JPH08507525A - Hla−a2.1結合ペプチドおよびそれらの使用 - Google Patents

Hla−a2.1結合ペプチドおよびそれらの使用

Info

Publication number
JPH08507525A
JPH08507525A JP6520190A JP52019094A JPH08507525A JP H08507525 A JPH08507525 A JP H08507525A JP 6520190 A JP6520190 A JP 6520190A JP 52019094 A JP52019094 A JP 52019094A JP H08507525 A JPH08507525 A JP H08507525A
Authority
JP
Japan
Prior art keywords
peptide
amino acid
peptides
residues
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6520190A
Other languages
English (en)
Other versions
JP3908271B2 (ja
Inventor
エム. グレイ,ハワード
セット,アレッサンドロ
シドニー,ジョン
マーティン カスト,ウェー
Original Assignee
サイテル コーポレイション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サイテル コーポレイション filed Critical サイテル コーポレイション
Publication of JPH08507525A publication Critical patent/JPH08507525A/ja
Application granted granted Critical
Publication of JP3908271B2 publication Critical patent/JP3908271B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • C07K14/70503Immunoglobulin superfamily
    • C07K14/70539MHC-molecules, e.g. HLA-molecules
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/04Linear peptides containing only normal peptide links
    • C07K7/06Linear peptides containing only normal peptide links having 5 to 11 amino acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2730/00Reverse transcribing DNA viruses
    • C12N2730/00011Details
    • C12N2730/10011Hepadnaviridae
    • C12N2730/10111Orthohepadnavirus, e.g. hepatitis B virus
    • C12N2730/10122New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2770/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
    • C12N2770/00011Details
    • C12N2770/24011Flaviviridae
    • C12N2770/24211Hepacivirus, e.g. hepatitis C virus, hepatitis G virus
    • C12N2770/24222New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Genetics & Genomics (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Toxicology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Zoology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Cell Biology (AREA)
  • Virology (AREA)
  • Epidemiology (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Confectionery (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

(57)【要約】 本発明は、免疫原性ペプチドを選択するための手段及び方法、及びHLA-A2.1対立遺伝子によりコードされる糖タンパク質を特異的に結合することができ、且つA2.1対立遺伝子により制限されるT細胞においてT細胞活性化を誘発できる免疫原性ペプチド組成物を提供する。前記ペプチドは所望する抗原に対する免疫応答を誘発するのに有用である。

Description

【発明の詳細な説明】 HLA-A2.1結合ペプチドおよびそれらの使用 発明の背景 本発明は、ある数の病理学的状態、例えば、ウイルス病および癌を予防、処置 または診断する組成物および方法に関する。とくに、本発明は選択した主要な組 織適合複合体(MHC)分子に結合しそして免疫応答を誘発することができる新規 なペプチドを提供する。 MHC分子はクラスIまたはクラスIIの分子として分類される。クラスIIのMHC分 子は免疫応答を開始しかつ持続することに関係する細胞、例えば、Tリンパ球、 Bリンパ球、マクロファージなどの上に主として発現される。クラスIIのMHC分 子はヘルパーTリンパ球により認識され、そしてヘルパーTリンパ球の増殖およ び表示される特定の免疫原性ペプチドに対する免疫応答の増幅を誘発する。クラ スIのMHC分子はほとんどすべての有核細胞上で発現され、そして細胞障害性T リンパ球(CTLs)により認識され、次いでこれらは抗原を有する細胞を破壊する 。CTLsは腫瘍の拒絶およびウイルスの感染と闘争するときとくに重要である。CT Lは無傷の外来抗原それ自体よりむしろMHCクラスI分子に結合したペプチドの形 態の抗原を認識する。抗原は通常細胞により内因的に合成されなくてはならず、 そしてタンパク質抗原の一部分は細胞質中で小さいペプチド断片に分解される。 これらの小さいペプチドのあるものは前ゴルジ(Pre-Golgi)区画の中に移行し 、そしてクラスI重鎖と相互作用して適切なフォルディングおよびサブユニット β2マイクログロブリンとの連合を促進する。次いでペプチド−MHCクラスI複 合体は特定のCTLsによる発現および潜在的認識のために細胞表面に送られる。 ヒト MHCクラスI分子、HLA-A2.1の結晶構造の研究において、ペプチド結合溝 はクラスI重鎖のα1およびα2ドメインのフォルディングによりつくられるこ とが示された(Bjorkmanら、Nature 329:506(1987)。しかしながら、これら の研究において、溝に結合したペプチドの同一性は決定されなかった。 Buusら、Science 242:1065(1988)は、結合したペプチドをMHCから酸溶離 する方法を最初に開示した。引き続いて、Rammenseeおよび彼の共同研究者ら(F alkら、Nature 351:290)は、クラスI分子に結合した自然に処理されたペプチ ドを特性決定するアプローチを開発した。他の研究らはB型(Jardetzkyら、Nat ure 353:326(1991)およびA2.1型のクラスI分子のクラスI分子から溶離され たペプチドの普通の自動化配列決定による種々のHPLC画分における、豊富なペプ チドの直接アミノ酸配列決定を質量スペクトル(Huntら、Science 225:1261( 1992)により首尾よく達成した。MHCクラ day 12:447(1991)。 Setteら、Proc.Natl.Acad.Sci.USA 86:3296(1989)は、MHCアレレ特異的モ チーフを使用してMHC結合能力を予測することができることを示した。Schaeffer ら、Proc.Natl.Acad.Sci.USA 86:4649(1989)は、MHCの結合が免疫原性に関係 することを示した。幾人かの著者ら(De Bruijnら、Eur.J.Immunol.,21:2963- 2970(1991);Parmerら、991 Nature 353:852-955(1991))は、クラスI結 合のモチーフを動物モデルにおける潜在的な免疫原性ペプチドの同定に適用でき るという予備的証拠を提供した。所定のクラスIアイソタイプある数のヒトアレ レに対して特異的なクラスIモチーフはまだ記載すべきである。これらの異なる アレレの組み合わせられ た頻度は、ヒト異系交配集団の大きい画分あるいは多分大部分をカバーするため に十分に高くあるべきことが望ましい。 この分野における発展にかかわらず、先行技術はこの研究に基づく有用なヒト ペプチドに基づくワクチンまたは治療剤をまだ提供しなくてはならない。本発明 はこれらおよび他の利点を提供する。 発明の要約 本発明は、HLA-A2.1分子のための結合モチーフを有する免疫原性ペプチドから なる組成物を提供する。免疫原性ペプチドは、適当なヒグロマイシンアレレに結 合し、好ましくは9〜10残基の長さでありそしてある位置、例えば、位置2およ び9に保存された残基を含む。そのうえ、ペプチドは他の位置、例えば、長さ9 アミノ酸のペプチドの場合において位置1,3,6および/または7および長さ 10アミノ酸のペプチドの場合において位置1,3,4,5,7,8および/また は9にここに定義するような陰性の結合残基を含まない。本発明は、HLA-A2.lに 効率よく結合するペプチドの選択を可能とするモチーフ内の位置を定める。 ある数の免疫原性標的タンパク質上のエピトープは、本発明のペプチドを使用 して同定することができる。適当な抗原の例は、前立腺癌特異抗原(PSA)、B 型肝炎のコアおよび表面抗原(HBVc,HBVs)、C型肝炎抗原、エプスタイン−バ ー−ウイルス抗原、ヒト免疫不全1型ウイルス(HIV1)および乳頭腫ウイルス抗 原を包含する。こうして、ペプチドは生体内および半ビボの両方の治療および診 断の応用のための製剤組成物において有用である。 定義 用語「ペプチド」は、この明細書において、典型的には隣接する アミノ酸のアルファ−アミノ基およびカルボニル基の間のペプチド結合により一 方が他方に接続された、一連の残基、典型的にはL−アミノ酸を表示するために 、「オリゴヌクレオチド」と互換的に使用する。本発明のオリゴヌクレオチドは 、長さが約15残基より小さく、そして通常約8〜約11残基、好ましくは9または 10残基から成る。 「免疫原性ペプチド」は、そのペプチドがMHC分子と結合しそしてCTL応答を誘 発するように、対立遺伝子特異モチーフからなるペプチドである。本発明の免疫 原性ペプチドは、適当なHLA-A2.1分子に結合しそして免疫原性ペプチドを誘導す る抗原に対する細胞障害性T細胞の応答を誘発することができる。 免疫原性ペプチドは便利には本発明のアルゴリズムを使用して同定される。ア ルゴリズムは、免疫原性ペプチドの選択を可能とするスコアを生成する数学的手 順である。典型的には、あるアフィニティーで結合する高い可能性を有しそして 引き続いて免疫原性であるペプチドの選択を可能とする「結合限界値」をもつア ルゴリズムのスコアを使用する。アルゴリズムはペプチドの特定の位置における 特定のアミノ酸のMHC結合への作用に基づくか、あるいはモチーフ含有ペプチド における特定の置換の結合への作用に基づく。 「保存された残基」は、ペプチド中の特定の位置におけるランダムな分布によ り期待されるより有意にいっそう高い頻度で存在するアミノ酸である。典型的に は、保存された残基はMHC構造が免疫原性ペプチドとの接触点を提供できる残基 である。規定された長さのペプチド内の1〜3、好ましくは2つの、保存された 残基は免疫原性ペプチドのモチーフを定める。これらの残基はペプチド結合溝と 密接に接触しており、それらの側鎖は溝それ自体のポケットの中に埋もれている 。典型的には、免疫原性ペプチドは3つまでの保存さ れた残基、より通常2つの保存された残基を含む。 ここにおいて使用するとき、「陰性の結合残基」は、ある位置(例えば、9マ ーのうちの位置1,3および/または7)に存在する場合、非結合体または劣っ た結合体でありそして引き続いて免疫原性とならない、すなわち、CTL応答を誘 発できないペプチドを生ずるアミノ酸である。 用語「モチーフ」は、特定のMHCアレレにより認識される、規定した長さ、通 常約8〜約11アミノ酸のペプチド中の残基のパターンを意味する。ペプチドのモ チーフは典型的には各ヒトMHC対立遺伝子について異なり、そして高度に保存さ れた残基および陰性の残基パターンが異なる。 対立遺伝子について結合モチーフは正確さの程度の増加で定義することができ る。1つの場合において、保存された残基のすべてはペプチドの中に正しい位置 に存在し、そして位置1,3および/または7に陰性残基は存在しない。 句「単離された」または「生物学的に純粋な」は、その天然の状態で見出され るように通常付随する成分を実質的にまたは本質的に含有しない物質を呼ぶ。こ うして、本発明のペプチドはそれらの原位置の環境に通常関連する物質、例えば 、抗原提示細胞上のMHC I分子を含有しない。タンパク質が均質なまたは優勢な バンドに単離された場合でさえ、所望のタンパク質と同時に精製する天然のタン パク質の5〜10%の範囲の微量の汚染物質が存在する。本発明の単離されたペプ チドはこのような内因性同時精製されたタンパク質を含有しない。 用語「残基」は、アミド結合または偽アミド結合(amide bond mimetic)によ りオリゴペプチドの中に組み込まれたアミノ酸または偽アミノ酸(amino acid m imetic)を呼ぶ。 図面の簡単な説明 図1は、HLA-A精製の計画のフローダイヤグラムである。 図2は、9マーのペプチドのための「グループにした比」に対してプロットし た相対結合の対数の散布図を示す。 図3は、9マーのペプチドのための平均の「結合の対数」のアルゴリズムのス コアに対してプロットした相対結合の対数の散布図を示す。 図4および第5図は、「グループにした比」および「結合の対数」のアルゴリ ズムによりスコアにした、位置2および10に好ましい残基を含有する1組の10マ ーのペプチドの散布図を示す。 好ましい態様の説明 本発明は、ヒトクラスI MHC(時にはHLAと呼ぶ)アレレサブタイプについての 対立遺伝子特異ペプチドのモチーフ、とくにHLA-A2.1対立遺伝子により認識され るペプチドのモチーフの決定に関する。次いで、これらのモチーフを使用して、 潜在的抗原または自己抗原の標的のアミノ酸配列が知られている、任意の所望の 抗原、とくにヒトのウイルス病、癌または自己免疫病に関連する抗原を定める。 ある数の潜在的標的タンパク質上のエピトープはこの方法で同定することがで きる。適当な抗原の例は、前立腺特異抗原(PSA)、B型肝炎のコアおよび表面 の抗原(HBVc,HBVs)、C型肝炎抗原、エプスタイン−バー−ウイルス抗原、黒 色腫抗原(例えば、MAGE-1)、ヒト免疫不全ウイルス(HIV)抗原およびヒト乳 頭種ウイルス(HPV)抗原を包含する。 本発明のペプチドは、また、自己免疫病の症状を軽減し、その発生または再発 生を処置または予防するために使用できる。このような疾患は、例えば、次のも のを包含する:多発性硬化症(MS)、慢 性関節リウマチ(RA)、ショーグレン症候群、強皮症、多発性筋炎、皮膚筋炎、 全身性エリトマトーデス、若年性関節リウマチ、強直性脊椎炎、重症筋無力症( MG)、水庖性類天庖瘡(皮膚−表皮接合部における基底膜に対する抗体)、天庖 瘡(ムコ多糖タンパク質複合体または細胞内セメント物質)、糸球体腎炎(糸球 体基底膜に対する抗体)、グッドパスチャー症候群、自己免疫性溶血性貧血(赤 血球に対する抗体)、橋本病(甲状腺に対する抗体)、悪性貧血(固有因子に対 する抗体)、特発性血小板減少性紫斑病(血小板に対する抗体)、甲状腺機能亢 進症、およびアジソン病(チログロブリンに対する抗体)など。 ある数のこれらの病気に関連する自己抗原は同定されてきている。例えば、実 験的に誘発された自己免疫病において、病因に関係する抗原が特徴づけられた: ラットおよびマウスの関節炎において、天然のII型コラーゲンがコラーゲン誘発 関節炎、およびアジュバント関節炎におけるマイコバクテリアの熱ショックタン パク質において同定された;チログロブリンはマウスにおける実験的アレルギー 性甲状腺炎において同定された;アセチルコリンレセプター(AChR)は実験的ア レルギー性重症筋無力症(EAMG)において同定された;そしてミエリン塩基性タ ンパク質(MBP)およびプロテオリピドタンパク質(PLP)はマウスおよびラット における実験的アレルギー性脳脊髄炎(EAE)において同定された。さらに、標 的抗原はヒトにおいて同定された:ヒト慢性関節リウマチにおけるII型コラーゲ ン;および重症筋無力症におけるアセチルコリンレセプター。 これらの抗原からのエピトープからなるペプチドを合成し、次いで、精製した クラスI分子および放射性ヨウ素化ペプチドおよび/または空のクラスI分子を 発現する細胞を使用するアッセイにおいて、例えば、免疫蛍光染色およびフロー ・マイクロフルオロメトリ ー、ペプチド依存性クラスIアセンブリーのアッセイ、およびペプチド競合によ るCRL認識の阻害により、適当なMHC分子に結合するペプチドの能力について試験 する。クラスI分子に結合するペプチドを、感染または免疫化した個体から誘導 されたCTLsの標的として働くそれらの能力について、ならびに潜在的治療剤とし てウイルス感染した標的細胞または腫瘍細胞と反応することができるCTL集団を 発生できる、一次の生体外または生体内CTL応答を誘発するそれらの能力につい て評価する。 MHCクラスI抗原はHLA-A,B、およびC遺伝子座によりコード化される。HLA- AおよびB抗原は細胞表面においてほぼ等しい密度で発現されるが、HLA-Cの発現 は有意に低い(多分10倍程度に低い)。これらの遺伝子座の各々はある数の対立 遺伝子を有する。本発明のペプチド結合モチーフは各対立遺伝子のサブタイプに 対して比較的特異的である。 ペプチドに基づくワクチンについて、本発明のペプチドは好ましくはヒト集団 において広い分布を有するMHC I分子により認識されるモチーフからなる。MHC 対立遺伝子は異なるエシン基(ethnic groups)および系統内で異なる頻度で存 在するので、標的MHC対立遺伝子の選択は標的集団に依存することがある。表1 は異なる系統の間のHLA-A遺伝子座における種々の対立遺伝子の頻度を示す。例 えば、白色人種の集団の大部分は4つのHLA-A対立遺伝子サブタイプ、詳しくはH LA-A2.1,A1,A3.2、およびA24.1に結合するペプチドによりカバーされることが できる。同様に、アジア人の大部分は第5のHLA-A11.2に結合するペプチドの付 加により包含される。 ペプチド化合物を記載するために使用した名称は普通の慣例に従い、ここでア ミノ基は各アミノ酸残基の左(N−末端)に対して表しそしてカルボキシル基は 右(C−末端)に対して表わす。本発明 の選択した特定の態様を表す式において、アミノ−およびカルボキシル−末端基 は、特別に示されていないが、特記しない限り、生理学的pH値において執る形態 である。アミノ酸の構造式において、各残基は標準の3文字または1文字の表示 により一般に表わされている。アミノ酸残基のL−型は3文字の記号の1大文字 または最初の大文字により表され、そしてD−型を有するアミノ酸のD−型は下 のケースの1文字または下のケースの3文字の記号により表される。グリシンは 不斉炭素原子を有し、そして単に「Gly」またはGと呼ぶ。 本発明のペプチドを同定するために使用する手順は、一般に、Falkら、Nature 351:290(1991)(これをここに引用によって加える)に開示されている方法 に従う。簡単に述べると、この方法は、適当な細胞または細胞系からの、典型的 には免疫沈澱またはアフィニティークロマトグラフィーによる、MHCクラスI分 子の大規模の単離を包含する。等しく当業者によく知られている所望のMHC分子 の単離の他の方法の例は、イオン交換クロマトグラフィー、レクチンクロマトグ ラフィー、大きさ排除(size exclusion)、高性能液体クロマトグラフィー、お よび上の技術のすべての組み合わせを包含する。 典型的な場合において、免疫沈澱を使用して所望のアレレを単離する。例えば 、アレレ特異mAb試薬をHLA-A,HLA-B1、およびHLA-C分子のアフィニティー精製 について使用することができる。HLA-A分子の単離のためのいくつかのmAb試薬は 入手可能である。モノクローナルBB7.2はHLA-A2分子の単離のために適当である 。標準の技術を使用してこれらのmAbで調製されたアフィニティーカラムは、そ れぞれのHLA-A対立遺伝子生成物の精製に首尾よく使用される。 対立遺伝子特異mAbに加えて、広く反応性の抗HLA-A,B,C mAb、例えば、W6/ 32およびB9.12.1、および1つの抗HLA-B,C mAb,B1.23.2を下の実施例の節に記 載されているような別のアフィニティー精製プロトコールにおいて使用できるで あろう。 単離されたMHC分子のペプチド結合溝に結合したペプチドは、典型的には酸処 理を使用して溶離される。ペプチドは、また、種々の標準の変性手段、例えば、 熱、pH、洗浄剤、塩類、カオトロピズム剤、またはそれらの組み合わせによりク ラスI分子から解離させることができる。 ペプチドの画分をMHC分子から逆相高性能液体クロマトグラフィー(HPLC)に よりさらに分離しそして配列決定する。ペプチドは当業者によく知られている種 々の他の標準の技術、例えば、濾過、限外濾過、電気泳動、大きさクロマトグラ フィー、特異的抗体を使用する沈澱、イオン交換クロマトグラフィー、等電点電 気泳動などにより分離することができる。 単離されたペプチドの配列決定は、標準の技術、例えば、エドマン分解法に従 い実施することができる(Hunkapiller,M.W.ら、Methods Enzymol91,399〔1 983〕)。配列決定に適当な他の方法は、従来記載されているように個々のペプ チドの質量分析の配列決定を包含する(Huntら、Science 225:1261(1992)、 これをここに引用によって加える)。異なるクラスI分子からの大量の異種ペプ チド(例えば、プールしたHPLC画分)のアミノ酸配列決定は、典型的には、各ク ラスI対立遺伝子のための特性配列モチーフを明らかにする。 異なるクラスI対立遺伝子に対して特異的なモチーフの定義は、そのアミノ酸 配列が知られている抗原性タンパク質の同定を可能とする。典型的には、潜在的 ペプチドのエピトープの同定を最初にコ ンピューターを使用して実施して、所望の抗原のアミノ酸配列をモチーフの存在 について走査する。エピトープの配列を次いで合成する。MHCクラスの分子に結 合する能力を種々の異なる方法で測定する。1つの手段は、下の実施例4に記載 するようなクラスI分子結合アッセイである。文献に記載されている他の別法は 、抗原提示の阻害(Setteら、J.Immunol.141:3893(1991)、生体外アセンブ リーのアッセイ(Townsendら、Cell 62:285(1990)、および突然変異細胞、例 えば、RMS.Sを使用するFACSに基づくアッセイ(Meliefら、Eur.J.Immunol.21: 2963(1991))を包含する。 次に、MHCクラスI結合アッセイにおいて陽性と試験されるペプチドを、生体 外で特異的CTL応答を誘発するペプチドの能力についてアッセイする。例えば、 ペプチドとインキュベーションした抗原提示細胞を、レスポンダー(responder )細胞集団においてCTL応答を誘発する能力についてアッセイすることができる 。抗原提示細胞は正常細胞、例えば、末梢血単核細胞または樹枝状細胞であるこ とができる(Inabaら、J.Exp.Med.166:182(1987);Boog,Eur.J.Immunol.1 8:219〔1988〕)。 あるいは、クラスI分子に内部的に処理されたペプチドを負荷する能力を欠く 突然変異の哺乳動物細胞系、例えば、マウス細胞系RM Immunol.21:2963-2970(1991))、およびヒト体T細胞ハイブリッド、T-2(C erundoloら、Nature 345:449-452(1990))および適当なヒトクラスI遺伝子 でトランスフェクションされた前記細胞系は、ペプチドをそれらに添加したとき 、生体外の一次のCTL応答を誘発するペプチドの能力について試験するために便 利に使用される。使用できる他の真核細胞系は、種々の昆虫細胞系、例えば、力 の幼虫(ATCC細胞系CCL 125,126,1660,1591,6585,6586)、カイ コ(ATCC CRL 8851)、アワヨトウ(ATCC CRL 1711)、ガ(ATCC CCL80)および ショウジョウバエ細胞系、例えば、シュナイダー(Schneider)細胞系(参照、S chneider J.Embyrol.Exp.Morphol.27:353-365〔1927〕)を包含する。 末梢血リンパ球は、正常のドナーおよび患者の簡単な静脈穿剌または白血球搬 出に従い便利に単離され、そしてCTL前駆体のレスポンダー細胞源として使用さ れる。1つの態様において、適当な抗原提示細胞を血清不含培地中で10〜100μ Mのペプチドと適当な培養条件下に4時間インキュベーションする。次いで、ペ プチド負荷抗原提示細胞をレスポンダー細胞集団と生体外で最適化された培養条 件下にインキュベーションする。陽性のCTL活性化は、特定のペプチドパルスド 標的、ならびにペプチドの配列を誘導した関係するウイルスまたは腫瘍抗原の内 因的に処理された形態を発現する標的細胞の両方を、放射性標識化標的細胞を殺 すCTLsの存在についてアッセイすることによって、決定することができる。 CTLの特異性およびMHC制限は、適当なまたは不適当なヒトMHCクラスIを発現 する標的細胞を異なるペプチドに対して試験することによって、決定される。MH C結合アッセイにおいて陽性と試験されそして特定のCTL応答を発生するペプチド を、ここにおいて、免疫原性ペプチドと呼ぶ。 免疫原性ペプチドは、合成的に、あるいは組換えDNA技術により、あるいは天 然源、例えば、全ウイルスまたは腫瘍から製造することができる。ペプチドは好 ましくは他の天然に見出される宿主細胞のタンパク質およびそれらの断片を実質 的に含有しないが、ある態様においてペプチドは天然の断片または粒子に合成的 に接合することができる。 ポリペプチドまたはペプチドは種々の長さを有し、中性(非帯電 )の形態または塩である形態であり、そして修飾、例えば、グリコシル化、側鎖 の酸化、またはリン酸化を含まないか、あるいは修飾がここに記載するポリペプ チドの生物学的活性を破壊しないという条件に従う場合、これらの修飾を含有す ることができる。 望ましくは、ペプチドはできるだけ小さいであろうが、なお大きいペプチドの 生物学的活性の実質的にすべてを維持するであろう。可能なとき、本発明のペプ チドを約8〜約10アミノ酸残基の長さに最適化することが望ましく、この長さは 細胞表面上のMHCクラスI分子に結合した、内因的に処理されたウイルスのペプ チドまたは腫瘍細胞のペプチドの長さと釣り合う。 所望の活性を有するペプチドを必要に応じて修飾してある種の所望の属性を提 供すると同時に、所望のMHC分子に結合しかつ適当なT細胞を活性化する未修飾 のペプチドの生物学的活性を増加するか、あるいは生物学的活性の実質的にすべ てを少なくとも保持することができる。例えば、ペプチドを種々の変化、例えば 、保存的または非保存的置換に付すことができ、ここでこのような変化はそれら の使用においてある種の利点を提供する、例えば、MHCの結合を改良することが できる。保存的置換とは、アミノ酸残基を生物学的および/または化学的に類似 する他の残基と置換すること、例えば、1つの疎水性残基を他の残基と、あるい は極性残基を他の残基と置換することを意味するを意味する。置換基は、組み合 わせ、例えば、Gly,Ala;Val,Ile,Leu,Met;Asp,Glu;Asn,Gln;Ser,Thr ;Lys,Arg;およびPhe,Tyrを包含する。単一のアミノ酸の置換の効果は、また 、D−アミノ酸を使用してプロービングすることができる。このような修飾は、 例えば、次の文献に記載されているような、よく知られているペプチドの合成法 を使用して行うことができる:Merrifield,Science 232:341-347(1986),Ba ranyおよびMe rrifield,The Peptides,GrossおよびMeienhofer、編、(ニューヨーク、Acade mic Press)、pp.1-284(1979);およびStewartおよびYoung,Solid Phase Pep tide Synthesis ,(Rockford,I11.,Pierce)、第2版(1984)、ここに引用に よって加える。 ペプチドは、また、化合物のアミノ酸配列を、例えば、アミノ酸の付加または 欠失により、延長または減少することによって修飾することができる。本発明の ペプチドまたは類似体は、また、ある種の残基の順序または組成を変更すること によって修飾することができ、容易に理解されるように、生物学的活性のために 必須なある種のアミノ酸残基、例えば、決定的な接触部位または保存された残基 は生物学的活性に悪い作用を与えないで一般に変更することができない。非決定 的なアミノ酸はタンパク質の中に天然に見出される、例えば、L−α−アミノ酸 またはそれらのD−異性体に限定されず、天然以外のアミノ酸、例えば、β−γ −δ−アミノ酸、ならびにL−α−アミノ酸の多数の誘導体を包含することがで きる。 典型的には、単一のアミノ酸置換をもつ1系列のペプチドは結合への静電荷、 疎水性などの作用を決定するために使用される。例えば、1系列の正に帯電した (例えば、LysまたはArg)または負に帯電した(例えば、Glu)アミノ酸の置換 基をペプチドの長さに沿って行って、種々のMHC分子およびT細胞のレセプター に向かう感度の異なるパターンを現わす。さらに、小さい、比較的中性の部分、 例えば、Ala,Gly,Pro、または同様な残基を使用することができる。置換基は ホモ−オリゴマーまたはヘテローオリゴマーであることができる。置換基または 付加される残基の数および型は、本質的接触点の間に必要な間隔および探求する ある種の機能的属性(例えば、疎水性/親水性)に依存する。MHC分子またはT 細胞のレセプターのための増加した結合アフィニティーは、また、親ペプチド のアフィニティーと比較して、このような置換により達成することができる。い ずれの場合においても、このような置換は、例えば、結合を崩壊させうる立体的 または電荷の妨害を回避するように選択したアミノ酸残基または他の分子断片を 使用すべきである。 アミノ酸の置換基は典型的には単一の残基である。置換、欠失、挿入またはそ れらの任意の組み合わせを組み合わせて最終のペプチドに到達することができる 。置換基の変異型は、ペプチドの少なくとも1つの残基が除去されそして異なる 残基がその位置に挿入されたものである。このような置換は、一般に、ペプチド の特性を最終的に変調することを望むとき、次の表2に従いなされる。 機能(例えば、MHC分子またはT細胞のレセプターに対するアフィニティー) における実質的な変化は、表2におけるものよりも低い保存性である置換基を選 択することによって、すなわち、(a)置換区域におけるペプチドの主鎖の構造 、(b)標的部位における分子の電荷または疎水性または(c)側鎖の嵩を維持 することへのそれらの作用がいっそう有意に異なる残基を選択することによって なされる。一般にペプチドの性質の最大の変化を生成することが期待される置換 基は、(a)親水性残基、例えば、セリルが疎水性残基、例えば、ロイシル、イ ソロイシル、フェニルアラニル、バリルまたはアラニルで置換されている;(b )電気陽性側鎖を有する残基、例えば、リスル、アルギニル、またはヒスチジル が電気陰性残基、例えば、グルタミルまたはアスパルチルで置換されている;あ るいは(c)嵩の側鎖を有する残基、例えば、フェニルアラニンが側鎖をもたな いもの、例えば、グリシンで置換されている;ものである。 ペプチドは、また、免疫原性ペプチド中の2またはそれ以上の残基のアイソス ターからなることができる。ここにおいて定義するアイソスターは、第1配列の 立体的コンフォメーションが第2配列に対して特異的である結合部位に適合する ために、第2配列と置換することができる2またはそれ以上の置換基である。こ の用語は詳しくは当業者によく知られているペプチド主鎖の修飾を包含する。こ のような修飾は、アミド窒素、α−炭素、アミドのカルボニルの修飾、アミド結 合の完全な置換、延長、欠失または主鎖の架橋を包含する。参照一般的に、Sp atola,Chemistry and Biochemistry of Amino Acids,peptides and Poteins, Vol.VII(Weinstein編、1983)。 種々の偽アミノ酸または天然に見出されされないアミノ酸によるペプチドの修 飾は、生体内のペプチドの安定性を増加するときとくに有用である。安定性はあ る数の方法でアッセイすることができる。例えば、ペプチダーゼおよび種々の生 物学的媒質、例えば、ヒトの血漿および血清は安定性を試験するために使用され てきている。参照、例えば、Verhoefら、Eur.J.Drug Metab.Pharmacokin.11:2 91-302(1986)。本発明のペプチドの半減期は25%ヒト血清(v/ v)のアッセイを使用して便利に決定される。プールしたヒト血清(AB型、加熱 不活性化されていない)を、使用前に、遠心により脂質を除去する。次いで血清 をRPMI組織培養培地で25%に希釈し、そしてペプチドの安定性の試験に使用する 。前もって決定した時間間隔において、少量の反応溶液を取り出し、そして6% 水性トリクロロ酢酸またはエタノールに添加する。曇った反応試料を15分間冷却 (4℃)し、次いで回転して沈澱した血清タンパク質をペレットにする。次いで 、安定性−特異的クロマトグラフィーの条件を使用する逆相高性能液体クロマト グラフィーによりペプチドの存在を決定する。 本発明のペプチドまたはCTL剌激活性を有するそれらの類似体を修飾して、改 良された血清半減期以外の属性を得ることができる。例えば、CTL活性を誘発す るペプチドの能力は、Tヘルパー細胞の応答を誘発できる少なくとも1つのエピ トープを含有する配列への連鎖により、増強することができる。 ある態様において、Tヘルパーのペプチドは集団の大部分においてTヘルパー 細胞により認識される。これはMHCクラスII分子の多数、大部分、またはすべて に結合するアミノ酸配列を選択することによって達成することができる。これら は「ゆるくMHC制限された」Tヘルパー配列として知られている。ゆるくMHC制限 されたアミノ酸配列の例は、抗原、例えば、次の抗原からの配列を包含する:位 置830−843における破傷風トキソイド(QYIKANSKFIGITE)、位置378−398におけ る熱帯熱マラリア原虫(Plasmodium falciparum)CSタンパク質(DIEKKIAKMEKAS SVFNVVNS)、および位置1−16における連鎖球菌属(Streptococcus)18kDタン パク質(YGAVDSILGGVATYGAA)。 あるいは、天然に見出されないアミノ酸配列を使用して、ゆるく MHC制限された方式で、Tヘルパーリンパ球を刺激できる合成ペプチドを製造す ることができる。パン−DR−結合エピトープ(Pan-DR-binding epitope)(PADR E)と呼ばれる合成化合物を、ほとんどの、HLA-DR(ヒトMHCクラスII)分子への それらの結合活性に基づいてデザインされる(参照、同時継続米国出願第08/12 1,101)。 とくに好ましい免疫原性ペプチド/Tヘルパー接合体はスペーサー分子により 連鎖される。このスペーサーは、生理学的条件下に実質的に変化しない、典型的 には比較的小さい、中性分子、例えば、アミノ酸またはアミノ酸模倣体から構成 される。スペーサーは、典型的には、例えば、Ala,Gly、あるいは非極性アミノ 酸または中性の極性アミノ酸の他の中性スペーサーから選択される。理解される ように、必要に応じて存在するスペーサーは同一残基からなる必要はなく、こう してヘテロ−またはホモ−オリゴマーであることができる。存在するとき、スペ ーサーは通常少なくとも1または2つの残基、通常3〜6残基であろう。あるい は、CTLペプチドはスペーサーなしにTヘルパーペプチドに連鎖することができ る。 免疫原性ペプチドはTヘルパーペプチドに直接に連鎖するか、あるいはCTLペ プチドのアミノまたはカルボキシ末端におけるスペーサーを介して連鎖すること ができる。免疫原性ペプチドまたはTヘルパーペプチドのアミノ末端をアシル化 することができる。典型的なTヘルパーペプチドは、破傷風トキソイド830−843 、インフルエンザ307−319、マラリアのサーカムスポロゾイト(circumsporozoi te)382−398および378−389を包含する。 ある態様において、本発明の製剤組成物の中にCTLを活性化する少なくとも1 種の成分を含めることが望ましいことがある。脂質はCTLを生体内でウイルス抗 原に対して活性化する因子として同定された。例えば、パルミチン酸残基をLys 残基のアルファおよびイプ シロンアミノ基に取り付け、次いで、例えば、1または2以上の連鎖残基、例え ば、Gly,Gly-Gly-,Ser,Ser-Serなどを介して免疫原性ペプチドに連鎖するこ とができる。次いで脂質化ペプチドをミセルの形態で直接注入し、リポソームの 中に組み込むか、あるいはアジュバント、例えば、不完全フロインドアジュバン トの中に乳化することができる。好ましい態様において、特別に有効な免疫原は 、連鎖、例えば、Ser-Serを介して免疫原性ペプチドのアミノ末端に取り付けら れたLysのアルファおよびイプシロンアミノ基に取り付けられたパルミチン酸か らなる。 CTL応答の脂質のプライミングの他の例として、大腸菌(E.coli)リポタンパ ク質、例えば、トリパルミトイル−S−グリセリルシステイニル−セリン(P3CS S)を使用して、適当なペプチドに共有結合で取り付けられたとき、ウイルス特 異CTLを活性化(prime)することができる。参照、Dereら、Nature 342:561-56 4(1989)、ここに引用によって加える。本発明のペプチドは、例えば、P3CSSに カップリングすることができ、そしてこのリポペプチドを個体に投与して標的抗 原に対するCTL応答を特異的に活性化することができる。さらに、中和性抗体の 誘発を、また、適当なエピトープを表示するペプチドに接合されたP3CSSで活性 化することができるので、2つの組成物を組み合わせて、感染に対する体液およ び細胞仲介の両方の応答を効果的に誘発することができる。 さらに、追加のアミノ酸をペプチドの末端に付加して、互いとのペプチドの連 鎖を容易にし、キャリヤー支持体、またはより大きいペプチドヘカップリングし 、ペプチドまたはオリゴペプチドの物理的または化学的性質を変更するなどをす ることができる。アミノ酸、例えば、チロシン、システイン、リジン、グルタミ ン酸またはアスパラギン酸などをペプチドまたはオリゴペプチドのC−またはN −末端に導入することができる。ある場合におけるC末端の修飾はペプチドの結 合特性を変更することができる。さらに、ペプチドまたはオリゴペプチドの配列 は、末端のNH2のアシル化、例えば、アルカノイル(C1−C20)またはチオグリ コリルのアシル化、末端のカルボキシルのアミド化、例えば、アンモニア、メチ ルアミンなどにより、天然の配列と異ならせることができる。ある場合において 、これらの修飾は支持体または他の分子への連鎖のための部位を提供することが できる。 本発明のペプチドは広範な種類の方法で製造することができる。それらの大き さは比較的小さいために、ペプチドは普通の技術に従い溶液中で、あるいは固体 の支持体上で合成することができる。種々の自動化合成装置は商業的に入手可能 であり、そして既知のプロトコールに従い使用できる。参照、例えば、Stewart およびYoung,Solid Phase Peptide Synthesis、第2版、Pierce Chemical Co. (1984)前掲。 あるいは、組換えDNA技術を使用することができ、ここで問題のペプチドをエ ンコードするヌクレオチド配列を発現ベクターの中に挿入し、適当な宿主細胞の 中に形質転換またはトランスフェクションし、そして発現のために適当な条件下 に培養する。これらの手順は、一般にSambrookら、Molecular Cloning:A Labor atory Manual ,Cold Spring Harbor Press、コールド・スプリング・ハーバー, ニューヨークに記載されているように、一般にこの分野において知られている。 こうして、本発明の1または2以上のペプチド配列からなる融合タンパク質は適 当なT細胞のエピトープを提示するために使用できる。 ここにおいて考える長さのペプチドについてコーディング配列は化学技術、例 えば、Matteucciら、J.Am.Chem.Soc.103:3185(19 81)のホスホトリエステル法により合成できるので、天然のペプチド配列をエン コードする塩基を適当な1または2以上の塩基で単に置換することによって修飾 を行うことができる。次いで、コーディング配列に適当なリンカーを付与し、そ してこの分野において商業的に入手可能な発現ベクターの中に結合し、そしてベ クターを使用して適当な宿主を形質転換して所望のタンパク質を生産することが できる。ある数のこのようなベクターおよび適当な宿主系は現在入手可能である 。融合タンパク質について発現のために、コーディング配列に作用可能に連鎖さ れた開始コドンおよび停止コドン、プロモーターおよびターミネーター領域およ び通常複製系を付与して、所望の細胞宿主中の発現のための発現ベクターを得る 。例えば、所望のコーディング配列の挿入のために便利な制限部位を含有するプ ラスミドの中に、細菌宿主と適合性のプロモーター配列を設ける。生ずる発現ベ クターを適当な細菌宿主の中に形質転換する。もちろん、適当なベクターおよび 抑制配列を用いて、酵母または哺乳動物細胞の宿主をまた使用ことができる。 本発明のペプチドおよび製剤組成物およびワクチン組成物は、哺乳動物、とく にヒトに投与して、ウイルスの感染および癌を処置および/または予防するため に有用である。本発明の免疫原性ペプチドを使用して処理できる病気の例は、前 立腺癌、B型肝炎、C型肝炎、後天性免疫欠損症候群、腎臓癌、頚部癌、リンパ 腫、CMVおよび尖圭コンジロームを包含する。 製剤組成物について、本発明の免疫原性ペプチドを既に癌に悩まされるか、あ るいは問題のウイルスで感染した個体に投与する。感染の潜伏期または急性期に おける個体は、適当ならば、免疫原性ペプチドで別々にあるいは他の処置と組み 合わせて処置することができる。治療的応用において、組成物は患者にウイルス または腫瘍抗 原に対する有効なCTL応答ゐ誘発しかつ症状および/または合併症を治療するか 、あるいは少なくとも部分的に阻止するために十分な量で投与する。これを達成 するために適切な量は「治療的に有効な投与量」と定義する。この使用に有効な 量は、例えば、ペプチドの組成、投与の方法、処置する疾患の段階および程度、 患者の体重および全体的状態、および主治医の判断に依存するであろうが、一般 に70kgの患者について0.1μg〜約5000μgのペプチドの初期免疫化(すなわち 、治療または予防の投与)、引き続く患者の血液の中の比CRL活性を測定するこ とによって患者の応答および状態に依存して数週〜数カ月にわたる追加免疫の養 生法に従う約1.0μg〜約1000μgのブースター量の範囲である。本発明のペプ チドおよび組成物は一般に重大な疾患状態、すなわち、生命を脅かすか、あるい は潜在的に生命を脅かす場合に使用できることを心に留めなくてはならない。こ のような場合において、外来物質の最小化およびペプチドの相対的無毒の特質に かんがみて、実質的に過剰のこれらのペプチド組成物を投与することができそし て処置の医師は望ましいと感じることがある。 治療の使用のために、投与はウイルス感染の最初の徴候あるいは腫瘍の検出ま たは外科的において、あるいは急性感染の場合において診断のすぐ後に開始すべ きである。次いで、少なくとも症状が実質的に消滅しそしてその後ある期間の間 追加免疫の投与を行う。慢性感染の場合において、負荷投与および引き続くブー スターの投与が要求されることがある。 本発明の組成物を使用する感染した個体の処置は、急性的に感染した個体にお ける感染の消散を速めることができる。進展する慢性感染に対して感受性(また は病気にかかりやすくなった)個体について、急性から慢性の感染への進化を防 止する方法において組成物 はとくに有用である。感受性の個体が感染の前にまたはその間に同定された場合 、例えば、ここに記載するように、組成物はそれらに対してターゲッティングさ れ、より大きい集団への投与の必要性を最小にすることができる。 ペプチド組成物は、また、慢性感染の処置のためにそして免疫系を刺激して保 菌者におけるウイルス感染した細胞を排除することができる。細胞障害性T細胞 の応答を効果的に刺激するために十分な量の免疫増強性ペプチドを配合物および 投与のモードにおいて提供することが重要である。こうして、慢性感染の処置の ために、代表的な投与量は70kgの患者について約1.0μg〜約5000mg、好ましく は約5μg〜1000μg/投与の範囲である。免疫化投与および引き続く維持およ びブースターの投与は、確立された間隔で、例えば、1〜4週間、個体を効果的 に免疫化するために多分延長した期間の間、要求される。慢性感染の場合におい て、少なくとも臨床的症状または実験室の試験がウイルスの感染が排除されたか 、あるいは実質的に排除されてしまうまでおよびその後ある期間の間、投与を続 けるべきである。 治療的処置のための製剤組成物は、非経口的、局所的、経口的または局所の投 与のために意図される。好ましくは、製剤組成物は、非経口的に、例えば、静脈 内、皮下、皮内、または筋肉内に投与される。こうして、本発明は、許容できる 担体、好ましくは水性担体の中に溶解または懸濁した免疫原性ペプチドの溶液か らなる非経口的投与のための組成物を提供する。種々の水性担体、例えば、水、 緩衝化水、0.8%の生理食塩水、0.3%のグリシン、ヒアルロン酸などを使用する ことができる。これらの組成物は普通の、よく知られた滅菌技術により滅菌する ことができるか、あるいは滅菌濾過することができる。生ずる水溶液はそれ自体 使用のために包装するか 、あるいは凍結乾燥することができ、凍結乾燥した調製物を無菌の溶液と投与前 に組み合わせる。組成物は必要に応じて生理学的状態に近似させるために製剤学 的に許容される補助物質、例えば、pH調節剤および緩衝剤、張度調節剤、湿潤剤 など、例えば、酢酸ナトリウム、乳酸ナトリウム、塩化ナトリウム、塩化カリウ ム、塩化カルシウム、ソルビタンモノラウレート、トリエタノールアミンオレエ ートなどを含有することができる。 製剤組成物の中に本発明のCTL刺激ペプチドの濃度は、広く、すなわち、約0.1 重量%より低い、通常約2重量%または少なくとも約2重量%からから20〜50重 量%またはそれ以上の程度に高く変化することができ、そして主として流体体積 、粘度などにより、選択した投与の特定のモードに従い選択されるであろう。 本発明のペプチドは、また、リポソームを介して投与することができ、このよ うなリポソームはペプチドを特定の組織、例えば、リンパ系組織にターゲッティ ングするか、あるいは感染した細胞を選択的に標的化し、ならびにペプチド組成 物の半減期を増加するために使用できる。リポソームは、乳濁液、フォーム、ミ セル、不溶性単層、脂質結晶、リン脂質分散液、層状層などを包含する。これら の調製物において、送り出すべきペプチドはリポソームの部分として、単独であ るいは、例えば、リンパ系細胞の間で優勢なレセプターに結合する分子、例えば 、CD45抗原に結合するモノクローナル抗体と組み合わせるか、あるいは他の治療 または免疫原性組成物と組み合わせて組み込まれる。こうして、本発明の所望の ペプチドを充填または装飾したリポソームはリンパ系の部位に向けられることが でき、ここでリポソームは次いで選択した治療/免疫原性ペプチド組成物を送り 出す。本発明において使用するリポソームは標準の賞胞形成脂質から形成され、 脂質は一般に中性または負に帯電したリ ン脂質およびステロール、例えば、コレステロールを包含する。脂質の選択は一 般に、例えば、リポソームの大きさおよび血流中のリポソームの酸不安定性およ び安定性の考察により案内される。リポソームを製造する種々の方法は利用可能 であり、例えば、次の文献に記載されている:Szokaら、Ann.Rev.Biophys.Bioen g. 9:467(1980)、米国特許第4,235,871号、米国特許第4,501,728号、米国特 許第4,837,028号、および米国特許第5,019,369号、ここに引用によって加える。 免疫細胞への標的化のためには、リポソームの中に組み込むべきリガンドは、 例えば、所望の免疫系細胞の細胞表面の決定基に対して特異的な抗体またはその 断片を包含することができる。ペプチドを含有するリポソームの懸濁液は、静脈 内、局所に、局所的などに投与することができ、ここで投与量は、なかでも、投 与の方法、送り出されるペプチド、処置する疾患の段階などに従い変化する。 固体の組成物のために、普通の無毒の固体の担体を使用することができ、これ らは、例えば、製剤学的等級のマンニトール、ラクトース、澱粉、ステアリン酸 マグネシウム、ナトリウムサッカリン、タルク、セルロース、グルコース、スク ロース、炭酸マグネシウムなどを包含する。経口的投与のために、製剤学的に許 容される無毒の組成物は任意の通常使用される賦形剤、例えば、前述の担体、お よび一般に10〜95%の活性成分、すなわち、本発明の1種または2種以上のペプ チド、およびより好ましくは25%〜75%の濃度で組み込むことによって形成され る。 エアゾールの投与のために、免疫原性ペプチドは好ましくは微粉砕した形態で 界面活性剤および噴射剤と一緒に供給される。ペプチドの典型的な百分率は0.01 〜20重量%、好ましくは1〜10重量%である。界面活性剤は、もちろん、無毒で あり、そして好ましくは噴 射剤の中に可溶性である。このような剤の代表例は、6〜22個の炭素原子を含有 する脂肪酸、例えば、カプロン酸、オクタン酸、ラウリン酸、パルミチン酸、ス テアリン酸、リノール酸、リノレン酸、オレステリン酸およびオレイン酸と脂肪 族多価アルコールまたはその環状無水物とのエステルまたは部分的エステルであ る。混合エステル、例えば、混合または天然のグリセリドを使用することができ る。界面活性剤は組成物の0.1〜20重量%、好ましくは0.25〜5重量%を構成す ることができる。組成物の残部は通常噴射剤である。また、担体、例えば、鼻内 の送り出しのためにレシチンを必要に応じて含むことができる。 他の面において、本発明は活性成分として免疫原的に有効量のここに記載する 免疫原性ペプチドを含有するワクチンに関する。1種または2種以上のペプチド をヒトを包含する宿主の中にそれ自身の担体に連鎖させて、あるいは活性ペプチ ド単位のホモポリマーまたはヘテロポリマーとして導入することができる。この ようなポリマーは増加した免疫学的反応の利点を有しそして、異なるペプチドを 使用してポリマーを構成する場合、ウイルスまたは腫瘍細胞の異なる抗原決定基 と反応する抗体および/またはCTLsを誘発する能力を有する。有用な担体はこの 分野においてよく知られており、そして、例えば、チログロブリン、アルブミン 、例えば、ヒト血清アルブミン、破傷風トキソイド、ポリアミノ酸、例えば、ポ リ(リジン:グルタミン酸)、インフルエンザ、B型肝炎ウイルスのコアタンパ ク質、B型肝炎ウイルスの組換え体のワクチンなどを包含する。ワクチンは、ま た、生理学的に耐性の(許容できる)希釈物、例えば、水、リン酸塩緩衝生理食 塩水、または生理食塩水を含有し、そしてさらに典型的にはアジュバントを含む 。アジュバント、例えば、不完全フロインドアジュバント、リン酸アルミニウム 、水酸化アル ミニウム、または明礬はこの分野においてよく知られている物質である。そして 、前述したように、CTL応答は本発明のペプチドを脂質、例えば、P3CSSに接合す ることによって活性化することができる。ここに記載するように注射、エアゾー ル、経口的、経皮的または他のルートを経てペプチド組成物で免疫化すると、宿 主の免疫系は所望の抗原に対して特異的な細胞障害性Tリンパ球を大量に生産す ることによってワクチンに対して応答し、そして宿主は後の感染に対して少なく とも部分的に免疫となるか、あるいは発生する慢性感染に対して耐性となる。 本発明のペプチドを含有するワクチン組成物は、ウイルスの感染に対して感受 性であるか、あるいはそうでなければウイルスの感染または癌の危険にある患者 に投与して患者自身の免疫応答能力を増強することができる。このような量を「 免疫原的に有効量」と定義する。この用途において、正確な量は再び患者の健康 状態および体重、投与のモード、配合物の特質などに依存するが、一般に約1.0 μg〜約5000μg/70kgの患者、より普通には約10μg〜約200μg/70kgの患 者の範囲である。 ある場合において、本発明のペプチドのワクチンを問題のウイルス、とくにウ イルスのエンベロープ抗原に対する中性化抗体の応答を誘発するワクチンと組み 合わせることが望ましいことがある。 治療および免疫化の目的で、本発明のペプチドは、また、弱毒化ウイルス宿主 、例えば、ワクシニアまたは鶏痘により発現することができる。このアプローチ は、本発明のペプチドをエンコードするヌクレオチド配列を発現するベクターと してワクシニアウイルスを使用することを包含する。急性的または慢性的に感染 した宿主の中に、あるいは非感染宿主の中に導入するとき、組換えワクシニアウ イルスは免疫原性ペプチドを発現し、これにより宿主CTL応答を誘 発する。免疫化プロトコールにおいて有用なワクシニアのベクターおよび方法は 、例えば、米国特許第4,722,848号(ここに引用によって加える)に記載されて いる。他のベクターはBCG(Bacille Calmette Guerin)である。BCGベクターはS toverら(Nature 351:456-460(1991))(ここ引用によって加える)に記載さ れている。本発明のペプチドの治療的投与または免疫化のために有用である広範 な種類の他のベクター、例えば、チフス菌(Salmonella typhi)のベクターなど はここにおける記載から当業者にとって明らかであろう。 免疫原性ペプチドは半ビボでCTLを同様によく誘発するために使用できる。生 ずるCTLは、他の普通の形の治療に対して応答しないか、あるいは治療のペプチ ドのワクチンのアプローチに対して応答しない患者において慢性の感染(ウイル スまたは細菌の)または腫瘍を処置するために使用できる。特定の病原体(感染 因子または腫瘍抗原)に対する半ビボのCTL応答は、組織培養において、患者のC TL前駆体細胞(CTLp)を抗原提示細胞(APC)源および適当な免疫原性ペプチド と一緒にインキュベーションすることによって誘発される。適当なインキュベー ション時間(典型的には1〜4週)後、ここでCTLpは活性化されかつ成熟してお りそしてエフェクターCTLに拡張されており、細胞を宿主に注入し戻し、ここで 細胞はそれらの特異的標的細胞(感染した細胞または腫瘍細胞)を破壊するであ ろう。 また、ペプチドは診断試薬としての用途を見出すことができる。例えば、本発 明のペプチドを使用してそのペプチドまたは関係するペプチドを使用する処置の 養生法に対する特定の個体の感受性を決定することができ、こうして現存する処 置のプロトコールを変更するか、あるいは影響を受けた個体についての予後を決 定するとき助 けとなることができる。さらに、ペプチドは、また、どの個体が発生する慢性の 感染について実質的に危険であるかを予測するために使用することができる。 以下の実施例は例示のために提供され、本発明を限定しない。 実施例1 クラスI抗原の単離 HLA-A抗原精製の計画のフローダイヤグラムは第1図に表されている。簡単に 述べると、適当なアレレを有する細胞を大きいバッチ(約5×109細胞を生ず る6〜8リットル)で成長させ、遠心により収穫し、そして洗浄した。すべての 細胞系は10%の胎児ウシ血清(FBS)および抗生物質を補充したRPMI 1640培地( Sigma)中で維持した。大規模の培養のために、細胞を回転びんの中で10%FBSお よび10%ウマ血清および抗生物質を含有するRPMI 1640中で成長させた。細胞を2 59ローターを有するIEC-CRU5000遠心機により1500RPMで遠心により収穫し、そし てリン酸塩緩衝生理食塩水(PBS)(0.01MのPO4、0.154MのNaCl、pH 7.2)で 3回洗浄した。 細胞を沈降させ、そして−70℃において貯蔵するか、あるいは洗浄剤溶解溶液 で処理して洗浄剤リゼイトを調製した。原洗浄剤溶液〔1% NP-40(Sigma)ま たはRenex30(Accurate Chem.Sci.Corp.,ウェストバリー,ニューヨーク州1159 0)、150mMのNaCl、50mMのTris、pH 8.0〕を細胞のペレット(前もって計数した )に50〜100×106細胞/ml洗浄剤溶液の比で添加することによって、細胞リゼイ トを調製した。細胞ペレットの添加直前に、プロテアーゼインヒビターのカクテ ルを前もって測定した体積の原洗浄剤溶液に添加した。プロテアーゼインヒビタ ーのカクテルの添加は次の最終濃度を生成した:フェニルメチルスルホニルフル オライド(FMSF)、2mM;アプロチニン、5μg/ml;ロイペプチン、10μg/ ml;ペプス タチン、10μg/ml;ヨードアセタミド、100μM;およびEDTA、3ng/ml。細 胞の溶解を4℃において1時間周期的に混合しながら進行させた。日常的に5〜 10×109細胞を50〜100mlの洗浄剤溶液中で溶解した。リゼイトを4℃において30 分間15,000×gで遠心により清浄化し、そして引き続いて上澄み液画分を0.2μ のフィルターユニット(Nalgene)に通過させた。 mAb接合セファローズ(Sepharose)ビーズを使用して調製したアフィニティー カラムを使用して、HLA-A抗原の精製を達成した。抗体の生産のために、大きい 組織培養フラスコ(Cornig 25160-225)の中の10%FBS含有RPMI中で細胞を成長 させた。抗体を清浄化組織培養培地から、硫酸アンモニウム分画および引き続く プロテインA−セファローズ(Sigma)のアフィニティークロマトグラフィーに より精製した。簡単に述べると、飽和硫酸アンモニウムを撹拌しながら組織培養 の上澄み液に45%(体積/体積)に一夜4℃においてゆっくり付加して、免疫グ ロブリンを沈澱させた。沈澱したタンパク質を10,000×gにおいて30分間遠心に より収穫した。次いで沈澱を最小体積のPBS中に溶解し、そして透析管(Spectro /Por2、分子量のカットオフ12,000〜14,000、Spectum Medical Ind.)に移し た。透析はPBS(タンパク質溶液の体積の≧20倍)に対して4〜6回透析緩衝 液を交換しながら4℃において24〜48時間かけて実施した。透析したタンパク質 溶液を遠心(10,000×g、30分間)により清浄化し、そして溶液のpHを1N NaO HでpH 8.0に調節した。プロテインA−セファローズ(Sigma)を製造業者の使用 説明書に従い水和し、そしてプロテインA−セファローズのカラムを調製した。 10mlのベッド体積のカラムは典型的には50〜100mgのマウスIgGに結合する。 大きい負荷体積について蠕動ポンプを使用するか、あるいはより 小さい体積(<100ml)について重力により、タンパク質試料をプロテインA− セファローズのカラム上に負荷した。カラムを数体積のPBSで洗浄し、そして分 光光度計中で基線に到達するまで溶出液をA280に維持した。0.1Mのクエン酸を 適当なpH(1N NaOHを使用して適当なpHに調節した)において使用して、結合 した抗体を溶離した。マウスIgG-1について、pH 6.5を使用し、IgG2aについてpH 4.5を使用しそしてIgG2bおよびIgG3についてpH 3.0を使用した。2MのTris塩 基を使用して溶出液を中和した。抗体を含有する画分(A280により監視した)を プールし、PBSに対して透析し、そしてアミコン撹拌セル系(Amicon Stirred Ce ll system)(Amicon 8050型、YM30膜を有する)を使用して濃縮した。抗A2 mAb ,BB7.2はアフィニティー精製のために有用であった。 mAb接合セファローズビーズを使用して調製したアフィニティーカラムを使用 して、HLA-A抗原を精製した。プロテインA−セファローズのビーズ(Sigma)を アフィニティー精製したmAbと前述したようにインキュベーションすることによ って、アフィニティーカラムを調製した。5〜10mgのmAb/mlのビーズは好まし い比である。洗浄が基線においてA280を示すまで、mAb結合ビーズをホウ酸塩緩 衝液(ホウ酸塩緩衝液:100mMのナトリウムテトラボレート、154mMのNaCl、pH 8 .2)で洗浄した。200mMのトリエタノールアミン中のジメチルピメリミデート(2 0mM)を添加して、結合mAbをプロテインA−セファローズに共有結合させた(Sc hneiderら、J.Biol.Chem.257:10766(1982)。回転器上で室温において45分間 インキュベーションした後、ビーズを10〜20mlの20mMのエタノールアミン、pH 8 .2で2回洗浄することによって、過剰の架橋剤を除去した。各洗浄の間に、スラ リーを回転器上に室温において5分間配置した。ビーズをホウ酸塩緩衝液で洗浄 し、そしてPBS+0.02%アジ化ナトリ ウムで洗浄した。 次いで細胞リゼイト(5〜10×109細胞同等体)を5〜10mlのアフィニティー カラム上にゆっくり通させて(0.1〜0.25ml/分の流速)抗原を免疫化抗体に結 合させた。リゼイトをカラムに通過させた後、カラムを20カラム体積の洗浄剤原 溶液+0.1%ドデシル硫酸ナトリウム、20カラム体積の0.5MのNaCl、20mMのTris 、pH 8.0、および10カラム体積の20mMのTris、pH 8.0で順次に洗浄した。mAbに 結合したHLA-A抗原を塩基性緩衝液(水中の50mMのジエチルアミン)で溶離した 。別法として、酸性溶液、例えば、0.15〜0.25Mの酢酸を、また、使用して結合 した抗原を溶離した。比色アッセイ(BCAアッセイ、Pierce)を使用するか、あ るいはSDS-PAGEによるか、あるいは両方によるタンパク質の定量のために、溶出 液のアリコート(1/50)を取り出した。SDS-PAGE分析は、Laemmli(Laemmli ,U.K.,Nature 227:680(1970))により記載されているように、タンパク質 標準として既知量のウシ血清アルブミン(Sigma)を使用して実施した。アレレ 特異抗体を使用して特異的MHC分子を精製した。HLA-A2の場合において、mAb BB7 .2を使用した。 実施例2 天然に処理されたペプチドの単離および配列決定 塩基(50mMのジエチルアミン)溶離のプロトコールから誘導されたHLA-A調製 物のために、溶出液を直ちに1N酢酸でpH 7.0〜7.5に中和した。中和した溶出 液をアミコン撹拌セル〔8050型、YM3膜(Amicon)を有する〕中で1〜2mlに濃 縮した。10mlの酢酸アンモニウム(0.01M、pH 8.0)を濃縮装置に添加して非揮 発性塩類を除去し、そして試料をほぼ1mlに濃縮した。小さい試料(1/50) を前述したようにタンパク質の定量のために取り出した。残部を15mlのポリプロ ピレンの円錐形遠心管(Falcon,2097)(Becton Dickins on)の中に回収した。氷酢酸を添加して10%酢酸の最終濃度を得た。酸性化試料 を沸騰する水浴中に5分間入れて、結合したペプチドを溶解させた。試料を氷上 で冷却し、濃縮装置に戻し、そして濾液を集めた。10%酢酸の追加のアリコート (1〜2ml)を濃縮装置に添加し、そしてこの濾液をもとの濾液とともにプール した。最後に、1〜2mlの蒸留水を同様によくプールした。 保持物質は大量のHLA-A重鎖およびβ2−マイクログロブリンを含有するが、濾 液は天然に処理されたペプチドおよび約3000より小さい分子量をもつ他の成分を 含有する。プールした濾液物質を凍結乾燥してペプチド画分を濃縮した。次いで 、試料はそれ以上の分析される状態にあった。 ペプチド画分のHPLC(高性能液体クロマトグラフィー)のために、分離のため に、凍結乾燥した試料を50μlの溶解の中に、あるいは水中の0.1%のトリフル オロ酢酸(TFA)(Applied Biosystems)の中に溶解し、そしてStoneおよびWill iamsが記載する勾配系を使用して、C18逆相の狭い孔のカラム(Beckman C18 Ul trasphere、10×250mm)に注入した(Stone,K.L.およびWilliams,K.R.,Macr omolecular Sequencing and Synthesis;Selected Methods and Applications, A.R.Liss、ニューヨーク、1988、pp.7-24。緩衝液Aは水中の0.06%TFA(Burdic k-Jackson)でありそして緩衝液Bは80%アセトニトリル中の0.025%TFA(Burdi ck-Jackson)であった。流速は0.250ml/分であり、勾配は次の通りであった: 0〜60分、2〜37.5%B;60〜95分、37.5〜75%B;95〜105分、75〜98%Boギ ルソン(Gilson)の狭い孔のHPLCの立体配置はこの目的にとくに有用であるが、 他の立体配置は等しくよく働く。 多数のピークを214nmにおける吸収により検出し、それらの多くは低い吸収を 有するように思われる。所定のピークが単一のペプチ ドまたはペプチドの混合物を表すかどうかを決定した。次いで、後述するように 、プールした画分を配列決定して各アレレに対して特異的なモチーフを決定した 。 前述したように調製した、プールしたペプチドの画分を、自動化エドマン(Ed man)配列決定によりアプライド・バイオシステムス(Applied Biosystems)477 A型自動化配列決定装置を使用して分析した。この配列決定法は、構成成分の酢 酸の配列を決定するためにタンパク質およびペプチドの順次の分解について1950 年代にペール・エドマン(Pehr Edman)が開発した技術に基づく。 配列決定すべきタンパク質またはペプチドを、加熱された、アルゴンパージし た反応チャンバーの中の直径12mmのガラスフィルターにより保持した。フィルタ ーを一般にバイオブレン・プラス(BioBrene PlusR)で前処理し、次いでエドマ ン反応の1または2以上の反復を通して循環して汚染物質を減少しそして引き続 く試料の配列決定の効率を改良した。フィルターの前処理後、試料のタンパク質 またはペプチドの溶液(10pmol〜5nmolの範囲)をガラスフィルター上に負荷し そして乾燥させた。こうして、試料を前処理したディスクのフィルムの中に埋め 込まれたままにした。フィルターへの試料の共有結合の取り付けは通常不必要で あった。なぜなら、エドマン化学はタンパク質およびペプチドがそれほど可溶性 でない、比較的無極性の溶媒を利用したからである。 簡単に述べると、エドマン分解反応は3工程有する:カップリング、切断、お よび変換。カップリング工程において、フェニルイソチオシアネート(PITC)を 添加する。PITCはタンパク質の遊離アミノ末端の酢酸と定量的に反応して、塩基 性環境の中でフェニルチオカルバミル−タンパク質を形成する。カップリング工 程のある期間後、過剰の化学的物質を抽出しそして高度に揮発性の有機酸、トリ フルオロ酢酸、TFA、を使用してPITCカップリングしたアミノ酸残基をタンパク 質のアミノ末端から切断して、アミノ酸のアニリノチアゾリノン(ATZ)誘導体 を生成する。残りのタンパク質/ペプチドは新しいアミノ末端をもったままであ り、そして次のエドマンサイクルのためにすぐに使用される状態にある。ATZア ミノ酸を抽出しそして変換フラスコに移し、ここで水中の25%TFAを添加すると 、ATZアミノ酸はいっそう安定なフェニルチオヒダントイン(PTH)アミノ酸に変 換され、これは分析のために微小孔のC−18逆相HPLCカラムを使用する120PTH型 分析装置の中に自動的に注入した後、同定しそして定量することができる。 この手順において、ペプチド混合物をガラスフィルター上に負荷した。こうし て、単一のアミノ酸配列は通常生じない。むしろ、異なる収率のアミノ酸の混合 物が見出される。特定の残基が配列決定されるペプチドの間に保存されるとき、 そのアミノ酸について増加した収率が観察される。 実施例3 A2.1特異モチーフの定義 1つの場合において、上の実施例2に記載するように調製したプールしたペプ チドの画分をHLA-A2.1ホモ接合の細胞系、例えば、JYから得た。プールした画分 は7%〜45%のCH3CNに相当するHPLC画分であった。このクラスI分子について 、クロマトグラムのこの領域はペプチドにおいて最も豊富であった。独立の実験 からのデータを後述するように平均した。 4つの独立の実験からのアミノ酸配列の分析データを分析し、そして結果を表 3に示す。第1の位置を除外した各位置について、データはFalkら、前掲、に記 載されている方法を変更することによって分析して、異なるHLA型からの実験を 比較できるようにした。こ の変更した手順は定量でありしかも標準化された値を生成すると同時に同一のHL A型を含む異なる実験からのデータの平均を可能とした。 セクエネーター(sequenator)の生データを10行(各々は1つのエドマン分解 法のサイクルを表す)および16列(各々は12アミノ酸の1つを表す;W,C,R およびHは技術的理由のために排除した。第1行(第1サイクル)に相当するデ ータはそれ以上考慮しなかった。なぜなら、このサイクルは通常遊離アミノ酸に よりひどく汚染されていたからである)の簡単なマトリックスに変換した。各行 の値を合計して、その特定のサイクルのための合計のpmol値を生成した。各行に ついて、各アミノ酸についての値を対応する合計の収率の値で割って、合計のシ グナルのどの小部分が各サイクルにおける各アミノ酸に帰属されるかを決定した 。そのように実施することによって、「絶対頻度」の表を発生させた。この絶対 頻度の表は各サイクルの低下する収率についての補正を可能とする。 絶対頻度の表から出発して、次いで「相対頻度」の表を作成して異なるアミノ 酸の間の比較をできるようにした。そのようにするために、各列からのデータを 合計し、次いで平均した。次いで、各値を次に平均の列の値で割って相対頻度の 値を得る。これらの値は、標準化された方法で、異なる16のアミノ酸の種類の各 々について、増加および減少/サイクルを定量する。こうして、異なる実験から のデータから作成した表は一緒に加えて、相対頻度の値(およびそれらの標準偏 差)を発生することができる。次いですべての標準偏差を平均して、各表からの 試料に適用可能な標準偏差値を推定する。3以上の標準偏差により1.00を越える 特定の値は、有意な増加に相当する考える。 実施例4 定量的結合アッセイ 上の実施例2に記載するように調製された、単離されたMHC分子を使用して、 定量的結合アッセイを実施した。簡単に述べると、上で単離されたMHCの示した 量を約5nMの放射性標識化ペプチドを含む0.05%NP40-PBS中で1〜3μMのβ2M およびプロテアーゼインヒビターのカクテル(最終濃度1mMのPMSF、1.3mMの1.1 0フェナントロリン、73μMのペプスタチンA、8mMのEDTA、200μMのN−α− p−トシル−L−リジンクロロメチルケトン)の存在下にインキュベーションし た。種々の時間後、遊離のペプチドおよび結合したペプチドを、A.Setteら、J.I mmunol. 148:844(1992)(これをここに引用によって加える)に従来記載され ているように、TSK2000ゲル濾過により分離した。クロルアミンT法 Buusら、S cience 235:1352(1987)(これをここに引用によって加える)を使用して、ペ プチドを標識化した。 HBc18-27ペプチドHLA結合ペプチドを放射性標識化しそして1μ Mの精製HLA A2.1に提供(5〜nM)した。23℃においてプロテアーゼインヒビタ ーのカクテルおよび1〜3μMの精製ヒトβ2Mの存在下に2日後、クラスIIペプ チドについてSetteら、Seminars in Immunology,Vol.3,Gefter編(W.B.Saunde rs、フィラデルフィア、1991)pp.195-202(これをここに引用によって加える) に従来記載されているように、大きさ排除クロマトグラフィーによりMHCクラス I結合放射能の百分率を測定した。このプロトコールを使用して、高い結合(95 %)はすべてのクラスにおいて精製HLAA2.1分子の存在下に検出された。 結合の特異性を探索するために、結合が過剰の非標識化ペプチドにより阻害可 能であるかどうかを決定し、もしそうである場合、50%の阻害濃度(IC50%)が なんであるかを決定した。この実験のための原理的説明は3要素であった。第1 に、このような実験は特異性を証明するためにきわめて重要である。第2に、感 受性阻害アッセイは高い処理量の結合アッセイのために最も有効な別法である。 第3に、スキャッチャード分析にかけた阻害データは相互作用の平衡定数(K) の定量推定およびリガンドに結合できるレセプター分子の分数(占有%)を与え ることができる。例えば、ペプチドHBc18-27とA2.1との相互作用についての阻害 曲線の分析において、IC50%は25nMであると決定された。それ以上の実験を実施 してスキャッチャードプロットを得た。HBc18-27/A2.1について、6つの異なる MHC調製物を使用する6つの異なる実験は、15.5±9.9×10-9のKDおよび6.2%( ±1.4)の占有値を生じた。 何件かの報告が証明しているように、クラスI分子は、クラスIIと異なり、そ れらが認識するペプチドのエピトープの大きさに関して高度に選択的である。13 残基程度に長いMHC結合ペプチドが同定されたが、最適な大きさは異なるペプチ ドおよび異なるクラスI分 子について8〜10残基の間で変化する。厳格な大きさの要件を評価するために、 ペプチドHBc18-27の1系列のN−末端およびC−末端の切形/延長類似体を合成 しそしてA2.1の結合について試験した。従来の研究が証明しているように、この ペプチドのCTL認識は10マーであった(Setteら、前掲)。この分子のC末端にお ける残基の除去または付加は結合能力を30〜100倍減少させることが発見された 。他の残基のそれ以上の除去または付加は結合を完全に消滅させた。同様に、こ の分子のN−末端において、最適なHBc18-27ペプチドからの1残基の除去または 欠失はA2.1の結合を完全に妨害した。 この開示を通じて、結果はIC50で表されている。われわれのアッセイを実施す る条件(MHCおよび標識化ペプチドの濃度の限定)が与えられると、これらの値 はKD値に近似する。アッセイの条件を変化させる場合、および使用する特定の 試薬(例えば、クラスIの調製など)に依存して、IC50値は劇的に変化であるこ とがあることに注意すべきである。例えば、MHCの過剰の濃度は所定のリガンド の見掛けの測定されたIC50増加するであろう。 これらの不確実性を回避するために、結合データを表す別の方法は、参照ペプ チドに対する相対値としてである。参照ペプチドをすべてのアッセイに含める。 特定のアッセイが多少感受性となるとき、試験するペプチドのIC50は多少変化す ることがある。しかしながら、参照ペプチドに関する結合は変化しないであろう 。例えば、参照ペプチドのIC50が10倍増加するような条件下に実施されるアッセ イにおいて、すべてのIC50値はまたほぼ10倍シフトするであろう。したがって、 不明確さを回避するために、ペプチドがすぐれた、中間の、弱いか、あるいは陰 性のバインダーであるかどうかの評価は、標準のペプチドのIC50に関する、その IC50に基づくべきである。 ここに記載するHLA-A2.1アッセイのための参照ペプチドは、FLPS DYFPSVの配列を有する941.01と呼ぶ。利用したアッセイ条件下に、5(nM)の平 均が観測された。 特定のアッセイにおいて測定された標準のペプチドのIC50が表に報告するそれ と異なる場合、すぐれた、中間の、弱いか、あるいは陰性のバインダーを決定す るために使用した限界値は対応する因子により変更すべきであることを理解すべ きである。例えば、A2.1結合アッセイにおいて、A2.1標準のIC50(941.01)を5 nM代わりに8nMとして測定すべき場合、ペプチドのリガンドは、それが50nMの通 常カットオフ値代わりに80nMより小さい(すなわち、8nM×0.1)のIC50を有し た場合にのみ、すぐれたリガンドと呼ばれるであろう。 実施例5 HLA-A2.1結合のモチーフおよびアルゴリズム A2.1に結合するペプチドのための構造的要件は、9マーおよび10マーのペプチ ドの両方について定義された。「ポリ−Aアプローチ」と呼ぶ第1のアプローチ は9マーのプロトタイプのポリ−Aバインダー(ALAKAAAAV)の単一のアミノ酸 置換基のパネルを使用し、これは上の実施例4の方法を使用してA2.1の結合につ いて試験して、アンカー−位置のデジェネラシーの程度およびA2.1の結合への非 アンカー位置の可能な影響を検査する。 第2アプローチ、すなわち、「モチーフ−ライブラリーのアプローチ」は、ウ イルスおよび腫瘍由来の潜在的標的分子の配列から選択されそして上の実施例4 における方法を使用してA2.1の結合について試験したペプチドの大きいライブラ リーを使用する。異なるアミノ酸がすぐれたバインダーおよび非バインダー中の 各位置に存在する頻度を分析して、9マーおよび10マー中の非アンカー位置の役 割を定めた。ペプチド9マーのA2.1の結合 ポリ−Aアプローチ A2.1モチーフL(Leu)を位置2に含有しそしてV(Val )を位置9に含有する、ポリ−A9マーペプチドを位置4に含めて可溶性を増加 した。プロトタイプの親の9マーの91の単一のアミノ酸置換の類似体のパネルを 合成し、そしてA2.1の結合について試験した(表4)。陰影をつけた区域は、親 のペプチドに関する結合能力の減少が10倍より大きい類似体を示す。100倍より 大きい結合の減少はハイフンで示されている。 ポリ−A類似体中のアンカー位置2および9 アンカー位置2および9におけ る単一のアミノ酸の置換基の効果をまず検査した。これらの位置におけるほとん どの置換基は結合能力に対する強い悪い作用を有し、こうして結合のためのそれ らの役割を確証した。さらに詳しくは、位置2において、LおよびMのみが10倍 の範囲で結合した(「好ましい残基」)。同様な特性をもつ残基、例えば、I, V,A、およびTは許容されるが、親のペプチドよりも10〜100倍低い強さで結 合した。すべての残りの置換基(残基S,N,D,F,C,K,G、およびP) は許容されず、そして100倍より大きく結合を減少させた。比較的厳格な要件が 位置9について観察され、ここでV,LおよびIは好ましくそしてAおよびMは 許容されるが、残基T,C,N,F、およびYは結合を事実上壊滅させた。この 組のペプチドに従い、最適な2〜9モチーフは位置9におけるL,Mおよび位置 9におけるV,I、またはLで定めることができた。 ポリ−A類似体における非アンカー位置1および3〜8 すべての非アンカー 位置は、アンカー位置2および9よりも異なる置換基に対して許容性であった、 すなわち、大部分の残基は許容された。結合の有意な減少は明確な位置における いくつかの置換基について観察された。さらに詳しくは、位置1において、負電 荷(残基DおよびE)またはPは結合能力を大きく減少させた。残基Kを除外し て大部分の置換基は位置3において許容された。負電荷(D,E)または正に帯 電した残基(R)を導入したとき、有意な減少はまた位置6において見られた。 異なる単一のアミノ酸置換基によるこれらの作用を表5に要約する。 モチーフ−ライブラリーのアプローチ 結合のための非アンカー位置の重要性 をさらに評価するために、ウイルスおよび腫瘍由来の潜在的標的分子のペプチド を最適な2〜9のアンカーのモチーフを 含有する配列の存在について走査した。位置2にLまたはMおよび位置9にV, LまたはIを含有する161のペプチドの組を選択し、合成しそして結合について 試験した(参照、実施例6)。これらのペプチドの11.8%のみが高いアフィニテ ィーで結合する(比≧0.10;22.4%は中間のバインダーであった(比≧0.1)。3 6%程度に多くは弱いバインダーであり(比<0.01〜0.0001)、そして31%は非 バインダーであった(比<0.0001)。最適なアンカー−モチーフを含有する非バ インダーの大きい数は、この組のペプチドにおいて、2〜9アンカー以外のペプ チド位置がA2.1の結合能力に影響を及ぼすことを示す。追加1は、この分析のた めに使用した2〜9モチーフを有するペプチドのすべておよびそれらのペプチド についての結合データを記載する。 非アンカー位置への影響をいっそう詳しく定めるために、一方においてすぐれ たおよび中間のバインダーおよび他方において非バインダーについて、非アンカ ー位置の各々における各アミノ酸の存在頻度を計算した。同様な化学的特性をも つアミノ酸を一緒にグループにした。弱いバインダーは次の分析のために考慮し なかった。非アンカー位置の各々における各アミノ酸の存在頻度を、すぐれたバ インダーおよび非バインダーについて計算した(表6)。 いくつかの顕著な傾向が明らかとなる。例えば、位置1において、A2.lのバイ ンダーのわずかに3.6%および非バインダーの35%程度に多くは負電荷(残基D およびE)を有した。この観察はポリ−A類似体の組における前の発見とよく相 関関係をもち、ここでDまたはE置換基は結合に大きい影響を与える。同様に、 残基Pはすぐれたバインダーにおけるより非バインダーにおいて8倍の頻度を有 する。逆に、芳香族残基(Y,F,W)の頻度は非バインダーに比較してA2.1の バインダーにおいて大きく増加した。 このアプローチ後、同様に構造的特性を有するアミノ酸を一緒にグループにし た。次いで、各位置における各アミノ酸基の頻度をバインダー/非バインダーに ついて計算した(表7)。最後に、バインダーのグループにおける頻度を非バイ ンダーにおける頻度で割って「頻度の比」を得た。この比は、所定のアミノ酸ま たは残基の群がすぐれたバインダー(比>1)または非バインダー(比<1)に おいて優先的に所定の位置に存在するかどうかを示す。 異なる残基はA2.1の結合に影響を及ぼす A2.1の結合へのある種の残基の最も 顕著な影響を分析するために、表7に記載する比について限界レベルを設定した 。すぐれたバインダーにおいて4倍より大きい頻度を示す残基は好ましい残基( +)と見なした。非バインダーにおけるよりA2.1の結合において4倍より低い頻 度を示す残基を好ましくない残基(−)と見なした。このアプローチ後、バイン ダーに最も卓越した作用を示す残基を表8に列挙する。 この表は、非アンカー位置の各々において最も有意に結合に影響を及ぼすアミ ノ酸基を識別する。一般に、最も陰性の作用は帯電したアミノ酸で観察された。 位置1において、負に帯電したアミノ酸はすぐれたバインダーにおいて観察され なかった、すなわち、それらのアミノ酸は位置1において陰性の結合残基であっ た。この反対は位置6において真実であり、ここで塩基性アミノ酸のみが結合に 有害であった、すなわち、陰性の結合残基であった。そのうえ、酸性および塩基 性の両方のアミノ酸はA2.1バインダー中で位置3および7において観察されなか った。Pが位置1存在するとき、非バインダーの4倍より大きい頻度の増加が発 見された。 芳香族残基は一般にいくつかのアンカー位置、とくに位置1,3、および5に おいて好適であった。S,T、およびCのような小さい残基は位置4において好 適であり、そしてAは位置7において好適であった。 改良されたA2.1の9マーのモチーフ 前述のデータを使用して厳格なA2.1モチ ーフを誘導した。このモチーフは有意な部分において非アンカー位置1および3 〜8の作用に基づく。異なる位置におけるアミノ酸の不均一な分布は、結合アフ ィニティーへの、ある種の残基、すなわち、帯電した残基の特別に優勢の陰性の 結合作用を反映する。位置2および9における適当なアンカー残基および位置1 および3〜8における陰性の結合残基を同定して、高いアフィニティーの結合免 疫原性ペプチドを選択できるように、一連のルールを誘導した。これらのルール を表9に要約する。 上で同定しそして表9に示すモチーフを確認するために、天然に 処理されかつA2.1分子により提示されたペプチドの発表された配列を分析した( 表10)。2〜9つのアンカー残基を含有する9マーのペプチドのみを考察した。 これらのペプチドの頻度を分析するとき、一般にそれらは表9に要約したルー ルに従うことが発見された。さらに詳しくは、酸性アミノ酸またはPのいずれも 位置1に見出された。1つのみの酸性アミノ酸が位置3に見出されたが、塩基性 アミノ酸は見出されたなかった。位置6および7は帯電した残基を示さなかった 。しかしながら、酸性アミノ酸は位置8に頻繁に見出され、ここでそれらはA2.1 モチーフのわれわれの定義に従い許容される。したがって、天然に処理されたペ プチドの配列の分析は、ペプチドの>90%は完全なモチーフのための定義された ルールに従ったことを明らかにする。 こうして、データはA2.1の結合についてアンカー位置2および9以外の位置の 役割を確証する。結合への悪い作用の大部分は非アンカー位置の帯電したアミノ 酸、すなわち、位置1,3,6または7を占有する陰性の結合残基により誘発さ れる。 A.2.1.1 ペプチド10−マーの結合 「モチーフライブラリ」アプローチ :前述のデータは明らかに、10−マーが同様 に、9−マーよりも幾分か低い親和力を伴ってであれ、HLA分子に対し結合でき るということを示している。このような理由から、我々は、我々の分析を10−マ ーペプチドにまで拡大した。 従って、最適なモチーフ組合せを含む170のペプチド10−mersの「モチーフラ イブラリ」セットを、ウイルス及び腫瘍由来の既知の標的分子配列から選択し、 9−マーについて上述した通りにこれを分析した。このセット中に、我々は5.9 %の優良なバインダー、17.1%の中間バインダー、41.2%の弱いバインダーそし て35.9%の非バインダーを発見した。このペプチドセットの実際の配列、由来及 び結合能力は補遺2として含まれている。10−マーのこのセットは、a)A2.1に 対する10−マーペプチド結合についての法則、b)9−マーについて定義された 法則との類似性又は差異、及びc)9−マー及び10−マーについての重複可能な 共通モチーフを可能にする1つの挿入点を識別することができるか否か、を決定 するために使用された。 各々の位置についてのさまざまなアミノ酸基のアミノ酸頻度及び頻度比率を、 9−マーペプチドについて上述したとおり生成した。これも又それぞれまとまっ た残基について表11及び12に示されている。 好ましい残基と好ましくない残基の関係及び9−mersについて用いられたもの と類似の要領で10−マーについて誘導された法則の要約も同じくそれぞれ表13及 び表14に列挙されている。 異なる位置におけるバインダ及び非バインダの中の異なるアミノ酸基の頻度比 率を分析し9−マーについての対応する比率に比較し た場合、驚く程の類似性及び大幅な差異の両方が現われた(表15)。9−マー及 び10−マーのN末端及びC末端においては、類似性が極立っている。例えば位置 1において、10−マー内でも、P残基及び酸性アミノ酸は許容されなかった。さ らに10−マー中の位置1では、芳香族残基が、A2.1バインダー中に往々にして観 察された。位置3では、酸性アミノ酸は往々にして、9−マー及び10−マーの両 方で弱結合能力と結びついていた。 しかしながら興味深いことに、位置3において、9−マーでは芳香族残基が好 まれるのに対して、10−マーでは脂肪族残基(L,V,I,M)が好まれた。 ペプチドのC末端では、10−マーについて位置7で塩基性アミノ酸が好まれず 、位置8で酸性及び塩基性の両方のアミノ酸が好まれない。このことは、9−マ ーにおいて位置6及び7で同じパターンが見られたという観察と著しく一致して いる。興味深いことに、ここでも好まれる残基は2つのペプチドサイズ間で異な っている。10−マーにおいては位置8で芳香族(Y,F,W)又は脂肪族(L, V,I,M)残基が好まれ、一方9−マーでは対応する位置7でA残基が好まれ た。 これとは対照的に、ペプチドの中心では10−マーにおける位置4,5及び6で 、又9−マーにおける位置4及び5で、頻度の優先性の類似性は全く見られなか った。 最も興味深いことに、残基のうち試験対象のペプチドの中心において最も好ま れたものは、位置4及び5においてGであり、位置5におけるPは、バインダー 中に観察されなかった。これらの残基の全てがペプチドの2次構造全体に劇的な 影響を及ぼすことが知られており、特に、10−マーの性向に強く影響を及ぼして 「キンク」又は「バルジ」付きコンホーメーションを採用することになると予想 される。 帯電した残基は、結合にとって卓越して有害であり、往々にして9−マー及び 10−マーの非バインダーの中に観察される。 しかしながら好ましい残基は、9−マーと10−マーについて異なっている。10 −マーペプチドの中心においてはグリシンが好まれるがプロリンは好まれず、9 −マーについてはそうではない。 これらのデータは、9−マー内の2つの位置(4,5)及び10−マー内の3つ の位置(4,5,6)にまたがる「挿入部域」の存在を立証している。この挿入 部域は、9−マー及び10−マー抗原ペプチドの間にほとんど残基類似性が見られ ない、より許容性の高い領 域である。その上、きわめて保存度の高いアンカー位置2及び9に加えて、9− マー及び10−マーの両方についてN末端で位置1及び3において、又10−マー及 び9−マーについてC末端でそれぞれ位置7〜10又は6〜9において、好まれな い残基のための「アンカー部域」が存在する。 実施例6 HLA-A2.1に対する9−マーペプチドの結合を予測するためのアルゴリズム 前述の例で示した通り、2.9モチーフにより同定される潜在的なA2.l結合ペプ チドの母集団の中で、実際に優良又は中間バインダであり従って潜在的に免疫原 性であるペプチドはわずかしかない。前述のデータから、2及び9以外の位置に 存在する残基がペプチドの結合親和力に対し、往々にして深く影響を及ぼしうる ということが明らかである。例えば、A2.1ペプチドに関し位置1の酸性残基は許 容されると思われない。従って、より正確な結合予測因子は、位置2及び9に加 えてペプチド配列の各々の位置での異なる残基の効果を考慮に入れることにより 、生成できるだろう。 より特定的に言うと、我々は、1つのペプチドに沿って各々の位置で各アミノ 酸について1つの得点を割当てるアルゴリズムを開発するため、9−マーペプチ ドを含むA2.1モチーフの我々のコレクションのスクリーニングの間に得られたデ ータバンクを利用した。各残基に対する得点は、優良及び中間バインダ内のその 残基の頻度と非バインダ内のその残基の出現頻度の比としてとられる。 この「グループ比」アルゴリズムにおいては、残基は類似性によりまとめられ た。こうして、統計学的に有意な比率を得るには出現率が少なすぎる、トリプト ファンといったようないくつかの稀な残基で遭遇する問題点が回避される。表16 は完全な2/9モチーフを 含む9−merペプチドについて1つの位置につき20のアミノ酸を各々についてま とめることによって得られる得点のリストである。1つのペプチドは「グループ 比」アルゴリズムの中で、その残基の各々の得点の積として得点付けされる。2 及び9以外の位置の場合においては、得点は、位置2及び9に好ましい残基のみ を含む一組のペプチドを用いて導かれた。「グループ比」アルゴリズムを、2及 び9に好ましい残基以外の残基を有しうるペプチドにまで拡大できるようにする ため、2及び9に対する得点を、位置2及び9における単一のアミノ酸置換であ るペプチドのセットから導いた。図2は、前述の例からの我々の9−マーペプチ ドコレクションについての「グループ比」アルゴリズム得点に対してプロットさ れた相対的結合の対数の散布図を示している。 この「グループ比」アルゴリズムは、最高の優良バインダ出現率をもつペプチ ドの母集団を予測するのに使用することができる。例えば、A2.1結合9−マーペ プチドを予測するために2(L,M)及 び9(V)だけに頼らなくてはならないとすれば、我々のデータベース内の160 のペプチドは全て優良なバインダとなると予測されただろう。実際には、すでに 記述されてきたとおり、これらのペプチドのうちわずか12%のみが優良なバイン ダとして、わずか22%のみが中間バインダーとして記述されてきており、このよ うな2.9モチーフにより予測されたペプチドの66%が弱又は非結合ペプチドのい ずれかである。これとは対照的に、上述の「グループ比」アルゴリズムを用い閾 値として1.0の得点を選定することにより41のペプチドが選定された。このセッ トのうち、27%が優良なバインダで、49%が中間バインダであり、一方20%のみ が弱いバインダであり5%が非バインダである(表17)。 このアルゴリズム例では、1つのペプチドの各位置での特定の残基の衝撃を測 定するためにバインダ/非バインダーの比を使用した。当業者にとっては、類似 のアルゴリズムを作成する代替的方法が存在するということが直ちに明らかであ る。 或る位置での或る1つのアミノ酸(又はアミノ酸タイプ)をもつ全てのペプチ ドの平均的結合親和力を用いたアルゴリズムには、優良な/中間バインダ及び非 バインダーだけではなく、全てのペプチドを分析に含み入れるいう利点がある。 その上、より単純な「グループ比」アルゴリズムに比べてより数量的な親和力の 尺度を与えてくれる。我々は、位置毎に各々のアミノ酸について、2.9モチーフ を含む160のペプチドの我々のセットの中にその特定の残基が出現した時点の平 均結合対数を計算することによって、このような1つのアルゴリズムを作成した 。これらの値は表18に示されている。このとき、1つのペプチドについてのアル ゴリズム得点は、各々の残基に対する位置毎の得点の合計としてとられる。図3 は、平均「結合対数」アルゴリズム得点に対する相対的結合対数の散布図を示す 。表17は、使用されたカットオフ得点の関数としての、さまざまなレベルでのペ プチド結合を予測する2つのアルゴリズムの能力を示している。参考として、同 じペプチドセット内の結合を予測する2.9モチーフの能力も同様に示されている 。この比較から、本発明の両方のアルゴリズムが、2.9モチーフ単独よりも高い 優良バインダー頻度で母集団を予測するより大きい能力を有する、ということは 明白である。「グループ比」アルゴリズムと「結合対数」アルゴリズムの間の差 はここで分析されたペプチドセットにおいては小さいが、「グループ比」アルゴ リズムよりも「結合対数」アルゴリズムの方がごくわずかではあるものの優れた 予測を行なうものであるということをまさに示唆している。 結合対数アルゴリズムは、2つの方法でさらに修正された。まず第1に、大き いペプチドライブラリをスクリーニングすることによって得られるデータが利用 可能でない拡張されたモチーフ内に含まれた残基のためのアンカー位置において 、アルゴリズム内にポリアラニン(poly-A)データが組み込まれた。第2に、ア ルゴリズム内に「アンカー必要条件スクリーニングフィルター」が組み込まれた 。ポリ−Aアプローチは以上で詳細に記述されている。「アンカー必要条件スク リーニングフィルター」というのは、アンカー位置で残基が得点付けされかくし て、アンカー位置に好ましい又は許容された残基をもたないペプチドをふるい落 とす能力を提供する方法のことである。これは、該当する残基の含有ペプチドを 潜在的結合体としてみなすことができるようにする全体的得点をそのペプチドが 達成するのを妨げるほどに高い得点を、アンカー位置にあるこれらの受容不可能 な残基に対して割当てることによって達成される。 9−マー及び10−マーについての結果は、以下の表26及び27に示されている。 これらの表において、値は、表中に記載のないかぎり 、A;G;P;D,E;R,H,K;L,I,V,M;F,Y,W;S,T,C ;及びQ,Nといったグループ値である。 実施例7 HLA-A2.1に対する10−マーペプチドの結合を予測するアルゴリズムの使用 前述の例で記述された方法を利用して、10−マーペプチドの結合を予測するた めに類似のアルゴリズムセットが開発された。表19は、10−マーペプチドについ ての「グループ比率」アルゴリズムの中で使用される得点を示し、表20は「結合 対数」アルゴリズムの得点を示す。表21は、結合ペプチドを選択するための2つ の異なるアルゴリズム方法の応用の比較を示す。図4及び5はそれぞれ、「グル ープ比」及び「結合対数」アルゴリズムにより得点づけされたとおりの、位置2 及び10において好ましい残基を含む10−マーペプチドのセットの散布図を示して いる。 実施例8 A2.1アルゴリズムで予測されたペプチドの結合 例6及び7の結果は、免疫原性である高い確率を有するのに充分なほどにHLA- A2.1に対して結合するペプチドを選択するためにアルゴリズムを使用することが できるということを表わしている。 この結果をテストするため、我々は、さまざまな供給源から誘導されたペプチ ドの大きく(1300以上)非冗長的な独立したセットについて、我々のアルゴリズ ムを試験した。我々は、我々のアルゴリズムでこのセットを得点づけした後、合 成のため41のペプチド(表21)を選定し、A2.1結合についてこれらを試験した。 このペプチドセットは高いアルゴリズム得点を伴う21のペプチドと低いアルゴリ ズム得点を伴う20のペプチドで構成されていた。 結合データ及びカテゴリー化プロファイルはそれぞれ表22及び23に示されてい る。結合及びアルゴリズム得点の間の相関は0.69であった。表23から高いアルゴ リズム得点をもつペプチドと低いアルゴリズム得点をもつペプチドの間の著しい 差が直ちに明らかとなる。それぞれに、高得点ペプチドの76%及び低得点ペプチ ドの0%が、優良又は中間バインダのいずれかであった。このデータは、本発明 のアルゴリズムの効用を実証している。 実施例9 細胞障害性Tリンパ球(CTL)の半ビボ誘発 (必要とされるCTLpの初期量に応じて)静脈穿剌又はアフェレーシスのいずれ かによってHLA型別された患者から末梢血単核細胞(PBMC)を分離し、フィコー ル−パーク(Phar-macia)を用いて勾配遠心分離によりこれを精製する。標準的 には、末梢血1mlにつき100万のPBMCを得ることができ、又代替的には、標準的 なアフェレーシス処置により、最高で合計1〜10×1010のPBMCを得ることができ る。 分離し精製したPBMCを、(問題の抗原の配列及びHLA結合モチーフを含む) 適当な量の合成ペプチドを用いて予めインキュベート(「パルス」)した適当な 数の抗原提供細胞(APC)と共に同時培養させる。PBMCは通常、RPMI-1640(自己 由来の血清又は血漿を伴う)又は無血清培地AIM-V(Gi-bco)といったような培 地の中で1−2×106細胞/mlの割合でインキュベートされる。 APCは通常、使用される細胞のタイプに応じて1×104〜2×105細胞/mlの範 囲の濃度で使用される。APCの供給源として考えられるのは、1)PBMCから分離 され、記述通り(Inaba et al.,J.Exp.Med.166:182(1987))精製された自 己由来の樹状細胞(DC);及び2)マウスRMA-S細胞系統又はヒトT2細胞系統 といった(患者の対立HCA形質に対し同系の〔遺伝子的に同じ〕ものである)「 空の」HLA分子を発現する突然変異体又は遺伝子工学処理を受けた哺乳動物の細 胞、である。空のHLA分子を含むAPCは、CTL応答を誘発する可能性があるものと して知られているが、これは恐らくは、ペプチドが、その他のペプチドに占有さ れているMHC分子とよりも空のMHC分子とより容易に結びつくことができるためで あると考えられる。(DeBruijn et al.,Eur J.Immunol.21:2963〜2970( 1991))。 使用されるAPCが自己由来でない場合には、細胞は、半ビボでそしてそれが患 者に再度導入された時点での両方においてその増殖を妨げるため、適切な線量で (例えば放射性セリウム又はコバルトを用いて)ガンマ照射を受けなくてはなら ないだろう。 PBMC,APC及びペプチドを含む混合培養は、プラスチック製T字形フラスコ、 通気性プラスチック袋又はローラーボトルといったような適切な培養容器に入れ て、湿潤空気/CO2インキュベータ内で37℃に保たれる。最初の3〜5日の間に 通常起こる培養の活性化段階の後、結果として得られたエフェクターCTLを、培 養に対してインターロイキン−2(IL-2)、インターロイキン−4(IL-4)又はイ ンターロイキン−7(IL-7)といった組換え型DNA誘導の成長因子を付加すること によって、さらに拡張させることが可能である。特定の患者について必要とされ るエフェクターCTLの数に応じて、さらに5日〜12日間拡張培養を保つことがで きる。さらに、より多数の細胞(最高1×1011)を維持することのできる中空繊 維人工毛細血管系(Cellco)を用いて、拡張培養を行なうこともできる。 患者に細胞を注入する前に、活性、生存度、毒性及び無菌性についてこれらを 試験する。結果として得られたCTLの細胞障害活性は、免疫原性ペプチドの存在 下及び不在下で適当なHLA分子を発現する標的細胞を用いて、標準的51Cr−放出 検定(Biddison,W.E.1991、免疫学における現在のプロトコル、p7,17.1〜7.1 7.5、編集者:J.Colligan et al.,J.Wiley and Sons.New York)によって決定 され得る。生存度は、生きた細胞によるトリパンブルー染料の排除によって決定 される。従来の技術によって内毒素の存在について細胞を試験する。最後に、細 菌又は真菌汚染の存在は、適切な微生物方法(チョコレート寒天など)によって 決定される。細胞が全ての品 質検査及び安全試験にひとたび合格したならば、これらの細胞を洗浄し適切な注 入溶液(リンゲル/乳酸グルコース)の中に入れ、患者に静脈内注入する。 実施例10 CTL活性についての検定 1.ペプチド合成:標準Fmonカップリングサイクル(ソフトウェア−ヴァージョ ン1.40)を用いてApplied Biosystems(Foster City,CA)の430Aペプチド合成 装置上で、N−α−Fmoc−防御アミノ酸の順次カップリングによってペプチド合 成を行なった。全てのアミノ酸、試薬及び樹脂は、Applied Biosystems又はBach emから得たものであった。溶剤はBurdick & Jacksonから得た。適切に置換したF moc−アミノ酸−Sasrin樹脂から固相合成を開始した。出発樹脂の負荷は、ポリ スチレン0.5〜0.7mmol/gであり、各々の合成において0.1又は0.25meqを使用し た。標準的な反応サイクルは、以下の通りに進行した:1)5分間、ジメチルホ ルムアミド(DMF)中の25%のピペリジンを用いてN末端Fmoc基を除去し、それ に続いて15分間DMF中の25%のピペリジンでのもう1つの処理を行なった。樹脂 をDMFで5回洗浄した。樹脂に対して適切なFmoc−アミノ酸の予め形成された1 −ヒドロキシベンゾトリアゾールエステルの4〜10倍余剰分のN−メチルピロリ ドン(NMP)溶液を樹脂に付加して、混合物を30〜90分間反応させた。次の伸長 サイクルの準備としてDMFで樹脂を洗浄した。完全に防御され、樹脂結合したペ プチドを、ピペリジンサイクルに付して末端Fmoc基を除去した。ジクロロメタン で生成物を洗浄し乾燥させた。次に樹脂を20℃で60分間適切なスカベンジャー〔 例:5%(v/v)の水〕の存在下でトリフルオロ酢酸で処理した。余剰のトリ フルオロ酢酸の蒸発後、ジメチルエーテルで粗製ペプチドを洗浄し、水中に溶解 させ凍結乾燥させた。Vydac の300A孔径のC−18前処理カラム上で0.2%のTFA変更因子を含むH2O/CH3CN勾配 を用いた逆相HPLCにより、95%を超える均質度に至るまでペプチドを精製した。 合成ペプチドの純度を分析用逆相カラム上で検定し、その組成をアミノ酸分析及 び/又は配列決定により確認した。ペプチドを20mg/mlの濃度でDMSO中に型通り 溶解させた。 2.媒質:培地としては、10%の胎児ウシ血清(FCS)2mMのグルタミン、50μ g/mlのゲンタマイシン及び5×10-5Mの2−メルカプトエタノールを含むRPMI -1640を用いた。これを以下R10培地と呼ぶ。 細胞洗浄用媒質として、25mMのヘペス緩衝液を含み2%のFCSで補足されたRPM I-1640を使用した。 3.ラットコンカナバリンA上清:ルイスラット(Spragne-Dawley)から得た脾 細胞を、75cm2入り組織培養フラスコ中の5μg/mlのConAで補足されたR10培 地内で5×106細胞/mlの濃度にて再懸濁させた。37℃で48時間後、上清を収集 し、1%のα−メチル−D−マンノシドで補足しフィルター滅菌した(0.45μm のフィルター)。アリコートを−20℃で保存した。 4.LPS活性化を受けたリンパ芽球:75cm2入り組織培養フラスコ内で25μg/ml のLPS及び7μg/mlの硫酸デキストランが補足されたR10培地中1〜1.5×106m lの濃度でマウスの牌細胞を再懸濁させた。37℃で72時間後、リンパ芽球を遠心 分離により使用を目的として収集した。 5.リンパ芽球のペプチドコーティングを、37℃で1時間R10培地1ml中で100 μgのペプチドを用いて30×106のリンパ芽球をインキュベートすることによっ て達成した。次に細胞を一度洗浄し、インビトロCTL活性化において使用する目 的で望ましい濃度でR10培 地内でこれを再懸濁させた。 6.Jurkat A2/Kb細胞のペプチドコーティング、37℃で1時間1mlのR10培地 中で20μgのペプチドを用いて10×106の照射を受けた(20000ラド)Jurkat A2. 1/Kb細胞をインキュベートすることによって、ペプチドコーティングを達成し た。細胞を3回洗浄し、R10培地内で所要濃度で再懸濁させた。 7.インビトロCTL活性化:初回免疫から1〜4週間後、脾細胞(5×106細胞/ ウェル又は30×106細胞/T25フラスコ)を、R10培地中の同系の照射を受けた (3000ラド)ペプチドコーティングされたリンパ芽球(2×106細胞/ウェル又 は10×106細胞/T25フラスコ)と共に37℃で対抗培養させて、24ウェルのプレ ート中2ml、又はT25フラスコ中10mlの最終体積を得た。 8.エフェクタ細胞の再剌激:上述の段落7で記した初期インビトロ活性化から 7〜10日後、最適なエフェクタ細胞の成長に必要とされるサイトカインを全て提 供するのを助けるべく5%のラットConA上清で補足されたR10培地中の3×106 の「フィーダー細胞」/ウェル(C57B1/6照射済み脾細胞)の存在下で、照射 を受けた(20000ラド)ペプチドコーティングされたJurkat A2/Kb細胞(0.2× 106細胞/ウェル)でエフェクタ細胞の一部分を再剌激した。 9.細胞障害性活性についての検定:標的細胞(3×106)を、200μlのクロム 酸ナトリウム51Crの存在下で37℃でインキュベートした。60分後、細胞を3回洗 浄し、R10培地内で再懸濁させた。所要濃度でペプチドを付加した。検定のため 、U字底面の96-2311プレート内で異なるエフェクター細胞濃度(最終体積200μ l)に至るまで、10451Cr標識づけされた標的細胞を付加した。37℃での6時 間のインキュベーション期間の後、上清の0.1mlアリコートを各ウェルから除去 し、Micromedic自動ガンマ計数器の中で放射能を測 定した。次の公式により、%特異的溶解を決定した:%特異的放出=100×(実 験的放出−自然的放出)/(最大放出−自然的放出)。ペプチド滴定が行なわれ た場合、一定の与えられたペプチド(比較を目的としたもの)の抗原性は、一定 の与えられたE:Tにおいて40%特異的51Cr放出を誘発するのに必要とされるペ プチド濃度として表わされた。 A2.1モチーフを含む推定上のCTLエピトープ50nMとB型肝炎コアTヘルパーエ ピトープ50nMを含む不完全フロイントアジュバントエマルジョンを用いて、トラ ンスジェニックマウスの尾のつけ根に皮下注射を行なった。8〜20日後、マウス を安楽死させ、脾細胞をインビトロで、推定上のCTLエピトープでコーティング された同系のLPSリンパ芽球を用いて再剌激した。最終濃度5%に至るまで検定 6日目にIL-2供給源(ラットconA上清)を付加し、CTL活性を7日目に測定した 。A2KB分子(Jurkat A2KB)を発現するペプチドコーティングされた標的細胞を 溶解するこれらのエフェクターT細胞の能力を、溶解単位として測定した。結果 は表24に示されている。 この実験の結果は、少なくとも0.01の結合をもつペプチドがCTLを誘発できる ということを表わしている。少なくとも約0.01の結合をもつ補遺1及び2内のペ プチドの全てが免疫原性となる。 実施例11 免疫原性ペプチドの識別 腫瘍関連タンパク質からのHLA-A2.1対立遺伝子について以上で同定したモチー フを用いて、これらのモチーフの存在について黒色腫抗原−1(MAGE-1)を分析 した。標的抗原についての配列はGen Ba nkデータベース(公開番号71.0:3/92)から得られる。モチーフの同定は、「F INDRATTERNS」プログラムを用いて行なわれる(Devereux et al.,Nucleic Acid Research 12:387〜395(1984))。 これらのモチーフの存在についてその他のウイルス及び腫瘍関連タンパク質も 分析することが可能である。アミノ酸配列又はヌクレオチド配列コーディング産 物は、ヒト乳頭腫ウイルス(HPV)、前立腺特異的抗原(PSA)、p53がん遺伝子 、エプスタイン−バー核抗原−1(EBNA-1)及びc-erb2がん遺伝子(HER-2/neu とも呼ばれる)の場合、Gen Bankデータベースから得られる。 B型肝炎ウイルス(HBV)、C型肝炎ウイルス(HCV)及びヒト免疫不全症ウイ ルス(HIV)の場合には、いくつかの菌株/分離株が存在し、多くの配列がGen B ankに寄託されている。 HBVについては、結合モチーフは、adr,adw及びayw型について同定されている 。同一の配列の複製を避けるため、adrモチーフの全てと、adr内に存在しないad w及びaywからのモチーフのみがペプチドリストに付加される。 HCVの場合、残基1から残基782までのコンセンサス配列が9つのウイルス分離 株から誘導される。9つの分離株の間で全く又はきわめてわずかしか(1つの残 基)変動のないような領域上でモチーフが同定される。5つのウイルス分離株か らの残基783〜3010の配列も同様に分析された。全ての分離株に共通のモチーフ が同定されペプチドリストに付加される。 最後に、北米産ウイルス分離株(10〜12のウイルス)についてのHIV1型のコ ンセンサス配列がLos Alamos国立研究所のデータベース(1991年5月公開)から 得られ、大部分のウイルス分離株全体を通して一定であるモチーフを同定するべ く分析された。低レベルの変動しか受けていないモチーフ(2形態で1つの残基 )も同じくペ プチドリストに加えられた。 追加1及び2は、cERB2,EBNA1,HBV,HCV,HIV,HPV,MAGE,p53及びPSAとい った抗原の探求の結果を提供している。例5に記されている検定における標準ペ プチドと比較して少なくとも1%の結合親和力をもつペプチドのみが紹介されて いる。標準ペプチドに比べた場合の結合が右端の欄に示されている。「Ros」と 標識のついた欄は、配列が起こる抗原タンパク質内の位置を示している。 実施例12 免疫原性ペプチドの同定 ここで開示されているモチーフを用いて、さまざまな抗原からのアミノ酸配列 を、さらなるモチーフについてスクリーニングした。スクリーニングは、例11内 に記述されている通りに行なわれた。表25及び26は、cERB2,CMV、インフルエン ザA、HBV,HIV,HPV,MAGE,p53,PSA,HuS3リポソームタンパク室、LCMV及びP APといった抗原の探求の結果を提供している。例5に記されている検定における 標準ペプチドに比べて少なくとも1%の結合親和力をもつペプチドのみが提示さ れている。各々のペプチドについて、標準ペプチドと比べての結合が示されてい る。 実施例13 自己抗原における免疫原性ペプチドの同定 上記のように、本発明の特徴はまた、自己免疫疾患に関連する抗原においてス クリーンされ得る。HLA-A2.1対立遺伝子について上記に同定される特徴を用いて 、ミエリンプロテオリピド(PLP)、ミエリン塩基性タンパク質(MBP)、グルタ ミン酸デカルボキシラーゼ(GAD)、及びヒトコラーゲンタイプII及びIVからの アミノ酸を、それらの特徴の存在について分析した。抗原についての配列は、Tr ifilieffなど.,C.R.Sceances Acad.Sci.300:241(1985);Eylerなど.,J.Bi ol.Chem.246:5770(1971);Yamashitaなど.,Biochiem.Biophys.Res.Comm.1 92:1347(1993);Suなど.,Nucleic Acids Res.17:9473(1989)及びPihlaj aniemiなど.,Proc.Natl.Acad.Sci.USA 84:940(1987)から得られた。特徴の 同定は、例5に記載されるアプローチ及び例6及び7のアルゴリズムを用いて行 なわれた。表27は、それらの抗原の研究の結果を提供する。 例4の定量結合アッセイを用いて、次にそのペプチドをMHC分子を結合する能 力について試験する。自己反応性T細胞における増殖応答を抑制するペプチドの 能力は、T細胞増殖についての標準のアッセイを用いて実施される。たとえば、 Millerなど.Proc.Natl.Acad.Sci.USA,89:421(1992)に記載される方法が適 切である。 さらなる研究のために、自己免疫疾患の動物モデルを用いて、本発明のペプチ ドの効能を示すことができる。たとえば、HLAトランスジェニックマウスにおい ては、自己免疫モデル疾患は、MBP,PLP 又は脊髄ホモジネート(MSについて)、コラーゲン(関節炎について)の注入に より誘発され得る。さらに、いくつかのマウスは自己免疫疾患(たとえば糖尿病 におけるNODマウス)により自発的に影響されるようになる。本発明のペプチド は、好ましいペプチドを同定するために、適切な動物中に注入される。 実施例14 A2.1トランズジェニックマウスにおけるHPVペプチドの免疫原性 14個のHPVペプチド、たとえば9個の可能性あるエピトープ+3個の低結合性 及び1つの非結合性ペプチド(対照としての)のグルプを例10に記載される方法 を用いて、HLA-A2.1トランスジェニックマウスにおける免疫原性についてスクリ ーンした。ペプチドの免疫 原性能力を試験するために、HLA A2.1トランスジェニックマウスを、50μgの個 々のHPLペプチド/マウス及び140μgのヘルパーペプチド/マウス(HBVコア128 -140(TPPAYRPPNAPIL)により注入した。ペプチドは、1:1のエマルジョンIFA で尾のつけ根に注入された。グループ当たり3匹のマウスを用いた。陽性対照と して、前もっての実験において強いCTL応答を誘発したHBVポリメラーゼ561-570 ペプチドを用いた。 それらの結果に基づけば(表28)、4個の無関係なペプチド、すなわちTLGIVC PI,LLMGTLGIV,YMLDLQPETT及びTIHDIILECVが、最とも免疫原性であると思われ た。TLGIVCPI及びYMLDLQPETTは、良好なHLA-A2.1バインダーであることが見出さ れ、そしてLLMGTLGIV及びTIHDIILECVは、前の結合アッセイにおいて中間のバイ ンダーであることが見出された。 選択されたHPVエピトープの混合物 CTLペプチド及びヘルパーペプチドの組合せを、高められた免疫応答を提供す る能力について試験した。4種の単一ペプチドを、2種の良好なバインダー又は 2種の中間バインダーのみを含む注入物に対してそれらの免疫原性を比較するた めに別々に注入した。さらに、すべての4種のペプチドを一緒に注入した。異な った結合親和性底下を有するペプチドの組合せの免疫原性をさらに評価するため に、他の対照をこの実験において導入した。2種の良好なバインダーの混合物を 、2種の中間バインダーの混合物よりも異なった部位 において同じマウスの尾のつけ根中に注入した。CTLエピトープのすべてのグル ープを、HBVヘルパーエピトープと共に注入し、但し、2種のグループを除き、 ここですべての4種のHPVが2種の異なった用量のPADREヘルパーペプチド(aKXV AAWTLKAAa、ここでaはα−アラニンであり、そしてXはシクロヘキシルアラニ ンである)と共に、マウス当た1μg又は0.05μgで同時注入された。 すべての4種のペプチドは、単独で注入される場合、強いCTL応答を誘発し、 そして適切なペプチドによりラベルされた標的細胞を用いて試験された(表29) 。TLGIVCPIは最強のエピトープであることがわかった。観察により上記結果が確 認された。すべての4種のペプチドの混合物が注入され、そしてその応答がイン ビトロで剌激され、そして個々のシグナルペプチドによりパルスされた標的細胞 により試験される場合、すべての組合せは強いCTL応答を示した。2種のヘルパ ーエピトープが比較される場合、有意な差異は観察されなかった。これは、この 実験において使用される最高量のPADREがHBVヘルパーペプチドについての量より も140倍低かった事実に一部よるものである。 2種の良好なバインダーの混合物又は2種の中間バインダーの混合物の注入は 、たとえ単一のペプチドがひじょうに効果的であっても、両者においてひじょう に低いCTL応答をもたらした。しかしながら、これらは、6日間の脾臓細胞培養 の後、ひじょうに低い細胞回収率によるものであり、そして従って、予備試験と して見なされる。 ペプチドを50% DMSO/H2Oに溶解し、20mg/mlの原濃度を達成し、そしてさら に、滅菌PBSに溶解した。A2.1トランスジェニックマウスの尾のつけ根における 皮下注射に関しては、ペプチド溶液はIFAと1:1で混合された。注入された量 のHPV-CTLペプチド50μg/マウスが、140μg/マウスのHBVコア−ペプチド875 .23又は示される量のPADREと共に同時注入された(3匹のマウス/グループ)。 脾臓が11日目に除去され、脾臓細胞を、1μg/mlで示されるHPV-CTLエピトー プによりパルスされた、照射されたLPS-Blastsによりインビトロで再刺激された 。6日後、細胞毒性アッセイを、適切なHPVエピトープペプチドの存在又は不存 在下で、51Crによりラベルされた標的細胞としてJurkat JA2Kb細胞(A)又はMB B17(B)を用いて行なった。 上記例は、本発明を例示するものであって、請求の範囲を限定するものではな い。本発明の他の変更は、当業者に明らかである。本明細書に引用されるすべて の出版物、特許及び特許出願は、引用により組込まれる。
───────────────────────────────────────────────────── フロントページの続き (31)優先権主張番号 08/159,184 (32)優先日 1993年11月29日 (33)優先権主張国 米国(US) (81)指定国 EP(AT,BE,CH,DE, DK,ES,FR,GB,GR,IE,IT,LU,M C,NL,PT,SE),OA(BF,BJ,CF,CG ,CI,CM,GA,GN,ML,MR,NE,SN, TD,TG),AT,AU,BB,BG,BR,BY, CA,CH,CN,CZ,DE,DK,ES,FI,G B,HU,JP,KP,KR,KZ,LK,LU,LV ,MG,MN,MW,NL,NO,NZ,PL,PT, RO,RU,SD,SE,SI,SK,UA,UZ,V N (72)発明者 シドニー,ジョン アメリカ合衆国,カリフォルニア 92037, ラ ジョラ,ディー ビラ ラ ジョラ ドライブ 8541 (72)発明者 カスト,ウェー マーティン オランダ国,エヌエル―2331 エヌイック ス レイデン,マリア ルトヘルスウェヒ 106

Claims (1)

  1. 【特許請求の範囲】 1.HLA-A2.1結合モチーフを有する免疫原性ペプチドを含んで成る組成物であ って、前記免疫原性ペプチドが9個の残基及び次の残基: I,V,A及びTから成る群から選択されたN−末端からの位置2での第1の 保存された残基; V,L,I,A及びMから成る群から選択されたC−末端位置での第2の保存 された残基、 を有することを特徴とする組成物。 2.HLA-A2.1結合モチーフを有する免疫原性ペプチドを含んで成る組成物であ って、前記免疫原性ペプチドが9個の残基、すなわち L,M,I,V,A及びTから成る群から選択されたN−末端からの位置2で の第1の保存された残基; A及びMから成る群から選択されたC−末端位置での第2の保存された残基、 を有することを特徴とする組成物。 3.位置1でのアミノ酸がD及びPから成る群から選択されたアミノ酸ではな い請求の範囲第1項記載の組成物。 4.位置1でのアミノ酸がD及びPから成る群から選択されたアミノ酸ではな い請求の範囲第2項記載の組成物。 5.前記N−末端からの位置3でのアミノ酸がD,E,R,K及びHから成る 群から選択されたアミノ酸ではない請求の範囲第1項記載の組成物。 6.前記N−末端からの位置3でのアミノ酸がD,E,R,K及びHから成る 群から選択されたアミノ酸ではない請求の範囲第2項記載の組成物。 7.前記N−末端からの位置6でのアミノ酸がR,K及びHから成る群から選 択されたアミノ酸ではない請求の範囲第1項記載の組成物。 8.前記N−末端からの位置6でのアミノ酸がR,K及びHから成る群から選 択されたアミノ酸ではない請求の範囲第2項記載の組成物。 9.前記N−末端からの位置7でのアミノ酸がR,K,H,D及びEから成る 群から選択されたアミノ酸ではない請求の範囲第1項記載の組成物。 10.前記N−末端からの位置7でのアミノ酸がR,K,H,D及びEから成る 群から選択されたアミノ酸ではない請求の範囲第2項記載の組成物。 11.HLA-A2.1結合モチーフを有する免疫原性ペプチドを含んで成る組成物であ って、前記免疫原性ペプチドが約10個の残基、すなわち L,M,I,V,A及びTから成る群から選択されたN−末端からの位置2で の第1の保存された残基;及び V,I,L,A及びMから成る群から選択されたC−末端位置での第2の保存 された残基を有し、 ここで前記第1及び第2の保存された残基が7個の残基により分けられている ことを特徴とする組成物。 12.位置1でのアミノ酸がD,E及びPから成る群から選択されたアミノ酸で はない請求の範囲第11項記載の組成物。 13.前記N−末端からの位置3でのアミノ酸がD及びEから成る群から選択さ れたアミノ酸ではない請求の範囲第11項記載の組成物。 14.前記N−末端からの位置4でのアミノ酸がA,K,R及びH から成る群から選択されたアミノ酸ではない請求の範囲第11項記載の組成物。 15.前記N−末端からの位置5でのアミノ酸がPではない請求の範囲第11項記 載の組成物。 16.前記N−末端からの位置7でのアミノ酸がR,K及びHから成る群から選 択されたアミノ酸ではない請求の範囲第11項記載の組成物。 17.前記N−末端からの位置8でのアミノ酸がD,E,R,K及びHから成る 群から選択されたアミノ酸ではない請求の範囲第11項記載の組成物。 18.前記N−末端からの位置9でのアミノ酸がR,K及びHから成る群から選 択されたアミノ酸ではない請求の範囲第11項記載の組成物。 19.医薬的に許容できるキャリヤー、及びHLA-A2.1分子を結合することができ 且つ哺乳類において免疫応答を誘発することができるペプチドの治療的有効量を 含んで成る医薬組成物。 20.前記ペプチドがTLGIVCPIのような式を有する請求の範囲第19項記載の医薬 組成物。 21.YMLDLQPETTのような式を有するペプチドをさらに含んで成る請求の範囲第 19項記載の医薬組成物。 22.Tヘルパーペプチドをさらに含んで成る請求の範囲第19項記載の医薬組成 物。 23.前記TヘルパーペプチドがaKXVAAWTLKAAa〔ここで、aはD−アラニンで あり、そしてXはシクロヘキシルアラニンである〕のような式を有する請求の範 囲第22項記載の医薬組成物。
JP52019094A 1993-03-05 1994-03-04 Hla−a2.1結合ペプチドおよびそれらの使用 Expired - Fee Related JP3908271B2 (ja)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US2714693A 1993-03-05 1993-03-05
US08/027,146 1993-03-05
US7320593A 1993-06-04 1993-06-04
US08/073,205 1993-06-04
US15918493A 1993-11-29 1993-11-29
US08/159,184 1993-11-29
PCT/US1994/002353 WO1994020127A1 (en) 1993-03-05 1994-03-04 Hla-a2.1 binding peptides and their uses

Publications (2)

Publication Number Publication Date
JPH08507525A true JPH08507525A (ja) 1996-08-13
JP3908271B2 JP3908271B2 (ja) 2007-04-25

Family

ID=27362951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52019094A Expired - Fee Related JP3908271B2 (ja) 1993-03-05 1994-03-04 Hla−a2.1結合ペプチドおよびそれらの使用

Country Status (12)

Country Link
EP (1) EP0703783B1 (ja)
JP (1) JP3908271B2 (ja)
KR (1) KR960700739A (ja)
CN (1) CN1118572A (ja)
AT (1) ATE466869T1 (ja)
AU (2) AU6359494A (ja)
BR (1) BR9406652A (ja)
CA (1) CA2157510A1 (ja)
DE (1) DE69435292D1 (ja)
NZ (1) NZ263050A (ja)
SG (1) SG49008A1 (ja)
WO (1) WO1994020127A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002518346A (ja) * 1998-06-17 2002-06-25 エピミューン, インコーポレイテッド Hla結合ペプチドおよびそれらの用途
JP2003535024A (ja) * 1999-06-29 2003-11-25 エピミューン インコーポレイテッド Hla結合ペプチドおよびそれらの使用
WO2005007694A1 (ja) * 2003-07-16 2005-01-27 Green Peptide Co., Ltd. HER2/neuペプチドおよびその治療上の用途
WO2005028503A1 (ja) * 2003-09-22 2005-03-31 Green Peptide Co., Ltd. C型肝炎ウイルス由来ペプチド
JP2008505636A (ja) * 2004-07-03 2008-02-28 モガム バイオテクノロジー リサーチ インスティチュート Hcvに有効なctl反応を誘導するスーパータイプのエピトープ、これをコードするオリゴヌクレオチド並びにそれらの用途
JPWO2005105993A1 (ja) * 2004-04-30 2008-03-13 日本電気株式会社 Hla結合性ペプチド、その前駆体、それをコードするdna断片および組み換えベクター
JP2012516140A (ja) * 2009-01-28 2012-07-19 エピミューン,インコーポレイティド Pan−dr結合ポリペプチドおよびその使用
JP2012229225A (ja) * 2006-02-07 2012-11-22 Nec Corp Hla結合性ペプチド、それをコードするdna断片および組み換えベクター
US8324345B2 (en) 2006-10-12 2012-12-04 Nec Corporation HLA-binding peptide, precursor thereof, DNA fragment and recombinant vector encoding the same

Families Citing this family (134)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5674978A (en) * 1990-09-21 1997-10-07 The Regents Of The University Of California Peptides derived from glutamic acid decarboxylase
US6419931B1 (en) * 1991-08-26 2002-07-16 Epimmune Inc. Compositions and methods for eliciting CTL immunity
US6607727B1 (en) 1991-08-26 2003-08-19 The Scripps Research Institute Peptides for inducing cytotoxic T lymphocyte responses to hepatitus B virus
US5780036A (en) * 1991-08-26 1998-07-14 The Scripps Research Institute Peptides for inducing cytotoxic T lymphocyte responses to hepattis B virus
US6689363B1 (en) 1992-01-29 2004-02-10 Epimmune Inc. Inducing cellular immune responses to hepatitis B virus using peptide and nucleic acid compositions
US7611713B2 (en) 1993-03-05 2009-11-03 Pharmexa Inc. Inducing cellular immune responses to hepatitis B virus using peptide compositions
US7252829B1 (en) 1998-06-17 2007-08-07 Idm Pharma, Inc. HLA binding peptides and their uses
US9340577B2 (en) 1992-08-07 2016-05-17 Epimmune Inc. HLA binding motifs and peptides and their uses
US20020168374A1 (en) * 1992-08-07 2002-11-14 Ralph T. Kubo Hla binding peptides and their uses
US6235288B1 (en) 1992-08-26 2001-05-22 The Scripps Research Institute Peptides for inducing cytotoxic T lymphocyte responses to hepatitis B virus
US5651993A (en) 1992-11-18 1997-07-29 Yale University Specific immune system modulation
US6328971B1 (en) * 1993-01-22 2001-12-11 Ludwig Institute For Cancer Research MAGE-1 derived nona peptides, and compositions thereof
CN1118573A (zh) * 1993-02-26 1996-03-13 斯克瑞普斯研究所 诱导细胞毒t淋巴细胞应答乙型肝炎病毒的肽类
US9266930B1 (en) 1993-03-05 2016-02-23 Epimmune Inc. Inducing cellular immune responses to Plasmodium falciparum using peptide and nucleic acid compositions
US5801005A (en) * 1993-03-17 1998-09-01 University Of Washington Immune reactivity to HER-2/neu protein for diagnosis of malignancies in which the HER-2/neu oncogene is associated
ES2187530T3 (es) * 1993-08-02 2003-06-16 Scripps Research Inst Peptidos para reducir respuestas de linfocito t ctitotoxicos al virus de la hepatitis b.
NZ271774A (en) * 1993-08-06 1998-02-26 Cytel Corp Immunogenic peptides from the c-terminus of the mage-1 (melanoma) antigen
PT735893E (pt) 1993-09-14 2009-03-06 Pharmexa Inc Péptidos que se ligam aos alelos pan dr para aumentar a resposta imunitária
US6413935B1 (en) 1993-09-14 2002-07-02 Epimmune Inc. Induction of immune response against desired determinants
CN1055701C (zh) * 1993-10-19 2000-08-23 味之素株式会社 能诱导对hiv免疫应答的肽及含有该肽的预防、治疗aids的药物
US5550214A (en) * 1994-02-10 1996-08-27 Brigham And Women's Hospital Isolated antigenic oncogene peptide fragments and uses
US5709995A (en) * 1994-03-17 1998-01-20 The Scripps Research Institute Hepatitis C virus-derived peptides capable of inducing cytotoxic T lymphocyte responses
US5554724A (en) * 1994-03-24 1996-09-10 University Of Leiden Isolated tumor rejection antigen precursor MAGE-2 derived peptides, and uses thereof
US5585461A (en) * 1994-03-24 1996-12-17 Ludwig Institute For Cancer Research Isolated, MAGE-3 derived peptides which complex with HLA-A2 molecules and uses thereof
US5851523A (en) * 1994-03-24 1998-12-22 Ludwig Institute For Cancer Research. Isolated, peptides derived from MAGE tumor rejection antigen precursors which complex with HLA-A2 molecules and uses thereof
US5554506A (en) * 1994-03-24 1996-09-10 Ludwig Institute For Cancer Research Isolated, MAGE-3 derived peptides which complex with HLA-A2 molecules and uses thereof
US5686068A (en) * 1994-03-24 1997-11-11 Ludwig Institute For Cancer Research Isolated peptides derived from MAGE-2, cytolytic T cells specific to complexes of peptide and HLA-A2 molecules, and uses thereof
DE69517521T2 (de) * 1994-04-08 2001-03-08 Us Gov Health & Human Serv Peptid aus dem inneren des hepatitis-c-virus brauchbar für die stimulation cytotoxischer t-lymphocyten und die diagnose des hcv-kontaktes
US5935797A (en) * 1994-06-16 1999-08-10 Stanford University Interaction of MHC Class II proteins with members of the PCNA family of proteins
SE9403526D0 (sv) 1994-10-14 1994-10-14 Astra Ab New Peptides
CA2207736A1 (en) 1994-12-14 1996-06-20 The Scripps Research Institute In vivo activation of tumor-specific cytotoxic t cells
CA2210812C (en) * 1995-01-16 2009-09-01 Nicholas Manolios T-cell affecting peptides
GB9501300D0 (en) * 1995-01-24 1995-03-15 Boughton Brian J Peptides which inhibit viruses
US5874531A (en) * 1995-03-07 1999-02-23 President And Fellows Of Harvard College Identification of self and non-self antigens implicated autoimmune disease
US6514942B1 (en) * 1995-03-14 2003-02-04 The Board Of Regents, The University Of Texas System Methods and compositions for stimulating T-lymphocytes
SE9501067D0 (sv) 1995-03-24 1995-03-24 Astra Ab New peptides
US6156316A (en) * 1995-05-08 2000-12-05 Sloan-Kettering Institute For Cancer Research Oncogene fusion protein peptide vaccines
US5698396A (en) * 1995-06-07 1997-12-16 Ludwig Institute For Cancer Research Method for identifying auto-immunoreactive substances from a subject
US6140464A (en) * 1995-06-07 2000-10-31 Ludwig Institute For Cancer Research Nonapeptides that bind a HLA-A2.1 molecule
US5858972A (en) * 1996-01-11 1999-01-12 La Jolla Cancer Research Foundation Antithrombotic agents and methods of use
CA2242878C (en) * 1996-01-24 2010-06-22 Cytel Corporation Induction of immune response against desired determinants
US5723579A (en) * 1996-02-02 1998-03-03 Bayer Corporation Fibrinogen binding peptides
US6143509A (en) * 1996-02-06 2000-11-07 Abbott Laboratories Prostate specific antigen peptides and uses thereof
US7001600B1 (en) 1996-02-09 2006-02-21 The United States Of America As Represented By The Secretary Of Health And Human Services Identification of TRP-2 as a human tumor antigen recognized by cytotoxic T lymphocytes
US6946133B1 (en) 1996-03-20 2005-09-20 The United States Of America As Represented By The Department Of Health And Human Services Prostate specific antigen oligo-epitope peptide
EP1767542B1 (en) * 1996-03-21 2016-05-11 Epimmune Inc. HLA-A2.1 binding peptides and their uses
WO1997034621A1 (en) * 1996-03-21 1997-09-25 Cytel Corporation Hla-a2.1 binding peptides and their uses
ATE408617T1 (de) 1996-06-11 2008-10-15 Northern Sydney And Central Co T zell antigen rezeptor peptide
US6465251B1 (en) 1996-11-13 2002-10-15 Dana-Farber Cancer Institute, Inc. Method of promoting b-cell proliferation and activation with CD40 ligand and cyclosporin
US6287756B1 (en) * 1997-05-05 2001-09-11 Ludwig Institute For Cancer Research Methods for determining presence of cancer in a sample by determining expression of an SSX gene
AU753780B2 (en) * 1997-08-01 2002-10-31 Bio-Rad Laboratories, Inc. Synthetic antigen for the detection of antibodies immunoreactive with HIV virus
US6291430B1 (en) 1997-09-12 2001-09-18 Ludwig Institute For Cancer Research Mage-3 peptides presented by HLA class II molecules
US6716809B1 (en) 1997-09-12 2004-04-06 Ludwig Institute For Cancer Research Mage-A3 peptides presented by HLA class molecules
US6183746B1 (en) 1997-10-09 2001-02-06 Zycos Inc. Immunogenic peptides from the HPV E7 protein
US6013258A (en) * 1997-10-09 2000-01-11 Zycos Inc. Immunogenic peptides from the HPV E7 protein
EP1049711B1 (en) * 1998-01-19 2003-12-10 Mogam Biotechnology Research Institute Liposomes comprising peptide antigens derived from x protein of hepatitis b virus
WO1999040930A1 (en) 1998-02-12 1999-08-19 Center For Blood Research, Inc. Specific inhibitors of nfat activation by calcineurin and their use in treating immune-related diseases
US20040002117A1 (en) 1998-02-12 2004-01-01 Hogan Patrick G. Specific inhibitors of NFAT activation by calcineurin and their use in treating immune-related diseases
US6734287B1 (en) 1998-04-09 2004-05-11 Idexx Laboratories, Inc. Specific binding proteins for treating canine allergy
EP0955311A3 (en) * 1998-04-09 2000-08-16 Idexx Laboratories, Inc. Peptide vaccine for canine allergy
IL125608A0 (en) 1998-07-30 1999-03-12 Yeda Res & Dev Tumor associated antigen peptides and use of same as anti-tumor vaccines
CA2341642C (en) * 1998-09-01 2011-05-24 The Government Of The United States Of America As Represented By The Sec Retary Of The Department Of Health And Human Services Page-4, an x-linked gage-like gene expressed in normal and neoplastic prostate, testis and uterus, and uses therefor
GB9826143D0 (en) * 1998-11-27 1999-01-20 Ludwig Inst Cancer Res Tumour rejection antigens
IT1309584B1 (it) * 1999-02-26 2002-01-24 San Raffaele Centro Fond Peptidi immunogenici derivati da mage-3 presentati da mhc di classeii e loro uso.
AU757334B2 (en) * 1999-03-30 2003-02-13 Idexx Laboratories, Inc. Specific binding proteins for treating canine allergy
WO2000058349A1 (en) * 1999-03-30 2000-10-05 Idexx Laboratories, Inc. Peptide vaccine for canine allergy
EP1176986B1 (en) 1999-04-20 2018-07-04 Yale University Differentiation of monocytes into functional dendritic cells
US7129052B1 (en) 2000-07-12 2006-10-31 The United States Of America As Represented By The Department Of Health And Human Services Peptides and their utility in modulation of behavior of cells expressing α3β1 integrins
JP4873810B2 (ja) * 1999-10-05 2012-02-08 エピミューン インコーポレイテッド ペプチドおよび核酸組成物を使用する、ヒト免疫不全ウイルス−1に対する細胞性免疫応答の誘導
ATE445643T1 (de) 1999-11-18 2009-10-15 Pharmexa Inc Heteroklitische analoga von klasse-i epitopen
CA2396739A1 (en) * 1999-12-06 2001-06-14 Krishna G. Peri Compositions for treating abnormalities in glomerular filtration, patent ductus arteriosus and osteoporosis
US7026443B1 (en) * 1999-12-10 2006-04-11 Epimmune Inc. Inducing cellular immune responses to human Papillomavirus using peptide and nucleic acid compositions
US6602510B1 (en) 2000-04-05 2003-08-05 Epimmune Inc. HLA class I A2 tumor associated antigen peptides and vaccine compositions
AU2273701A (en) * 1999-12-13 2001-06-18 Epimmune, Inc. Hla class i a2 tumor associated antigen peptides and vaccine compositions
US7462354B2 (en) 1999-12-28 2008-12-09 Pharmexa Inc. Method and system for optimizing minigenes and peptides encoded thereby
CA2400215A1 (en) * 2000-02-23 2001-08-30 Epimmune Inc. Hla binding peptides and their uses
CA2413211A1 (en) 2000-04-04 2001-10-11 University Of Rochester A gene differentially expressed in breast and bladder cancer and encoded polypeptides
IL152655A0 (en) * 2000-05-12 2003-06-24 Northwest Biotherapeutics Inc Method to increase class i presentation of exogenous antigens by human dendritic cells
FR2809402A1 (fr) * 2000-05-26 2001-11-30 Dev Des Antigenes Combinatoire Bibliotheques peptidiques combinatoires convergentes et leur application a la vaccination contre le virus de l'hepatite c
FR2812087B1 (fr) * 2000-07-21 2007-05-11 Inst Nat Sante Rech Med Procede de criblage de peptides utilisables en immunotherapie
WO2002018578A2 (en) 2000-08-28 2002-03-07 Agensys, Inc. Nucleic acid and corresponding protein entitled 85p1b3 useful in treatment and detection of cancer
WO2002020616A1 (en) * 2000-09-01 2002-03-14 Epimmune Inc. Hla-a2.1 binding peptides and their uses
EP1195381A1 (de) * 2000-09-28 2002-04-10 Immusystems GmbH CD4+ T-Lymphozyten spezifische Hepatitis C Virus-Epitope
ATE536187T1 (de) 2000-10-19 2011-12-15 Epimmune Inc Hla-klasse-i- und -klasse-ii-bindende peptide und ihre verwendungen
US6924358B2 (en) 2001-03-05 2005-08-02 Agensys, Inc. 121P1F1: a tissue specific protein highly expressed in various cancers
US7271240B2 (en) 2001-03-14 2007-09-18 Agensys, Inc. 125P5C8: a tissue specific protein highly expressed in various cancers
WO2002077012A2 (en) 2001-03-23 2002-10-03 The Government Of The United States Of America, Represented By The Secretary, Department Of Health And Human Services Human papilloma virus immunoreative peptides
US20030191073A1 (en) 2001-11-07 2003-10-09 Challita-Eid Pia M. Nucleic acid and corresponding protein entitled 161P2F10B useful in treatment and detection of cancer
CA2443123A1 (en) 2001-04-10 2002-10-24 Agensys, Inc. Nuleic acids and corresponding proteins useful in the detection and treatment of various cancers
US7049413B2 (en) 2001-05-18 2006-05-23 Ludwig Institute For Cancer Research MAGE-A3 peptides presented by HLA class II molecules
EP1425408A4 (en) 2001-08-17 2004-11-10 Neose Technologies Inc CHEMICAL-ENZYMATIC SYNTHESIS OF SIALYL OLIGOSACCHARIDES
WO2003022995A2 (en) 2001-09-06 2003-03-20 Agensys, Inc. Nucleic acid and corresponding protein entitled steap-1 useful in treatment and detection of cancer
IL145926A0 (en) 2001-10-15 2002-07-25 Mor Research Applic Ltd Peptide epitopes of mimotopes useful in immunomodulation
FR2839722A1 (fr) 2002-05-17 2003-11-21 Bio Merieux Nouvelles compositions peptidiques et leur utilisation notamment dans la preparation de compositions pharmaceutiques actives contre le virus de l'hepatite c
AU2003274463B2 (en) 2002-06-10 2009-10-29 University Of Rochester Gene differentially expressed in breast and bladder cancer and encoded polypeptides
CA2484941A1 (en) 2002-07-24 2004-02-05 Intercell Ag Antigens encoded by alternative reading frame from pathogenic viruses
US20040081653A1 (en) 2002-08-16 2004-04-29 Raitano Arthur B. Nucleic acids and corresponding proteins entitled 251P5G2 useful in treatment and detection of cancer
CN1691964A (zh) * 2002-09-06 2005-11-02 曼康公司 表位序列
EP2402026A3 (en) 2002-09-13 2012-04-18 Intercell AG Method for isolating hepatitis C virus peptides
CA2500715A1 (en) 2002-10-03 2004-04-15 Epimmune, Inc. Hla binding peptides and their uses
EP1903056A3 (en) 2002-12-10 2008-05-07 Idm Pharma, Inc. HLA-A1, -A2 -A3, -A24, -B7, and -B44 binding peptides comprising tumor associated antigen epitopes, and compositions thereof
AU2003293807A1 (en) * 2002-12-24 2004-07-22 Algonomics N.V. Mhc class i restricted t-cell stimulating peptides from hepatitis b virus
EP1594892A2 (en) 2003-02-10 2005-11-16 Agensys, Inc. Nucleic acid and corresponding protein named 158p1d7 useful in the treatment and detection of bladder and other cancers
WO2004073625A2 (en) 2003-02-14 2004-09-02 Provid Pharmaceuticals, Inc. Inhibitors of antigen presentation by mhc class ii molecules and methods of use thereof
ES2562456T3 (es) 2003-03-24 2016-03-04 Valneva Austria Gmbh Uso de un adyuvante que induce una respuesta inmune Th1 para mejorar las respuestas inmunes
WO2004092207A2 (en) * 2003-04-16 2004-10-28 Algonomics N.V. Respiratory syncytial virus (rsv) peptides
EP1620456B1 (en) 2003-04-18 2014-02-26 Biotech Synergy, Inc. Hla-a2 tumor associated antigen peptides and compositions
PL1629088T3 (pl) 2003-05-30 2012-06-29 Agensys Inc Warianty antygenu komórek macierzystych stercza (PSCA) i ich podsekwencje
EP1648502B1 (en) 2003-07-11 2010-12-01 Intercell AG Hcv vaccines
US7348007B2 (en) * 2004-02-09 2008-03-25 Ludwig Institute For Cancer Research Mage C2 antigenic peptides and uses thereof
CA2567449C (en) 2004-05-28 2014-03-11 Agensys, Inc. Antibodies and related molecules that bind to psca proteins
US7785875B2 (en) 2004-07-03 2010-08-31 Mogam Biotechnology Research Institute Polynucleotide encoding HCV epitopes which can bind to various HLA supertypes, immunogenic composition comprising same and method of inducing an HCV-specific immune response using same
ITRM20050297A1 (it) * 2005-06-08 2006-12-09 Univ Siena Anticorpi diretti contro la proteina basica della mielina che riconoscono un epitopo del cd64 e uso di essi come immunodepressivi.
FR2887884B1 (fr) * 2005-06-29 2007-09-14 Pasteur Institut Epitopes de la proteine hbsp et leurs applications biotechnologiques et medicales, notamment pour le traitement de l'hepatite b chronique
US8945573B2 (en) 2005-09-08 2015-02-03 The Henry M. Jackson Foundation For The Advancement Of Military Medicine, Inc. Targeted identification of immunogenic peptides
CA2812110A1 (en) * 2005-09-08 2007-03-15 Henry M. Jackson Foundation For The Advancement Of Military Medicine, Inc. Targeted identification of immunogenic peptides
EP3085707B1 (en) 2007-11-01 2019-02-27 Mayo Foundation for Medical Education and Research Hla-dr binding peptides and their uses
DE102007059924A1 (de) * 2007-12-03 2009-06-04 Eberhard-Karls-Universität Tübingen Universitätsklinikum Allel- und Isotyp-spezifische Intervention an mit Autoimmunerkrankungen assoziierten MHC-Klasse-II-Molekülen durch Peptide
US8367801B2 (en) * 2008-01-10 2013-02-05 Endocrine Pharmaceuticals Limited Proteinaceous compounds
US8986712B2 (en) * 2009-11-29 2015-03-24 Yeda Research And Development Co., Ltd. Peptides derived from HIV-1 gp41 transmembrane domain for t-immunomodulation
GB201513921D0 (en) * 2015-08-05 2015-09-23 Immatics Biotechnologies Gmbh Novel peptides and combination of peptides for use in immunotherapy against prostate cancer and other cancers
MA45491A (fr) 2016-06-27 2019-05-01 Juno Therapeutics Inc Épitopes à restriction cmh-e, molécules de liaison et procédés et utilisations associés
WO2018005559A1 (en) 2016-06-27 2018-01-04 Juno Therapeutics, Inc. Method of identifying peptide epitopes, molecules that bind such epitopes and related uses
CN111093691A (zh) 2017-04-03 2020-05-01 内恩疗法公司 蛋白质抗原及其用途
CA3081840A1 (en) 2017-11-08 2019-05-16 Neon Therapeutics, Inc. T cell manufacturing compositions and methods
FR3087448B1 (fr) 2018-10-23 2023-10-13 Pdc Line Pharma Lignee pdc modifiee pour secreter une cytokine
US20210380644A1 (en) * 2018-10-26 2021-12-09 Saint Louis University Peptides for inducing heterosubtypic influenza t cell responses
JP2022536695A (ja) 2019-06-12 2022-08-18 ビオンテック ユーエス インコーポレイテッド 新抗原組成物およびその使用
WO2022036137A1 (en) 2020-08-13 2022-02-17 Biontech Us Inc. T cell manufacturing compositions and methods
MX2023001851A (es) 2020-08-13 2023-04-26 Biontech Us Inc Neoantigenos ras y usos de los mismos.
JP2024501482A (ja) 2020-12-14 2024-01-12 ビオンテック ユーエス インコーポレイテッド がん免疫療法のための組織特異的抗原
AU2022350653A1 (en) 2021-09-22 2024-05-02 BioNTech SE Coronavirus vaccines and methods of use
WO2023064612A2 (en) 2021-10-15 2023-04-20 BioNTech SE Pharmaceutical compositions for delivery of viral antigens and related methods
WO2023147090A1 (en) 2022-01-27 2023-08-03 BioNTech SE Pharmaceutical compositions for delivery of herpes simplex virus antigens and related methods

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL105554A (en) * 1992-05-05 1999-08-17 Univ Leiden Peptides of human papillomavirus for use in preparations elicit a human T cell response
ATE183514T1 (de) * 1992-05-26 1999-09-15 Univ Leiden Peptide des menschlichen proteins p53 zum gebrauch in menschlichen-zytotoxischen-t-zell- antwort-induzierenden kompositionen sowie menschliche p53-protein-spezifische t-lymphocyten
NZ255683A (en) * 1992-08-07 1996-08-27 Cytel Corp Immunogenic composition comprising a 9-10 aa residue peptide having a hla-a3.2, hla-a1, hla-a11 or hla-a24.1 binding motif
DE4238416A1 (de) * 1992-11-13 1994-05-19 Max Planck Gesellschaft Bestimmung von Peptidmotiven auf MHC-Molekülen
IL109664A0 (en) * 1993-05-18 1994-08-26 Rijksuniversiteit Peptides of human influenza virus for use in human t cell response inducing compositions
US6660276B1 (en) * 1994-02-16 2003-12-09 The University Of Virginia Patent Foundation Peptides recognized by melanoma-specific cytotoxic lymphocytes, and uses therefor

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002518346A (ja) * 1998-06-17 2002-06-25 エピミューン, インコーポレイテッド Hla結合ペプチドおよびそれらの用途
JP2003535024A (ja) * 1999-06-29 2003-11-25 エピミューン インコーポレイテッド Hla結合ペプチドおよびそれらの使用
WO2005007694A1 (ja) * 2003-07-16 2005-01-27 Green Peptide Co., Ltd. HER2/neuペプチドおよびその治療上の用途
WO2005028503A1 (ja) * 2003-09-22 2005-03-31 Green Peptide Co., Ltd. C型肝炎ウイルス由来ペプチド
EA009782B1 (ru) * 2003-09-22 2008-04-28 Грин Пептайд Ко., Лтд. Пептид, происходящий из вируса гепатита с
JPWO2005105993A1 (ja) * 2004-04-30 2008-03-13 日本電気株式会社 Hla結合性ペプチド、その前駆体、それをコードするdna断片および組み換えベクター
JP2011120598A (ja) * 2004-04-30 2011-06-23 Nec Corp Hla結合性ペプチド、それをコードするdna断片および組み換えベクター
JP2008505636A (ja) * 2004-07-03 2008-02-28 モガム バイオテクノロジー リサーチ インスティチュート Hcvに有効なctl反応を誘導するスーパータイプのエピトープ、これをコードするオリゴヌクレオチド並びにそれらの用途
JP2012229225A (ja) * 2006-02-07 2012-11-22 Nec Corp Hla結合性ペプチド、それをコードするdna断片および組み換えベクター
US9045531B2 (en) 2006-02-07 2015-06-02 Nec Corporation HLA-binding peptide, precursor thereof, and DNA fragment and recombinant vector coding for said HLA-binding peptide
US8324345B2 (en) 2006-10-12 2012-12-04 Nec Corporation HLA-binding peptide, precursor thereof, DNA fragment and recombinant vector encoding the same
JP2012516140A (ja) * 2009-01-28 2012-07-19 エピミューン,インコーポレイティド Pan−dr結合ポリペプチドおよびその使用

Also Published As

Publication number Publication date
CA2157510A1 (en) 1994-09-15
AU6359494A (en) 1994-09-26
EP0703783A4 (en) 1999-03-10
WO1994020127A1 (en) 1994-09-15
EP0703783B1 (en) 2010-05-05
BR9406652A (pt) 1996-09-10
SG49008A1 (en) 1998-05-18
KR960700739A (ko) 1996-02-24
CN1118572A (zh) 1996-03-13
JP3908271B2 (ja) 2007-04-25
AU6597998A (en) 1998-07-02
DE69435292D1 (de) 2010-06-17
EP0703783A1 (en) 1996-04-03
WO1994020127A9 (en) 2003-04-17
ATE466869T1 (de) 2010-05-15
NZ263050A (en) 1997-11-24

Similar Documents

Publication Publication Date Title
JP3908271B2 (ja) Hla−a2.1結合ペプチドおよびそれらの使用
EP1917970B1 (en) Hla binding peptides and their uses
EP1911461B1 (en) HLA class I and II binding peptides and their uses
AU725550B2 (en) HLA binding peptides and their uses
US7252829B1 (en) HLA binding peptides and their uses
US20070055049A1 (en) HLA binding motifs and peptides and their uses
JP2003509465A (ja) ペプチドおよび核酸組成物を使用する、c型肝炎ウイルスに対する細胞性免疫応答の誘導
JP2002515869A (ja) Hla―a2.1結合ペプチド及びその使用
US20100068228A1 (en) Inducing Cellular Immune Responses to Hepatitis B Virus Using Peptide and Nucleic Acid Compositions
JP2010090167A (ja) Hla結合ペプチドおよびそれらの用途
JP2003524016A (ja) Hla結合ペプチドおよびそれらの用途
US20030185822A1 (en) HLA-A2.1 binding peptides and their uses
JP2004517609A (ja) Hla−a2.1結合ペプチドおよびそれらの用途
US20040157780A1 (en) CTL inducing peptides from c-erb2 (HER-2/neu)
CA2421448A1 (en) Hla binding peptides and their uses
KR20030036139A (ko) Hla 결합 펩티드 및 이의 용도
MXPA98007706A (en) Peptides of union to locus a of human leukocytes and its u

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040928

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20041227

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20050214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060718

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070118

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100126

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100126

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100126

Year of fee payment: 3

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100126

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100126

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100126

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110126

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120126

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130126

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees