JPH0877363A - エツジ検出方法及びエツジ検出装置 - Google Patents

エツジ検出方法及びエツジ検出装置

Info

Publication number
JPH0877363A
JPH0877363A JP6234201A JP23420194A JPH0877363A JP H0877363 A JPH0877363 A JP H0877363A JP 6234201 A JP6234201 A JP 6234201A JP 23420194 A JP23420194 A JP 23420194A JP H0877363 A JPH0877363 A JP H0877363A
Authority
JP
Japan
Prior art keywords
edge
pixel
coefficients
sets
inner product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6234201A
Other languages
English (en)
Other versions
JP3659426B2 (ja
Inventor
Takushi Totsuka
卓志 戸塚
Tomoo Mitsunaga
知生 光永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP23420194A priority Critical patent/JP3659426B2/ja
Publication of JPH0877363A publication Critical patent/JPH0877363A/ja
Priority to US08/963,061 priority patent/US5995662A/en
Priority to US09/292,281 priority patent/US6304672B1/en
Application granted granted Critical
Publication of JP3659426B2 publication Critical patent/JP3659426B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/46Colour picture communication systems
    • H04N1/56Processing of colour picture signals
    • H04N1/58Edge or detail enhancement; Noise or error suppression, e.g. colour misregistration correction
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/12Edge-based segmentation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10016Video; Image sequence
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30108Industrial image inspection

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Image Analysis (AREA)
  • Picture Signal Circuits (AREA)
  • Processing Of Color Television Signals (AREA)
  • Image Processing (AREA)

Abstract

(57)【要約】 【目的】本発明はエツジ検出方法及びエツジ検出装置に
おいて、エツジ検出の精度を向上し一般的な画像におい
ても正しく輪郭を抽出する。 【構成】画素がそれぞれN個の独立な濃淡データR、
G、Bで形成される画像データの中から、周囲と比べて
急峻に変化している画素群をエツジとして検出する際、
N個の濃淡データR、G、Bのそれぞれに対応するN組
の係数Wr、Wg、Wbを算出し、N個の濃淡データ
R、G、BとN組の係数Wr、Wg、Wbとをもとに各
画素がエツジか否かを判定するようにした。

Description

【発明の詳細な説明】
【0001】
【目次】以下の順序で本発明を説明する。 産業上の利用分野 従来の技術(図7〜図9) 発明が解決しようとする課題 課題を解決するための手段(図1及び図2) 作用(図1及び図2) 実施例 (1)第1実施例(図1〜図4、図7〜図9) (2)第2実施例(図5及び図6) (3)他の実施例 発明の効果
【0002】
【産業上の利用分野】本発明はエツジ検出方法及びエツ
ジ検出装置に関し、特に画像処理における基本的な役割
を果たすエツジ検出処理を行うものであり、テレビや映
画等の映像製作における特殊効果処理やFA(Factory
Automation)におけるカメラ画像からの部品認識処理等
に広く用いられるものに適用し得る。
【0003】
【従来の技術】従来、エツジ検出とは濃淡画像内で画素
値が急峻に変化している部分を見い出す処理である。通
常急峻な変化は物体の輪郭で起きるから、エツジ検出の
結果をもとに物体の輪郭を画像から抽出することができ
る。このためエツジ検出は画像からその中に存在する物
体に関する情報を得るための最も基本的な処理として多
方面で使用されている。
【0004】カラー画像においては、原色(例えば赤、
緑、青)毎の濃淡画像が存在するため、従来はそれぞれ
の原色についてエツジ検出を行ない、いずれかの色でエ
ツジが検出されればその画素をカラー画像のエツジとみ
なしていた。これを図7(A)に示す画像を例に説明す
る。この画像は図7(B)に示す円形の物体が図7
(C)に示す横縞の入つた背景の手前に置かれているも
のである。
【0005】この画像の場合、3原色である赤、緑、青
の濃淡画像はそれぞれ図8(A)、(B)、(C)のよ
うになる。例えば赤の場合、斜線で示した領域1の内側
での画素値は「1.0 」であり、残りの領域2の内側での
画素値は「0」である。緑、青についても同様である。
それぞれの濃淡画像についてエツジ検出すれば、急峻な
変化、すなわち画素値が「1.0 」から「0」に変化する
ところだけがエツジとして求まるから、図8(A)、
(B)、(C)に対応して、それぞれ図9(A)、
(B)、(C)のようなエツジが得られる。赤、緑、青
のいずれかの色でエツジが検出されれば、その画素をエ
ツジとみなすから、最終的に得られるエツジはこれらの
エツジの和によつて図9(D)となる。
【0006】
【発明が解決しようとする課題】しかしながら上述のよ
うにして得たエツジには、本来求めたい円の輪郭3の他
に背景の横線4や円内部の縦縞5が含まれるため、本当
の輪郭の計算機による認識を極めて困難にしている。こ
の例のように本来は不要な部分までもが、エツジとして
検出される問題は物体や背景に模様や色、明るさの変化
があるときにも発生する。
【0007】画像の背景や画像中から取り出したい物体
に、模様や色、明るさの変化があることはごく普通であ
るから、任意の画像からの輪郭抽出は従来の技術では事
実上不可能であり、背景が均一な色で塗られている場合
などごく限られた状況でのみ計算機による輪郭抽出が実
用化されていた。
【0008】またこのような問題を軽減するために、単
にいずれかの原色でエツジが検出されたらその画素をエ
ツジとみなすのではなく、明るさの変化を重視するよう
に方法を修正するなどの、経験に基づく改良がなされて
きた。しかし各原色の濃淡画像の利用方法を予め固定し
ているために、経験則に従わないような画像には対応で
きず、エツジ検出の精度として実用上未だ不十分であつ
た。
【0009】本発明は以上の点を考慮してなされたもの
で、エツジ検出の精度を向上し一般的な画像においても
正しく輪郭を抽出し得るエツジ検出方法及びエツジ検出
装置を提案しようとするものである。
【0010】
【課題を解決するための手段】かかる課題を解決するた
め本発明においては、画素がそれぞれN個の独立な濃淡
データ(R(x,y) 、G(x,y) 、B(x,y))で構成される画
像データの中から、周囲と比べて急峻に変化している画
素群をエツジ(E(x,y))として検出するエツジ検出方法
において、N個の濃淡データ(R(x,y) 、G(x,y)
y)、B(x,y) y))のそれぞれに対応するN組の係数
(Wr(x,y)、Wg(x,y)、Wb(x,y)) を算出する係数算出
ステツプ(SP1)と、N個の濃淡データ(R(x,y) 、
G(x,y) 、B(x,y))とN組の係数(Wr(x,y)、Wg(x,
y)、Wb(x,y)) とをもとに各画素がエツジ(E(x,y))か
否かを判定する判定ステツプ(SP2、SP3、SP
4)とを設けるようにした。
【0011】また本発明においては、画素がそれぞれN
個の独立な濃淡データ(11、12、13)で構成され
る画像データの中から、周囲と比べて急峻に変化してい
る画素群をエツジとして検出するエツジ検出装置(1
