JPH0677490A - Vertical field-effect transistor - Google Patents

Vertical field-effect transistor

Info

Publication number
JPH0677490A
JPH0677490A JP4226806A JP22680692A JPH0677490A JP H0677490 A JPH0677490 A JP H0677490A JP 4226806 A JP4226806 A JP 4226806A JP 22680692 A JP22680692 A JP 22680692A JP H0677490 A JPH0677490 A JP H0677490A
Authority
JP
Japan
Prior art keywords
source
source region
parasitic
contact
semiconductor substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4226806A
Other languages
Japanese (ja)
Inventor
Hiroshi Yanagawa
洋 柳川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Semiconductor Manufacturing Co Ltd
Kansai Nippon Electric Co Ltd
Original Assignee
Renesas Semiconductor Manufacturing Co Ltd
Kansai Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Semiconductor Manufacturing Co Ltd, Kansai Nippon Electric Co Ltd filed Critical Renesas Semiconductor Manufacturing Co Ltd
Priority to JP4226806A priority Critical patent/JPH0677490A/en
Publication of JPH0677490A publication Critical patent/JPH0677490A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/52Multiple coating or impregnating multiple coating or impregnating with the same composition or with compositions only differing in the concentration of the constituents, is classified as single coating or impregnation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41766Source or drain electrodes for field effect devices with at least part of the source or drain electrode having contact below the semiconductor surface, e.g. the source or drain electrode formed at least partially in a groove or with inclusions of conductor inside the semiconductor

Landscapes

  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

PURPOSE:To reduce the base resistance of a bipolar transistor which is parasitic on a vertical-type MOSFET and to prevent that the transistor is broken down when an electric current is concentrated by a structure wherein a source elec trode comes into contact with a source region at the side face of the source region. CONSTITUTION:A source aluminum electrode 1 comes into contact with a source region 5 at this side face by a structure wherein, after an interlayer film 2 has been etched selectively, a semiconductor substrate 7 is etched to be deeper than the source region 5. The base resistance of an NPN bipolar transistor which is parasitic on a vertical-type MOSFET can be reduced, only a very small electric current flows, the parasitic NPN bipolar transistor is not turned on and the title transistor is not broken down when an electric current is concentrated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は縦型電界効果トランジ
スタ(以下縦型MOSFETという)の構造に関し、特
に2重拡散構造を有する縦型MOSFETの構造に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the structure of a vertical field effect transistor (hereinafter referred to as vertical MOSFET), and more particularly to the structure of a vertical MOSFET having a double diffusion structure.

【0002】[0002]

【従来の技術】従来、この種の縦型MOSFETの構造
はNチャンネルを例にとると、図3に示すように、ドレ
インとしてえ作用するN- 型半導体基板7の表面にベー
スとなるP型拡散層6とその内部にソースと等なるN+
型拡散層5とをゲートポリシリコン3をマスクに2重拡
散構造により形成し、ソースアルミ電極1とソース領域
+ 型拡散層5とのコンタクトはN- 型半導体基板7の
表面でとる構造なっていた。
Conventionally, taking the structure N-channel of this type of vertical MOSFET as an example, as shown in FIG. 3, it acts example as a drain N - P-type as a base on the surface of the type semiconductor substrate 7 Diffusion layer 6 and N + inside the diffusion layer 6 to serve as a source
The type diffusion layer 5 is formed by a double diffusion structure using the gate polysilicon 3 as a mask, and the source aluminum electrode 1 and the source region N + type diffusion layer 5 are in contact with each other on the surface of the N type semiconductor substrate 7. Was there.

【0003】図4に示す断面図を用いて、製法について
説明する。
The manufacturing method will be described with reference to the sectional view shown in FIG.

【0004】一導電型(例えばN- 型)半導体基板7に
ゲート酸化膜4、その上に例えばポリシリコン膜を形成
し、それをパターンニングして、ポリシリコンでなるゲ
ート3を形成する。ゲートポリシリコン3をマスクに他
導型(この場合P型)の不純物を注入し、熱拡散を適用
してベース層6を形成する(図4−A参照)。
A gate oxide film 4 is formed on a semiconductor substrate 7 of one conductivity type (for example, N type), a polysilicon film is formed on the gate oxide film 4, and the gate oxide film 4 is patterned to form a gate 3 made of polysilicon. Using the gate polysilicon 3 as a mask, another conductivity type (P type in this case) impurities are implanted, and thermal diffusion is applied to form the base layer 6 (see FIG. 4-A).

【0005】次にベース層6の表面の一部に例えばホト
レジスト等によりマスク21を形成し、ゲートポリシリ
コン3とマスク21とをマスクに一導電型(この場合N
型)の不純物を注入し、熱処理を行ってソース層5を形
成する(図4−B参照)。次に表面に酸化膜よりなる層
間膜2を形成し、ホトレジストによるマスク(図示せ
ず)を利用してコンタクトホールを形成する(図4−C
参照)。
Next, a mask 21 is formed on a part of the surface of the base layer 6 with, for example, a photoresist, and the gate polysilicon 3 and the mask 21 are used as masks to form one conductivity type (N in this case).
(Type) impurities are implanted and heat treatment is performed to form the source layer 5 (see FIG. 4-B). Next, an interlayer film 2 made of an oxide film is formed on the surface, and contact holes are formed using a mask (not shown) made of photoresist (FIG. 4-C).
reference).

【0006】その後、アルミによりソース電極1を形成
して、図3に示す縦型MOSFETが完成する。
After that, the source electrode 1 is formed of aluminum to complete the vertical MOSFET shown in FIG.

【0007】[0007]

【発明が解決しようとする課題】ところで、上記の従来
の縦型MOSFETは、ソースアルミ電極とソース領域
+ 型各散層とのコンタクトをN- 型半導体基板表面で
とる構造となっているので、縦型MOSFETに寄生す
るNPNバイポーラトランジスタ16のベース抵抗17
を、低減することができないため異常時に微小の電流が
ベース抵抗17に流れるとベース電位が上昇し、寄生N
PNバイポーラトランジスタ16がオンし、電流集中が
起き破壊に至るという欠点があった。
By the way, the above-mentioned conventional vertical MOSFET has a structure in which the source aluminum electrode is in contact with each source region N + type diffusion layer on the surface of the N type semiconductor substrate. , The base resistance 17 of the NPN bipolar transistor 16 parasitic on the vertical MOSFET
Since it cannot be reduced, if a minute current flows to the base resistor 17 at the time of abnormality, the base potential rises, and the parasitic N
There is a drawback that the PN bipolar transistor 16 is turned on, current concentration occurs and it is destroyed.

【0008】[0008]

【課題を解決するための手段】この発明の縦型MOSF
ETは、ドレインとして作用する半導体基板の表面にベ
ース領域とその内部にソース領域を形成したものにおい
て、半導体基板の表面をソース領域より深く選択的にエ
ッチングして、ソース領域の側面とコンタクトを取った
ソース電極を有することを特徴とする。
A vertical MOSF of the present invention.
In ET, a base region and a source region are formed on the surface of a semiconductor substrate acting as a drain, and the surface of the semiconductor substrate is selectively etched deeper than the source region to make contact with the side surface of the source region. It is characterized by having a source electrode.

【0009】[0009]

【作用】上記の構造によると、ベースとなる拡散層とソ
ース電極のコンタクトが大きくとれ、縦型MOSFET
に寄生するNPNバイポーラトランジスタのベース抵抗
を小さくすることができる。そのため微小の電流が流れ
ただけでは寄生NPNバイポーラトランジスタはオンせ
ず、破壊しない。
According to the above structure, the contact between the diffusion layer serving as the base and the source electrode can be made large, and the vertical MOSFET
It is possible to reduce the base resistance of the NPN bipolar transistor parasitic on the. Therefore, the parasitic NPN bipolar transistor does not turn on and does not break even if a minute current flows.

【0010】[0010]

【実施例】以下、この発明について図面を参照して説明
する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the drawings.

【0011】図1は、この発明の一実施例のNチャンネ
ル縦型MOSFETの断面図である。
FIG. 1 is a sectional view of an N-channel vertical MOSFET according to an embodiment of the present invention.

【0012】図において7はN- 型半導体基板、6はP
型拡散層からなるベース領域、5はN+ 型拡散層でなる
ソース領域、4はゲート酸化膜、3はゲートポリシリコ
ン、2は層間膜、1はソースアルミ電極である。
In the figure, 7 is an N -- type semiconductor substrate, and 6 is P.
A base region made of a type diffusion layer, 5 a source region made of an N + type diffusion layer, 4 a gate oxide film, 3 a gate polysilicon, 2 an interlayer film, 1 a source aluminum electrode.

【0013】1のソースアルミ電極と5のソース領域と
のコンタクトは、2の層間膜を選択的にエッチングした
後、7の半導体基板を5のソース領域より深くエッチン
グして側面でコンタクトをとる構造とする。この実施例
によれば縦型MOSFETに寄生するNPNバイポーラ
トランジスタのベース抵抗を小さくすることができ、微
小の電流が流れただけでは寄生NPNバイポーラトラン
ジスタはオンせず、電流集中による破壊は起こらない。
The contact between the source aluminum electrode 1 and the source region 5 is such that the interlayer film 2 is selectively etched and then the semiconductor substrate 7 is etched deeper than the source region 5 to make contact on the side surface. And According to this embodiment, the base resistance of the NPN bipolar transistor parasitic on the vertical MOSFET can be reduced, and the parasitic NPN bipolar transistor does not turn on even if a minute current flows, and the breakdown due to current concentration does not occur.

【0014】従来5のソース領域を形成する時行ってい
たマスク形成のパターンニングが不要となる。さらに、
これによりパターンの微細化が図れる素子構造となる。
The patterning for mask formation, which has been conventionally performed when forming the source region 5, is not required. further,
As a result, the device structure has a finer pattern.

【0015】図2を用い製法について説明する。The manufacturing method will be described with reference to FIG.

【0016】従来例の製法と図4−Aの工程までは同じ
である。ベース層6を形成後、同様にゲートポリシリコ
ン3をマスクにN型不純物を注入し、熱処理を行ってソ
ース層5を形成する。この場合従来の(図4−Bにおけ
る)マスク21を必要としない(図2−A参照)。
The manufacturing method of the conventional example and the process of FIG. 4-A are the same. After forming the base layer 6, N-type impurities are similarly implanted using the gate polysilicon 3 as a mask and heat treatment is performed to form the source layer 5. In this case, the conventional mask 21 (in FIG. 4-B) is not required (see FIG. 2-A).

【0017】次に従来例と同様(図4−Cと同様)層間
膜2を形成して、コンタクトホールを形成する(図2−
B参照)。
Next, an interlayer film 2 is formed similarly to the conventional example (similar to FIG. 4-C) to form a contact hole (FIG. 2-
(See B).

【0018】次に層間膜(又はそのパターンニングに用
いたマスク)をマスクに半導体(この場合シリコン)基
板をソース層5より若干深くエッチングする。
Next, the semiconductor (silicon in this case) substrate is etched slightly deeper than the source layer 5 by using the interlayer film (or the mask used for its patterning) as a mask.

【0019】なお、必要により、エッチングして表面を
現す部分のベース層にベース層と同型の高濃度層8を形
成することもできる。
If necessary, a high-concentration layer 8 of the same type as the base layer can be formed on the base layer at the surface exposed by etching.

【0020】高濃度層8はどの段階で形成してもよい。
高濃度層8の深さは例えばベース層6を越える深いもの
であってもよい(図示せず)。
The high concentration layer 8 may be formed at any stage.
The depth of the high concentration layer 8 may be deeper than the base layer 6 (not shown).

【0021】その後図1のようにソース電極をアルミに
より形成して本発明の縦型MOSFETとして完成す
る。
After that, the source electrode is formed of aluminum as shown in FIG. 1 to complete the vertical MOSFET of the present invention.

【0022】[0022]

【実施例2】第2の実施例として、だい1の実施例をP
チャンネルに応用することもできる(図示せず)。
[Embodiment 2] As a second embodiment, P
It can also be applied to channels (not shown).

【0023】[0023]

【発明の効果】以上説明したように、この発明はソース
電極とソース領域おのコンタクトをソース領域の側面で
とる構造にしたことにより、縦型MOSFETに寄生す
るバイポーラトランジスタのベース抵抗を小さくするこ
とができ、微小の電流が流れただけでは寄生バイポーラ
トランジスタはオンせず電流集中による破壊に至らな
い。また、リース電極とベース領域のコンタクトは、半
導体基板をソース領域より深くエッチングするのでソー
ス領域を形成する際のパターンニングが不要となる。さ
らにパターンニングが不要となるため素子構造の微細化
が図れるという効果がある。
As described above, according to the present invention, the contact between the source electrode and the source region is formed on the side surface of the source region, thereby reducing the base resistance of the bipolar transistor parasitic on the vertical MOSFET. The parasitic bipolar transistor does not turn on and a breakdown due to current concentration does not occur even if a minute current flows. Further, since the contact between the lease electrode and the base region is etched deeper than the source region, the patterning when forming the source region is unnecessary. Furthermore, since patterning is unnecessary, there is an effect that the element structure can be miniaturized.

【図面の簡単な説明】[Brief description of drawings]

【図1】 この発明の縦型MOSFETの断面図であ
る。
FIG. 1 is a sectional view of a vertical MOSFET of the present invention.

【図2】 その製法を説明する断面図である。FIG. 2 is a cross-sectional view explaining the manufacturing method.

【図3】 従来の縦型MOSFETの断面図である。FIG. 3 is a sectional view of a conventional vertical MOSFET.

【図4】 その製法を説明する断面図である。FIG. 4 is a cross-sectional view illustrating the manufacturing method.

【符号の説明】[Explanation of symbols]

1 ソースアルミ電極 2 層間膜 3 ゲートポリシリコン 4 ゲート酸化膜 5 N+ 型拡散層(ソース) 6 P型拡散層(ベース) 7 N- 型半導体基板1 Source Aluminum Electrode 2 Interlayer Film 3 Gate Polysilicon 4 Gate Oxide Film 5 N + Type Diffusion Layer (Source) 6 P Type Diffusion Layer (Base) 7 N Type Semiconductor Substrate

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】ドレインとして作用する半導体基板の表面
にベース領域と、その内部にソース領域とを形関した電
界効果トランジスタにおいて、前記半導体基板のソース
領域の一部をエッチングしてソース電極とソース領域と
のコンタクトをソース領域の側面でとったことを特徴と
する縦型電界効果トランジスタ。
1. In a field effect transistor having a base region on a surface of a semiconductor substrate acting as a drain and a source region therein, a part of a source region of the semiconductor substrate is etched to form a source electrode and a source. A vertical field effect transistor characterized in that a contact with the region is made on the side surface of the source region.
【請求項2】ドレインとして作用する半導体基板の表面
にゲート酸化膜を介して形成したゲートとゲートにセル
ファライメントに形成したベース領域とその内部にゲー
トにセルファライメントに形成したソース領域とを有す
る縦型電界効果トランジスタにおいて、前記ソース領域
の一部がその深さをこえて除去されて、その部分にてベ
ース領域とソース領域の側面とにコンタクトするソース
電極を有することを特徴とする縦型電界効果トランジス
タ。
2. A vertical structure having a gate formed on a surface of a semiconductor substrate acting as a drain via a gate oxide film, a base region formed on the gate in a self-alignment, and a source region formed inside the gate in the self-alignment. Type field effect transistor, characterized in that a part of the source region is removed beyond its depth, and a source electrode is in contact with the base region and the side surface of the source region at the part. Effect transistor.
JP4226806A 1992-08-26 1992-08-26 Vertical field-effect transistor Pending JPH0677490A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4226806A JPH0677490A (en) 1992-08-26 1992-08-26 Vertical field-effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4226806A JPH0677490A (en) 1992-08-26 1992-08-26 Vertical field-effect transistor

Publications (1)

Publication Number Publication Date
JPH0677490A true JPH0677490A (en) 1994-03-18

Family

ID=16850901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4226806A Pending JPH0677490A (en) 1992-08-26 1992-08-26 Vertical field-effect transistor

Country Status (1)

Country Link
JP (1) JPH0677490A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105762176A (en) * 2016-04-28 2016-07-13 电子科技大学 Silicon carbide mosfet device and manufacturing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105762176A (en) * 2016-04-28 2016-07-13 电子科技大学 Silicon carbide mosfet device and manufacturing method thereof
CN105762176B (en) * 2016-04-28 2018-11-09 电子科技大学 Silicon carbide MOSFET device and preparation method thereof

Similar Documents

Publication Publication Date Title
KR930000606B1 (en) Manufacturing method of conductivity modulating typed mosfet
JPH01128568A (en) Semiconductor device
JP4477197B2 (en) Manufacturing method of semiconductor device
JPH0677490A (en) Vertical field-effect transistor
JPH11251590A (en) High breakdown voltage semiconductor device
JPS62229977A (en) Manufacture of conduction-modulation mosfet
JP3105237B2 (en) Method for manufacturing DMOS type semiconductor device
JP2002170890A (en) Semiconductor device
JPH11135783A (en) Mos transistor and manufacture thereof
JP2718371B2 (en) Semiconductor device
JPS6016469A (en) Manufacture of mis semiconductor device
JP2722415B2 (en) Method for manufacturing semiconductor device
JPH02296342A (en) Manufacture of mosfet
JPS62133763A (en) Mos transistor
JPH04314365A (en) Mos type transistor
JPH0243740A (en) Manufacture of mos semiconductor element
KR940006673B1 (en) Semiconductor device and manufacturing method thereof
JPH0349236A (en) Manufacture of mos transistor
JPH08316421A (en) Semiconductor integrated circuit device
JP2007184360A (en) Semiconductor device, and method of manufacturing same
JPS6194371A (en) Semiconductor device
JPH04115537A (en) Manufacture of semiconductor device
JP2003273351A (en) Semiconductor device and method for manufacturing the same
JP2001284585A (en) Field effect transistor
JPH03155164A (en) Semiconductor device