JP2743814B2 - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JP2743814B2
JP2743814B2 JP3067594A JP3067594A JP2743814B2 JP 2743814 B2 JP2743814 B2 JP 2743814B2 JP 3067594 A JP3067594 A JP 3067594A JP 3067594 A JP3067594 A JP 3067594A JP 2743814 B2 JP2743814 B2 JP 2743814B2
Authority
JP
Japan
Prior art keywords
type region
type
voltage
gate
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3067594A
Other languages
Japanese (ja)
Other versions
JPH07240510A (en
Inventor
高雄 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP3067594A priority Critical patent/JP2743814B2/en
Publication of JPH07240510A publication Critical patent/JPH07240510A/en
Application granted granted Critical
Publication of JP2743814B2 publication Critical patent/JP2743814B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Thyristors (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は半導体装置に関し、特に
静電破壊防止用保護素子(以下保護素子と記す)に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device, and more particularly to a protection element for preventing electrostatic breakdown (hereinafter referred to as a protection element).

【0002】[0002]

【従来の技術】静電気等による高電圧が半導体集積回路
の入出力端子に印加された際に半導体集積回路に内蔵さ
れた保護回路だけでは静電破壊を防ぐことができず、内
部回路が破壊されることがある。これを防止するために
半導体集積回路の入出力端子と接地端子間に定電圧ダイ
オードを保護素子とする半導体装置を外付けで接続し、
保護機能を強化する方法が採用されている。
2. Description of the Related Art When a high voltage due to static electricity or the like is applied to an input / output terminal of a semiconductor integrated circuit, the protection circuit built in the semiconductor integrated circuit alone cannot prevent electrostatic breakdown. Sometimes. To prevent this, externally connect a semiconductor device with a constant voltage diode as a protection element between the input / output terminal and the ground terminal of the semiconductor integrated circuit,
A method of strengthening the protection function has been adopted.

【0003】この従来の半導体装置の第1の例は、図5
の断面図に示すように、N型シリコン基板21の上面に
形成したP型のガードリング22と、ガードリング22
を含むN型シリコン基板21の表面に設けた酸化シリコ
ン膜24を選択的にエッチングしてガードリング22で
囲まれた領域を露出させる開口部のN型シリコン基板2
1に所望の降伏電圧を得る高濃度のP型不純物を導入し
て形成したP+ 型拡散層23と、開口部のP+ 型拡散層
23上に形成してP+ 型拡散層23と接続するアノード
電極25と、N型シリコン基板21の下面に形成したカ
ソード電極26とを有して構成される。
A first example of this conventional semiconductor device is shown in FIG.
As shown in the sectional view of FIG. 1, a P-type guard ring 22 formed on the upper surface of an N-type silicon substrate 21 and a guard ring 22 are formed.
The silicon oxide film 24 provided on the surface of the N-type silicon substrate 21 including the silicon oxide film is selectively etched to expose an area surrounded by the guard ring 22.
Connected to the P + -type diffusion layer 23 formed by introducing a high concentration P-type impurities to achieve a desired breakdown voltage is 1, and is formed on the P + -type diffusion layer 23 of the opening P + -type diffusion layer 23 And a cathode electrode 26 formed on the lower surface of the N-type silicon substrate 21.

【0004】また、従来の半導体装置の第2の例は、図
6の断面図に示すように、第1の例のP+ 型拡散層23
の代りに開口部のN型シリコン基板1の表面に所望の降
伏電圧を得る高濃度のP型不純物を含むP+ 型多結晶シ
リコン膜27を有する以外は第1の例と同様の構成を有
している。
A second example of a conventional semiconductor device, as shown in a sectional view of FIG. 6, is a P + type diffusion layer 23 of the first example.
Instead of having a P + -type polycrystalline silicon film 27 containing a high-concentration P-type impurity for obtaining a desired breakdown voltage on the surface of the N-type silicon substrate 1 in the opening, the structure is the same as that of the first example. doing.

【0005】このように構成された半導体装置(定電圧
ダイオード)の降伏電圧は、接続している半導体集積回
路にサージ電流が流れ込まないように半導体集積回路の
耐圧電圧より低く、且つ半導体集積回路の入出力信号波
形を乱さないように入出力信号電圧より高く設定しなけ
ればならない。
The breakdown voltage of the semiconductor device (constant voltage diode) thus configured is lower than the withstand voltage of the semiconductor integrated circuit so that a surge current does not flow into the connected semiconductor integrated circuit, and the breakdown voltage of the semiconductor integrated circuit. The voltage must be set higher than the input / output signal voltage so as not to disturb the input / output signal waveform.

【0006】[0006]

【発明が解決しようとする課題】最近の半導体集積回路
の高集積化(パターンの微細化)および低消費電力化の
促進に伴い、半導体集積回路の耐圧および動作電圧が低
下する傾向にある。
With the recent trend toward higher integration (miniaturization of patterns) and lower power consumption of semiconductor integrated circuits, the breakdown voltage and operating voltage of the semiconductor integrated circuits tend to decrease.

【0007】この従来の半導体装置は、降伏電圧が約5
V以下になるとツェナーブレークダウンが支配的にな
り、漏れ電流と動作抵抗が非常に大きくなるため、半導
体集積回路の動作電圧(入出力信号電圧)が5Vより小
さい製品(例えば3V動作の半導体集積回路)に接続し
て保護素子として使用すると、漏れ電流が大きくなり、
入出力信号波形が乱れて半導体集積回路が正常に動作し
なくなるという問題点があった。
This conventional semiconductor device has a breakdown voltage of about 5
When the voltage is lower than V, the Zener breakdown becomes dominant, and the leakage current and the operating resistance become extremely large. Therefore, a product in which the operating voltage (input / output signal voltage) of the semiconductor integrated circuit is smaller than 5 V (for example, a semiconductor integrated circuit operating at 3 V) ) And used as a protection element, the leakage current increases,
There is a problem that the input / output signal waveform is disturbed and the semiconductor integrated circuit does not operate normally.

【0008】本発明の目的は、耐圧および動作電圧の低
い半導体集積回路に適した静電保護機能を有する半導体
装置を提供することにある。
An object of the present invention is to provide a semiconductor device having an electrostatic protection function suitable for a semiconductor integrated circuit having a low withstand voltage and low operating voltage.

【0009】[0009]

【課題を解決するための手段】本発明の半導体装置は、
N型半導体基板の下面に設けた第1のP型領域をアノー
ドとし、前記第1のP型領域に対向する前記N型半導体
基板の上面に形成した第2のP型領域をゲートとし、前
記第2のP型領域内に形成した第1のN型領域をカソー
ドとするサイリスタ部と、前記サイリスタ部のゲートを
兼ねる前記第2のP型領域をドレインとし、前記第2の
P型領域に近接する前記N型半導体基板の上面に形成し
且つ前記サイリスタ部のアノードと電気的に接続した第
3のP型領域をソースとし、前記第2および第3のP型
領域の間の前記N型半導体基板上にゲート絶縁膜を介し
て形成し且つ前記サイリスタ部のカソードと電気的に接
続した電極をゲート電極とするMOSトランジスタ部と
を有する。
According to the present invention, there is provided a semiconductor device comprising:
A first P-type region provided on the lower surface of the N-type semiconductor substrate as an anode, a second P-type region formed on the upper surface of the N-type semiconductor substrate facing the first P-type region as a gate, A thyristor portion having a first N-type region formed in a second P-type region as a cathode, and a second P-type region serving as a gate of the thyristor portion serving as a drain; A third P-type region formed on the upper surface of the adjacent N-type semiconductor substrate and electrically connected to the anode of the thyristor portion is used as a source, and the N-type region between the second and third P-type regions is provided. A MOS transistor portion formed on a semiconductor substrate via a gate insulating film and having an electrode electrically connected to a cathode of the thyristor portion as a gate electrode;

【0010】[0010]

【実施例】次に、本発明の実施例について図面を参照し
て説明する。
Next, embodiments of the present invention will be described with reference to the drawings.

【0011】図1は本発明の第1の実施例を示す半導体
チップの断面図である。
FIG. 1 is a sectional view of a semiconductor chip showing a first embodiment of the present invention.

【0012】図1に示すように、N- 型シリコン基板1
の上面および下面を熱酸化して形成した酸化膜をそれぞ
れ選択的にエッチングして第1の開口部を設け、酸化膜
をマスクとして第1の開口部のN- 型シリコン基板1の
表面にホウ素イオンを加速エネルギー100keV、ド
ーズ量1×1014〜1×1015cm-2でイオン注入して
温度1140℃3時間の熱処理で押込み、N- 型シリコ
ン基板1の下面のP型領域4と、P型領域4に対向する
上面のP型領域2と、P型領域2の外周に近接するP型
領域3のそれぞれを形成する。次に、第1の開口部を熱
酸化膜で被膜した後、酸化膜を選択的にエッチングして
第2の開口部を形成し、第2の開口部のN- 型シリコン
基板1の表面にPOCl3 ガスを用いた熱拡散によりリ
ンを導入し、1000℃2時間の熱処理で押込み、上面
のP型領域2の内側表面のN+ 型領域5とP型領域3の
外周に接するオーミックコンタクト用のN+ 型領域6と
下面のP型領域4の外周に接するオーミックコンタクト
用のN+ 型領域7のそれぞれを形成する。
As shown in FIG. 1, an N - type silicon substrate 1
An oxide film formed by thermally oxidizing an upper surface and a lower surface of the substrate is selectively etched to form a first opening, and the oxide film is used as a mask to form boron on the surface of the N -type silicon substrate 1 in the first opening. Ions are implanted at an acceleration energy of 100 keV and at a dose of 1 × 10 14 to 1 × 10 15 cm −2 and are pressed in by a heat treatment at a temperature of 1140 ° C. for 3 hours, and a P-type region 4 on the lower surface of the N -type silicon substrate 1; The P-type region 2 on the upper surface facing the P-type region 4 and the P-type region 3 near the outer periphery of the P-type region 2 are formed. Next, after the first opening is coated with a thermal oxide film, the oxide film is selectively etched to form a second opening, and the second opening is formed on the surface of the N type silicon substrate 1. Phosphorus is introduced by thermal diffusion using POCl 3 gas, and is pushed in by a heat treatment at 1000 ° C. for 2 hours to form an ohmic contact in contact with the N + type region 5 on the inner surface of the P type region 2 on the upper surface and the outer periphery of the P type region 3. Of the N + -type region 6 and the N + -type region 7 for the ohmic contact in contact with the outer periphery of the P-type region 4 on the lower surface.

【0013】次に、上面の酸化膜を選択的にエッチング
してP型領域2とP型領域3との間のN- 型シリコン基
板1の表面を露出させた後熱酸化してゲート酸化膜8を
形成し、ゲート酸化膜8を通してチャネル領域にしきい
値電圧VT を調整する不純物をイオン注入する。次に、
上面の酸化膜を選択的にエッチングしてN+ 型領域5の
上面、およびP型領域3の一部とN+ 型領域6とを含む
上面のそれぞれにコンタクトホールを形成し、これらコ
ンタクトホールのN+ 型領域5に接続し且つゲート酸化
膜8の上に延在してゲート電極を兼ねる電極9と、P型
領域3およびN+ 型領域6に共通に接続する電極10と
を形成する。次に、下面の酸化膜を除去しP型領域4お
よびN+ 型領域7に共通に接続する電極11を形成す
る。
[0013] Next, N between the P-type region 2 and the P-type region 3 by selectively etching the oxide film on the upper surface - thermal oxidation a gate oxide film after exposing the surface of the type silicon substrate 1 8 is formed, an impurity for adjusting the threshold voltage V T to the channel region is ion-implanted through the gate oxide film 8. next,
The upper surface of the N + -type region 5 an oxide film on the upper surface is selectively etched, and a contact hole is formed on each of the upper surfaces including the portion and the N + -type region 6 of a P-type region 3, the contact holes An electrode 9 connected to the N + type region 5 and extending on the gate oxide film 8 and also serving as a gate electrode, and an electrode 10 commonly connected to the P type region 3 and the N + type region 6 are formed. Next, the oxide film on the lower surface is removed, and an electrode 11 commonly connected to the P-type region 4 and the N + -type region 7 is formed.

【0014】ここで、P型領域4(アノード),N-
シリコン基板1,P型領域2(ゲート),N+ 型領域5
(カソード)からなるサイリスタ部と、このサイリスタ
部のカソードに接続するゲート酸化膜8上の電極9をゲ
ート電極とし、サイリスタ部のゲートを兼ねるP型領域
2をドレインとし、電極10,N+ 型領域6,N- 型シ
リコン基板1,N+ 型領域7,電極11を順次経由して
サイリスタ部のアノードに接続するP型領域3をソース
とするMOSトランジスタ部とを有し、図2(a)に示
すような等価回路の保護素子が構成される。この保護素
子は、図2(b)に示す電圧−電流特性のように、電極
9に対して電極11に正の電位が印加され、MOSトラ
ンジスタのゲート・ソース間にしきい値電圧を越える電
圧が印加されると、ドレイン電流が流れてサイリスタ部
のゲートに注入されてサイリスタ部が導通するが、一
方、電極9に対して電極11に負の電位が印加された場
合にはサイリスタ部の逆方向耐圧を越える電圧が印加さ
れるまで電流が流れない。
Here, a P-type region 4 (anode), an N - type silicon substrate 1, a P-type region 2 (gate), and an N + -type region 5
A thyristor portion composed of (cathode), an electrode 9 on a gate oxide film 8 connected to the cathode of the thyristor portion as a gate electrode, a P-type region 2 also serving as a gate of the thyristor portion as a drain, and an electrode 10, an N + type A MOS transistor portion having a source as a P-type region 3 connected to an anode of a thyristor portion via a region 6, an N type silicon substrate 1, an N + type region 7, and an electrode 11 in order, A protection element having an equivalent circuit as shown in FIG. In this protection element, as shown in the voltage-current characteristic shown in FIG. 2B, a positive potential is applied to the electrode 11 with respect to the electrode 9, and a voltage exceeding the threshold voltage is applied between the gate and the source of the MOS transistor. When the voltage is applied, a drain current flows and is injected into the gate of the thyristor portion, thereby conducting the thyristor portion. On the other hand, when a negative potential is applied to the electrode 11 with respect to the electrode 9, the reverse direction of the thyristor portion is applied. No current flows until a voltage exceeding the withstand voltage is applied.

【0015】このように構成された半導体装置は、MO
Sトランジスタ部のしきい値電圧でターンオン電圧が決
まるため、漏れ電流が非常に小さいという特性を有して
おり、例えば、3V信号系の半導体集積回路の保護素子
を形成する場合、電界効果トランジスタ部のしきい値電
圧を4V程度にコントロールすれば良い。一例として、
- 型シリコン基板1の抵抗率を0.4Ωcm、ゲート
酸化膜の厚さを120nmとし、チャネル領域にホウ素
イオンを1×1011cm-2のドーズ量でイオン注入した
場合、ターンオン電圧が約4Vになる。この場合の半導
体素子の漏れ電流は、数十nA程度以下となり、従来の
保護素子の漏れ電流が数mA程度であるのに対して大幅
に低減できる。
[0015] The semiconductor device having the above-described structure is an MO.
Since the turn-on voltage is determined by the threshold voltage of the S-transistor section, the leakage current is very small. For example, when forming a protection element of a 3 V signal system semiconductor integrated circuit, the field-effect transistor section May be controlled to about 4V. As an example,
When the resistivity of the N type silicon substrate 1 is 0.4 Ωcm, the thickness of the gate oxide film is 120 nm, and boron ions are implanted into the channel region at a dose of 1 × 10 11 cm −2 , the turn-on voltage is about 4V. In this case, the leakage current of the semiconductor element is about several tens nA or less, which can be greatly reduced compared to the leakage current of the conventional protection element of about several mA.

【0016】本発明の保護素子は、負性抵抗特性を有し
ているので、静電気による大電流が流れた時の端子間電
圧を従来例に比べて小さくできる。そのため、従来例に
比べて静電気に対する耐量が大きくなる。また、保護素
子の端子間電圧と半導体集積回路の耐圧差が従来例に比
べて大きくなるので、確実に静電気を保護素子で吸収す
ることが出来る。
Since the protection element of the present invention has a negative resistance characteristic, the voltage between terminals when a large current flows due to static electricity can be reduced as compared with the conventional example. Therefore, the resistance to static electricity is larger than that of the conventional example. Further, the difference between the voltage between the terminals of the protection element and the breakdown voltage of the semiconductor integrated circuit is larger than in the conventional example, so that the protection element can reliably absorb static electricity.

【0017】P型領域3の内径を80μm程度以下にす
ると、端子間静電容量は10pF程度以下になり、動作
周波数の高い半導体集積回路に対しても静電気保護用と
して使用することが出来る。
When the inner diameter of the P-type region 3 is set to about 80 μm or less, the inter-terminal capacitance becomes about 10 pF or less, and it can be used for protecting a semiconductor integrated circuit having a high operating frequency as well.

【0018】この時の静電気耐量は、容量200pF、
抵抗0Ωの静電破壊試験(日本電子機械工業会規格(E
IAJ)、SD−21個別半導体デバイスの環境及び耐
久性試験方法)で約2KVの耐量が得られる。
At this time, the withstand static electricity has a capacity of 200 pF,
Electrostatic breakdown test of resistance 0 Ω (Electronic Machinery Manufacturers Association Standard (E
IAJ), a method of testing the environment and durability of individual SD-21 individual semiconductor devices) can withstand about 2 KV.

【0019】図3は本発明の第2の実施例を示す半導体
チップの断面図である。
FIG. 3 is a sectional view of a semiconductor chip showing a second embodiment of the present invention.

【0020】図3に示すように、N- 型シリコン基板1
の上面に形成するP型領域2の一部に割り込んでレイア
ウトされ、且つ、電極9に接続されたP型領域12と、
このP型領域12に対向する下面のP型領域4の一部に
割込んでレイアウトされ、且つ電極11に接続されたN
+ 型領域13とを設けた以外は第1の実施例と同様の構
成を有しており、図4(a)の等価回路図に示すよう
に、サイリスタ部のアノードとカソード間に逆方向に接
続されたダイオード部を備えたことで、図4(b)の電
圧−電流特性図に示すように、電極9に対して電極11
に負の電位が印加された場合にダイオード部に順方向電
流が流れ、この保護素子が接続された集積回路の正電位
および負電位のサージ電流による破壊を防止できる。
As shown in FIG. 3, an N - type silicon substrate 1
A P-type region 12 that is laid out by interrupting a part of a P-type region 2 formed on the upper surface of
The N-type semiconductor device is laid out by cutting into a part of the P-type region 4 on the lower surface opposed to the P-type region 12 and connected to the electrode 11.
It has the same configuration as that of the first embodiment except that the + -type region 13 is provided. As shown in the equivalent circuit diagram of FIG. By providing the connected diode portion, as shown in the voltage-current characteristic diagram of FIG.
When a negative potential is applied to the diode, a forward current flows through the diode portion, and the integrated circuit to which the protection element is connected can be prevented from being destroyed by the surge current of the positive potential and the negative potential.

【0021】[0021]

【発明の効果】以上説明したように本発明は、同一半導
体基板上にMOSトランジスタ部とサイリスタ部とを合
成して形成することにより、漏れ電流が小さくターンオ
ン電圧の低い静電気保護用の半導体装置を構成すること
ができ、動作電圧の低い半導体集積回路の入出力信号波
形を乱すことなく、且つ静電気耐量を向上できるという
効果を有する。
As described above, the present invention provides a semiconductor device for static electricity protection having a small leakage current and a low turn-on voltage by synthesizing a MOS transistor portion and a thyristor portion on the same semiconductor substrate. This configuration has the effect of improving the static electricity resistance without disturbing the input / output signal waveform of a semiconductor integrated circuit having a low operating voltage.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施例を示す半導体チップの断
面図。
FIG. 1 is a sectional view of a semiconductor chip showing a first embodiment of the present invention.

【図2】本発明の第1の実施例の等価回路図および電圧
−電流特性を示す図。
FIG. 2 is a diagram showing an equivalent circuit diagram and a voltage-current characteristic of the first embodiment of the present invention.

【図3】本発明の第2の実施例を示す半導体チップの断
面図。
FIG. 3 is a sectional view of a semiconductor chip showing a second embodiment of the present invention.

【図4】本発明の第2の実施例の等価回路図および電圧
−電流特性を示す図。
FIG. 4 shows an equivalent circuit diagram and a voltage-current characteristic of a second embodiment of the present invention.

【図5】従来の半導体装置の第1の例を示す半導体チッ
プの断面図。
FIG. 5 is a sectional view of a semiconductor chip showing a first example of a conventional semiconductor device.

【図6】従来の半導体装置の第2の例を示す半導体チッ
プの断面図。
FIG. 6 is a sectional view of a semiconductor chip showing a second example of a conventional semiconductor device.

【符号の説明】[Explanation of symbols]

1 N- 型シリコン基板 2,3,4,12 P型領域 5,6,7,13 N+ 型領域 8 ゲート酸化膜 9,10,11 電極 21 N型シリコン基板 22 ガードリング 23 P+ 型拡散層 24 酸化シリコン膜 25 アノード電極 26 カソード電極 27 P+ 型多結晶シリコン膜Reference Signs List 1 N - type silicon substrate 2, 3, 4, 12 P-type region 5, 6, 7, 13 N + -type region 8 Gate oxide film 9, 10, 11 Electrode 21 N-type silicon substrate 22 Guard ring 23 P + -type diffusion Layer 24 Silicon oxide film 25 Anode electrode 26 Cathode electrode 27 P + type polycrystalline silicon film

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 N型半導体基板の下面に設けた第1のP
型領域をアノードとし、前記第1のP型領域に対向する
前記N型半導体基板の上面に形成した第2のP型領域を
ゲートとし、前記第2のP型領域内に形成した第1のN
型領域をカソードとするサイリスタ部と、前記サイリス
タ部のゲートを兼ねる前記第2のP型領域をドレインと
し、前記第2のP型領域に近接する前記N型半導体基板
の上面に形成し且つ前記サイリスタ部のアノードと電気
的に接続した第3のP型領域をソースとし、前記第2お
よび第3のP型領域の間の前記N型半導体基板上にゲー
ト絶縁膜を介して形成し且つ前記サイリスタ部のカソー
ドと電気的に接続した電極をゲート電極とするMOSト
ランジスタ部とを有することを特徴とする半導体装置。
A first P provided on a lower surface of an N-type semiconductor substrate.
A second P-type region formed on the upper surface of the N-type semiconductor substrate facing the first P-type region as a gate, and a first P-type region formed in the second P-type region as a gate. N
A thyristor portion having a type region as a cathode, and the second P-type region also serving as a gate of the thyristor portion serving as a drain. A third P-type region electrically connected to the anode of the thyristor portion as a source, formed on the N-type semiconductor substrate between the second and third P-type regions via a gate insulating film; A MOS transistor portion having an electrode electrically connected to the cathode of the thyristor portion as a gate electrode.
【請求項2】 N型半導体基板の上面に形成し且つサイ
リスタ部のカソードと電気的に接続した第4のP型領域
をダイオードのアノードとして前記サイリスタ部のカソ
ードと前記サイリスタ部のアノード間に接続したダイオ
ードを有する請求項1記載の半導体装置。
2. A fourth P-type region formed on an upper surface of an N-type semiconductor substrate and electrically connected to a cathode of the thyristor portion is connected between a cathode of the thyristor portion and an anode of the thyristor portion as an anode of a diode. 2. The semiconductor device according to claim 1, further comprising a diode.
JP3067594A 1994-02-28 1994-02-28 Semiconductor device Expired - Lifetime JP2743814B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3067594A JP2743814B2 (en) 1994-02-28 1994-02-28 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3067594A JP2743814B2 (en) 1994-02-28 1994-02-28 Semiconductor device

Publications (2)

Publication Number Publication Date
JPH07240510A JPH07240510A (en) 1995-09-12
JP2743814B2 true JP2743814B2 (en) 1998-04-22

Family

ID=12310296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3067594A Expired - Lifetime JP2743814B2 (en) 1994-02-28 1994-02-28 Semiconductor device

Country Status (1)

Country Link
JP (1) JP2743814B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4008744B2 (en) 2002-04-19 2007-11-14 株式会社東芝 Semiconductor device
JP3851893B2 (en) 2003-08-27 2006-11-29 株式会社東芝 Semiconductor integrated circuit device

Also Published As

Publication number Publication date
JPH07240510A (en) 1995-09-12

Similar Documents

Publication Publication Date Title
US7715159B2 (en) ESD protection circuit
US6236087B1 (en) SCR cell for electrical overstress protection of electronic circuits
KR101195720B1 (en) Semiconductor integrated circuit device and method of manufacturing the same
US5248892A (en) Semiconductor device provided with a protection circuit
KR0159451B1 (en) Protection circuit for a semiconductor device
CN1983605B (en) Semiconductor integrated circuit device
KR100311578B1 (en) Semiconductor device
JP3573674B2 (en) I / O protection device for semiconductor integrated circuit and its protection method
KR20060050160A (en) Semiconductor integrated circuit device
KR0178980B1 (en) Semiconductor device provided with protection circuit
JP2004281590A (en) Semiconductor device
KR20020052953A (en) Semiconductor integrated circuit device and method for manufacturing the same
JP3217554B2 (en) High voltage semiconductor device
JP2601143B2 (en) Semiconductor device
JP2743814B2 (en) Semiconductor device
JPH05505060A (en) Low trigger voltage SCR protection device and structure
US6281553B1 (en) Semiconductor device, electrostatic discharge protection device, and dielectric breakdown preventing method
US5880501A (en) Semiconductor integrated circuit and manufacturing method of the same
JPH08195443A (en) Semiconductor device and its manufacture
JP2000164881A (en) Semiconductor device and manufacture thereof
JP3425574B2 (en) I / O protection device for semiconductor integrated circuit
JP2014038922A (en) Semiconductor device
JPH09129856A (en) Semiconductor device and its manufacture
JP2001156181A (en) Semiconductor device
KR100209730B1 (en) Esd protection circuit and method for manufacturing the same

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980106