JPH0760280A - 超純水製造プロセスにおける原水の前処理装置 - Google Patents

超純水製造プロセスにおける原水の前処理装置

Info

Publication number
JPH0760280A
JPH0760280A JP5211314A JP21131493A JPH0760280A JP H0760280 A JPH0760280 A JP H0760280A JP 5211314 A JP5211314 A JP 5211314A JP 21131493 A JP21131493 A JP 21131493A JP H0760280 A JPH0760280 A JP H0760280A
Authority
JP
Japan
Prior art keywords
water
tank
treated
raw water
production process
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5211314A
Other languages
English (en)
Inventor
Hirotake Miyake
尋偉 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nomura Micro Science Co Ltd
Original Assignee
Nomura Micro Science Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nomura Micro Science Co Ltd filed Critical Nomura Micro Science Co Ltd
Priority to JP5211314A priority Critical patent/JPH0760280A/ja
Publication of JPH0760280A publication Critical patent/JPH0760280A/ja
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

(57)【要約】 【目的】 微量有機物の処理を確実に行って微量有機物
の存在による問題を解消し、原水の水質変動による影響
を受け難く、生物反応のための特別の設備を必要としな
い超純水製造プロセスにおける前処理装置を提供するこ
とを目的とする。 【構成】 密集した繊維質固定化材をばっ気手段を備え
た槽本体内22aに充填しモール状固定化材29の表面
に貧栄養性の微生物を固定化させてなる生物化学反応槽
21と、多孔質ガラス22cを槽本体22a内に充填し
多孔質ガラス22cの表面に貧栄養性の微生物を固定化
させてなる生物濾過槽2と、殺菌用ラインミキサー23
と凝集用ラインミキサー24と、圧力濾過器25とを流
路に沿って順に配置するとともに、圧力濾過器25に逆
洗手段である限外濾過逆洗配管41aとを設け、限外濾
過逆洗配管41aの逆洗水を生物化学反応槽に返送する
よう構成してなる。

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は、超純水製造プロセスに
用いられる原水の前処理装置に関する。
【0002】
【従来の技術】従来から、超純水を大量に使用する半導
体装置の製造工場や液晶表示装置の製造工場において
は、超純水製造プロセスが設置されている。
【0003】従来から、超純水製造プロセスの前段に
は、製造プロセスで使用する圧力濾過器の逆洗回数を少
なくし、逆浸透膜装置の負荷を軽減する目的で、原水中
の微量の濁質、懸濁固形物、浮遊物質等を除去する前処
理装置が配置されている。
【0004】図3及び図4は、従来超純水製造プロセス
の前処理装置として用いられていた凝集濾過及び沈殿濾
過を用いた前処理装置である。
【0005】図3に示す凝集濾過を用いた前処理装置
は、原水貯槽1、殺菌用ラインミキサー2、凝集用ライ
ンミキサー3、圧力濾過器4、限外濾過膜装置5、前処
理水貯槽6を順に配設して構成されている。
【0006】原水貯槽1は、原水流入配管7から流入す
る原水がストップしたときの異常時対策のために設けら
れているもので、原水貯槽1の原水は送水ポンプP1に
より殺菌用ラインミキサー2へ送水される。殺菌用ライ
ンミキサー2には、次亜塩素酸ナトリウム配管8から次
亜塩素酸ナトリウムが添加され、被処理水中のすべての
微生物が死滅する。次段の凝集用ラインミキサー3に
は、ポリ塩化アルミニウム配管9からポリ塩化アルミニ
ウムが添加され被処理水中の死菌が核となって半凝集及
び凝集フロックが形成される。半凝集及び凝集フロック
を含む被処理水は圧力濾過器送水配管10から圧力濾過
器4に送水されて濾過され、限外濾過送水配管11から
限外濾過膜装置5に送水されて精密濾過され前処理水貯
槽送水管12から前処理水貯槽6に送水されて貯留され
る。なお、圧力濾過器4と限外濾過膜装置5には、それ
ぞれ圧力濾過器逆洗配管13、限外濾過逆洗配管14が
設けられており、それぞれ入口と出口に相当な差圧を生
じた場合には逆洗が行われ、逆洗水は原水貯槽1に返送
されるようになっている。また、前処理水貯槽6の処理
水は、その後、pH、水温などの条件を整えて1次純水
システム送水ポンプP2により1次純水システム送水配
管15を介して図示を省略した逆浸透膜装置等からなる
1次純水システムに供給される。
【0007】図4に示す沈殿濾過を用いた前処理装置
は、図3の圧力濾過器4と限外濾過膜装置5を、それぞ
れ沈殿槽16と重力濾過器17に置き換えた構造のもの
で、図4において、図3と同一部分には同一符号を付し
て説明を省略する。なお、図4において符号18は重力
濾過器送水配管、19はかき混ぜ機、20は重力濾過器
逆洗配管、P3は重力濾過器ポンプである。
【0008】しかしながら、これら従来の原水の前処理
装置では、図3に示す凝集濾過を用いた前処理装置で
は、微量有機物の処理が確実に行われないため、微量有
機物による圧力濾過器のろ材のつまりによる逆洗回数が
多くなったり、1次純水製造プロセス中の逆浸透膜(R
O)装置やイオン交換樹脂等の寿命を短くしたりしてラ
ンニングコストを増大させるという問題があるうえに、
被処理水の水質変動が発生したとき等に凝集剤を誤って
過剰に注入した場合には、凝集濾過後の濾過水槽滞留中
にフロックを再度生ずる、いわゆるアフタデポジット現
象を生じそれらが水質の低下を招くという問題があっ
た。
【0009】また、二次純水システムを含む超純水製造
プロセス全体からすれば、前処理が確実になされていな
いので、一次純水システムや二次純水システムのイニシ
アルコスト及びランニングコストが超微細化時代の水質
要求に対応して高価すぎるという問題があった。そして
また一方で、水質的なことであるが、特定のTOC成分
はRO・UV酸化等従来の方法では処理できず、生物化
学処理のみ特定のTOC成分が分解される事実があっ
た。どちらにしても超純水製造プロセスに関して最新の
ニーズは、イニシアルコスト、ランニングコスト及びグ
レードの高い水質要求であり、それらに対応した超純水
製造プロセスにおける前処理装置が求められていたが、
存在していなかった。
【0010】また、図4に示す凝集沈殿を用いた前処理
装置でも、微量有機物の処理が確実に行われないため、
1次純水製造プロセス中の逆浸透膜(RO)装置やイオ
ン交換樹脂等の寿命を短くしたりしてランニングコスト
を増大させるという問題や梅雨時の降雨等により原水の
水質が変動した場合に濾過器出口のFI値が激しく変動
するという問題があるうえに、沈殿槽における滞留時間
が3時間以上と長いためそれら凝集沈殿設備と濾過設備
に必要な面積が大きくなって、大規模な半導体工場や液
晶工場を計画する場合、とりわけ凝集沈殿スペ−スの確
保が困難であるという問題があった。
【0011】微量の有機物を吸着除去方法としては、紫
外線酸化法、活性炭吸着法、イオン交換などを組合わせ
た方法が知られているが、ランニングコストが高い上
に、活性炭濾過器は塩素も除いてしまうため、濾過槽で
発生したバクテリアが逆浸透膜(RO)装置のファリン
グの原因となるという問題があった。
【0012】さらに、貧栄養細菌を用いた生物処理によ
る方法も提案されているが(特開昭62−258798
号公報)、このような通常の生物処理による前処理方法
では、別の生物反応槽が必要になって設備が大型化する
上に、生菌や死菌が担体から分離して処理水中に混入し
てしまうおそれがあり、信頼性に欠けるという問題があ
った。
【0013】
【発明が解決しようとする課題】前述したとおり、従来
の超純水製造プロセスにおける原水の前処理装置のう
ち、凝集圧力濾過式のものでは、微量有機物の処理が確
実に行われないため微量有機物による圧力濾過器のろ材
のつまりによる逆洗回数が多くなったり、1次純水製造
プロセス中の逆浸透膜(RO)装置やイオン交換樹脂等
の寿命を短くしたりしてランニングコストを増大させる
という問題があるうえに、被処理水の水質変動が発生し
たとき等に凝集剤を誤って過剰に注入した場合には、凝
集濾過後の濾過水槽滞留中にフロックを再度生ずる、い
わゆるアフタデポジット現象を生じそれらが水質の低下
を招くという問題があった。
【0014】また、凝集沈殿式のものでも、微量有機物
の処理が確実に行われず凝集圧力式と同様の問題がある
上に、原水の水質が変動した場合に濾過器出口のFI値
が激しく変動するという問題や、沈殿槽における滞留時
間が3時間以上と長いためそれら凝集沈殿設備と濾過設
備に必要な面積が大きくなるという問題があった。
【0015】さらに、微量の有機物を吸着除去方法とし
て、紫外線酸化法、活性炭吸着法、イオン交換などを組
合わせた方法が知られているが、ランニングコストが高
い上に、活性炭濾過器は塩素も除いてしまうため濾過槽
で発生したバクテリアが逆浸透膜(RO)装置のファリ
ングの原因となるという問題があった。
【0016】さらに、貧栄養細菌を用いた生物処理によ
る方法も提案されているが、別に生物反応槽が必要にな
って設備が大型化する上に、生菌や死菌が担体から分離
して処理水中に混入してしまうおそれがあり、信頼性に
欠けるという問題があった。本発明は、かかる従来の問
題を解消すべくなされたもので、微量有機物の処理を確
実に行って微量有機物の存在による問題を解消し、原水
の水質変動による影響を受け難く、生物反応のための特
別の設備を必要とせず、コンパクトでランニングコスト
が安く処理の信頼性の高い超純水製造プロセスにおける
前処理装置を提供することを目的とする。
【0017】
【課題を解決するための手段】本発明の超純水製造プロ
セスにおける原水の前処理装置は、密集した繊維質固定
化材をばっ気手段を備えた槽本体内に充填し該繊維質固
定化材の表面に貧栄養性の微生物を固定化させてなる生
物化学反応槽と、多孔質ガラスを槽本体内に充填し該多
孔質ガラスの表面に貧栄養性の微生物を固定化させてな
る生物濾過槽と、殺菌及び凝集手段と、濾過手段とを流
路に沿って順に配置するとともに、前記濾過手段に逆洗
手段を設け、該逆洗手段の逆洗水を前記生物化学反応槽
に返送するよう構成してなることを特徴としている。
【0018】本発明において生物反化学応槽に用いられ
る繊維質固定化材としては、紐状の支持体に多数のプラ
スチックモノフィラメントを放射状に固定してなるモー
ル状のものが適しているが、貧栄養性の微生物を固定可
能であって、かつ、逆洗水とともに返送された半凝集及
び凝集フロックを捕捉固定化可能なものであれば、この
ようなものに限定されず、例えばプラスチック単繊維を
ネット状に織成したものやプラスチック単繊維を単に密
集させたものであってもよい。プラスチックモノフィラ
メントの素材としては、塩化ビニリデン樹脂が特に適し
ており、塩化ビニル樹脂も使用可能である。この繊維質
固定化材は、生物化学反応槽本体内に設置した枠体に密
接懸架する等任意の方法で水流をさほど妨げない程度に
充填して用いられる。この生物化学反応槽の繊維質固定
化材には、BOD数ppm以下で繁殖する貧栄養性の微
生物がばっ気手段からの空気の存在下で固定化され、被
処理水中に溶解している微量の有機物を分解して固定化
材上で増殖する。
【0019】また、後述するように、濾過手段からの逆
洗中に含まれる半凝集及び凝集フロックが固定化する
と、これらのフロック中の水酸化アルミニウム等が微量
濁質等を吸着処理する作用をする。
【0020】貧栄養性の微生物は、例えば次のような方
法で、繊維質固定化材の表面に所定の厚さに固定化され
る。すなわち、超純水製造用の原水である工業用水、井
戸水、水道水、河川水等を繊維質固定化材を充填した生
物化学反応槽に流入させながら2か月以上散気管から空
気を放出してばっ気を行い攪拌と生物化学反応槽内の溶
存酸素を維持する。貧栄養性の微生物は通常、工業用
水、井戸水、河川水に含まれBOD数ppm以下の条件
で増殖繁殖するので、この方法により自然に密接充填さ
れた繊維質固定化材の表面に所定の厚さに固定化され
る。この過程で、圧力濾過器からの半凝集及び凝集フロ
ックを含む逆洗水も生物化学反応槽に送入させると、逆
洗水中に含まれる半凝集及び凝集フロックも固定化材の
表面に固定化される。そして貧栄養性の微生物と未凝集
の凝集フロック及び凝集フロックが前記繊維質固定化材
に固定化されることによって、被処理水の生物化学反応
処理が可能となる。なお、生物化学反応槽においては貧
栄養性の微生物により生物反応処理が行われ、未凝集及
び凝集フロックにより被処理水中の微量懸濁物質の除去
と微細なコロイド物質の除去の化学反応処理が行われ
る。また、散気管によるばっ気により、栄養性の微生物
の好気性の増殖繁殖と生物化学槽内の撹拌及び酸化が促
進される。なお、生物化学反応槽の槽本体には、従来の
原水貯槽をそのまま使用することができ、したがって、
生物化学反応槽のための設置面積を別に必要としない。
【0021】また、本発明の生物濾過槽に用いられる多
孔質ガラスとしては、例えば直径15ないし30mm、長
さ20ないし30mmの円柱状のものが適しており、その
表面に生物化学反応槽におけると同様の方法により、所
定の厚さに貧栄養性の微生物を固定して用いられる。な
お、多孔質ガラスとしては、孔径の分布が均一で、溶解
成分を含まず、かつ、浮遊している微生物を積極的にそ
の表面に固定化するものが好ましい。多孔質ガラスは、
被処理水中に浮遊している貧栄養性の微生物を積極的に
その孔に取り込み、その表面及びその多孔の内部で貧栄
養性の微生物を繁殖させ生物濾過体として機能する。そ
して多孔質ガラスの表面及びその多孔の内部に固定化さ
れた貧栄養性微生物は、被処理水の通水運転により自然
に被処理水中の有機物を栄養源に増殖繁殖する。この貧
栄養性の微生物の増殖繁殖により通水初期に白色を呈し
ていた多孔質ガラスは褐色に変化する。多孔質ガラス
は、もともと物理的な濾過機能を有しているが、本発明
における貧栄養性の微生物の固定した多孔質ガラスは表
面及び孔内に貧栄養性の微生物が固定されているので、
被処理水を生物学的にも濾過する。したがって、本発明
においては、被処理水は生物化学反応槽において生物・
化学的に処理され、生物濾過槽において生物・物理的に
処理されることになる。すなわち生物処理に関しては2
段階の貧栄養性の微生物処理による処理が行われること
になり、被処理水中の微量有機物は確実に分解除去され
る。なお、生物化学反応槽で捕捉されなかった半凝集フ
ロックは多孔質ガラスで捕捉固定化され、ここでも被処
理水中の微量懸濁物質の除去と微細なコロイド物質の除
去の化学反応処理が行われる。
【0022】本発明の殺菌及び凝集手段は、一般に、生
物濾過槽の下流に順に配置された、殺菌剤ポンプにより
殺菌剤を送入する殺菌剤送入手段とラインミキサーと、
凝集剤ポンプにより凝集剤を送入する凝集剤送入手段と
ラインミキサーとから構成され、必要に応じてこれらは
同一槽で構成されることもある。
【0023】生物濾過後の被処理水に添加する殺菌剤と
しては、次亜塩素酸ナトリウムが適しているが、塩素、
二酸化塩素、さらし粉なども使用可能である。また凝集
剤としては、ポリ塩化アルミニウムが適しているが、硫
酸アルミニウム等も使用可能である。凝集剤は、負の電
荷を帯びて水中に浮遊している死菌、SS(浮遊物)等
の微粒子の電荷を中和し、これらの微粒子を核として凝
集フロックを形成させる作用をする。
【0024】濾過手段としては、通常圧力濾過器が使用
され、必要に応じて限外濾過膜装置による精密濾過手段
が併用される。
【0025】圧力濾過器としては、1〜2mmの比較的粗
い砂を1〜2mmに積層したものが適しており、限外濾過
膜としては、ポリスルホンやポリアクリロニトリルから
なる中空糸膜タイプのものが適している。
【0026】凝集手段で生じたフロックは、圧力濾過器
により濾過され、限外濾過膜装置を用いた場合には、
0.02ミクロン以下の微生物や微粒子まで除去され
る。
【0027】なお、濾過手段には逆洗手段が設けられて
おり、その逆洗水の一部または全部は化学反応槽に返送
される。このとき、濾過器手段の出口にはFI測定手段
が配置され出力信号により被処理水の送水量及び/また
は凝集剤送入量が制御される。 限外濾過膜装置の限外
濾過膜としては、中空糸タイプ等のものを選定すること
ができ、その材質としては例えばポリスルホンを選ぶこ
とができる。また、限外濾過膜としては、膜の洗浄が容
易でハウジングの最高使用圧力が5kg/cm 2 程度のもの
が装置設計の上で利用しやすいし経済的でもある。
【0028】
【作用】本発明においては、生物化学反応槽中の繊維質
固定化材に固定化された貧栄養性の微生物が、ばっ気手
段から供給される空気の存在下で被処理水に含まれる微
量の有機物を分解除去する生物反応処理を行い、繊維質
固定化材に固定化された半凝集及び凝集フロックが、被
処理水中の微量懸濁物質の除去と微細なコロイド物質の
除去の化学反応処理を行い、さらに、生物濾過槽では、
生物化学反応槽から剥離した貧栄養性の微生物が、多孔
質ガラスの多数の微細な孔に付着繁殖し、被処理水はこ
の多数の孔を通過する過程で、なお残存する微量の有機
物や半凝集及び凝集フロックを除去し、生物化学反応槽
の固定化材から剥離した生菌及び死菌も除去する。
【0029】さらに、生物濾過槽の処理水は、殺菌及び
凝集手段により殺菌、凝集されて半凝集及び凝集フロッ
クが生成され、濾過手段においてこれらの半凝集及び凝
集フロックが濾過される。
【0030】このように、本発明においては、原水貯槽
がそのまま生物化学反応槽として用いられるので、スペ
ースファクターが良好であり、かつ生物化学反応槽にお
いて微量の有機物及び微量懸濁物質、微細なコロイド物
質等が効率よく除去され、さらに、次段の生物濾過槽に
おいて、固定化された貧栄養性の微生物により残存する
微量有機物も効果的に分解除去される。
【0031】したがって、濾過装置の負荷を大幅に軽減
することができる。
【0032】
【実施例】次に本発明の詳細を、図示の実施例を参照し
つつ説明する。
【0033】図1に示す実施例の装置は、主として、生
物化学反応槽21、生物濾過槽22、殺菌用ラインミキ
サー23、凝集用ラインミキサー24、圧力濾過器2
5、限外濾過膜装置26、前処理水貯槽27を被処理水
の流路に順に配設して構成されている。
【0034】生物化学反応槽21は、従来の原水貯槽中
に多数の孔を設けたプラスチック板材を用いて枠体28
を組立て、この中に、図3(a),(b)に拡大して示
す、紐状の支持体29aに多数の塩化ビニリデンモノフ
ィラメント29bの一端を放射状に固定してなるモール
状固定化材29を多数垂直に配列して密接充填し、底部
に空気の気泡を噴出する散気管30を配設して構成され
ている。生物化学反応槽21の容量は、原水の流入条件
によっても異なるが、一般的に3時間以上とされること
が多い。31はブロアー、32はブロアーからの空気を
圧送する空気配管である。
【0035】生物濾過槽2は、濾過槽本体22aの底部
近傍に格子板22bを水平に配設し、この格子板22b
上に、直径15ないし30mm、長さ20ないし30mmの
円柱状の多孔質ガラス22cを多数充填して構成されて
おり、上部から生物化学反応槽1の被処理水が流入し、
送水ポンプP4により底部から送水されるように構成さ
れている。
【0036】殺菌用ラインミキサー23は、送水ポンプ
Pにより圧送されてくる被処理水に、殺菌剤ポンプ(図
示せず。)により殺菌剤配管33を通って供給される次
亜塩素酸ナトリウムのような殺菌剤を所定の比率で均一
に混合するよう構成されている。 凝集用ラインミキサ
ー24は、殺菌用ミキサー23から送られる処理水に、
ポリ塩化アルミニウムのような凝集剤を収容する凝集剤
タンク35から凝集剤ポンプP5により凝集剤配管36
を通って供給される凝集剤を所定の比率で混合するよう
構成されている。
【0037】圧力濾過器25は、凝集用ラインミキサー
24から圧力濾過器送水配管37により送水される半凝
集あるいは凝集フロックを含む被処理水を濾過する。な
お、この圧力濾過器25には、凝集用ラインミキサー2
4からの処理水を底部へ送入する逆洗配管38aと、上
部からこの逆洗水を生物化学反応槽21に導く逆洗配管
38bが設けられている。
【0038】また、圧力濾過器25の出口近傍の配管に
は、FI(ファリングインデックス)計(FI)が設置
されており、FI計(FI)の値が所定の値、例えばF
Iが4以上になると、その出力信号により凝集剤供給量
制御装置39が被処理水の水質が悪化したと判断して凝
集剤の供給量を増加するように凝集剤ポンプP5の回転
数を制御する。なお、FIの増加により凝集剤の供給量
を増加させる代わりに被処理水の通水量を減少させた
り、あるいは凝集剤の供給量の増加と通水量の減少とを
同時に行わせるようにすることもできる。
【0039】限外濾過膜装置26は、限外濾過配管40
により送水されてきた被処理水中の圧力濾過器25で濾
過し得なかった、さらに微細な0.02ミクロン以上の
半凝集及び凝集フロック、微細な濁質、ファウリング成
分等を精密濾過する。限外濾過膜としては、中空糸タイ
プ、平膜タイプ等を用いることができるが、2M3 /時
間程度の処理能力のものが適当である。なお、この限外
濾過膜装置26には、前処理水貯槽27の処理水を逆洗
水として送入する限外濾過逆洗配管41aと、この逆洗
水を生物化学反応槽21に導く限外濾過逆洗配管41b
とが設けられている。
【0040】前処理水貯槽27は、限外濾過膜装置26
で精密濾過され限外濾過送水配管42により送水されて
くる処理水を一時貯蔵するための貯槽であり、必要に応
じて前処理水貯槽ポンプPにより1次純水製造プロセス
送水配管42から1次純水製造プロセスへ送水したり、
限外濾過逆洗配管41aから逆洗水として限外濾過膜装
置26へ送水したりする。
【0041】次に、図1の装置を用いた超純水製造プロ
セスにおける原水の前処理方法について説明する。
【0042】まず、工業用水、井戸水、水道水、河川水
等の超純水製造のための原水を、ブロワ−31からの空
気を空気配管32を通じて散気管30から噴出させて生
物化学反応槽21内部の空気による攪拌と溶存酸素を維
持しつつ、工業用水、井戸水、水道水、河川水等の超純
水製造のための原水を流入配管43を経て生物化学反応
槽1に流入させてシステム全体に通水させて所定の運転
動作を行わせる。通水初期には、モール状固定化材29
と多孔質ガラス22cには貧栄養性の微生物も半凝集及
び凝集フロックも固定されていないので、生物化学反応
槽1も生物濾過槽2も十分な機能を発揮しないが、約2
ケ月以上通水を続けていると原水に含まれている貧栄養
性の微生物がモール状固定化材29の表面や多孔質ガラ
ス22cの表面や多孔の孔の内面に固定化され、また、
圧力濾過器25からの逆洗水に含まれる半凝集及び凝集
フロックも固定化されて、本来の生物反応、化学反応機
能を発揮するようになる。
【0043】このような状態において、生物化学反応槽
21に流入した原水中の微量の有機物は酸素の存在化で
モール状固定化材29の表面に固定化された貧栄養性の
微生物により分解され、また、原水中の微量懸濁物質や
微細なコロイド物質は、モール状固定化材29に固定さ
れた半凝集及び凝集フロックにより捕捉除去される。次
いで、生物濾過槽22で生物濾過された被処理水は、送
水ポンプP4で殺菌用ラインミキサー23に送水され、
殺菌剤として添加される次亜塩素酸ナトリウムにより水
中の貧栄養性の微生物を含むすべての微生物(生菌)が
死滅する。次いで処理水は凝集用ラインミキサー24に
送られ、凝集剤として添加されるポリ塩化アルミニウム
の作用により被処理水中の死菌が核となって半凝集及び
凝集フロックが形成される。すなわち、凝集用ラインミ
キサー24においては、一般の凝集反応におけるSS
(浮遊物質)が凝集反応における核となることと同様
に、微細な死菌等が核となって凝集反応が効果的に行わ
れる。凝集用ラインミキサー24で形成された半凝集及
び凝集フロックを含む被処理水は、圧力濾過器25に送
られ半凝集及び凝集フロックが濾過される。
【0044】半凝集及び凝集フロックの濾過により、圧
力濾過器25内部の濾材表面には半凝集及び未凝集フロ
ックが堆積し、圧力濾過器25の入口と出口の圧力差を
生じるようになる。このようなFI値の変化はFI計
(FI)が検知しており、例えばFIが4以上になる
と、その出力信号により凝集剤供給量制御装置39が凝
集剤ポンプP5の回転数を増加させ、必要に応じて送水
ポンプP4の回転数を原則させて正常なFI値の範囲に
復帰させる。
【0045】さらに、所定時間処理を行った後は、圧力
濾過器逆洗配管38aを通じて逆洗を行うようにして、
堆積した凝集フロックと未凝集フロックを生物化学反応
槽21に返送する。返送された凝集フロックと未凝集フ
ロックは、生物化学反応槽21に充填されたモール状固
定化材29に固定化され、被処理水の化学的処理に役立
つ。
【0046】圧力濾過器5で濾過された被処理水は、限
外濾過膜装置26に送水され、圧力濾過器25で除去で
きなかった、より微細な0.02ミクロン以上の半凝集
フロック、微細な濁質、ファウリング成分等を除去する
精密濾過が行われ処理の完了した水が前処理水貯槽27
に貯留され、その後、pH、水温などの条件を整えて1
次純水システムポンプP6により1次純水システム配管
42から逆浸透膜装置等からなる1次純水システムに供
給される。なお、一定時間経過後、入口と出口に相当な
差圧を生じた場合には前処理水貯槽ポンプ6で限外濾過
逆洗配管を経て、限外濾過膜が逆洗され、かなり、長時
間運転した後には、限外濾過膜装置26を洗浄剤で洗浄
することも必要である。
【0047】[実験例]図1に示す本発明の系統図に基
づく実験設備を準備した。なお、主要装置である生物化
学反応槽の容量を1.5M3 、生物濾過槽の容量を0.
2M3 、圧力濾過器の容量を1M3 、限外濾過膜の容量
を0.165M3 とした。
【0048】また本発明と従来の方法との比較をするた
め、図3に示す系統図に基づく実験設備を準備した。主
要装置は原水貯槽1.5M3 、圧力濾過器1M3 、限外
濾過膜0.165M3 で図1の系統図に示す実験設備の
主要装置と同仕様とした。
【0049】また、図4に示す系統図に基づく水質の測
定値は実装置の値である。実装置での原水貯槽の容量は
約1000M3 、沈殿槽約600M3 、重力濾過槽約2
00M3 である。
【0050】図1、図3、図4のそれぞれの系統図に流
入する原水の水質 pH 7.4 FI 20 濁度 6.0≦ TOC 3.2ppm 生菌 T.N.T.C 図1に基づく本発明による処理水水質 pH 6.9 FI 1.8 濁度 <1.0 TOC 1.4ppm 生菌 0 図3に基づく従来方法による処理水水質 pH 6.8 FI 3.2 濁度 <1.0 TOC 2.8ppm 生菌 0 図4に基づく従来方法による処理水水質 pH 6.5 FI 3.1 濁度 <1.0 TOC 1.8ppm 生菌 0
【0051】
【発明の効果】以上、説明したように、本発明の超純水
製造プロセスにおける原水の前処理装置は、生物化学反
応槽と生物濾過槽を含む前処理を行うため、微量有機
物、微量濁質等の処理が確実にでき、1次純水における
RO膜、イオン交換樹脂等の寿命を長くしてランニング
コストを低減することができ、また、原水の水質変動に
よる影響を受け難く、生物反応のための特別の設備を必
要とせず、コンパクトでイニシアルコストは言うまでも
なく、ランニングコストまでも低減でき、かつ水質も向
上させる。
【0052】そしてより具体的には、1次純水のみなら
ず、2次純水においても生菌の発生とTOCを可能なか
ぎり低減でき、ひいては2次純水の水質向上にきわめて
有効である。
【図面の簡単な説明】
【図1】本発明の一実施例の超純水製造プロセスにおけ
る前処理装置の構成を概略的に示す図。
【図2】(a)は本発明の一実施例に使用するモール状
固定化材の側面図。(b)は本発明の一実施例に使用す
るモール状固定化材の横断面図。
【図3】従来の凝集圧力濾過式の超純水製造プロセスに
おける前処理装置の構成を概略的に示す図。
【図4】従来の凝集重力濾過式の超純水製造プロセスに
おける前処理装置の構成を概略的に示す図。
【符号の説明】
21………生物化学反応槽 22………生物濾過槽 23………殺菌用ラインミキサー 24………凝集用ラインミキサー 25………圧力濾過器 26………限外濾過膜装置 27………前処理水貯槽 28………枠体 29………モール状固定化材 29a……紐状の支持体 29b……多数の塩化ビニリデンモノフィラメント 30………散気管 31………ブロアー 32………空気配管 33………殺菌剤配管 36………凝集剤配管 37………圧力濾過器送水配管 38a、38b…逆洗配管 39………凝集剤供給量制御装置 40………限外濾過送水配管 41a、41b…限外濾過逆洗配管
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C02F 1/50 550 H 9045−4D 560 H 9045−4D 1/74 101 1/76 A 3/06 ZAB 3/08 ZAB Z 9/00 501 B 7446−4D 502 P 7446−4D 503 B 7446−4D 504 A 7446−4D

Claims (5)

    【特許請求の範囲】
  1. 【請求項1】 密集した繊維質固定化材をばっ気手段を
    備えた槽本体内に充填し該繊維質固定化材の表面に貧栄
    養性の微生物を固定化させてなる生物化学反応槽と、多
    孔質ガラスを槽本体内に充填し該多孔質ガラスの表面に
    貧栄養性の微生物を固定化させてなる生物濾過槽と、殺
    菌及び凝集手段と、濾過手段とを流路に沿って順に配置
    するとともに、前記濾過手段に逆洗手段を設け、該逆洗
    手段の逆洗水を前記生物化学反応槽に返送するよう構成
    してなることを特徴とする超純水製造プロセスにおける
    原水の前処理装置。
  2. 【請求項2】 固定化材が、紐状の支持体に多数のプラ
    スチックモノフィラメントを放射状に固定してなるモー
    ル状固定化材からなる請求項1記載の超純水製造プロセ
    スにおける原水の前処理装置。
  3. 【請求項3】 プラスチックモノフィラメントが、塩化
    ビニリデンからなる請求項1または2記載の超純水製造
    プロセスにおける原水の前処理装置。
  4. 【請求項4】 殺菌及び凝集手段が、生物濾過槽の下流
    に順に配置された、殺菌剤ポンプにより殺菌剤を被処理
    水へ送入する殺菌剤送入手段と、凝集剤ポンプにより凝
    集剤を被処理水へ送入する凝集剤送入手段とからなる請
    求項1ないし3のいずれか1記載の超純水製造プロセス
    における原水の前処理装置。
  5. 【請求項5】 濾過手段の出口にFI(ファウリングイ
    ンデックス)測定手段が配置され、このFI測定手段の
    出力信号により被処理水の送水量及び/または凝集剤送
    入手段の凝集剤送入量が制御される請求項4記載の超純
    水製造プロセスにおける原水の前処理装置。
JP5211314A 1993-08-26 1993-08-26 超純水製造プロセスにおける原水の前処理装置 Withdrawn JPH0760280A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5211314A JPH0760280A (ja) 1993-08-26 1993-08-26 超純水製造プロセスにおける原水の前処理装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5211314A JPH0760280A (ja) 1993-08-26 1993-08-26 超純水製造プロセスにおける原水の前処理装置

Publications (1)

Publication Number Publication Date
JPH0760280A true JPH0760280A (ja) 1995-03-07

Family

ID=16603895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5211314A Withdrawn JPH0760280A (ja) 1993-08-26 1993-08-26 超純水製造プロセスにおける原水の前処理装置

Country Status (1)

Country Link
JP (1) JPH0760280A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007098270A (ja) * 2005-10-04 2007-04-19 Japan Organo Co Ltd 純水製造方法および装置
JP2013188690A (ja) * 2012-03-14 2013-09-26 Toshiba Corp 膜ろ過システム
JP2014526957A (ja) * 2011-07-14 2014-10-09 ナルコ カンパニー プロセス流の水質の維持方法
KR20210020477A (ko) * 2019-08-14 2021-02-24 이규범 여과 공정과 역세정 공정에서 처리수 펌프와 mbg의 작동 방향이 동일한 mbr 시스템 및 이를 이용한 수처리 방법

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007098270A (ja) * 2005-10-04 2007-04-19 Japan Organo Co Ltd 純水製造方法および装置
JP2014526957A (ja) * 2011-07-14 2014-10-09 ナルコ カンパニー プロセス流の水質の維持方法
JP2013188690A (ja) * 2012-03-14 2013-09-26 Toshiba Corp 膜ろ過システム
KR20210020477A (ko) * 2019-08-14 2021-02-24 이규범 여과 공정과 역세정 공정에서 처리수 펌프와 mbg의 작동 방향이 동일한 mbr 시스템 및 이를 이용한 수처리 방법

Similar Documents

Publication Publication Date Title
US7931808B2 (en) Sequencing batch reactor with continuous membrane filtration and solids reduction
JP4764515B2 (ja) 凝集−傾斜板沈殿池による前処理を行った加圧式精密ろ過器と回収率を向上させるための空隙制御型繊維ろ過器とを用いた浄水処理装置及び方法
CN209537233U (zh) 一种工业污水深度处理系统
JPH1190483A (ja) 排水処理方法および排水処理装置
JP4997724B2 (ja) 有機性排水の処理方法
JPH11114596A (ja) 超純水製造方法および超純水製造装置
JP4071364B2 (ja) 逆浸透膜分離装置の前処理装置
CN111362509A (zh) 一种养殖循环水处理及回用一体化工艺
JP5118722B2 (ja) 廃水処理システム
KR100666831B1 (ko) 침지식 막여과를 이용한 고도정수처리 방법
CN219136573U (zh) 一种养殖尾水处理系统
JPH0760280A (ja) 超純水製造プロセスにおける原水の前処理装置
KR20170075085A (ko) 막여과 정수 시스템 및 이를 이용한 망간 저감방법
JPS649071B2 (ja)
CN216106354U (zh) 一种新型的超滤水处理系统
CN215559437U (zh) 一种废水处理系统
JPH05345195A (ja) 廃水処理方法
JPS61200892A (ja) 廃水処理装置
JP2001047089A (ja) 汚水の処理方法および処理装置
JP7173718B2 (ja) 排水処理方法及び排水処理装置
RU2644904C1 (ru) Способ биологической очистки сточных вод от азотно-фосфорных и органических соединений
CN218146267U (zh) 一种煤码头生活污水生物膜法处理装置
JP2000024692A (ja) 硫酸イオン含有排水の処理装置
JPH08141587A (ja) 排水の処理方法及び処理装置
CN218491594U (zh) 一种生化污水回用系统

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20001031