0)において、N個の濃淡データ(11、12、13)
のそれぞれに対応するN組の係数(Wr 、Wg 、Wb )
を算出する係数算出手段(14)と、N個の濃淡データ
(11、12、13)とN組の係数(Wr 、Wg 、Wb
)とをもとに各画素がエツジか否かを判定する判定手
段(16)とを設けるようにした。
【0012】
【作用】画素がそれぞれN個の独立な濃淡データ(R
(x,y) 、G(x,y) 、B(x,y))で形成される画像データの
中から、周囲と比べて急峻に変化している画素群をエツ
ジ(E(x,y))として検出する際、N個の濃淡データ(R
(x,y) 、G(x,y) 、B(x,y))のそれぞれに対応するN組
の係数(Wr(x,y)、Wg(x,y)、Wb(x,y)) を算出し、N
個の濃淡データ(R(x,y) 、G(x,y) 、B(x,y))とN組
の係数(Wr(x,y)、Wg(x,y)、Wb(x,y)) とをもとに各
画素がエツジか否かを判定するようにしたことにより、
エツジ検出の精度を向上し一般的な画像においても正し
く輪郭を抽出し得る。
【0013】
【実施例】以下図面について、本発明の一実施例を詳述
する。
【0014】(1)第1実施例 図1は本発明によるエツジ検出方法を適用した画像処理
装置の計算機が実行するエツジ検出処理手順を示す。こ
のエツジ検出処理手順のステツプSP1においては、ま
ず処理の対象となるカラー画像のデータとエツジ検出に
最適な重み係数とを入力する。カラー画像のデータは3
原色として赤、緑、青それぞれの濃淡画像R(x,y) 、G
(x,y) 、B(x,y) として入力される。また赤、緑、青に
関わる重み係数をそれぞれWr(x,y)、Wg(x,y)、Wb(x,
y)とする。この重み係数Wr(x,y)、Wg(x,y)、Wb(x,y)
は、画像の各ピクセルすなわち各x、yで違う値をとる
から、画像中の小部分毎にその場所でのエツジ検出に最
適なパラメータを決定できる。
【0015】例えば画面の上半分は樹木で、下半分は湖
の水面であることが知られているときは、画面上部で緑
色に最適化した重みを、また下部で青系統の色に最適化
した重み係数を与えれば良い。このような画像の性質
は、通常撮影時の条件として得ることができる。また利
用者が後から計算機に与えることもできる。計算機は与
えられた画像の性質をもとに適切な係数を算出する。こ
れがステツプSP1の入力となる。図7に示した画像に
おける係数の決定については、以下でさらに詳しく説明
する。もちろん画面全体で一様な重み係数を与えること
ができるならば重み係数Wr(x,y)の代わりに定数WRを
与えれば良く(他の原色も同様)、その場合は重み係数
の記憶場所を節約できる。
【0016】またステツプSP2では、3原色の濃淡画
像R(x,y) 、G(x,y) 及びB(x,y)と重み係数Wr(x,
y)、Wg(x,y)、Wb(x,y)とをもとに各画素において内積
を次式
【数1】 より計算する。ここでI(x,y) は内積値である。もとの
カラー画像は各画素において3つの値を有するいわば3
次元のデータであつたが、このステツプSP2はそれを
1次元の内積値I(x,y) に変換する。このステツプSP
2の計算によつて輪郭にのみ敏感なエツジ検出が可能で
あり、その効果については例を用いて後述する。ステツ
プSP2の出力は各画素について1個値があるから通常
の濃淡画像とみなすことができる。
【0017】ステツプSP3とステツプSP4は内積値
I(x,y) を濃淡画像とみなしてエツジ検出するステツプ
である。ステツプSP3は内積値I(x,y) のx方向、y
方向の変化率を計算する処理である。またステツプSP
41はこれをもとに内積値I(x,y) の変化が最も急峻な
方向を探索する処理、ステツプSP42はその方向にお
ける変化量G(x,y) を求める処理、ステツプSP43は
求めた変化量G(x,y)を予め定めた閾値Gthを用いて2
値化する処理である。2値化の結果はエツジ画像E(x,
y) として得られる。
【0018】この一連の処理は広く知られているCan
ny方式のエツジ検出アルゴリズムに準じるものであ
る。各画素で値が1次元の濃淡画像に対するエツジ検出
方法には、他にも公知の多くの方法がある。これについ
ては例えば代表的な教科書であるJain著(Fundamentals
of Digital Image Processing)に詳しく紹介されてい
る。この実施例においてもステツプSP3及びSP4
に、それらの方法を使用することが可能である。
【0019】次に図2に、本発明を適用したエツジ検出
装置の一実施例を示す。処理の対象となる画像データは
3原色の赤、緑、青それぞれの濃淡画像11(R)、1
2(G)、13(B)として保持されている。係数算出
部14は濃淡画像11、12、13の画素値S1をもと
に、この画像データからエツジを検出するために最適な
係数を求め、これをそれぞれ赤、緑、青に関わる係数W
r 、Wg 、Wb として出力する。内積計算部15は画素
値S1のうち赤の部分と係数Wr 、緑の部分と係数Wg
、青の部分と係数Wb のそれぞれ積を求めてこれらを
加え内積値Iを計算する。これは図1のエツジ検出処理
手順のステツプSP2の計算に相当する。
【0020】この結果得られた内積値Iは判定部16に
入力され、各画素がエツジであるか否かが判定される。
この判定部16は、図1のエツジ検出処理手順のステツ
プSP3及びSP4の処理を行なう。その結果として判
定部16は各画素について、それがエツジなら「1」、
そうでないなら「0」となる判定信号Eを出力する。こ
れをもとの画像と同じ大きさの配列に格納すればエツジ
のみが「1」であるような2値画像17としてエツジ検
出の結果が得られる。
【0021】ここで本発明における重み係数を用いた内
積計算の効果として、例えば図7(A)の画像データが
入力されたとすると、図2の濃淡画像11、12、13
はそれぞれ図8(A)、(B)、(C)となる。いまこ
こで係数算出部14が例えば後述するような方法によつ
て、Wr =1.0 、Wg =1.0 、Wb =0.0 と係数を算出
したとすれば、内積計算部15の出力Eは、図3(A)
に示すようになる。
【0022】すなわち図3の領域20では、赤の画素値
のみが「1.0 」で緑と青の画素値は「0」であるから、
(1)式によつて求まる内積値Iは「1」である。また
領域23では全ての画素値が「1.0 」であるがCb =0
であるから、(1)式によつて内積値は「2.0 」と求ま
る。残る領域21、22についても同様な計算を行なう
と、図3(A)に示すように円形の物体内部では内積値
が「2.0 」で、背景では内積値が「1.0 」となることが
わかる。
【0023】すなわち内積値Iは、円形の物体内部でも
また背景の内部でも変化せず、円形の物体と背景の境界
でのみ変化する。そのため内積値Iの変化する部分を検
出すれば容易に図3(B)のように、目的とする物体の
輪郭だけをエツジ検出することができる。従来の方法で
は避けられなかつた図9(B)のような余計なエツジは
発生しない。このようにこの実施例のエツジ検出装置1
0においては、係数算出部14が画像データに合わせて
適切な係数Wr 、Wg 、Wb を求めるので、画像によら
ず適切なエツジ検出が可能である。
【0024】次に係数算出部14における係数Wr 、W
g 、Wb の算出方法を示す。図4(A)は3原色を軸と
する座標系(以下、色空間と呼ぶ)において、図7
(A)の画像データがどのような分布をしているかを示
したものである。点30は背景のうちシアン色の部分を
表し、点31は背景のうち赤色の部分を表す。つまり背
景を構成する色は色空間において領域32の内側に存在
している。同様に円形物体のうち白色の部分は点33
に、また黄色の部分は点34にそれぞれ対応し、全体と
して円形物体内の色は色空間における領域35の内側に
存在している。この2つの領域に直交するベクトルCV
を色空間の中で求め、ベクトルCVの係数を係数算出部
14の出力とすれば精度の良いエツジ検出ができる。
【0025】この例の場合、(赤、緑、青)=(1、
1、0)であるベクトルCVが領域32及び領域35に
直交するので、(Wr 、Wg 、Wb )=(1、1、0)
とすればよい。このようにして求めた係数Wr 、Wg 、
Wb をもとに、内積計算部15で内積を計算すること
は、色のうち上述のベクトルCVに沿つた成分の大きさ
を求めることを意味する。図4においてベクトルCVと
色の内積は、まず青軸方向に立体を射影し(図4
(B))、次いでこれをベクトルCVに沿つて横から眺
めて原点からの距離を計ることと等しい(図4
(C))。
【0026】図4(C)から明らかなように、もとの色
空間において領域32に存在していた色は全て内積値
「1.0 」の点に射影され、一方領域35内の色は全て内
積値「2.0 」の点に射影される。すなわちベクトルCV
と色の内積値は、背景領域内の色変化と円形物体内部の
色変化は完全に無視し、背景と物体間の色変化にだけ反
応する。従つてこの内積値を用いれば精度良く物体を背
景から分離できることがわかる。
【0027】画像データによつては、背景領域と物体領
域の双方と完全に直交するベクトルが存在しない場合が
ある。しかしこの場合も、なるべくこれらの領域と直角
でかつ背景と物体領域の内積値が異なるようなベクトル
を選択し、その係数を係数算出部14の出力とすること
で、従来の方法と比べはるかにノイズの少ない良好なエ
ツジ検出が可能である。
【0028】以上の構成によれば、画素がそれぞれ3原
色の濃淡画像R、G、Bでなる画像データの中から、周
囲と比べて急峻に変化している画素群をエツジとして検
出する際、3原色の濃淡画像R、G、Bのそれぞれに対
応する3原色分の係数Wr 、Wg 、Wb を算出し、3原
色の濃淡画像R、G、Bと係数Wr 、Wg 、Wb とをも
とに各画素がエツジか否かを判定するようにしたことに
より、エツジ検出の精度を向上し一般的な画像において
も正しく輪郭を抽出し得る。さらに上述の構成によれ
ば、濃淡画像R、G、Bは3枚存在するがエツジ検出は
内積値Iに対してのみ行なえば良いので判定部16はた
だ一組ですみ、構成するハードウエアの量も従来より削
減できる。
【0029】(2)第2実施例 第2実施例は、図1及び図2について上述したエツジ検
出方法及びエツジ検出装置を、従来から知られているエ
ツジ検出方法と組み合わせることで、さらに精度の高い
検出方法とするものである。すなわち図2との対応部分
に同一符号を付した図5に示すエツジ検出装置40は、
図2のエツジ検出装置10にしたがつてもなお良好なエ
ツジが検出できないような、きわめて困難な場合に対応
するためのものである。
【0030】図2のエツジ検出装置10との違いは、判
定部41が内積値S2の他に、エツジ方向の推定値42
をも用いてエツジの判定を行なうところにある。エツジ
方向の推定値42は画像内の物体のおよその位置に関す
る知識をもとに予め作成する。判定部41は内積値Iの
変化が急峻な部分を検出する際に、エツジ方向の推定値
42を用いて、その方向の変化、すなわちエツジを優先
的に検出するように働く。
【0031】特定の方向の変化に対して強く反応するエ
ツジ検出方法としては、例えば図6に示すソーベル(So
bel )フイルタを用いる方法がある。すなわち図6
(A)のフイルタを画像に対して作用させると、横方向
の変化すなわち縦のエツジが、また図6(B)のフイル
タを作用させれば、縦の変化すなわち横に延びるエツジ
が強く検出される。
【0032】このほかコンパス演算子として知られる多
くのフイルタが公知であり、特定方向のエツジを検出す
ることができる。これらの公知の手法と組み合わせれ
ば、さらに所望の輪郭に対して強く反応するエツジ検出
ができ、より高い精度の輪郭抽出が可能となる。
【0033】以上の構成によれば、一般的なエツジ検出
方法を用いてエツジ方向の推定値を求め、第1実施例の
3原色の濃淡画像R、G、Bと係数Wr 、Wg 、Wb と
に加えて、エツジ方向の推定値をもとに各画素がエツジ
か否かを判定するようにしたことにより、一段とエツジ
検出の精度を向上し一般的な画像においても正しく輪郭
を抽出し得る。
【0034】(3)他の実施例 なお上述の実施例においては、3原色すなわち赤、緑、
青の濃淡画像で形成される画像データについてエツジを
検出する場合について述べたが、画像データはこれに限
らず、補色関係の濃淡画像等複数の濃淡データで構成さ
れる画像データ中のエツジを検出する場合に広く適用し
得る。
【0035】
【発明の効果】上述のように本発明によれば、画素がそ
れぞれN個の独立な濃淡データで形成される画像データ
の中から、周囲と比べて急峻に変化している画素群をエ
ツジとして検出する際、N個の濃淡データのそれぞれに
対応するN組の係数を算出し、N個の濃淡データとN組
の係数とをもとに各画素がエツジか否かを判定するよう
にしたことにより、エツジ検出の精度を向上し一般的な
画像においても正しく輪郭を抽出し得るエツジ検出方法
及びエツジ検出装置を実現できる。かくするにつき、従
来は困難であつた状況でも計算機による物体輪郭の抽出
が可能となり、より広い応用範囲で計算機による作業の
自動化や、作業の支援が可能となる。
【図面の簡単な説明】
【図1】本発明によるエツジ検出方法の一実施例におけ
るエツジ検出処理手順を示すフローチヤートである。
【図2】本発明によるエツジ検出装置の第1実施例の構
成を示すブロツク図である。
【図3】本発明のエツジ検出方法で図7のカラー画像の
エツジを検出する動作の説明に供する略線図である。
【図4】本発明の係数算出方法の原理の説明に供する略
線図である。
【図5】本発明によるエツジ検出装置の第2実施例の構
成を示すブロツク図である。
【図6】図5のエツジ検出装置で用いる特定方向のエツ
ジを検出するソーベルフイルタを示す略線図である。
【図7】エツジ検出の説明に用いるカラー画像を示す略
線図である。
【図8】図7のカラー画像を各原色の濃淡画像に分解し
て示す略線図である。
【図9】図8のそれぞれの濃淡画像を独立にエツジ検出
した出力とその合成出力を示す略線図である。
【符号の説明】
10、40……エツジ検出装置、11、12、13……
濃淡画像、14……係数算出部、15……内積計算部、
16、41……判定部、17……2値画像、42……エ
ツジ方向の推定値

Claims (6)

    【特許請求の範囲】
  1. 【請求項1】画素がそれぞれN個の独立な濃淡データで
    構成される画像データの中から、周囲と比べて急峻に変
    化している画素群をエツジとして検出するエツジ検出方
    法において、 上記N個の濃淡データのそれぞれに対応するN組の係数
    を算出する係数算出ステツプと、 上記N個の濃淡データと上記N組の係数とに基づいて上
    記各画素がエツジか否かを判定する判定ステツプとを具
    えることを特徴とするエツジ検出方法。
  2. 【請求項2】上記係数算出ステツプで算出する上記N組
    の係数は、それぞれが上記N個の濃淡データに対するN
    組の重み係数であり、 上記判定ステツプは、上記N組の重み係数と上記N個の
    濃淡データとの積和でなる内積を計算する内積計算ステ
    ツプと、当該内積計算ステツプの出力に基づいて上記各
    画素がエツジか否かを判断する判断ステツプとを具える
    ことを特徴とする請求項1に記載のエツジ検出方法。
  3. 【請求項3】上記判定ステツプは、上記N組の係数と、
    上記エツジがおよそどの方向を向いているかを示す方向
    情報とに基づいて上記各画素がエツジか否かを判定する
    ことを特徴とする請求項1に記載のエツジ検出方法。
  4. 【請求項4】画素がそれぞれN個の独立な濃淡データで
    構成される画像データの中から、周囲と比べて急峻に変
    化している画素群をエツジとして検出するエツジ検出装
    置において、 上記N個の濃淡データのそれぞれに対応するN組の係数
    を算出する係数算出手段と、 上記N個の濃淡データと上記N組の係数とに応じて上記
    各画素がエツジか否かを判定する判定手段とを具えるこ
    とを特徴とするエツジ検出装置。
  5. 【請求項5】上記係数算出手段で算出する上記N組の係
    数は、それぞれが上記N個の濃淡データに対するN組の
    重み係数であり、 上記判定手段は、上記N組の重み係数と上記N個の濃淡
    データとの積和でなる内積を計算する内積計算手段と、
    当該内積計算手段の出力に基づいて上記各画素がエツジ
    か否かを判断する判断手段とを具えることを特徴とする
    請求項4に記載のエツジ検出装置。
  6. 【請求項6】上記判定手段は、上記N組の係数と、上記
    エツジがおよそどの方向を向いているかを示す方向情報
    とに基づいて上記各画素がエツジか否かを判定すること
    を特徴とする請求項4に記載のエツジ検出装置。
JP23420194A 1994-09-02 1994-09-02 エツジ検出方法及びエツジ検出装置 Expired - Lifetime JP3659426B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP23420194A JP3659426B2 (ja) 1994-09-02 1994-09-02 エツジ検出方法及びエツジ検出装置
US08/963,061 US5995662A (en) 1994-09-02 1997-10-30 Edge detecting method and edge detecting device which detects edges for each individual primary color and employs individual color weighting coefficients
US09/292,281 US6304672B1 (en) 1994-09-02 1999-04-15 Edge detecting method and edge detecting device which detects edges for each individual primary color and employs individual color weighting coefficients

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23420194A JP3659426B2 (ja) 1994-09-02 1994-09-02 エツジ検出方法及びエツジ検出装置

Publications (2)

Publication Number Publication Date
JPH0877363A true JPH0877363A (ja) 1996-03-22
JP3659426B2 JP3659426B2 (ja) 2005-06-15

Family

ID=16967278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23420194A Expired - Lifetime JP3659426B2 (ja) 1994-09-02 1994-09-02 エツジ検出方法及びエツジ検出装置

Country Status (2)

Country Link
US (2) US5995662A (ja)
JP (1) JP3659426B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016064105A (ja) * 2014-09-26 2016-04-28 カシオ計算機株式会社 ネイルプリント装置、ネイルプリント装置の動作制御方法及びネイルプリント装置の動作制御プログラム
JP2016194505A (ja) * 2015-03-31 2016-11-17 日鉄鉱業株式会社 砕石中の異物を検出する方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0878970A3 (en) * 1997-05-16 1999-08-18 Matsushita Electric Industrial Co., Ltd. Imager registration error and chromatic aberration measurement system for a video camera
JP2000099763A (ja) 1998-09-25 2000-04-07 Sony Corp 画像処理装置および方法、並びに提供媒体
US6286517B1 (en) * 1998-12-22 2001-09-11 Pearl Technology Holdings, Llc Fingernail and toenail decoration using ink jets
US6621924B1 (en) 1999-02-26 2003-09-16 Sony Corporation Contour extraction apparatus, a method thereof, and a program recording medium
DE10020067B4 (de) * 1999-08-18 2008-04-10 Trimble Jena Gmbh Verfahren zur Bestimmung der Kantenposition in Farbbildern, insbesondere für Farb- und Intensitätsübergänge
US20020131638A1 (en) * 2001-01-10 2002-09-19 Koninklijke Philips Electronics N.V. Apparatus and method for boundary detection in vector sequences and edge detection in color image signals
US20060256397A1 (en) * 2005-05-12 2006-11-16 Lexmark International, Inc. Method and system for combining images
JP5478268B2 (ja) * 2010-01-13 2014-04-23 任天堂株式会社 画像処理プログラム、画像処理装置、画像処理方法および画像処理システム
TWI410880B (zh) * 2010-03-29 2013-10-01 Anmo Electronics Corp 與數位影像分析相關的電腦程式產品
JP7120265B2 (ja) * 2020-02-28 2022-08-17 カシオ計算機株式会社 印刷装置、印刷装置の制御方法及び制御プログラム、印刷制御装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5341142A (en) * 1987-07-24 1994-08-23 Northrop Grumman Corporation Target acquisition and tracking system
US5038223A (en) * 1988-02-29 1991-08-06 Canon Kabushiki Kaisha Image processing method and apparatus for imparting a pictorial or painter-like effect
US5267031A (en) * 1988-11-14 1993-11-30 Canon Kabushiki Kaisha Color image processing apparatus
JP3003799B2 (ja) * 1990-03-28 2000-01-31 富士写真フイルム株式会社 画像の鮮鋭度強調方法及びその装置
JPH0763691A (ja) * 1993-08-24 1995-03-10 Toshiba Corp パターン欠陥検査方法及びその装置
JP3794502B2 (ja) * 1994-11-29 2006-07-05 ソニー株式会社 画像領域抽出方法及び画像領域抽出装置
TW332284B (en) * 1995-10-30 1998-05-21 Sony Co Ltd Method and apparatus for controlling access to a recording disk
TW357327B (en) * 1996-08-02 1999-05-01 Sony Corp Methods, apparatus and program storage device for removing scratch or wire noise, and recording media therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016064105A (ja) * 2014-09-26 2016-04-28 カシオ計算機株式会社 ネイルプリント装置、ネイルプリント装置の動作制御方法及びネイルプリント装置の動作制御プログラム
JP2016194505A (ja) * 2015-03-31 2016-11-17 日鉄鉱業株式会社 砕石中の異物を検出する方法

