JPH0746683B2 - Method for manufacturing semiconductor device - Google Patents

Method for manufacturing semiconductor device

Info

Publication number
JPH0746683B2
JPH0746683B2 JP1703586A JP1703586A JPH0746683B2 JP H0746683 B2 JPH0746683 B2 JP H0746683B2 JP 1703586 A JP1703586 A JP 1703586A JP 1703586 A JP1703586 A JP 1703586A JP H0746683 B2 JPH0746683 B2 JP H0746683B2
Authority
JP
Japan
Prior art keywords
substrate
film
silicon
semiconductor
semiconductor substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1703586A
Other languages
Japanese (ja)
Other versions
JPS62174911A (en
Inventor
隆司 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP1703586A priority Critical patent/JPH0746683B2/en
Publication of JPS62174911A publication Critical patent/JPS62174911A/en
Publication of JPH0746683B2 publication Critical patent/JPH0746683B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 [概要] 単結晶の半導体基板上に絶縁膜を熱生成し、その絶縁膜
に支持基板を接着する。次いで、半導体基板をエッチン
グ除去した後、その半導体基板と接触していた絶縁膜面
に、半導体基板と同一材料の半導体膜を成長する。そう
すると、その半導体膜は、結晶品質の良い単結晶薄膜と
なる。
DETAILED DESCRIPTION [Outline] An insulating film is thermally generated on a single crystal semiconductor substrate, and a supporting substrate is bonded to the insulating film. Then, after the semiconductor substrate is removed by etching, a semiconductor film made of the same material as the semiconductor substrate is grown on the surface of the insulating film that was in contact with the semiconductor substrate. Then, the semiconductor film becomes a single crystal thin film with good crystal quality.

[産業上の利用分野] 本発明は半導体装置の製造方法のうち、特に、SOI構造
半導体装置の単結晶半導体基板の形成方法に関する。
TECHNICAL FIELD The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a method for forming a single crystal semiconductor substrate of an SOI structure semiconductor device.

最近、SOI(Silicon On Insulator)構造の半導体装置
が注目されており、それは高速動作,耐放射線,高温動
作に有利な半導体装置が作成できるからである。例え
ば、立体的(三次元)に積層して、高度に高集積化すれ
ば、絶縁基板のための寄生容量が減少する効果が相乗し
て、高速動作が得られる。
Recently, a semiconductor device having an SOI (Silicon On Insulator) structure has been attracting attention because a semiconductor device advantageous for high-speed operation, radiation resistance, and high-temperature operation can be manufactured. For example, if the layers are three-dimensionally (three-dimensionally) stacked and highly integrated, the effect of reducing the parasitic capacitance for the insulating substrate is synergized, and high-speed operation can be obtained.

しかし、このようなSOI構造の半導体装置は、出来るだ
け結晶品質の良い基板上に形成することが、高性能化・
高品質化の面から要望されている。
However, it is important to form a semiconductor device with such an SOI structure on a substrate that has crystal quality as high as possible.
There is a demand for higher quality.

[従来の技術と発明が解決しようとする問題点] さて、従前より著名なSOI構造の半導体基板に、SOS(Si
licon On Sapphire)基板が知られており、それは第2
図の断面図に示すように、サファイヤ基板1上にシリコ
ンをエピタキシャル成長して、単結晶シリコン膜2を生
成させた基板である。即ち、サファイヤ基板は高融点の
材料であるから、約1200℃に加熱して、その上にシリコ
ン膜を成長すると、サファイヤ結晶に沿った結晶性のシ
リコン膜を形成される。
[Problems to be Solved by Conventional Techniques and Inventions] Now, SOS (Si
licon On Sapphire) substrate is known, it is the second
As shown in the cross-sectional view of the figure, this is a substrate in which silicon is epitaxially grown on a sapphire substrate 1 to form a single crystal silicon film 2. That is, since the sapphire substrate is a material having a high melting point, when heated to about 1200 ° C. and growing a silicon film thereon, a crystalline silicon film along the sapphire crystal is formed.

しかし、サファイヤ基板が非常に高価であり、且つ、サ
ファイヤとシリコンが類似の結晶構造を有しているとは
云うものの、結晶学的にはやはり相異があつて、界面に
結晶格子のミスマッチが生じ、形成したシリコン膜2に
多数の結晶欠陥が含まれる。従つて、従来の引き上げ法
や帯域精製法で作成したシリコン基板と比較すれば、結
晶品質は決して良質のものではなく、そのため、SOS基
板は余り汎用されるに至つていない。
However, although the sapphire substrate is very expensive, and although sapphire and silicon have similar crystal structures, there are still crystallographic differences, and there is a mismatch of crystal lattices at the interface. The generated and formed silicon film 2 contains many crystal defects. Therefore, compared with the silicon substrate prepared by the conventional pulling method or the band refining method, the crystal quality is not good, so that the SOS substrate has not been widely used.

他方、最近、提唱されているSOI構造の基板に、ビーム
アニールした作成したSOI基板があり、その形成方法を
第3図(a),(b)で説明する。まず、同図(a)に
示すように、シリコン基板3上に二酸化シリコン(Si
O2)膜4を生成し、その上に多結晶シリコン膜5を化学
気相成長(CVD)法によつて被着する。また、この時、S
iO2膜の代わりに、窒化シリコン(Si3N4)膜を生成して
もよいし、また、多結晶シリコン膜の代わりに、アモル
ファスシリコン膜を成長しても良い。
On the other hand, a recently proposed SOI substrate has a beam-annealed SOI substrate, and a method for forming the SOI substrate will be described with reference to FIGS. 3 (a) and 3 (b). First, as shown in FIG.
An O 2 ) film 4 is formed, and a polycrystalline silicon film 5 is deposited thereon by a chemical vapor deposition (CVD) method. Also, at this time, S
A silicon nitride (Si 3 N 4 ) film may be formed instead of the iO 2 film, and an amorphous silicon film may be grown instead of the polycrystalline silicon film.

次いで、第3図(b)に示すように、多結晶シリコン膜
5を、例えば、連続アルゴンレーザ(CW−Ar Laser)ビ
ームで走査して加熱溶融し(これがビームアニールで、
本例はレーザアニールである)、多結晶シリコン膜を単
結晶シリコン膜5に変成する。
Next, as shown in FIG. 3B, the polycrystalline silicon film 5 is heated and melted by scanning with, for example, a continuous argon laser (CW-Ar Laser) beam (this is beam annealing,
This example is laser annealing), and the polycrystalline silicon film is transformed into the single crystal silicon film 5.

ところが、この方法で作成したSOI基板は、多結晶シリ
コン膜5を完全に単結晶化することが難しく、また、単
結晶化しても結晶品質は余り良くはない。従つて、やむ
なく欠陥が多く、品質の良くない結晶シリコン膜5に半
導体素子を形成している現状である。
However, it is difficult to completely single-crystallize the polycrystalline silicon film 5 in the SOI substrate formed by this method, and the crystal quality is not so good even if it is single-crystallized. Therefore, a semiconductor element is formed on the crystalline silicon film 5 which is unavoidably defective and of poor quality.

また、上記した第3図に示す基本的な形成法を改善し
て、結晶シリコン膜5の結晶品質を向上するための種々
の作成方法も試みられており、例えば、シリコン基板3
に核となる種を設け、その種からラテラルにエピタキシ
ャル成長する方法などが知られている。しかし、このよ
うにして形成しても、絶縁膜との境界面近傍での欠陥の
除去は非常に難しいことで、結局、結晶品質の優れたシ
リコン薄膜は未だ作成されていない状況である。
In addition, various fabrication methods have been attempted to improve the crystal quality of the crystalline silicon film 5 by improving the basic formation method shown in FIG.
A method is known in which a seed that becomes a nucleus is provided, and laterally epitaxial growth is performed from the seed. However, even if it is formed in this way, it is very difficult to remove defects in the vicinity of the interface with the insulating film, and as a result, a silicon thin film with excellent crystal quality has not yet been formed.

本発明は、このような問題点を解決して、結晶品質の良
い単結晶薄膜が得られるSOI構造基板の形成方法を提案
するものである。
The present invention proposes a method for forming an SOI structure substrate that solves such problems and obtains a single crystal thin film with good crystal quality.

[問題点を解決するための手段] その目的は、半導体基板(例えば、シリコン基板)面に
生成した絶縁膜(例えば、SiO膜)上に、支持基板を
接着し、次いで、前記半導体基板をエッチング除去(例
えば、ハロゲンガスを含む光励起エッチング法でエッチ
ング除去する)した後、該半導体基板と接触していた前
記絶縁膜面に該半導体基板と同じ材料の半導体膜を成長
する工程が含まれる半導体装置の製造方法によつて達成
される。
[Means for Solving Problems] The purpose is to adhere a support substrate onto an insulating film (eg, SiO 2 film) formed on the surface of a semiconductor substrate (eg, silicon substrate), and then to attach the semiconductor substrate to the semiconductor substrate. A semiconductor including a step of growing a semiconductor film of the same material as the semiconductor substrate on the surface of the insulating film which is in contact with the semiconductor substrate after etching removal (for example, etching removal by photoexcitation etching method containing halogen gas) This is accomplished by the method of manufacturing the device.

[作用] 即ち、本発明は、単結晶半導体基板上に絶縁膜を熱生成
し、その絶縁膜上に支持基板を接着する。次に、半導体
基板をエッチング除去した後、その半導体基板と接触し
ていた絶縁膜面に、半導体基板と同一材料の半導体膜を
積層する。そうすると、半導体基板と接触していた絶縁
膜は、単結晶化しやすい界面状態を受け継いた面をもつ
ており、結晶欠陥も少ないため、その上に成長した単結
晶半導体膜は優れた結晶品質の薄膜になる。
[Operation] That is, according to the present invention, the insulating film is thermally generated on the single crystal semiconductor substrate, and the supporting substrate is bonded onto the insulating film. Next, after the semiconductor substrate is removed by etching, a semiconductor film made of the same material as the semiconductor substrate is laminated on the surface of the insulating film that was in contact with the semiconductor substrate. Then, the insulating film that was in contact with the semiconductor substrate has a surface that inherits the interface state that tends to be single-crystallized and has few crystal defects. Therefore, the single-crystal semiconductor film grown on it has excellent crystal quality. become.

[実施例] 以下、図面を参照して実施例によつて詳細に説明する。[Examples] Hereinafter, examples will be described in detail with reference to the drawings.

第1図(a)〜(d)は本発明にかかる形成方法の形成
工程順断面図を示しており、まず、同図(a)に示すよ
うに、約1000〜1200℃の高温酸化雰囲気中でシリコン基
板11を加熱して、シリコン基板11上に膜厚1μm程度の
SiO2膜12を生成する。この高温酸化して生成されたSiO2
膜12は、絶縁度も良く、界面の結晶欠陥も極めて少ない
良質の膜である。尚、この工程で、アンモニアガスの高
温雰囲気中で熱処理してSi3N4膜を生成する方法も考え
られる。
FIGS. 1 (a) to 1 (d) show sectional views in order of forming steps of the forming method according to the present invention. First, as shown in FIG. 1 (a), in a high temperature oxidizing atmosphere of about 1000 to 1200 ° C. The silicon substrate 11 is heated with, and the film thickness of about 1 μm
The SiO 2 film 12 is generated. SiO 2 produced by this high temperature oxidation
The film 12 is a good quality film having good insulation and very few crystal defects at the interface. In this process, a method of forming a Si 3 N 4 film by heat treatment in a high temperature atmosphere of ammonia gas can be considered.

次いで、第1図(b)に示すように、SiO2膜12の上の他
のシリコン基板または石英基板13(支持基板)を接着す
る。接着法は、例えば、SiO2膜12上に燐シリケートガラ
ス(PSG)をCVD法で薄く積層し、これを溶融して接着す
る。この燐シリケートガラスは900℃程度の低温度で溶
融するから、容易に接着させることができる。また、Si
O2膜12そのものを高温度で溶融して接着させても構わな
い。
Next, as shown in FIG. 1B, another silicon substrate or a quartz substrate 13 (support substrate) on the SiO 2 film 12 is bonded. In the bonding method, for example, phosphorus silicate glass (PSG) is thinly laminated on the SiO 2 film 12 by the CVD method, and this is melted and bonded. Since this phosphorus silicate glass melts at a low temperature of about 900 ° C., it can be easily bonded. Also, Si
The O 2 film 12 itself may be melted and adhered at a high temperature.

次いで、第1図(c)に示すように、シリコン基板11を
エッチング除去する。エッチングは、ハロゲンを含むガ
ス、例えば、塩素ガスを反応ガスとして用い、反応部分
に紫外線を照射するエッチング方法、所謂、光励起ドラ
イエッチング法を使用する。また、シリコン基板は、そ
の他に、苛性カリ溶液を用いたウエットエッチング法で
もエッチング除去できる。要するに、シリコン基板とSi
O2膜とのエッチング選択比の大きなエッチング方法を用
いて除去する。
Then, as shown in FIG. 1C, the silicon substrate 11 is removed by etching. For the etching, a gas containing halogen, for example, chlorine gas is used as a reaction gas, and an etching method of irradiating the reaction portion with ultraviolet rays, a so-called photo-excited dry etching method is used. Further, the silicon substrate can also be removed by a wet etching method using a caustic potash solution. In short, silicon substrate and Si
It is removed by using an etching method having a large etching selection ratio with respect to the O 2 film.

次いで、第1図(d)に示すように、エッチングして表
出したシリコン基板との界面のSiO2膜上に、膜厚1μm
のシリコン膜14を成長する。この時、表出した界面のSi
O2膜面はシリコン基板と結合していた結晶格子のボンド
(Bond)をそのまま受け継いでいるために、その上に被
着したシリコン膜14は単結晶化し易い状態の膜である。
Then, as shown in FIG. 1 (d), a film thickness of 1 μm is formed on the SiO 2 film at the interface with the silicon substrate exposed by etching.
A silicon film 14 is grown. At this time, the Si of the exposed interface
Since the O 2 film surface inherits the bond of the crystal lattice bonded to the silicon substrate as it is, the silicon film 14 deposited thereon is in a state of being easily single-crystallized.

この場合、成長するシリコン膜14は、比較的に低温度で
成長して、多結晶シリコン又はアモルファスシリコンの
何れかを積層し、それをビームアニールして単結晶化し
ても良いし、また、このような気相成長の代わりに、固
相成長法を用いてもよい。且つ、高温度でシリコン膜14
を成長すると、単結晶シリコン膜が成長するが、これら
はいずれの方法を採つても良い。
In this case, the growing silicon film 14 may be grown at a relatively low temperature and either polycrystalline silicon or amorphous silicon may be laminated and beam-annealed to single crystallize it. Instead of such vapor phase growth, a solid phase growth method may be used. In addition, the silicon film 14 at high temperature
, A single crystal silicon film grows, but any of these methods may be adopted.

このようにして形成した単結晶シリコン膜14は全面がシ
リコン基板との界面状態を受け継いだSiO2膜12の面上に
シリコン膜を成長して単結晶化するために、欠陥が少な
く、結晶品質の高い単結晶シリコン膜が形成される。
The single crystal silicon film 14 thus formed has a small number of defects and crystal quality because the silicon film is grown on the surface of the SiO 2 film 12 which has inherited the interface state with the silicon substrate to form a single crystal. A highly crystalline single crystal silicon film is formed.

且つ、このような単結晶シリコン膜14上に半導体素子を
形成すれば、寄生容量が少なく、品質の良い素子が形成
され、半導体装置は高品質・高信頼化されることは云う
までもない。
Moreover, it goes without saying that if a semiconductor element is formed on such a single crystal silicon film 14, a high-quality element with a small parasitic capacitance is formed and the semiconductor device is of high quality and high reliability.

[発明の効果] 以上の説明から明らかなように、本発明によれば高品質
なSOI構造の基板が得られて、そこに形成する半導体装
置の品質・信頼性を一層向上するものである。
[Effects of the Invention] As is clear from the above description, according to the present invention, a high-quality substrate having an SOI structure can be obtained, and the quality and reliability of the semiconductor device formed thereon can be further improved.

【図面の簡単な説明】[Brief description of drawings]

第1図(a)〜(d)は本発明にかかるSOI構造基板の
形成工程順断面図、 第2図は従来のSOS基板の断面図、 第3図(a)〜(b)は従来のSOI基板の形成工程順断
面図である。 図において、 1はサファイヤ基板、2は単結晶シリコン膜、3,11はシ
リコン基板、4,12はSiO2膜、5,14は多結晶シリコン膜
(アモルファスシリコン膜)又は単結晶シリコン膜、13
はシリコン基板または石英基板(支持基板) を示している。
1 (a) to 1 (d) are cross-sectional views in order of steps of forming an SOI structure substrate according to the present invention, FIG. 2 is a cross-sectional view of a conventional SOS substrate, and FIGS. 3 (a) and 3 (b) are conventional cross-sectional views. FIG. 7 is a sectional view in order of the steps of forming the SOI substrate. In the figure, 1 is a sapphire substrate, 2 is a single crystal silicon film, 3 and 11 are silicon substrates, 4 and 12 are SiO 2 films, 5 and 14 are polycrystalline silicon films (amorphous silicon films) or single crystal silicon films, 13
Indicates a silicon substrate or a quartz substrate (support substrate).

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】半導体基板面に生成した絶縁膜上に、支持
基板を接着し、次いで、前記半導体基板をエッチング除
去した後、該半導体基板と接触して前記絶縁膜面に該半
導体基板と同じ材料の半導体膜を成長する工程が含まれ
てなることを特徴とする半導体装置の製造方法。
1. A support substrate is adhered onto an insulating film formed on the surface of a semiconductor substrate, and then the semiconductor substrate is removed by etching, and then contacted with the semiconductor substrate to form the same film on the surface of the insulating film as the semiconductor substrate. A method of manufacturing a semiconductor device, comprising the step of growing a semiconductor film of a material.
【請求項2】前記半導体基板がシリコン基板であり、前
記絶縁膜が加熱酸化によつて生成された酸化シリコン
膜、または、加熱窒化によつて生成された窒化シリコン
膜からなることを特徴とする特許請求の範囲第1項記載
の半導体装置の製造方法。
2. The semiconductor substrate is a silicon substrate, and the insulating film is composed of a silicon oxide film formed by thermal oxidation or a silicon nitride film formed by thermal nitriding. A method of manufacturing a semiconductor device according to claim 1.
【請求項3】前記半導体基板をエッチング除去するエッ
チング方法がハロゲンを含むガス中での光励起エッチン
グ法であることを特徴とする特許請求の範囲第1項記載
の半導体装置の製造方法。
3. The method of manufacturing a semiconductor device according to claim 1, wherein the etching method for removing the semiconductor substrate by etching is a photoexcitation etching method in a gas containing halogen.
JP1703586A 1986-01-28 1986-01-28 Method for manufacturing semiconductor device Expired - Fee Related JPH0746683B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1703586A JPH0746683B2 (en) 1986-01-28 1986-01-28 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1703586A JPH0746683B2 (en) 1986-01-28 1986-01-28 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPS62174911A JPS62174911A (en) 1987-07-31
JPH0746683B2 true JPH0746683B2 (en) 1995-05-17

Family

ID=11932742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1703586A Expired - Fee Related JPH0746683B2 (en) 1986-01-28 1986-01-28 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JPH0746683B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101993383B1 (en) * 2012-12-31 2019-06-26 삼성전자주식회사 Method for forming insulator film and manufacturing method of thin film transistor by applied the same

Also Published As

Publication number Publication date
JPS62174911A (en) 1987-07-31

Similar Documents

Publication Publication Date Title
JP2608351B2 (en) Semiconductor member and method of manufacturing semiconductor member
JP3176072B2 (en) Method of forming semiconductor substrate
JPH02191320A (en) Crystal product and its manufacture
JP2699359B2 (en) Semiconductor substrate manufacturing method
JPH0475649B2 (en)
JPH0746683B2 (en) Method for manufacturing semiconductor device
JPS6119116A (en) Manufacture of semiconductor device
JPS62174969A (en) Manufacture of semiconductor device
JPH04298020A (en) Manufacture of silicon thin film crystal
JPH09263498A (en) Production of silicon carbide single crystal
JPH0324719A (en) Forming method of single crystal film and crystal products
JP2532252B2 (en) Method for manufacturing SOI substrate
JP2608443B2 (en) Method for manufacturing semiconductor wafer
JPS6012775B2 (en) Method for forming a single crystal semiconductor layer on a foreign substrate
JPS6351370B2 (en)
JPH02105517A (en) Manufacture of semiconductor device
JPH0236052B2 (en)
JPS6219046B2 (en)
JPS5853824A (en) Manufacture of semiconductor device
JPH0118575B2 (en)
JPS63260014A (en) Method of forming silicon carbide single crystal thin film
JPH11150046A (en) Soi substrate manufacture and the soi substrate
JPS61206215A (en) Semiconductor single crystal structure
JPS6341210B2 (en)
JP2696928B2 (en) Heteroepitaxial growth method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees