JPH08316421A - Semiconductor integrated circuit device - Google Patents

Semiconductor integrated circuit device

Info

Publication number
JPH08316421A
JPH08316421A JP12488195A JP12488195A JPH08316421A JP H08316421 A JPH08316421 A JP H08316421A JP 12488195 A JP12488195 A JP 12488195A JP 12488195 A JP12488195 A JP 12488195A JP H08316421 A JPH08316421 A JP H08316421A
Authority
JP
Japan
Prior art keywords
diffusion layer
type diffusion
impurity concentration
type
oxide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12488195A
Other languages
Japanese (ja)
Other versions
JP2870450B2 (en
Inventor
Takayuki Nagai
隆行 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP7124881A priority Critical patent/JP2870450B2/en
Publication of JPH08316421A publication Critical patent/JPH08316421A/en
Application granted granted Critical
Publication of JP2870450B2 publication Critical patent/JP2870450B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE: To form a protective element whose withstand voltage is lower than that of an inner circuit element by using a diode wherein reach-through withstand voltage is used. CONSTITUTION: A double diffusion layer structure constituted of an N<-> type diffusion layer 5 and an N<-> type diffusion layer 6 is formed in a first element forming region wherein element isolation is performed with a field oxide film 2, and a P<+> type diffusion layer 7 is formed on a second element forming region. A P-type guard ring layer 3 arranged under the field oxide film 2 and the N<+> type diffusion layer 6 as a cathode are made adjacent to each other. Thereby reach-through withstand voltage can be made lower than the withstand voltage of an inner transistor.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体集積回路装置に
関し、特に保護回路用素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor integrated circuit device, and more particularly to a protection circuit element.

【0002】[0002]

【従来の技術】図2は従来の保護オフバッファ素子の一
例を示す半導体チップの断面図である。
2. Description of the Related Art FIG. 2 is a sectional view of a semiconductor chip showing an example of a conventional protection off-buffer element.

【0003】高圧系(電源電圧10V〜)では図2に示
すように、p型シリコン基板1の表面に設けて素子形成
領域を区画するフィールド酸化膜2およびフィールド酸
化膜2の下部に設けたp型のガードリング層3と、素子
形成領域の表面に形成したゲート酸化膜4と、ゲート酸
化膜4の上に選択的に形成したゲート電極11と、この
ゲート電極11とフィールド酸化膜2をマスクとして素
子形成領域に不純物をイオン注入して形成した深いn-
型拡散層6およびこのn- 型拡散層6内に設けた浅いn
+ 型拡散層7との2重拡散層構造からなるソース・ドレ
イン領域と、ゲート電極11を含む表面に設けた層間絶
縁膜8と、層間絶縁膜8に設けたコンタクトホールのn
+ 型拡散層6に接続して形成したドレイン電極12およ
びソース電極13とを有して構成される。
In a high voltage system (power supply voltage 10 V to 10 V), as shown in FIG. 2, a field oxide film 2 provided on the surface of a p-type silicon substrate 1 for partitioning an element formation region and a p provided below the field oxide film 2. Type guard ring layer 3, a gate oxide film 4 formed on the surface of the element formation region, a gate electrode 11 selectively formed on the gate oxide film 4, and a mask of the gate electrode 11 and the field oxide film 2. As a deep n formed by ion-implanting impurities into the element formation region as
The type diffusion layer 6 and the shallow n provided in the n type diffusion layer 6
A source / drain region having a double diffusion layer structure with the + type diffusion layer 7, an interlayer insulating film 8 provided on the surface including the gate electrode 11, and n of a contact hole provided in the interlayer insulating film 8.
It has a drain electrode 12 and a source electrode 13 which are formed so as to be connected to the + type diffusion layer 6.

【0004】この構成は、ロジック回路用の高圧系MO
Sトランジスタと同じであり、図3の等価回路に示すよ
うに、ゲート電極を基板電位と同電位にすることでオフ
バッファとして用いられる。
This structure has a high voltage system MO for logic circuits.
It is the same as the S-transistor, and is used as an off-buffer by setting the gate electrode to the same potential as the substrate potential as shown in the equivalent circuit of FIG.

【0005】このオフバッファを保護素子として使用す
る場合、その動作を順に示すと次のようになる。
When this off-buffer is used as a protection element, its operation will be described in order as follows.

【0006】(1)ドレイン電極に高電圧パルスが印加
される。
(1) A high voltage pulse is applied to the drain electrode.

【0007】(2)ドレイン拡散層のジャンクションダ
イオードDがブレイクダウンを起こす。
(2) The junction diode D in the drain diffusion layer causes a breakdown.

【0008】(3)発生した電子・ホール対のホールが
ゲート電極下の電位を引き上げる。
(3) The generated hole of the electron-hole pair raises the potential under the gate electrode.

【0009】(4)寄生npn型バイポーラトランジス
タBがオンすることでブレイクダウン後のオン抵抗を低
下することができる。
(4) Since the parasitic npn type bipolar transistor B is turned on, the on resistance after the breakdown can be reduced.

【0010】この場合、電流はドレイン抵抗RD 、ソー
ス抵抗RS を介して流れるため、ドレイン抵抗RD 、ソ
ース抵抗RS が発熱する現象が起きる。
[0010] In this case, the current to flow through the drain resistor R D, the source resistance R S, a phenomenon in which the drain resistor R D, the source resistance R S generates heat occurs.

【0011】[0011]

【発明が解決しようとする課題】この従来の半導体集積
回路装置では、保護回路用素子の構造が内部ロジック回
路と同じであるため、その耐圧も同じであった。また、
ソース・ドレイン領域のn- 型拡散層の濃度が低く、ド
レイン抵抗およびソースが高い場合に寄生npn型バイ
ポーラトランジスタがオンすることで、過電流が流れ、
ドレイン領域およびソース領域の発熱により、ジャンク
ション破壊に至るという問題があった。
In this conventional semiconductor integrated circuit device, since the structure of the protection circuit element is the same as that of the internal logic circuit, its breakdown voltage is also the same. Also,
When the concentration of the n -type diffusion layer in the source / drain region is low and the drain resistance and the source are high, the parasitic npn-type bipolar transistor is turned on, so that an overcurrent flows,
There is a problem that junction destruction is caused due to heat generation in the drain region and the source region.

【0012】これらのことから、オフバッファを保護素
子として使用する場合には、その占有面積を大きくして
電流を分散させる必要があった。
For these reasons, when the off-buffer is used as a protection element, it is necessary to increase its occupied area to disperse the current.

【0013】本発明の目的は、内部回路素子よりも耐圧
の低い保護素子を有する半導体集積回路を提供すること
にある。
An object of the present invention is to provide a semiconductor integrated circuit having a protection element having a lower breakdown voltage than an internal circuit element.

【0014】[0014]

【課題を解決するための手段】本発明の半導体集積回路
装置は、一導電型半導体基板の一主面に形成して隣接す
る第1および第2の素子形成領域のそれぞれを素子分離
するフィールド絶縁膜と、前記フィールド絶縁膜の下部
に設けた一導電型のガードリング層と、前記第1の素子
形成領域の前記半導体基板の表面に形成した逆導電型の
深い低不純物濃度拡散層および前記低不純物濃度拡散層
の上部に形成し且つ前記ガードリング層と隣接する浅い
高不純物濃度拡散層からなる2重拡散層構造と、前記第
2の素子形成領域の前記半導体基板の表面に形成した一
導電型の高不純物濃度拡散層とを有する。
A semiconductor integrated circuit device according to the present invention is a field insulating device which is formed on one main surface of a semiconductor substrate of one conductivity type and isolates adjacent first and second device forming regions from each other. Film, a guard ring layer of one conductivity type provided under the field insulating film, a deep low impurity concentration diffusion layer of the opposite conductivity type formed on the surface of the semiconductor substrate in the first element formation region, and the low diffusion layer. A double diffusion layer structure formed on the impurity concentration diffusion layer and including a shallow high impurity concentration diffusion layer adjacent to the guard ring layer, and one conductivity formed on the surface of the semiconductor substrate in the second element formation region. Type high impurity concentration diffusion layer.

【0015】[0015]

【実施例】次に、本発明について図面を参照して説明す
る。
Next, the present invention will be described with reference to the drawings.

【0016】図1は本発明の一実施例を示す半導体チッ
プの断面図である。
FIG. 1 is a sectional view of a semiconductor chip showing an embodiment of the present invention.

【0017】図1に示すように、まず、不純物濃度が1
×1014〜1×1016cm-3のp型シリコン基板1の表
面を局所酸化して形成したフィールド酸化膜2の下部
に、不純物濃度が1×1016〜1×1019cm-3で深さ
0.2〜1μmのp型ガードリング層3を形成し、フィ
ールド酸化膜2により区画され且つ隣接する第1および
第2の素子形成領域の表面に膜厚40〜100nmのゲ
ート酸化膜4を形成する。第1の素子形成領域に不純物
濃度が1×1016〜1×1019cm-3で深さ0.3〜2
μmのn- 型拡散層5を形成し、このn- 型拡散層5に
重ねて、不純物濃度が1×1019〜1×1022cm-3
深さ0.1〜0.5μmのn+ 型拡散層6を形成した二
重拡散層を形成する。
As shown in FIG. 1, first, the impurity concentration is 1
Under the field oxide film 2 formed by locally oxidizing the surface of the p-type silicon substrate 1 of × 10 14 to 1 × 10 16 cm −3 , the impurity concentration is 1 × 10 16 to 1 × 10 19 cm −3 . A p-type guard ring layer 3 having a depth of 0.2 to 1 μm is formed, and a gate oxide film 4 having a film thickness of 40 to 100 nm is formed on the surfaces of the first and second element formation regions which are partitioned by the field oxide film 2 and are adjacent to each other. To form. The impurity concentration in the first element formation region is 1 × 10 16 to 1 × 10 19 cm −3 and the depth is 0.3 to 2
An n -type diffusion layer 5 having a thickness of 0.1 μm is formed on the n -type diffusion layer 5 with an impurity concentration of 1 × 10 19 to 1 × 10 22 cm −3 and a depth of 0.1 to 0.5 μm. A double diffusion layer formed with the + type diffusion layer 6 is formed.

【0018】次に、第2の素子形成領域に不純物濃度が
1×1019〜1×1022cm-3で深さ0.2〜1μmの
+ 型拡散層7を形成する。次に、全面に層間絶縁膜8
を堆積して選択的にエッチングし、n+ 型拡散層6およ
びp+ 型拡散層7の上にコンタクトホールを形成し、こ
のコンタクトホールを含む表面に金属膜を堆積してパタ
ーニングし、コンタクトホールのn+ 型拡散層6に接続
するカソード電極9とp+ 型拡散層7に接続するアノー
ド電極10とのそれぞれを形成する。
Next, a p + type diffusion layer 7 having an impurity concentration of 1 × 10 19 to 1 × 10 22 cm -3 and a depth of 0.2 to 1 μm is formed in the second element formation region. Next, the interlayer insulating film 8 is formed on the entire surface.
Is deposited and selectively etched to form a contact hole on the n + type diffusion layer 6 and the p + type diffusion layer 7, and a metal film is deposited and patterned on the surface including the contact hole to form a contact hole. A cathode electrode 9 connected to the n + type diffusion layer 6 and an anode electrode 10 connected to the p + type diffusion layer 7 are formed.

【0019】ここで、図示されてはいないが、カソード
電極9は外部端子に接続されるとともに、保護されるべ
きトランジスタのゲート電極(保護素子が入力回路保護
に用いられるとき)、あるいは保護されるべきトランジ
スタのドレイン(保護素子が出力回路保護に用いられる
とき)等に接続される。
Although not shown, the cathode electrode 9 is connected to an external terminal and is also protected by the gate electrode of the transistor to be protected (when the protection element is used for input circuit protection) or protection. Drain of the power transistor (when the protection element is used for output circuit protection) or the like.

【0020】このように構成された半導体集積回路装置
では、n+ 型拡散層6がp型ガードリング層3と隣接し
ているため、空乏層ののびが制限され、リーチスルー耐
圧が内部トランジスタより低い。よって、特に専用工程
の追加を行うことなく、内部トランジスタより耐圧の低
い保護ダイオードを形成することができる。またn-
拡散層5を通らずに電流が流れるので、熱の発生も抑え
られ、ジャンクション破壊は防止される。
In the semiconductor integrated circuit device having such a structure, since the n + type diffusion layer 6 is adjacent to the p type guard ring layer 3, the extension of the depletion layer is limited and the reach through breakdown voltage is higher than that of the internal transistor. Low. Therefore, it is possible to form a protection diode whose breakdown voltage is lower than that of the internal transistor without adding a special process. Further, since the current flows without passing through the n type diffusion layer 5, heat generation is suppressed and junction breakdown is prevented.

