方法が考え
られる。
【0028】また、上記真空槽の内壁や蒸着に使用され
る磁性材料が充填される容器(るつぼ)を加熱する手段
としては、温媒等が挙げられる。
【0029】この場合、該温媒にて上記真空槽の内壁等
を加熱する方法としては、例えば上記真空槽の壁面に循
環パイプを配設し、該循環パイプ中に上記温媒を通水さ
せる方法等がある。
【0030】このような温媒の通水開始時期は、排気処
理開始後、真空槽内が中真空度(約5〜1Pa)になっ
た時点の、高真空排気装置による排気処理に切り替える
前後とされることが望ましい。この温媒の通水開始を真
空槽を開放している頃から行っても良いが、この場合は
セッティング作業時にやけどする危険性がある。また、
該温媒の通水開始時期を真空排気の開始時とすることも
可能であるが、この場合には大気圧に近い真空度の時期
に排出されるガスの温度が上昇し、排気装置のオイルの
温度上昇を招き、排気能力の低下につながり、結果的に
排気時間が長くなってしまう。更に、該温媒の通水を蒸
着前に行ったのでは、磁気特性上の害になる水蒸気ガス
の放出が不十分であり、十分な効果が得られない。
【0031】また、この温媒の通水停止時期は、磁性材
料の溶解終了直前とされることが好ましい。
【0032】上記温媒の温度は、40〜80℃程度であ
ることが好ましい。該温媒の温度が、40℃を下回ると
水蒸気ガスの真空槽壁面からの放出効果が薄れ、逆に8
0℃を越えると装置の接続部にあるOリング等に損傷を
与え、またシーリングに使用しているグリスが蒸発して
真空槽内の雰囲気を汚染する虞が生じる。
【0033】勿論、本発明が適用される磁気記録媒体の
構成としては、これに限定されるものではなく、本発明
の要旨を逸脱しない範囲での変更、例えば必要に応じて
バックコート層を形成したり、上記非磁性支持体上に下
塗り層を形成したり、潤滑剤層等の各種層を形成するこ
とはなんら差し支えない。この場合、上記バックコート
層に含まれる非磁性顔料、樹脂結合剤、或いは上記潤滑
剤層に含まれる材料等としては、従来公知のものがいず
れも使用可能である。
【0034】
【実施例】以下、本発明を具体的な実施例により説明す
るが、本発明がこの実施例に限定されるものでないこと
は言うまでもない。
【0035】先ず、本実施例において作製した磁気テー
プの磁性層を形成する際に使用した連続巻取り式真空蒸
着装置の構成について説明する。
【0036】この連続巻取り式真空蒸着装置は、図1に
示すように、底部に設けられた排気口1aより排気され
内部が所定の真空度(ここでは、10-2Pa)に保たれ
た真空槽1内において、被処理体であるテープ状の非磁
性支持体4が、図1中の反時計回り方向に定速回転する
送りロール2から反時計回り方向に定速回転する巻き取
りロール3に向かって順次走行するようになされてい
る。
【0037】これら送りロール2側から巻き取りロール
3側に亘って上記非磁性支持体4が走行する中途部に
は、該非磁性支持体4を図1中左方に引き出すように設
けられるとともに、上記各ロール2,3の径よりも大径
となされた冷却キャン5が図1中反時計回り方向に定速
回転するように設けられている。
【0038】この冷却キャン5は、内部に設けられた冷
却手段(図示せず。)により所定の温度(ここでは−2
0℃とした。)に冷却されるような構成を有しており、
該冷却キャン5の外周面に沿って走行される上記非磁性
支持体4が蒸着時の熱により変形するのを防止するよう
になされている。
【0039】これら送りロール2、巻き取りロール3及
び冷却キャン5は、それぞれ上記非磁性支持体4の幅と
略同じ長さからなる円筒状をなすものである。
【0040】従って、この真空蒸着装置においては、上
記非磁性支持体4が、上記送りロール2から順次送り出
され、上記冷却キャン5の外周面に沿って通過し、更に
上記巻き取りロール3に巻き取られていくようになされ
ている。
【0041】なお、上記送りロール2と冷却キャン5の
間、及び該冷却キャン5と上記巻き取りロール3の間に
は、上記送りロール2、巻き取りロール3より小径のガ
イドロール12,13がそれぞれ設けられており、上記
送りロール2から上記冷却キャン5、或いは上記冷却キ
ャン5から上記巻き取りロール3に向かって移動走行す
る上記非磁性支持体4に適当なテンションを与えつつ、
円滑な走行がなされるようになされている。
【0042】また、上記冷却キャン5の下方には、内部
に強磁性材料7が充填されたるつぼ6が配設されてい
る。
【0043】一方、上記真空槽1の頭部には、加熱手段
として電子銃10が外付けされており、該電子銃10よ
り発せられる電子ビーム11が上記るつぼ6内の強磁性
材料(ここではCo100 を用いた。)7上に照射され加
熱溶融せしめられるようになされている。そして、この
るつぼ6より蒸発せしめられた蒸気流Xは、上記冷却キ
ャン5の外周面に沿って走行する非磁性支持体4上に蒸
着され、磁性層として形成されるようになされている。
【0044】ここで、上記真空槽1の側壁には、温媒循
環パイプ14が配設され、この温媒循環パイプ14中を
温媒15が循環するような構成とされる。
【0045】上記温媒循環パイプ14には、温冷媒切り
替え装置16が接続されており、該温冷媒切り替え装置
16により温媒又は冷媒が必要に応じて上記温媒循環パ
イプ14中に供給される。
【0046】また、上記冷却キャン5とるつぼ6との間
で、上記冷却キャン5の近傍には、得られる強磁性金属
薄膜の粒子の微細化を図るために導入される酸素ガスの
酸素ガス導入口8が配設される。そして、この酸素ガス
導入口8の導入口より酸素ガスが上記非磁性支持体4上
に供給される。
【0047】なお、上記酸素ガス導入口8の下方には、
該酸素ガス導入口8が設けられた領域と該酸素ガス導入
口8の下方側の領域(上記るつぼ6が設けられた領域)
とを分断する如く遮蔽マスク9が配設されており、上記
酸素ガス導入口8から導入される酸素ガスが該酸素ガス
導入口8の下方側の領域に拡散するのを防止するように
なされている。
【0048】また、この遮蔽マスク9は、上記冷却キャ
ン5の外周面に沿って移動走行される上記非磁性支持体
4の巻き取りロール3側の一部を被う形で配設され、該
遮蔽マスク9で被われる領域の上記非磁性支持体4上に
は上記るつぼ6より蒸発せしめられた蒸気流Xが被着し
ないようにされることで上記非磁性支持体4に対する上
記蒸気流Xの入射角が規制される。
【0049】そこで、このような構成を有するの真空蒸
着装置を用い、ポリエチレンテレフタレート(PET)
からなるベースフィルム上に以下のようにして真空蒸着
を行って強磁性金属薄膜の単層膜からなる磁性層を形成
した。
【0050】先ず、蒸着を行う前の真空排気時に、上記
真空槽の内壁を温媒にて加熱した。
【0051】即ち、排気処理開始から30分経過後、上
記真空槽内の真空度が1Paとなった時点で、上記真空
槽の壁面に配設された温媒循環ポンプ中に温媒として水
温60℃の水を循環させた。
【0052】そして、排気処理開始から90分経過後の
真空度0.1Paの時点で上記温媒循環ポンプによる温
媒の循環を停止した。
【0053】続いて、上記るつぼ内に充填された強磁性
材料の溶解を開始し、十分に溶解した後(排気処理開始
から120分経過後)、真空度が0.05Paに到達し
た時に上記シャッタを開き、純度99.999%の酸素
ガスを500cc/分の流量で導入した。
【0054】次いで、下記の条件にて斜め蒸着を行い、
膜厚が200nmとなるように、約4500m長の蒸着
テープを作製した。
【0055】<蒸着時の条件> 蒸気流の入射角θ:非磁性支持体の法線方向から90〜
45゜ 非磁性支持体の送り速度:25m/分 磁性層の厚み:200nm 酸素ガス導入量:500cc/分 この時、上記強磁性材料の溶解終了後も上述のようにし
て温媒の通水を行うと、装置に局部的に温度80℃を越
える箇所が発生し、装置の接続部にあるOリング等に損
傷を与え、またシーリングに使用しているグリスが蒸発
して上記真空槽内の雰囲気を汚染する虞れがある。故
に、上記強磁性材料の溶解終了時直前に温媒の供給を止
めることが好ましい。
【0056】本実施例においては、上記強磁性材料の溶
解開始前に温媒を冷媒に切り替えて通水した。
【0057】このような温媒による上記真空槽内壁の加
熱を行った場合における排気処理開始からの時間と真空
度及び保磁力の関係を調べた。この結果を図4に示す。
【0058】また、本実施例における蒸着初期の上記真
空槽内のガス濃度を測定し、これを排気処理開始からの
時間と比較した。この結果を図5に示す。
【0059】図4及び図5に示すように、上記真空槽の
内壁に循環パイプを配設し、蒸着開始前の排気処理時に
おいて上記真空槽内の真空度が10〜0.5Paの範囲
(特に5〜1Paの範囲が好ましい。)の時に、上記循
環パイプ中に40℃以上、80℃以下(特に60℃が好
ましい。)の温媒を30分以上循環させて上記真空槽の
内壁等に付着した水蒸気ガスを放出させ排気することに
より、蒸着開始時の上記真空槽内のガス濃度を、上記水
蒸気ガスが1%未満であり、且つ磁気特性の向上を図る
ために導入される酸素ガスが99%以上の雰囲気とする
ことができた。この結果、蒸着初期から上記酸素ガスと
蒸発せしめられた磁性材料(金属蒸気)との反応が良好
に行われ、蒸着初期における磁気特性の低下が抑えられ
た。従って、テープ原反の歩留まりが78%〜89%に
まで向上することができ、生産効率の向上に著しい効果
が得られることが判った。
【0060】更に、本実施例、及び比較用として図8に
示すような従来型の連続巻取り式真空蒸着装置を用い、
上述のような温媒による上記真空槽内壁の加熱を行わな
かった以外は上記実施例と同様にして蒸着テープを作製
した場合(これを比較例とする。)について、得られた
蒸着膜の磁気特性(ここでは保磁力Hc)とテープ長さ
方向における蒸着開始時からの長さの関係、また排気処
理開始からの時間と上記真空槽内の真空度の関係をそれ
ぞれ調べた。この結果を図6及び図7に示す。
【0061】図6及び図7より、本実施例においては、
排気処理開始から速やかに高真空が達成され、蒸着初期
でも十分な磁気特性(保磁力Hc)が得られていること
が判った。
【0062】また、上記本実施例と比較例について、排
気処理開始からの時間毎の真空度と上記真空槽内に占め
る各種ガス成分のピーク強度の比率、及び得られた蒸着
テープのテープ長さ方向における蒸着開始時からの各長
さ位置での磁気特性と電磁変換特性をそれぞれ調べた。
これらの結果を下記表1乃至表5に示す。
【0063】
【表1】
【0064】
【表2】
【0065】
【表3】
【0066】
【表4】
【0067】
【表5】
【0068】磁気特性は、振動試料型磁化測定器で測定
し、媒体の長さ方向の測定値により評価した。
【0069】電磁変換特性は、ソニー社製のハイバンド
8ミリビデオデッキ;EV−S900(商品名)を改造
したものを用い、相対速度3.8m/秒、記録周波数7
MHzとした時の再生出力を測定した。この時、記録電
流は、各サンプルテープについて最も高い再生出力が得
られる値に設定した。
【0070】なお、本実施例では、磁性層としてCo膜
を使用したが、上述のように蒸着時の上記真空槽内に存
在する水蒸気ガス等の不純物ガスを蒸着を行う前に予め
温媒等で加熱して放出し、除去することにより、該不純
物ガス濃度を1%未満に抑えて良好な雰囲気を実現する
ことは、これに限定されるものではなく、Co膜の他に
例えばFe,Ni等の金属やCo−Ni系合金、Co−
Ni−Pt系合金、Fe−Co−Ni系合金、Fe−N
i−B系合金、Fe−Co−B系合金、Fe−Co−N
i−B系合金等からなる面内磁化記録金属磁性膜や、C
o−Cr系合金薄膜、Co−O系薄膜等の垂直磁化記録
金属磁性薄膜を使用した場合においても、極めて有効で
あることが容易に考えられる。
【0071】また、本実施例においては、上述のような
真空槽内壁の加熱を真空蒸着法により磁性層を形成する
際に適用したが、本機構はこれに限定されるものではな
く、直接非磁性支持体上に被着せしめて磁性層を形成す
る真空薄膜形成技術(真空蒸着法の他、スパッタリング
法、イオンプレーティング法等)を構成する、あらゆる
装置に安価に適用でき、著しい効果を期待することが可
能であり、様々な排気装置を有する真空薄膜形成装置に
適用可能である。
【0072】更に、上述のような温媒等による加熱は、
磁性材料が充填されるるつぼにも適用することが可能で
あり、この場合上記実施例で説明したような真空槽内壁
の加熱と組み合わせて行うことでより一層の効果を発揮
できる。
【0073】このようにるつぼを加熱する方法として
は、例えば上記磁性材料の溶解時に使用する高周波誘導
加熱用コイルのパイプ中に温媒を通水する方法等が考え
られる。或いは、スパッタのターゲットの冷却用パイプ
を利用し、スパッタ開始前に温媒の循環を行うことも可
能であり、蒸着に限らず、スパッタでも組み合わせて行
うことで更にその効果を発揮することができる。
【0074】
【発明の効果】以上の説明から明らかなように、本発明
においては、非磁性支持体上に真空薄膜形成技術により
強磁性金属薄膜からなる磁性層を形成する際に、成膜を
行う前に真空槽の内壁を加熱しているので、該真空槽の
内壁等に付着した水蒸気ガスが速やかに放出され排気さ
れる。この結果、成膜開始時の上記真空槽内のガス濃度
を良好にすることができ、蒸着初期から安定した膜形成
を行うことができる。このため、成膜開始初期における
磁気特性の低下が抑えられ、テープ原反の歩留まりが著
しく向上し、優れた生産効率が得られる。
【0075】また、本発明は、既設の装置に温媒循環ポ
ンプ等を配設するのみで安価に適用することができ、ま
た様々な排気装置を持つ真空薄膜形成装置に広く適用す
ることができるので非常に有効である。
【図面の簡単な説明】
【図1】本発明を適用して磁気テープを製造する際に使
用した連続巻取り式真空蒸着装置の一構成例を示す模式
図である。
【図2】テープ長さ方向における蒸着開始時からの長さ
と蒸着時の真空槽内の真空度及び得られた蒸着テープの
保持力の関係を示す特性図である。
【図3】蒸着時の真空槽内の各種ガス濃度と排気処理開
始からの時間の関係を示す特性図である。
【図4】排気処理開始からの時間と蒸着時の真空槽内の
真空度及び得られた蒸着テープの保持力の関係を示す特
性図である。
【図5】排気処理開始からの時間と蒸着時の真空槽内の
ガス濃度の関係を示す特性図である。
【図6】テープ長さ方向における蒸着開始時からの長さ
と得られた蒸着テープの保磁力の関係を示す特性図であ
る。
【図7】排気処理開始からの時間と蒸着時の真空槽内の
真空度の関係を示す特性図である。
【図8】従来の連続巻取り式真空蒸着装置の一構成例を
示す模式図である。
【図9】テープ長さ方向における蒸着開始時からの長さ
と得られた蒸着テープの保磁力の関係を示す特性図であ
る。
【符号の説明】
1 真空槽 2 送りロール 3 巻き取りロール 4 非磁性支持体 5 冷却キャン 6 るつぼ 7 強磁性材料 8 酸素ガス導入口 9 遮蔽マスク 10 電子銃 11 電子ビーム 12,13 ガイドロール 14 温媒循環パイプ 15 温媒 16 温冷媒切り替え装置

Claims (1)

    【特許請求の範囲】
  1. 【請求項1】 非磁性支持体上に真空薄膜形成技術によ
    り強磁性金属薄膜を形成する磁気記録媒体の製造方法に
    おいて、 上記強磁性金属薄膜を形成する際に、蒸着を行う前の真
    空排気時及び真空溶解時に真空槽の内壁を温媒にて加熱
    することを特徴とする磁気記録媒体の製造方法。
JP1452096A 1996-01-30 1996-01-30 磁気記録媒体の製造方法 Withdrawn JPH09204659A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1452096A JPH09204659A (ja) 1996-01-30 1996-01-30 磁気記録媒体の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1452096A JPH09204659A (ja) 1996-01-30 1996-01-30 磁気記録媒体の製造方法

Publications (1)

Publication Number Publication Date
JPH09204659A true JPH09204659A (ja) 1997-08-05

Family

ID=11863384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1452096A Withdrawn JPH09204659A (ja) 1996-01-30 1996-01-30 磁気記録媒体の製造方法

Country Status (1)

Country Link
JP (1) JPH09204659A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5339722B2 (ja) * 2005-03-18 2013-11-13 株式会社アルバック 成膜方法及び成膜装置並びに永久磁石及び永久磁石の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5339722B2 (ja) * 2005-03-18 2013-11-13 株式会社アルバック 成膜方法及び成膜装置並びに永久磁石及び永久磁石の製造方法

Similar Documents

Publication Publication Date Title
JPH0995776A (ja) 真空蒸着装置
US4673610A (en) Magnetic recording medium having iron nitride recording layer
JP2003059040A (ja) 磁気記録媒体の製造方法
US4990361A (en) Method for producing magnetic recording medium
JPH09204659A (ja) 磁気記録媒体の製造方法
JPH0721560A (ja) 磁気記録媒体の製造方法
JPH0546013B2 (ja)
JPH07252639A (ja) 金属薄膜体の製造方法
JPH0896339A (ja) 磁気記録媒体
JPS58222439A (ja) 磁気記録媒体及びその製造方法
JP2729544B2 (ja) 磁気記録媒体およびその製造方法
JPS60113330A (ja) 磁気記録媒体の製造方法
JPH09128751A (ja) 磁気記録媒体の製造方法
JPH05166165A (ja) 磁気記録媒体及びその製造方法
JPH10162358A (ja) 金属磁性薄膜型磁気記録媒体の製造方法および製造装置
JPH0528487A (ja) 磁気記録媒体の製造方法
JPH09128752A (ja) 磁気記録媒体の製造装置及び磁気記録媒体の製造方法
JPH01243234A (ja) 磁気記録媒体の製造方法
JPH07192259A (ja) 磁気記録媒体の製造方法
JPH10320771A (ja) 磁気記録媒体の製造装置および製造方法
JPH01319119A (ja) 磁気記録媒体
JPH06111265A (ja) 磁気記録媒体
JPH04328324A (ja) 磁気記録媒体の製造方法
JPH1125440A (ja) 磁気記録媒体及びその製造方法
JPH0636272A (ja) 磁気記録媒体及びその製造方法

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030401