Also Published As

Publication number Publication date
US5995662A (en) 1999-11-30
JP3659426B2 (ja) 2005-06-15
US6304672B1 (en) 2001-10-16

Similar Documents

Publication Publication Date Title
US7342572B2 (en) System and method for transforming an ordinary computer monitor into a touch screen
US20060188160A1 (en) Device, method, and computer-readable medium for detecting changes in objects in images and their features
JP2007140684A (ja) 画像処理装置、方法、プログラム
JPH06348842A (ja) ノイズ低減フィルター
CN101102515A (zh) 校正图像边缘的设备和方法
JPH0877363A (ja) エツジ検出方法及びエツジ検出装置
CN111932571B (zh) 图像的边界识别方法、装置以及计算机可读存储介质
CN106951902B (zh) 一种图像二值化处理方法及装置
JP3826412B2 (ja) エッジ検出方法及びエッジ検出装置
JPS6376578A (ja) 自動2値化方式
CN111429383B (zh) 图像降噪方法及装置、计算机可读存储介质
JP4453202B2 (ja) 画像処理装置および画像処理方法、並びにコンピュータ読み取り可能な記録媒体
JPH08329253A (ja) エッジ検出方法及びエッジ検出装置
JP2009290277A (ja) 信号処理装置
JPH0816773A (ja) 画像処理方法
US20050190993A1 (en) Method and apparatus for determining an edge trend for an interested pixel of an image
JPH11164129A (ja) 電子透かし装置及び電子透かし方法
JP3260891B2 (ja) エッジ抽出方法
TWI818477B (zh) 色彩偏差校正方法及其影像校正設備
Bibikov et al. Shadow artifacts correction on fine art reproductions
JPH09135331A (ja) 画像処理装置
JPH0991376A (ja) イメージデータ入力処理方法およびその装置
CN116630184A (zh) 一种木材图像背景去除的二次边界修正方法
JPH06150002A (ja) 画像セグメンテーション方法及びシェーディング補正方法
JPH0683960A (ja) 画像中の濃度境界構成画素抽出方法

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040820

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050310

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080325

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090325

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100325

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100325

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110325

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120325

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130325

Year of fee payment: 8