【0021】[0021]

【発明の効果】以上説明したように本発明は、一導電型
半導体基板の表面にフィールド酸化膜で区画された第1
の素子形成領域に形成した低濃度の逆導電型拡散層およ
びその上部に設け且つフィールド酸化膜の下部に設けた
一導電型ガードリング層と隣接された高濃度の逆導電型
拡散層により、高電圧パルスがカソード電極に印加され
た場合の空乏層の広がり方を内部トランジスタの高濃度
の逆導電型拡散層と一導電型ガードリング層が離れてい
る場合に比べて小さくし、リーチスルー耐圧を内部トラ
ンジスタより低くした保護素子を実現できる。実際には
- 型拡散層の不純物濃度が1×1016〜1×1019
-3、深さ0.3〜2μmで、p型ガードリングの不純
物濃度が1×1016〜1×1019cm-3、深さ0.2〜
1μmの場合、内部トランジスタの耐圧が20〜80V
であるのに対して本発明の保護ダイオードの耐圧は2〜
30Vとなる。
As described above, according to the present invention, the first conductive type semiconductor substrate is divided into the first oxide film on the surface thereof by the field oxide film.
Of the low-concentration reverse-conductivity type diffusion layer formed in the element formation region and the high-concentration reverse-conductivity type diffusion layer adjacent to the one-conductivity type guard ring layer provided above the field oxide film and below the field oxide film. The extent of the depletion layer when a voltage pulse is applied to the cathode electrode is made smaller than that in the case where the high-concentration reverse conductivity type diffusion layer of the internal transistor and the one conductivity type guard ring layer are separated, and the reach-through breakdown voltage is reduced. It is possible to realize a protection element that is lower than the internal transistor. Actually, the impurity concentration of the n type diffusion layer is 1 × 10 16 to 1 × 10 19 c.
m −3 , depth 0.3 to 2 μm, impurity concentration of p-type guard ring 1 × 10 16 to 1 × 10 19 cm −3 , depth 0.2 to
In case of 1 μm, the breakdown voltage of the internal transistor is 20-80V
On the other hand, the withstand voltage of the protection diode of the present invention is 2 to
It becomes 30V.

【0022】また、これらの拡散層は、すべてセルフア
ラインで形成できるため、特別の工程を追加することな
く、内部トランジスタと同じ工程で形成できる利点があ
る。
Further, since all of these diffusion layers can be formed by self-alignment, there is an advantage that they can be formed in the same step as the internal transistor without adding a special step.

【0023】また、従来例のMOS型保護素子で必要で
あったゲート電極が省略でき、より小さい占有面積にて
保護素子を形成することができる。しかも、耐圧が内部
トランジスタより低いことから、過大電流が内部トラン
ジスタへ流れることはない。よって、従来例のように大
面積で過大電流を分散させる必要がなくなり、より小さ
い占有面積にて保護素子を形成できる。
Further, the gate electrode required in the conventional MOS type protection element can be omitted, and the protection element can be formed with a smaller occupied area. Moreover, since the breakdown voltage is lower than that of the internal transistor, an overcurrent does not flow to the internal transistor. Therefore, unlike the conventional example, it is not necessary to disperse an excessive current in a large area, and the protection element can be formed with a smaller occupied area.

【0024】さらに、過大電流は高濃度n型拡散層から
p型ガードリング層に流れるため、低濃度n型拡散層を
通らない。よって熱の発生も抑えられ、ジャンクション
破壊が防止される。
Further, since an excessive current flows from the high concentration n type diffusion layer to the p type guard ring layer, it does not pass through the low concentration n type diffusion layer. Therefore, the generation of heat is also suppressed, and junction destruction is prevented.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す半導体チップの断面
図。
FIG. 1 is a sectional view of a semiconductor chip showing an embodiment of the present invention.

【図2】従来の半導体集積回路装置の一例を示す半導体
チップの断面図。
FIG. 2 is a sectional view of a semiconductor chip showing an example of a conventional semiconductor integrated circuit device.

【図3】図2の等価回路を示す図。FIG. 3 is a diagram showing an equivalent circuit of FIG.

【符号の説明】[Explanation of symbols]

1 p型シリコン基板1 2 フィールド酸化膜 3 ガードリング層 4 ゲート酸化膜 5 n- 型拡散層 6 n+ 型拡散層 7 p+ 型拡散層 8 層間絶縁膜 9 カソード電極 10 アノード電極 11 ゲート電極 12 ドレイン電極 13 ソース電極1 p-type silicon substrate 1 2 field oxide film 3 guard ring layer 4 gate oxide film 5 n - type diffusion layer 6 n + type diffusion layer 7 p + type diffusion layer 8 interlayer insulating film 9 cathode electrode 10 anode electrode 11 gate electrode 12 Drain electrode 13 Source electrode

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 一導電型半導体基板の一主面に形成して
隣接する第1および第2の素子形成領域のそれぞれを素
子分離するフィールド絶縁膜と、前記フィールド絶縁膜
の下部に設けた一導電型のガードリング層と、前記第1
の素子形成領域の前記半導体基板の表面に形成した逆導
電型の深い低不純物濃度拡散層および前記低不純物濃度
拡散層の上部に形成し且つ前記ガードリング層と隣接す
る浅い高不純物濃度拡散層からなる2重拡散層構造と、
前記第2の素子形成領域の前記半導体基板の表面に形成
した一導電型の高不純物濃度拡散層とを有することを特
徴とする半導体集積回路装置。
1. A field insulating film formed on one main surface of a one-conductivity-type semiconductor substrate to isolate adjacent first and second element forming regions from each other, and a field insulating film provided below the field insulating film. A conductive guard ring layer, and the first
From the deep low impurity concentration diffusion layer of the opposite conductivity type formed on the surface of the semiconductor substrate in the element formation region and the shallow high impurity concentration diffusion layer formed above the low impurity concentration diffusion layer and adjacent to the guard ring layer. And a double diffusion layer structure
A semiconductor integrated circuit device, comprising: one conductivity type high impurity concentration diffusion layer formed on the surface of the semiconductor substrate in the second element formation region.
JP7124881A 1995-05-24 1995-05-24 Semiconductor integrated circuit device Expired - Lifetime JP2870450B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7124881A JP2870450B2 (en) 1995-05-24 1995-05-24 Semiconductor integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7124881A JP2870450B2 (en) 1995-05-24 1995-05-24 Semiconductor integrated circuit device

Publications (2)

Publication Number Publication Date
JPH08316421A true JPH08316421A (en) 1996-11-29
JP2870450B2 JP2870450B2 (en) 1999-03-17

Family

ID=14896412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7124881A Expired - Lifetime JP2870450B2 (en) 1995-05-24 1995-05-24 Semiconductor integrated circuit device

Country Status (1)

Country Link
JP (1) JP2870450B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5880501A (en) * 1997-02-26 1999-03-09 Nec Corporation Semiconductor integrated circuit and manufacturing method of the same
US7012308B2 (en) 2003-07-17 2006-03-14 Oki Electric Industry Co., Ltd. Diode

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53108380A (en) * 1977-03-04 1978-09-21 Hitachi Ltd Semiconductor device
JPS61218164A (en) * 1985-03-25 1986-09-27 Hitachi Ltd Semiconductor integrated circuit device
JPH0453169A (en) * 1990-06-18 1992-02-20 Nec Corp Semiconductor protective device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53108380A (en) * 1977-03-04 1978-09-21 Hitachi Ltd Semiconductor device
JPS61218164A (en) * 1985-03-25 1986-09-27 Hitachi Ltd Semiconductor integrated circuit device
JPH0453169A (en) * 1990-06-18 1992-02-20 Nec Corp Semiconductor protective device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5880501A (en) * 1997-02-26 1999-03-09 Nec Corporation Semiconductor integrated circuit and manufacturing method of the same
US7012308B2 (en) 2003-07-17 2006-03-14 Oki Electric Industry Co., Ltd. Diode

Also Published As

Publication number Publication date
JP2870450B2 (en) 1999-03-17

Similar Documents

Publication Publication Date Title
KR100976410B1 (en) Electrostatic Discharge Device
US5751042A (en) Internal ESD protection circuit for semiconductor devices
JPH02275675A (en) Mos type semiconductor device
KR20050011681A (en) Semiconductor integrated circuit
JP3169844B2 (en) Semiconductor device
US5880501A (en) Semiconductor integrated circuit and manufacturing method of the same
JP3033548B2 (en) Semiconductor device, electrostatic protection element, and dielectric breakdown prevention method
JP2870450B2 (en) Semiconductor integrated circuit device
US5122855A (en) Semiconductor device with latch-up prevention structure
JP2801665B2 (en) Input protection circuit device
JP3425574B2 (en) I / O protection device for semiconductor integrated circuit
JP2611639B2 (en) Semiconductor device
JPH1012746A (en) Semiconductor device
JP4136372B2 (en) Semiconductor device
JPS61174672A (en) Vmos transistor
JPH01189955A (en) Semiconductor device
JP2743814B2 (en) Semiconductor device
JP2546179B2 (en) Semiconductor device
JP2001223277A (en) I/o protective circuit
JPH10223846A (en) I/o protective circuit
KR890004426B1 (en) Cmos input protection circuit
JPH0496269A (en) Cmos semiconductor device
JPS63244876A (en) Complementary mis type semiconductor device and manufacture thereof
JPH0677490A (en) Vertical field-effect transistor
JPH0964288A (en) Semiconductor integrated circuit device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19981201

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080108

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090108

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100108

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110108

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110108

Year of fee payment: 12

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110108

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110108

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120108

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140108

Year of fee payment: 15

EXPY Cancellation because of completion of term