JPH0772140A - 溶鋼中の炭素、水素、窒素濃度の順次連続測定方法及び装置 - Google Patents

溶鋼中の炭素、水素、窒素濃度の順次連続測定方法及び装置

Info

Publication number
JPH0772140A
JPH0772140A JP5220138A JP22013893A JPH0772140A JP H0772140 A JPH0772140 A JP H0772140A JP 5220138 A JP5220138 A JP 5220138A JP 22013893 A JP22013893 A JP 22013893A JP H0772140 A JPH0772140 A JP H0772140A
Authority
JP
Japan
Prior art keywords
gas
concentration
carbon
molten steel
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5220138A
Other languages
English (en)
Other versions
JP3160827B2 (ja
Inventor
Akihiro Ono
昭紘 小野
Masaki Ina
正樹 伊奈
Hiroaki Kosaka
博昭 小坂
Toshihiro Ogura
敏弘 小倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Heraeus Electro Nite Japan Ltd
Nippon Steel Corp
Original Assignee
Heraeus Electro Nite Japan Ltd
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Heraeus Electro Nite Japan Ltd, Nippon Steel Corp filed Critical Heraeus Electro Nite Japan Ltd
Priority to JP22013893A priority Critical patent/JP3160827B2/ja
Priority to CN94115682A priority patent/CN1047444C/zh
Priority to EP94113798A priority patent/EP0642019A3/en
Priority to US08/300,722 priority patent/US5522915A/en
Priority to KR1019940022334A priority patent/KR0149473B1/ko
Priority to TW083110113A priority patent/TW274581B/zh
Publication of JPH0772140A publication Critical patent/JPH0772140A/ja
Priority to CN99107416A priority patent/CN1236096A/zh
Application granted granted Critical
Publication of JP3160827B2 publication Critical patent/JP3160827B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

(57)【要約】 (修正有) 【目的】 溶鋼中の炭素、水素、窒素の各濃度を単一の
装置で順次連続測定できる方法とその装置を提供する。 【構成】 選択されたキャリアガスとなる不活性ガスを
溶鋼中に吹き込んでバブリングさせ、溶鋼内に浸漬され
たガス供給回収プローブPを通じて回収された測定対象
元素を含むキャリアガスをガス循環回路L1内を循環又
は通過させながら、前記キャリアガスの吹き込み及び回
収を一回又は複数回繰返してキャリアガス中の測定対象
元素濃度を溶鋼中の各元素濃度と平衡させるか、あるい
は平衡状態に向かって近づけたのち、前記ガス循環回路
の途中あるいは前記循環回路から分岐したガス回路途中
に設けた複数又は単数の特定元素濃度測定手段A,B,
Cによって炭素、水素又は窒素のうちの特定元素の濃度
を測定し、キャリアガスを新たに変えて未測定の他の元
素について繰り返す。

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は、溶鋼中の炭素、水素、
窒素濃度を順次連続測定できる方法と装置に関する。
【0002】
【従来の技術】製鋼現場では溶鋼中の炭素、水素、窒素
の3元素の濃度を管理することが極めて重要である。現
実的には精錬設備によって窒素と水素の濃度値の管理が
必要になったり、あるいは窒素と炭素の濃度値の管理が
必要になる場合など様々である。これら、炭素、水素、
窒素の濃度管理の中でも最近特に注目されているのは炭
素濃度測定であり、その中でも特に極低炭素鋼板におけ
る炭素濃度測定が最大の関心事となっている。極低炭素
鋼板における炭素濃度測定が注目されているのは次の理
由による。
【0003】従来より極低炭素鋼板は自動車用鋼板を中
心として広く使用されている。極低炭素鋼板は低炭素鋼
板に比べて延展性に優れ、深絞り性が良好である一方、
機械的強度が不充分であるという欠点がある。したがっ
て、極低炭素鋼板において延展性を維持しながら機械的
強度を高めるための様々な工夫がなされている。例え
ば、TiやNb、更にはMn、P等を添加する方法が検
討されているが、これらとともに重要なのは炭素の微量
制御であるとの認識が広まっている。仮に炭素の微量制
御が可能であれば、添加物の種類や量を減らせる可能性
もあり、鉄鋼業界では10ppm〜100ppmの炭素
濃度を有する溶鋼を数ppm程度の精度で制御できる製
造技術の確立が要望されている。このような背景から溶
鋼中微量炭素の迅速測定方法の確立が期待されている。
【0004】溶鋼中の炭素濃度迅速測定方法としては、
従来より凝固温度測定方法や採取サンプルの発光分光分
析法が知られているが、これらは低レベルの炭素濃度迅
速測定には適さない。また、RH脱ガス装置において炭
素濃度を推定する技術も一部試みられている。これは真
空吸引する過程で溶鋼中から吸引ガス中に発散したCO
ガスやCO2ガスをサンプリングし、このガスを質量分
析計によって分析しながら積算することにより脱炭量を
推定するものである。しかしながら真空系からのガスサ
ンプリング自体が困難であることに加えて、全体のガス
総量が不明であることから計算誤差が大きくなる傾向が
あり、更に真空槽からのリークの問題もあり溶鋼中の炭
素濃度を正確に推定することは困難である。そして、溶
鋼中の炭素濃度が低レベルである場合、その推定はより
一層困難であり、微量炭素の濃度迅速測定方法としては
いまだ確立されていない。その他、数種の炭素濃度迅速
測定方法が提案されているが、いずれも微量炭素の濃度
測定方法としては多くの問題点を抱えている。
【0005】このように微量炭素の濃度迅速測定方法の
確立が期待される一方、炭素以外にも水素や窒素等の溶
鋼中の複数元素の各濃度測定を連続して行える装置の開
発も望まれている。また、このように3元素の連続測定
までは要求されないものの、窒素と炭素の濃度測定や窒
素と水素の濃度測定等、2元素の連続測定に対する要望
も現実の製鋼現場には根強くある。
【0006】このような炭素、水素及び窒素等の複数元
素濃度の測定に関する先駆的な技術としては、水素のみ
のバッチ測定を中心的課題として取り扱った特許公表番
号平成1年第502776号が知られている。これは、
水素濃度測定を主たる目的とした技術であり、その技術
の概要は、溶鋼中に不活性ガスであるキャリアガスを吹
き込んでバブリングさせ、そのガスを回収して、溶鋼か
ら気泡中に回収された水素の濃度を測定することによっ
て、溶鋼中の水素濃度を推定せんとするものである。そ
して、当該技術の応用として、水素測定を中心にしなが
ら一酸化炭素及び窒素のバッチ測定への適用可能性が若
干示唆されている。
【0007】この装置構成の概略は、下端部の所定範囲
が測定対象である溶鋼内に位置づけられるガス吹込回収
部としてのプローブと、前記プローブへのキャリアガス
供給源並びにガス分析手段を具備したガス循環回路とか
ら構成されている。プローブは下端がU字形に湾曲した
ガス吹込管と、当該ガス吹込管のU字型湾曲部よりも上
方にその開口端を位置づけたガス回収管とを備え、前記
ガス吹込管の上方にガス吹込管の開口端から吹き出した
キャリアガスを効率良く回収するためのベル状部材を設
けた構成である。このベル状部材は多孔質素材から構成
され、この多孔質素材を経由してガス回収を行うことに
より回収管への溶鋼侵入を防止している。
【0008】一方、ガス循環回路は、フィルター、熱伝
導度計、ポンプ、4方ストックコック、圧力計及び流量
計が、ガス流れ方向に沿って順次組み込まれた構成であ
る。
【0009】そして、この水素濃度測定装置は、ボンベ
から供給されたキャリアガスをガス吹込管を通じて溶鋼
中に吹き込んでバブリングさせるとともに、溶鋼中の溶
存水素が混入状態となったキャリアガスをガス回収管に
よって回収し、この回収されたキャリアガスをガス循環
回路を循環させる過程で、溶鋼中の水素濃度と平衡させ
たうえ、その水素成分を熱伝導度計によって測定するも
のである。
【0010】この技術を炭素、水素及び窒素の濃度測定
に適用するには、前記単一の熱伝導度計を、直列接続さ
れた熱伝導度計群に置き換え、各熱伝導度計の前段に、
それぞれ不要ガス成分の除去用フィルターを配置する。
そしてキャリアガス流通方向上流に位置する最初の熱伝
導度計では一酸化炭素、水素、窒素及びキャリアガスの
全分圧を測定し、次いで水素フィルターを通過させた
後、第2の熱伝導度計によって一酸化炭素、窒素及びキ
ャリアガスの合計分圧を測定し、更に一酸化炭素フィル
ターを通過させた後、第3の熱伝導度計によって窒素及
びキャリアガスの合計分圧を測定した後、最後に窒素フ
ィルターを通過させたうえキャリアガスのみの分圧を測
定し、これら各段階の分圧の差を求めることにより一酸
化炭素、水素及び窒素の各分圧を求めるというものであ
る。
【0011】
【発明が解決しようとする課題】このように前記装置で
は一酸化炭素、水素及び窒素の連続測定に関する可能性
が示唆されてはいるものの、炭素測定に関する具体的手
法については開示されていず、特に近年注目を浴びてい
る溶鋼中の微量炭素の迅速測定方法については全く開示
されていず、近年の製鋼現場での要求に対応しきれてい
ない。また、前記装置では、溶鋼中から回収したキャリ
アガスを一酸化炭素、水素及び窒素の濃度測定に共通し
て用い、ガス循環回路内を通過させる過程で次々と濾過
していくことにより、一酸化炭素、水素及び窒素の各濃
度を測定せんとしているが、この手法は原理的に実施不
可能な要素を含んでおり、現実的でない。
【0012】先ず、この装置は、その測定対象が、水素
や窒素などの溶鋼中に原子状態で溶存しており、温度と
圧力で決まるある一定の平衡分圧を有している単体の成
分である場合についてのみ有効であるにすぎず、測定対
象が炭素である場合には全く適用できない。即ち溶鋼中
に存在する炭素自体は通常の精錬温度では固有の分圧を
持たず、従って単独では気体としてキャリアガスに混入
させて取り出すことはできない。
【0013】また、前記技術は共通のキャリアガスを用
いて水素濃度測定と一酸化炭素濃度を連続して行ってい
るが、これには無理がある。即ち、キャリアガス中への
水素の回収を酸素濃度の高い環境下で行うと、キャリア
ガス中で水素と酸素が反応して水が生成されるため、本
来の水素濃度が測定できず、したがって、水素濃度の測
定は低酸素濃度環境下でなされなければならない。これ
に対してキャリアガス中への一酸化炭素の回収は、酸素
濃度の低い環境下では、一酸化炭素自体が生成されない
ために不可能であり、したがって、一酸化炭素濃度の測
定は高酸素濃度環境下でなされなければならない。この
ように水素濃度測定のための前提条件と炭素濃度測定の
ための前提条件とは異なるため溶鋼中から回収したキャ
リアガスを水素濃度測定と炭素濃度測定の双方に共通し
て使うには無理がある。
【0014】また、熱伝導度計により特定元素の濃度測
定を行おうとする場合には、測定精度を高める観点から
測定対象元素とキャリアガス自体のそれぞれの熱伝導度
の差は可能な限り大きくすることが望まれるが、水素の
熱伝導度と窒素の熱伝導度には著しい差があることか
ら、水素濃度測定と窒素濃度測定を共通のキャリアガス
を用いて行うことは困難であり、何らかの工夫が必要と
なる。このように特許公表番号平成1年第502776
号記載の技術をそのまま用いて炭素、水素及び窒素の3
元素の連続測定を行うことは不可能であり、製鋼現場で
は特定元素の濃度測定のみを目的とした単一機能タイプ
の独立装置を複数設置させることにより複数元素の濃度
測定の要求に対応しているのが現状である。そして独立
装置を複数設置しているために測定装置のセッティング
に手間を要するとともに、必要元素全てを測定完了迄に
多大の時間も要し、測定結果を精錬設備のフィードバッ
ク制御に有効活用できない等の問題もあった。
【0015】本発明はかかる現況に鑑みてなされたもの
であり、溶鋼中の炭素、水素、窒素の濃度を単一の装置
で順次連続測定できる方法と装置を提供せんとするもの
であり、特に炭素に関しては極微量の炭素濃度を迅速且
つ高精度に測定できる方法をも提供せんとするものであ
る。
【0016】
【課題を解決するための手段】本発明者等は鋭意検討を
行った結果、微量炭素測定に関して次の着想を得た。先
ず、溶鋼中の水素及び窒素の測定は、キャリアガスを溶
鋼中に吹き込み回収し、この吹き込み回収を繰り返すと
ともにキャリアガス中の測定対象成分を分析する前記公
報記載の構成が利用できる。そして、キャリアガスを測
定対象元素に対応して変えるかあるいはキャリアガスの
種類を工夫し、且つ特定元素測定手段も測定対象元素に
対応して複数設けたり、あるいは特定元素測定手段の種
類を工夫することとすれば、ガス供給回収プローブ及び
ガス循環回路が共用できると考えた。次に問題となるの
は溶鋼中の微量炭素濃度を如何にして測定するかという
問題である。ここでは本発明者は次の新たな着想を得
た。
【0017】微量の炭素と酸素を含有する溶鋼を真空中
あるいは一酸化炭素濃度の低い気体と共存させた場合、
溶鋼中からは僅かな量の一酸化炭素が生成放出される
が、この一酸化炭素の平衡濃度は溶鋼中の炭素濃度に加
え酸素濃度とも相関関係にあり、一酸化炭素の生成反応
を何らかの手段で促進することができれば、放出された
一酸化炭素の濃度を分析することによって溶鋼中の炭素
濃度の推定ができる可能性がある。そして、この炭素濃
度の推定の際には、もう一方のパラメータである溶鋼中
の酸素濃度が既知であるかあるいはその変化が予測され
るものである必要があるが、RH脱ガス装置のような製
錬設備を対象とした場合は、溶鋼中の酸素濃度は数百p
pmの高レベルで安定しており、したがってこのような
環境下では、溶鋼から放出されるガス中の一酸化炭素濃
度は溶鋼中の炭素濃度によって規定されていると判断さ
れ、ガス中の一酸化炭素濃度を溶鋼中の炭素濃度の値に
よって一義的に決定しても問題はない。
【0018】更に次の問題として浮上してくるのが、溶
鋼中からの一酸化炭素の生成放出促進を具体的にどのよ
うな手段によって行うかであるが、これについては前記
水素濃度測定装置でも採用した手法である、キャリアガ
スの吹き込み回収による手法を利用できると考えた。即
ち、溶鋼中に一酸化炭素を含まないキャリアガスを吹き
込んでバブリングさせれば、バブリングの攪拌力により
溶鋼と気泡の反応界面を大きく確保し且つ常時更新させ
ることが可能であり、これにより溶鋼中の微量な炭素と
酸素の反応を促進することが可能であり、酸化した炭
素、即ち一酸化炭素が生成できることに着眼した。そし
て、この手法を適用したところ、期待どおりの結果が得
られた。
【0019】以上の着眼点に基づいてなされた本発明の
溶鋼中の炭素、水素、窒素濃度の順次連続測定方法は次
の構成を有する。即ち、溶鋼中の炭素、水素及び窒素の
複数元素のうち測定対象となる元素に応じて選択された
キャリアガスとなる不活性ガスを溶鋼中に吹き込んでバ
ブリングさせ、溶鋼内に浸漬されたガス供給回収プロー
ブを通じて回収された測定対象元素を含むキャリアガス
をガス循環回路内を循環又は通過させながら、前記キャ
リアガスの吹き込み及び回収を一回又は複数回繰返して
キャリアガス中の測定対象元素濃度を溶鋼中の各元素濃
度と平衡させるか、あるいは平衡状態に向かって近づけ
たのち、前記ガス循環回路の途中あるいは前記循環回路
から分岐したガス回路途中に設けた複数又は単数の特定
元素濃度測定手段によって炭素、水素又は窒素のうちの
特定元素の濃度を測定してなり、次いで測定済みのキャ
リアガスを循環回路系外に排出することによって完結す
る特定元素の一連の濃度測定手順を、キャリアガスを新
たに変えて未測定の他の元素について繰り返すことを特
徴としている。
【0020】測定対象元素が炭素、水素及び窒素のそれ
ぞれに変わるのに対応してキャリアガスの種類を変更
し、その都度、使用済みのキャリアガスをガス循環回路
系外へ排出するのが本発明方法の測定手順の基本である
が、測定対象元素との関係でキャリアガスの種類を工夫
することにより、炭素、水素、窒素のそれぞれの測定に
同種のキャリアガスを使用することもできる。
【0021】本発明のより具体的な態様は次のとおりで
ある。ヘリウム又はアルゴンを主成分とするキャリアガ
スを溶鋼中に吹き込んでバブリングさせ、バブリングの
攪拌力によって溶鋼中の水素成分をキャリアガスに拡散
させるとともに、溶鋼内に浸漬されたガス供給回収プロ
ーブを通じて回収されたキャリアガスをガス循環回路内
を循環又は通過させながら、前記キャリアガスの吹き込
み及び回収を一回又は複数回繰返してキャリアガス中の
水素濃度を徐々に増加させてその値を溶鋼内での水素濃
度と平衡させ、所定循環回数又は所定時間経過した段階
で水素濃度がほぼ平衡値に達したキャリアガスを当該ガ
ス循環回路途中あるいは当該ガス循環回路から分岐する
回路途中に設けられた水素濃度測定手段によって測定
し、そののち前記ガス循環回路系外へキャリアガスを排
出してなる水素濃度測定工程と;ヘリウムあるいはアル
ゴンを主成分とするキャリアガスを溶鋼中に吹き込んで
バブリングさせ、バブリングの攪拌力により溶鋼と気泡
の界面で溶鋼中の炭素と酸素を反応させてキャリアガス
内に一酸化炭素及び二酸化炭素を生成させるとともに、
溶鋼内に浸漬されたガス供給回収プローブを通じて回収
された一酸化炭素及び二酸化炭素を含むキャリアガスを
酸化炭素濃度測定手段が途中に設けられたガス循環回路
内を循環又は通過させながら、前記キャリアガスの吹き
込み及び回収を一回又は複数回繰返してキャリアガス中
の酸化炭素濃度を徐々に増加させてその値を溶鋼内での
炭素及び酸素の濃度と平衡する値に向かって近づけ、所
定循環回数又は所定時間経過時のキャリアガス中の酸化
炭素濃度を前記酸化炭素濃度測定手段によって測定し、
この酸化炭素濃度と別途あるいは同時に測定された溶鋼
中の酸素濃度との相互の関係性から溶鋼中の炭素濃度を
推定してなる炭素濃度測定工程と;ヘリウムあるいはア
ルゴンを主成分とするキャリアガスを溶鋼中に吹き込ん
でバブリングさせ、バブリングの攪拌力によって溶鋼中
の窒素成分をキャリアガス中に拡散させるとともに、溶
鋼内に浸漬されたガス供給回収プローブを通じて回収さ
れたキャリアガスを窒素濃度測定手段が途中に設けられ
たガス循環回路内を循環又は通過させながら、前記キャ
リアガスの吹き込み及び回収を一回又は複数回繰返して
キャリアガス中の窒素濃度を溶鋼内の窒素濃度と平衡す
る値に向かって近づけ、所定循環回数又は所定時間経過
時のキャリアガス中の窒素濃度を前記窒素濃度測定手段
によって測定してなる窒素濃度測定工程と;から選択さ
れる少なくとも二つの工程を有し、水素濃度測定工程、
炭素濃度測定工程及び窒素濃度測定工程のそれぞれの測
定工程において、ガス供給回収プローブ及びガス循環回
路を共通使用したことを特徴としている。
【0022】窒素は一酸化炭素や水素に比べて拡散速度
が遅いことから、平衡に達するまでに多くの時間を要す
る。これを避けるために、測定開始初期に計測される窒
素濃度の立ち上がりカーブから窒素濃度の平衡値の概略
を予測するとともに、当該予測値に基づいて窒素ガスを
窒素ガスボンベから強制添加して平衡状態を早期に実現
することも迅速測定の観点からは好ましい。
【0023】また、上記要旨を装置的に実現した溶鋼中
の炭素、水素、窒素濃度の順次連続測定装置は次の構成
を有する。即ち、測定対象元素に対応して単数又は複数
種設けられたキャリアガスとなる不活性ガスの供給源
と;先端が開放したガス吹き込み管よりなるガス吹き込
み部と、前記ガス吹き込み管の開口管端よりも溶鋼中に
おいて上方に位置づけられた多孔質部材を介してガス回
収管にキャリアガスを回収するガス回収部とを備えたガ
ス供給回収プローブと;前記キャリアガス供給源から供
給されたキャリアガスを強制循環ポンプにより前記ガス
供給回収プローブを経由させて所定回数又は所定時間循
環させるガス循環回路と;前記ガス循環回路途中又は当
該ガス循環回路から分岐したガス回路途中に設けられた
酸化炭素濃度測定手段、水素濃度測定手段、窒素濃度測
定手段等の特定元素濃度測定手段群と;前記ガス供給回
収プローブと一体又は別体構成された酸素濃度測定手段
と;前記酸化炭素濃度測定手段によって測定された酸化
炭素濃度と前記酸素濃度測定手段によって測定された酸
素濃度の両データが入力されて溶鋼中の炭素濃度を算出
する演算処理手段と;を備えたことを特徴としている。
【0024】酸素濃度が既知又は予測できる精錬設備に
おける測定では、酸素濃度測定手段は設ける必要はな
い。
【0025】各特定元素測定手段には測定誤差原因とな
るキャリアガス中の有害成分を除去する予備処理部を設
けることが好ましい。
【0026】各特定元素測定手段としては種々のものが
採用可能であるが、酸化炭素濃度測定手段として赤外線
ガス分析計、水素濃度測定手段として半導体ガスセン
サ、窒素濃度測定手段として熱伝導度計を用いることが
装置特性上有利である。
【0027】
【作用】このような本発明の溶鋼中の炭素、水素、窒素
濃度の順次連続測定装置は次のように作動する。先ず、
測定対象元素に応じたキャリアガスをガス供給源から供
給し、このキャリアガスをガス供給回収プローブのガス
吹込管を通じて溶鋼中に吹き込む。吹き込まれたキャリ
アガスは溶鋼をバブリングし、バブリングの攪拌力によ
って、キャリアガス中に溶鋼中の測定対象元素を拡散さ
せてこれをガス供給回収プローブのガス回収管を通じて
回収する。バブリングによって溶鋼中に溶存している水
素や窒素等の気体分子がキャリアガス中に回収されるだ
けでなく、バブリングは溶鋼中の炭素と酸素の反応を溶
鋼と気泡の界面において促進して一酸化炭素を生成し、
この一酸化炭素も回収される。またこの際、一酸化炭素
とともに生成される微量の二酸化炭素もキャリアガスに
よって回収される。
【0028】キャリアガスは上方へ浮上するとともに、
多孔質部材を経由してガス回収管によって回収されたの
ち、ガス循環回路を循環する。次いでキャリアガスをガ
ス循環回路内を所定回数あるいは所定時間循環させて平
衡に近づけた後、キャリアガス中の目的とする測定対象
元素の濃度を、ガス循環回路に設置された特定元素濃度
測定手段によって測定する。尚、キャリアガスはガス循
環回路を複数回循環させることなく一回だけ通過させる
場合もある。
【0029】キャリアガスは測定対象元素である炭素、
水素及び窒素のそれぞれに対応して別のものが使用さ
れ、各測定終了毎にガス循環回路系外へ排出されて、次
の測定には常に新しいキャリアガスが使用される。
【0030】特定元素濃度の具体的測定は、水素及び窒
素に関してはそれぞれガス循環回路系内あるいはガス循
環回路から分岐したガス回路途中に配置された水素濃度
測定手段及び窒素濃度測定手段によって直接行われる
が、炭素に関しては、キャリアガス中の一酸化炭素濃度
及び二酸化炭素濃度(以下、両濃度を酸化炭素濃度と総
称する)を、循環回路中に設置された酸化炭素濃度測定
手段によって測定し、この測定結果と酸素濃度測定手段
によって測定された酸素濃度値を演算処理手段によって
処理することにより、その濃度が推定される。尚、酸素
濃度が飽和状態に近い場合や酸素濃度が既知又は予測で
きる精錬設備における測定では、酸素濃度は一定である
と見なせるので、この場合は酸化炭素濃度のみに基づい
て炭素濃度を一義的に推定できる。
【0031】水素濃度測定においては早期に平衡に達す
るが、炭素濃度測定や窒素濃度測定においては平衡に達
するまでに相当の時間を必要とし、このためこれら測定
では平衡に達するのを待つことなく濃度を推定してい
る。例えば、炭素濃度測定においては、溶鋼中の酸化炭
素濃度と放出されたキャリアガス中の酸化炭素濃度が平
衡するのを待つことなく、ガス循環回路の循環数又は循
環時間が所定の値となった段階で酸化炭素濃度を測定し
ている。これは、所定の循環数又は循環時間における酸
化炭素濃度と溶鋼中の炭素濃度との関係性さえ予め確立
しておけば、所定の循環数又は循環時間における一酸化
炭素濃度及び二酸化炭素濃度を基にして溶鋼中の炭素濃
度を特定することができるからである。そしてこのよう
に平衡に近い状態となるまで待たないことにより迅速測
定が可能となり、測定結果を精錬設備のフィードバック
制御に反映させることができる。
【0032】また、拡散速度の特に遅い窒素の濃度を測
定する場合には、測定開始初期に計測される窒素濃度の
立ち上がりカーブから窒素濃度の平衡値の概略を予測す
るとともに、当該予測値に基づいて窒素ガスボンベから
窒素ガスを強制添加して平衡状態を早期に実現すること
が適宜採用される。
【0033】
【実施例】次に本発明の詳細を図示した実施例に基づき
説明する。図1は溶鋼中の一酸化炭素分圧(PCO)と炭
素濃度の関係を示す公知のグラフであり、例示された4
本の曲線は酸素活量(aO )がそれぞれ300ppm、
400ppm、500ppm、600ppmである場合
における一酸化炭素分圧(一酸化炭素濃度)と炭素濃度
との関係を表している。この表から明らかなように、酸
素活量(酸素濃度)の値が分かっていれば気相中の一酸
化炭素濃度を測定することにより溶鋼中の炭素濃度が一
義的に推定できることが分かる。また、グラフから理解
されるように、1%〜15%の範囲の一酸化炭素濃度を
測定することによって10ppm〜100ppmの範囲
の微量炭素濃度を測定することが可能であり、ppmオ
ーダーの炭素濃度が%オーダーの一酸化炭素濃度測定に
よって精度良く推定できることが分かる。本発明はこの
原理を溶鋼中の炭素濃度測定に利用している。
【0034】図2は本発明にかかる順次連続測定装置の
一実施例の概略説明図である。本装置は、酸化炭素濃度
測定部A、窒素濃度測定部Bを循環回路途中に配置した
ガス循環回路L1と、水素濃度測定部Cを途中に配した
ガス分岐回路L2、前記ガス循環回路L1に図示しない
コネクタにより取替え可能に接続されるガス供給回収プ
ローブP、前記ガス循環回路L1とは独立して設けられ
た酸素濃度測定部D、前記酸化炭素濃度測定部A及び酸
素濃度測定部Dによって得られた測定値に基づいて溶鋼
中の炭素濃度を算出する演算装置Eと、から主として構
成される。但し、測定対象設備がRH脱ガス装置に代表
されるように設備内の酸素レベルが高く且つそのレベル
が安定しているような場合には、酸素濃度は一定である
と仮定できるので、この場合には図3に示すように酸素
濃度測定部D等は除去することができる。以下の説明に
用いる図面では酸素濃度測定部D等は特に図示しない
が、必要に応じて設けられる。
【0035】ガス供給回収プローブPは図4に示す如
く、先端が開放したガス吹込管1と、ガス回収管2とを
紙管等の保持部材3内に挿通した構成であり、ガス回収
管2の開口端はガス吹込管1の開口端よりも上方に位置
づけられている。保持部材3の下端部には下方が開放し
たガス収集用のスカート状部材4が取り付けられてい
る。スカート状部材4は溶鋼内に浸漬されることから、
少なくとも測定時間内は溶損することがなく且つ測定誤
差の原因となるような成分の溶出がないものが選択さ
れ、例えば石英管等が使用される。またガス吹込管1も
溶鋼中で溶損せず且つ不要成分の溶出がないことが必要
であり、このためガス吹込管1における少なくとも溶鋼
中に浸漬される部分はジルコニア等の耐火物から形成さ
れる。更に保持部材3の先端側表面には溶鋼熱から保持
部材3を保護する目的で耐火物7をコーティングしてい
る。図示しないがガス吹込管1の開口端に溶鋼熱で溶解
する低融点部材を封入し、当該ガス吹込管1が溶鋼内所
定深さに位置づけられた段階で開口端が自動的に開放さ
れるように構成することも好ましい。
【0036】スカート状部材4の拡開部の底部側には多
孔質アルミナ等の多孔性耐火物5が充填されている。当
該多孔性耐火物5は溶鋼中から放出されるキャリアガス
のみを通過させ、溶鋼の侵入は防止する機能を有する。
またスカート状部材4の縮径部であって前記多孔性耐火
物5に隣接する位置には粒状のアルミナが充填されてお
り、回収されたキャリアガス中のゴミやダスト等を除去
するフィルター6の機能を果している。ガス吹込管1は
前記フィルター6と多孔性耐火物5を貫通してその開口
端が溶鋼Z中に位置づけられ、他方、ガス回収管2の開
口端は、多孔性耐火物5及びフィルター6を通過して清
浄化されたキャリアガスが回収できるようにフィルター
6の上層部に没入させている。尚、図示しないが保持部
材3の基端側にはガス吹込管1及びガス回収管2を後述
するガス循環回路L1にそれぞれ接続するコネクタが装
着され、当該ガス供給回収プローブPを脱着できるよう
に構成されており、使用後のプローブの廃棄を容易にし
ている。
【0037】多孔性耐火物5は、キャリアガスのみを通
過させて溶鋼の侵入を防止する機能を有するが、溶鋼中
の酸素レベルが高い場合には、多孔性耐火物5の表面に
FeOやMnO等の低級酸化物が生成されやすく、この
低級酸化物が多孔性耐火物5を浸食してその気孔を塞ぐ
現象が生ずる。したがってこのような現象に対応するた
めに、図5に示すように、多孔性耐火物5と溶鋼Zとの
接触を遮断するガス溜まりYがスカート状部材4内空間
に形成されるようにガス供給量とガス回収量を微妙に制
御することが必要である。
【0038】このような構成のガス供給回収プローブに
接続される回収ガス分析部としてのガス循環回路L1及
びガス分岐回路L2の一例は図3で示される。ガス循環
回路L1には、ポンプ10、流量計11、バルブ12、
圧力計13、圧力計14、 H2Oフィルタ15、切換バル
ブ16、バイパス路17、切換バルブ18、バルブ1
9、酸素濃度測定部Dとしての赤外線ガス分析計20が
キャリアガスの流れ方向上流側から下流側に向けて順番
に配され、且つバルブ12とバルブ19間には流量制御
バルブ27、圧力計28及びガス混合器29を介在させ
てアルゴンガスボンベ30、窒素ガスボンベ31及びヘ
リウムガスボンベ32が配されている。また前記バイパ
ス路17に並設して酸化炉21、 CO2フィルタ22、熱
伝導度計(TCD)23を直列配置して構成される窒素
濃度測定部Bが配置されており、前記切換バルブ16、
17を操作することによってバイパス路17と窒素濃度
測定部Bの一方をキャリアガスの通過路として選択でき
るように構成されている。更に、前記ポンプ10から流
量計11に至る途中からはガス分岐回路L2が接続され
ており、このガス分岐回路L2には流量制御バルブ24
を介して H2Oフィルタ25と半導体ガスセンサ26より
構成される水素濃度測定部Cが配されている。
【0039】ガス循環回路L1における回収直後のキャ
リアガスの通過箇所に H2Oフィルタ15を配置したの
は、 H2Oが赤外線ガス分析計で一酸化炭素及び二酸化炭
素濃度を測定する場合に誤差原因となるためである。
【0040】また、酸化炭素濃度測定部Aの具体装置と
して赤外線ガス分析計20を用いたのは、分析装置に組
み込めるサイズがコンパクトな事と、分析の迅速性及び
精度に優れているためである。赤外線ガス分析計20に
よる酸化炭素濃度測定に際してはキャリアガスとしてア
ルゴンガスを使用する。
【0041】また、窒素濃度測定部Bとして熱伝導度計
23を用いたのは、窒素は安定なガスであるために他に
適当な分析方法がなく、熱伝導度計であればこのような
安定なガスについても高精度な分析ができるためであ
る。熱伝導度計を用いる場合、測定精度を向上させるた
めには測定対象元素とキャリアガスとの熱伝導度の差は
大きいことが好ましく、窒素が測定対象元素である場合
には窒素と熱伝導度の差の大きなヘリウムガスをキャリ
アガスとして選択する。また、窒素は水素や一酸化炭素
に比べてキャリアガス中への拡散速度が遅いため、ガス
循環回路L1を十数回循環させただけでは平衡状態に達
っしないことがあり、測定結果の入手が遅延するおそれ
がある。本実施例ではこのような不都合を解消するため
に、測定開始初期に計測される窒素濃度の立ち上がりカ
ーブから窒素濃度の平衡値の概略を予測するとともに、
当該予測値に基づいてガス混合器29を制御して窒素ガ
スボンベ31からキャリアガスに窒素ガスを強制添加し
て平衡状態を早期に実現するように工夫している。ま
た、酸化炉21を介在させることによりキャリアガス中
の一酸化炭素を強制的に酸化させて二酸化炭素となし、
この二酸化炭素を CO2フィルタ22によって除去してい
るが、これは窒素と熱伝導度が極めて接近している一酸
化炭素の存在が、窒素濃度測定時の誤差原因となること
を排除するためである。
【0042】また、水素濃度測定部Cをガス循環回路L
1の経路途中に組み込まず、ガス分岐回路L2に組み込
んでいるのは、水素は拡散速度が速いためにガス循環回
路L1内を複数回循環させる必要がないことと、測定に
先立って半導体ガスセンサ26表面に酸素を多量に供給
する必要があることから測定後のキャリアガスはガス循
環回路L1内に帰還させることができないことの二つの
理由による。尚、半導体ガスセンサ26による水素濃度
測定に際してはキャリアガスとしてアルゴンガス又は窒
素ガスを用いる。ヘリウムガスを用いることも可能であ
るがコスト上の観点からはアルゴンガス又は窒素ガスの
方が有利である。
【0043】このような構成の順次連続測定装置におけ
る、水素濃度測定部C、窒素濃度測定部B及び酸化炭素
濃度測定部Aを切り換える様子は図8、9、10によっ
て示される。例えば実際の製鋼現場では水素と窒素の連
続測定や、炭素と窒素の連続測定が要求される。水素濃
度測定の要望のある溶鋼の酸素濃度は低く、他方、炭素
濃度測定の要望のある溶鋼の酸素濃度は高く、それぞれ
対象となる鋼種が異なるのが一般的である。
【0044】例えば、先ず水素濃度を測定する場合に
は、ヘリウムガスボンベ32からヘリウムガスをガス循
環回路L1に供給し、このヘリウムガスをガス循環回路
L1を経由させてガス供給回収プローブPに導くととも
に、ガス吹込管1から溶鋼中に吹き込んで溶鋼をバブリ
ングさせ、溶鋼中を通過したキャリアガスをガス回収管
2によってガス循環回路L1に回収する。回収されたキ
ャリアガスは図8に示すようにバイパス路17及びポン
プ10を経た後、再びガス循環回路L1に帰還すること
なくガス分岐回路L2に導かれ、当該ガス分岐回路L2
途中において酸化ガスに晒された後、半導体ガスセンサ
26によって水素濃度が測定され、その後、ガス分岐回
路L2の系外に排出される。尚、このときキャリアガス
は赤外線ガス分析計20を通過するが、赤外線ガス分析
計20によって検出される指示値は無意味なものである
ので赤外線ガス分析計20は非作動状態としておく。
【0045】また、窒素濃度を測定する場合は、図9に
示すように、切換バルブ16、18を操作して H2Oフィ
ルタ15通過後のキャリアガスが窒素濃度測定部Bを通
過するように切り換える。またガス分岐回路L2との流
通は流量制御バルブ24によって遮断されている。この
状態でヘリウムガスボンベ32から汚染されていない新
鮮なヘリウムガスをガス供給回収プローブPに供給し、
キャリアガスによって溶鋼をバブリングさせた後、この
キャリアガスを回収する。回収したキャリアガスは窒素
濃度測定部Bを通過させてガス循環回路L1を循環させ
何度も溶鋼中への吹き込み回収を繰返し、キャリアガス
中の窒素濃度をより平衡状態に近づける。熱伝導度計2
3の指示値は常にモニタされており、平衡した値を読み
取ることで測定を完了する。窒素の拡散速度の遅さを補
うために、窒素ガスボンベ31からの窒素ガスの適量添
加も適宜採用される。尚、測定済みのキャリアガスはガ
ス循環回路L1の系外に排出されて次の測定に備えられ
る。
【0046】また一酸化炭素及び二酸化炭素の濃度を測
定する場合は、図10に示すように切換バルブ16、1
8を操作して窒素濃度測定部Bをガス循環回路L1から
切離し、バイパス路17をキャリアガスが通過するよう
にセッティングする。そして、この状態でアルゴンガス
ボンベ30から汚染されていない新鮮なアルゴンガスを
所定量だけガス供給回収プローブPに供給し、その後、
このキャリアガスをガス供給回収プローブA1のガス吹
込管1を通じて溶鋼内に吹き込み、バブリングによって
溶鋼内の炭素と酸素の反応を促進させて一酸化炭素及び
二酸化炭素を生成させる。この一酸化炭素及び二酸化炭
素を含むキャリアガスはガス回収管2によって回収され
赤外線ガス分析計20によって分析される。回収したキ
ャリアガスは赤外線ガス分析計20を通過させながらガ
ス循環回路L1を何度も循環させて溶鋼中への吹き込み
回収を繰返し、キャリアガス中の窒素濃度をより平衡状
態に近づけて、ガス循環回路L1内を所定回数又は所定
時間循環させた段階の赤外線ガス分析計20における一
酸化炭素及び二酸化炭素のそれぞれの該当ビーク値を読
み取り、この値に基づいて溶鋼中の酸化炭素濃度を測定
し、この測定値を基にして溶鋼中の炭素濃度を数ppm
の測定精度で推定するものである。
【0047】ここで、ガス循環を数回又は所定時間行う
のは、キャリアガス中の酸化炭素濃度を平衡状態に向か
って増加させることによりその測定精度の向上をはかる
ためである。尚、ガス循環を繰り返す代わりにガス吹込
み深さを伸長してガス循環を1回だけにしても同等の効
果が得られることは周知の事実であるが、この場合は設
備が大型化して好ましくない。また、ガス循環の繰り返
し回数又は循環時間を限定したのは、迅速測定を行うた
めであり、またガス循環の繰り返しによる酸化炭素濃度
の増加傾向は、測定設備が同じである限り規定値の範囲
内にあり、予め同設備で所定回数又は所定時間循環させ
たときに測定される酸化炭素濃度と溶鋼中の炭素濃度と
の関係性さえ確立しておけば、この関係性を用いて溶鋼
中の炭素濃度を高精度に測定できることが実証されてい
るためである。具体的なガス循環回数は、測定条件によ
って左右されるが、本発明者が確認したところでは、3
00ccのアルゴンガスを10回循環させたところ数p
pmの測定精度で炭素濃度の測定が完了した。尚、この
測定に要した時間は約30秒であり、時々刻々変化する
溶鋼中の炭素濃度をほぼリアルタイム的に追跡分析する
ことが可能であり、本測定によって得られた炭素濃度の
値を精錬設備のフィードバック制御に利用できることが
確認された。
【0048】また赤外線ガス分析計20から得られた酸
化炭素濃度から溶鋼中の炭素濃度を推定するには、酸素
濃淡電池等を用いて構成した酸素濃度測定部Dの測定値
も参照して行う。本実施例では、酸素濃度測定部Dは酸
化炭素濃度測定部Aとは別体構成しているが、ガス供給
回収プローブPに酸素センサを組み込むことも考慮され
る。尚、測定対象設備がRH脱ガス装置に代表されるよ
うに溶鋼内の酸素レベルが高く且つそのレベルが安定し
ているような場合には、酸素濃度は一定であると仮定で
きるので、この場合は酸素濃度を測定することなく赤外
線ガス分析計20の測定結果から溶鋼中の炭素濃度を直
接推定してもよい。
【0049】上述したように、測定対象鋼種に対して水
素濃度測定、窒素濃度測定及び炭素濃度測定が、それぞ
れの測定毎にキャリアガスを取り替えながら行われる
が、溶鋼内へのガス供給回収プローブPの浸漬作業は、
測定対象鋼種が変わらない限り繰り返す必要はなく、溶
鋼に浸漬した状態を維持しながらキャリアガスの切り換
えのみで対応することが可能であり、例えば水素濃度測
定と窒素濃度測定を連続的に実施したり、炭素濃度測定
と窒素濃度測定を連続実施することができる。現在の製
鋼現場では同種の鋼種に関して炭素、水素及び窒素の3
元素全てに対する濃度測定の要求はないものの、キャリ
アガスの選択や各特定元素濃度測定手段の選択を具体装
置の特性を考慮して適切に選択することにより、炭素、
水素及び窒素の3元素全ての順次連続測定を行える可能
性もある。
【0050】また上記実施例では、同一鋼種に対する濃
度測定であっても水素濃度測定と窒素濃度測定あるいは
炭素濃度測定と窒素濃度測定とではキャリアガスを別種
のものに取替えているが、各濃度測定手段の具体的装置
構成の工夫次第では同種のキャリアガスを使える可能性
もあり、更には各濃度測定手段による処理順序や予備処
理の内容の工夫次第ではキャリアガスを新たに吹き込み
直すことなく、既に溶鋼中の水素、窒素等の各元素に対
して平衡状態に到達しているキャリアガスを共通使用で
きる可能性もある。この場合は、ガスボンベの本数削減
が可能となる。
【0051】以上説明したものは、水素濃度測定手段と
して半導体ガスセンサ26を用い、窒素濃度測定手段と
して熱伝導度計23を用い、酸化炭素濃度測定手段とし
て赤外線ガス分析計20を用いた場合であったが、各特
定元素濃度測定と具体的装置との組合せは測定環境や要
求される測定精度を考慮して選択されるもので、例えば
図11に示すように、ガス循環回路L1の途中に高精度
な熱伝導度計33を配し、この熱伝導度計33の前段部
分に、バイパス路17、酸化炭素濃度測定用予備処理部
34、窒素濃度測定用予備処理部35を並設し、これら
各部を切換バルブ36、37を操作することによって択
一的に選択できるようにすることも考慮される。
【0052】最後に、本装置で採用されているガス循環
回路L1の作動態様の概略を図6及び図7を参照して説
明する。図においてガス循環回路上に記載した矢印はガ
スの流れ方向を示している。またバルブ19及びバルブ
19において実線で示すものはガス回路の接続状況を表
し、更にポンプ10の上に付記した〔ON〕、〔OF
F〕はポンプ10の作動/停止を表現している。
【0053】ガス供給回収プローブPを接続する前の
待機状態であり、流量制御バルブ27は閉じられ、且つ
ポンプ10も停止している。 ポンプ10を作動させて吹込側から配管内のエアーを
放出するとともに、ボンベから放出したキャリアガスを
吹込側から放出する。 ポンプ10を作動又は停止させた状態でガス供給回収
プローブPを装着する。例えばプローブPの吹込側先端
を低融点部材等で封止している場合にはポンプ10の作
動による圧力上昇によってプローブPの装着を認識し
て、吹込側もキャリアガス回路に切り換える。また、吹
込側先端を低融点部材によって封止していない場合に
は、直ちにポンプ10を停止させてキャリアガス回路に
切り換え、プローブPの浸漬を待つ。 ガス供給回収プローブPを溶鋼中所定深さに浸漬する
と低融点部材によって封止された吹込側先端が溶鋼の熱
で溶け、キャリアガスが溶鋼中に解放される。そして、
プローブの浸漬を圧力低下により認識し、吹込側及び吸
込側の両方からキャリアガスを放出する。(図6) ポンプ10を作動させて配管内残留ガスを系外に放出
し、ガス循環の準備が完了する。 ボンベ10を循環回路から離脱させたうえ、キャリア
ガスの循環を開始し、赤外線ガス分析計20による酸化
炭素濃度測定を開始する。(図7) 測定が終了すればポンプ10を停止させたうえ、プロ
ーブPを引き上げ、吹込側及び吸込側からキャリアガス
を任意時間放出して次の測定に備える。
【0054】このようにしてガス循環回路L1内のキャ
リアガスの循環が行われ、特定元素の濃度測定が行われ
る。尚、上記ガス循環回路L1は一例に過ぎず、キャリ
アガスの循環が可能な構成であれば、他の構成を採用す
ることも任意である。
【0055】
【発明の効果】本発明は、測定対象元素に応じて選択し
たキャリアガスを、共通使用される単一のガス供給回収
プローブを通じて溶鋼中に吹き込んでバブリングさせ、
バブリングによって溶鋼中から回収されるキャリアガス
を共通使用される単一のガス循環回路内を通過又は循環
させて、この通過又は循環の途中で炭素、水素又は窒素
等の代表的元素の濃度を測定し、そして目標の測定対象
元素の濃度測定が完了すれば、キャリアガスを新たに取
り替えて、次の特定元素の濃度を測定することとしたか
ら、炭素、水素、窒素等の代表的元素の高精度な測定を
測定設備を交換することなく連続的に行うことが可能と
なる。また、測定対象元素が変わっても、ガス供給回収
プローブ及びガス循環回路等の主要部分は共通して使用
できるから、測定装置の新たな設置作業は不要であり、
測定設備のトータルコストの低減がはかれるとともに測
定設備のメンテナンスも容易となる。
【0056】また、本発明では、バブリングの攪拌力に
より溶鋼中の微量な炭素と酸素を反応させて一酸化炭素
及び二酸化炭素を生成させ、この一酸化炭素及び二酸化
炭素の濃度を測定することによって溶鋼中の炭素濃度を
推定することにしたから、従来手法では直接測定するこ
とができなかった極微量の炭素濃度も測定できる。しか
も、本測定は極めて迅速に行えるので、時々刻々変化す
る溶鋼中の炭素濃度をほぼリアルタイム的に把握するこ
とが可能となり、測定結果を精錬設備のフィードバック
制御に役立てることができる。
【0057】また、溶鋼中の酸素濃度が既知である場合
であって、酸素濃度測定を省略できる場合には、測定装
置の簡略化がはかれるとともに測定時間のより一層の短
縮がはかれる。
【0058】また、拡散速度の特に遅い窒素の濃度を測
定する際に、測定開始初期に計測される窒素濃度の立ち
上がりカーブから窒素濃度の平衡値の概略を予測し、こ
の予測値に基づいて窒素ガスボンベから窒素ガスを強制
添加して平衡状態を早期に実現するようにすれば、窒素
濃度測定も極めて迅速に処理できるようになる。
【図面の簡単な説明】
【図1】 溶鋼中の一酸化炭素と炭素の関係を示すグラ
【図2】 本発明にかかる順次連続測定装置の一実施例
の概略説明図
【図3】 本発明にかかる順次連続測定装置の他の態様
を示す概略説明図
【図4】 ガス供給回収プローブの一実施例を示す断面
【図5】 同実施例において、スカート状部材内にガス
溜まりを形成した状態を示す要部断面図
【図6】 ガス循環回路の作動態様を示す概略説明図
【図7】 ガス循環回路の作動態様を示す概略説明図
【図8】 水素濃度測定時のキャリアガスの流通経路を
示す概略説明図
【図9】 窒素濃度測定時のキャリアガスの流通経路を
示す概略説明図
【図10】 酸化炭素濃度測定時のキャリアガスの流通
経路を示す概略説明図
【図11】 本発明にかかる順次連続測定装置の他の態
様を示す概略説明図
【符号の説明】
A 酸化炭素濃度測定部 B 窒素濃度測定部 C 水素濃度測定部 D 酸素濃度測定部 E 演算装置 L1 ガス循環回路 L2 ガス分岐回路 P ガス供給回収プローブ S スラグ Y ガス溜まり Z 溶鋼 1 ガス吹込管 2 ガス回収管 3 保持部材 4 スカート状部材 5 多孔性耐火物 6 フィルター 7 耐火物 10 ポンプ 11 流量計 12 バルブ 13 圧力計 13 圧力計 14 圧力計 15 H2Oフィルタ 16 切換バルブ 17 バイパス路 18 切換バルブ 19 バルブ 20 赤外線ガス分
析計 21 酸化炉 22 CO2フィルタ 23 熱伝導度計 24 流量制御バル
ブ 25 H2Oフィルタ 26 半導体ガスセ
ンサ 27 流量制御バルブ 28 圧力計 29 ガス混合器 30 アルゴンガス
ボンベ 31 窒素ガスボンベ 32 ヘリウムガス
ボンベ 33 熱伝導度計 34 酸化炭素濃度
測定用予備処理部 35 窒素濃度測定用予備処理部 36 切換バルブ 37 切換バルブ
フロントページの続き (72)発明者 小坂 博昭 大阪府摂津市南別府町16番16号 山里エレ クトロナイト株式会社内 (72)発明者 小倉 敏弘 大阪府摂津市南別府町16番16号 山里エレ クトロナイト株式会社内

Claims (4)

    【特許請求の範囲】
  1. 【請求項1】 溶鋼中の炭素、水素及び窒素の複数元素
    のうち測定対象となる元素に応じて選択されたキャリア
    ガスとなる不活性ガスを溶鋼中に吹き込んでバブリング
    させ、溶鋼内に浸漬されたガス供給回収プローブを通じ
    て回収された測定対象元素を含むキャリアガスをガス循
    環回路内を循環又は通過させながら、前記キャリアガス
    の吹き込み及び回収を一回又は複数回繰返してキャリア
    ガス中の測定対象元素濃度を溶鋼中の各元素濃度と平衡
    させるか、あるいは平衡状態に向かって近づけたのち、
    前記ガス循環回路の途中あるいは前記循環回路から分岐
    したガス回路途中に設けた複数又は単数の特定元素濃度
    測定手段によって炭素、水素又は窒素のうちの特定元素
    の濃度を測定してなり、次いで測定済みのキャリアガス
    を循環回路系外に排出することによって完結する特定元
    素の一連の濃度測定手順を、キャリアガスを新たに変え
    て未測定の他の元素について繰り返すことを特徴とする
    溶鋼中の炭素、水素、窒素濃度の順次連続測定方法。
  2. 【請求項2】 測定対象元素に対応して単数又は複数種
    設けられたキャリアガスとなる不活性ガスの供給源と、 先端が開放したガス吹き込み管よりなるガス吹き込み部
    と、前記ガス吹き込み管の開口管端よりも溶鋼中におい
    て上方に位置づけられた多孔質部材を介してガス回収管
    にキャリアガスを回収するガス回収部とを備えたガス供
    給回収プローブと、 前記キャリアガス供給源から供給されたキャリアガスを
    強制循環ポンプにより前記ガス供給回収プローブを経由
    させて所定回数又は所定時間循環させるガス循環回路
    と、 前記ガス循環回路途中又は当該ガス循環回路から分岐し
    たガス回路途中に設けられた酸化炭素濃度測定手段、水
    素濃度測定手段、窒素濃度測定手段等の特定元素濃度測
    定手段群と、 前記ガス供給回収プローブと一体又は別体構成された酸
    素濃度測定手段と、 前記酸化炭素濃度測定手段によって測定された酸化炭素
    濃度と前記酸素濃度測定手段によって測定された酸素濃
    度の両データが入力されて溶鋼中の炭素濃度を算出する
    演算処理手段と、 を備えた溶鋼中の炭素、水素、窒素濃度の順次連続測定
    装置。
  3. 【請求項3】 各特定元素測定手段には測定誤差原因と
    なるキャリアガス中の有害成分を除去する予備処理部を
    設けてなる請求項2記載の溶鋼中の炭素、水素、窒素濃
    度の順次連続測定装置。
  4. 【請求項4】 酸化炭素濃度測定手段として赤外線ガス
    分析計、水素濃度測定手段として半導体ガスセンサ、窒
    素濃度測定手段として熱伝導度計を用いてなる請求項2
    又は3記載の溶鋼中の炭素、水素、窒素濃度の順次連続
    測定装置。
JP22013893A 1993-09-03 1993-09-03 溶鋼中の炭素、水素、窒素濃度の順次連続測定方法及び装置 Expired - Lifetime JP3160827B2 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP22013893A JP3160827B2 (ja) 1993-09-03 1993-09-03 溶鋼中の炭素、水素、窒素濃度の順次連続測定方法及び装置
EP94113798A EP0642019A3 (en) 1993-09-03 1994-09-02 Method and apparatus for sequential and continuous determination of carbon, hydrogen and nitrogen concentrations in molten steel, and method and apparatus for rapidly determining trace amounts of carbon in molten steel.
US08/300,722 US5522915A (en) 1993-09-03 1994-09-02 Method and apparatus for sequentially and continuously determining concentrations of carbon, hydrogen, and nitrogen in molten steel, and method and apparatus for rapidly determining trace amounts of carbon in molten steel
CN94115682A CN1047444C (zh) 1993-09-03 1994-09-02 测定钢水中碳、氢和氮浓度的方法和装置
KR1019940022334A KR0149473B1 (ko) 1993-09-03 1994-09-03 용강중의 탄소, 수소, 질소농도의 순차연속측정방법 및 장치와, 용강중의 미량탄소의 신속측정방법 및 장치
TW083110113A TW274581B (ja) 1993-09-03 1994-11-02
CN99107416A CN1236096A (zh) 1993-09-03 1999-05-18 快速测定钢水中痕量碳的方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22013893A JP3160827B2 (ja) 1993-09-03 1993-09-03 溶鋼中の炭素、水素、窒素濃度の順次連続測定方法及び装置

Publications (2)

Publication Number Publication Date
JPH0772140A true JPH0772140A (ja) 1995-03-17
JP3160827B2 JP3160827B2 (ja) 2001-04-25

Family

ID=16746499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22013893A Expired - Lifetime JP3160827B2 (ja) 1993-09-03 1993-09-03 溶鋼中の炭素、水素、窒素濃度の順次連続測定方法及び装置

Country Status (1)

Country Link
JP (1) JP3160827B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997024464A1 (en) * 1995-12-29 1997-07-10 Centro Sviluppo Materiali S.P.A. Method for determination and control of the amount of nitrogen dissolved in metalic liquid phases and device for its realization
KR100848623B1 (ko) * 2001-12-13 2008-07-28 주식회사 포스코 용강중의 수소성분 채집분석 장치 및 그 방법

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5292136B2 (ja) * 2009-03-16 2013-09-18 オルガノ株式会社 溶存窒素濃度の測定方法及び溶存窒素濃度の測定装置
EP3139155B1 (en) * 2014-07-09 2019-05-01 JFE Steel Corporation Method for analyzing nitrogen in metal samples, device for analyzing nitrogen in metal samples, method for adjusting nitrogen concentration in molten steel, and steel production method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997024464A1 (en) * 1995-12-29 1997-07-10 Centro Sviluppo Materiali S.P.A. Method for determination and control of the amount of nitrogen dissolved in metalic liquid phases and device for its realization
KR100848623B1 (ko) * 2001-12-13 2008-07-28 주식회사 포스코 용강중의 수소성분 채집분석 장치 및 그 방법

Also Published As

Publication number Publication date
JP3160827B2 (ja) 2001-04-25

Similar Documents

Publication Publication Date Title
US5522915A (en) Method and apparatus for sequentially and continuously determining concentrations of carbon, hydrogen, and nitrogen in molten steel, and method and apparatus for rapidly determining trace amounts of carbon in molten steel
ATE371752T1 (de) Verfahren zum schmelzen von aluminium unter verwendung der analyse der ofenabgase
JPH0772140A (ja) 溶鋼中の炭素、水素、窒素濃度の順次連続測定方法及び装置
KR100717486B1 (ko) 수소 황화물 자동 감시 시스템
KR100371621B1 (ko) 가스 분석기를 사용하는 금속 제품 제조
JP2010151499A (ja) 水銀分析装置および水銀分析方法
JP3231154B2 (ja) 溶鋼中微量炭素の迅速測定方法及び装置
JP3454068B2 (ja) 溶鋼中の炭素及び窒素濃度の順次連続測定装置及びこの装置を用いた測定方法
JP2011038125A (ja) 清浄鋼の溶製方法
JP2005127927A (ja) 定電位電解式ガスセンサを備えた排ガス連続分析装置
JPH102897A (ja) 溶鋼中微量炭素の迅速測定方法及び装置
KR100848623B1 (ko) 용강중의 수소성분 채집분석 장치 및 그 방법
JPS58129346A (ja) 溶融金属中ガスの定量用ガス採取方法
JP2789432B2 (ja) 分析用ガスの採取方法及び装置
Harris Oxygen in steelmaking: towards cleaner steels
Glitscher Milestones of process control in ferrous metallurgy. Past, today and future
JPS63135858A (ja) 炭素量測定装置
JPH01213570A (ja) 溶鋼中の水素分析方法および装置
JP3293674B2 (ja) Rh脱ガス処理における終点炭素濃度制御方法
Pesonen et al. In Situ Measurement of Silicon Content in Molten Ferrochrome
JP2000283972A (ja) 全有機炭素計
JPH0221547B2 (ja)
JPH08327625A (ja) 金属試料中の炭素、硫黄および燐の分析方法、ならびにその装置
JPH09145450A (ja) スラグ層厚測定方法
SU1012099A1 (ru) Способ определени количества растворенных в жидкост х газов

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010116

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080223

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090223

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100223

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110223

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110223

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120223

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130223

Year of fee payment: 12

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130223

Year of fee payment: 12

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130223

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140223

Year of fee payment: 13