JPH07242442A - Glass with transparent conductive film and production of transparent conductive film - Google Patents
Glass with transparent conductive film and production of transparent conductive filmInfo
- Publication number
- JPH07242442A JPH07242442A JP6054843A JP5484394A JPH07242442A JP H07242442 A JPH07242442 A JP H07242442A JP 6054843 A JP6054843 A JP 6054843A JP 5484394 A JP5484394 A JP 5484394A JP H07242442 A JPH07242442 A JP H07242442A
- Authority
- JP
- Japan
- Prior art keywords
- film
- conductive film
- transparent conductive
- transmittance
- glass
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
- G06F3/0412—Digitisers structurally integrated in a display
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Human Computer Interaction (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Surface Treatment Of Glass (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は透明導電膜及びその成膜
方法に関するものであり、特にタッチパネルの透明電極
として用いられる高抵抗で均一性に優れた、高透過率の
透明導電膜に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a transparent conductive film and a method for forming the same, and more particularly to a transparent conductive film having high resistance and excellent uniformity, which is used as a transparent electrode of a touch panel.
【0002】スズをドープした酸化インジウム膜(IT
Oと称す)やフッ素をドープした酸化スズ膜(FTOと
称す)、アンチモンをドープした酸化スズ膜(ATOと
称す)、アルミニウムをドープした酸化亜鉛膜、インジ
ウムをドープした酸化亜鉛膜はその優れた透明性と導電
性を利用して、液晶ディスプレイ、エレクトロルミネッ
センスディスプレイ、面発熱体、タッチパネルの電極、
太陽電池の電極等に広く使用されている。この様に広い
分野で使用されると、使用目的によって抵抗値、透明度
は種々のものが要求される。すなわちフラットパネルデ
ィスプレイ用の透明導電膜では低抵抗、高透過率のもの
が要求されるが、タッチパネル用の透明導電膜では逆に
高抵抗、高透過率の膜が要求される。特に最近開発され
て市場の伸びが期待されるペン入力タッチパネル用の導
電膜は、位置の認識精度が高くなくてはならないことか
ら、シート抵抗が高抵抗で抵抗値の均一性に優れた膜で
あり、また、液晶ディスプレイの上に置くことから高透
過率の膜であることが要求される。通常、高透過率を達
成する方法は膜厚を薄くすることであった。Indium oxide film doped with tin (IT
O), a fluorine-doped tin oxide film (referred to as FTO), an antimony-doped tin oxide film (referred to as ATO), an aluminum-doped zinc oxide film, and an indium-doped zinc oxide film are excellent. Utilizing transparency and conductivity, liquid crystal displays, electroluminescent displays, surface heating elements, touch panel electrodes,
Widely used for solar cell electrodes. When used in such a wide field, various resistance values and transparency are required depending on the purpose of use. That is, a transparent conductive film for a flat panel display is required to have a low resistance and a high transmittance, whereas a transparent conductive film for a touch panel is required to have a high resistance and a high transmittance. In particular, the conductive film for the pen input touch panel, which has been recently developed and is expected to grow in the market, requires high position recognition accuracy, so it is a film with high sheet resistance and excellent resistance value uniformity. In addition, since it is placed on a liquid crystal display, it is required to be a film having high transmittance. Usually, the method of achieving high transmittance was to reduce the film thickness.
【0003】[0003]
【発明が解決しようとする課題】ITO、FTO、AT
O、酸化亜鉛膜等の透明導電膜材料はいずれも屈折率が
基板ガラスの屈折率(ソーダライムガラスでは1.5
2)より高く(1.7〜2.2)、透明導電膜と基板ガ
ラスとの界面での反射が大きくなり、可視光透過率が低
下する。[Problems to be Solved by the Invention] ITO, FTO, AT
All of the transparent conductive film materials such as O and zinc oxide film have the refractive index of the substrate glass (1.5 for soda lime glass).
2) higher than (1.7 to 2.2), the reflection at the interface between the transparent conductive film and the substrate glass increases, and the visible light transmittance decreases.
【0004】高透過率の膜を得ようとする場合は膜厚を
薄くする必要があるが、人間の目に感度良く感知される
550nm波長で85%の透過率を得ようとすると膜厚
は300Å以下の膜厚にする必要があり、89%の透過
率の場合には膜厚を200Å以下の膜厚にする必要があ
る。更に91%の透過率の場合には膜厚を100Å程度
まで薄くせねばならず、この場合は膜厚を均一にコント
ロールするのは難しく、面内の抵抗値の均一性は悪くな
る傾向にある。また、膜厚を100Å程度まで薄くする
と抵抗値の安定性が悪くなり、温度変化や湿度変化の影
響を受けやすく面内の抵抗値の均一性のみならず抵抗値
が変動するため導電膜の膜厚コントロールによる高透過
率化は望ましくない方法である。In order to obtain a film having a high transmittance, it is necessary to reduce the film thickness. However, in order to obtain a transmittance of 85% at a wavelength of 550 nm which is sensitive to human eyes, the film thickness is reduced. The film thickness needs to be 300 Å or less, and the film thickness needs to be 200 Å or less when the transmittance is 89%. Further, when the transmittance is 91%, the film thickness must be reduced to about 100 Å. In this case, it is difficult to control the film thickness uniformly, and the in-plane resistance value tends to be poor. . Further, if the film thickness is reduced to about 100 Å, the stability of the resistance value deteriorates, and the film is easily affected by temperature and humidity changes, and not only the in-plane resistance value uniformity but also the resistance value fluctuates. Increasing the transmittance by controlling the thickness is an undesirable method.
【0005】ペン入力タッチパネル用導電膜の抵抗値は
液晶ディスプレー用のものと違って高抵抗値が要求さ
れ、また高透過率かつ高安定性が要求されることからそ
の膜厚は100Å〜300Åになる。導電膜の膜厚を更
に厚くしてゆくと、膜面での反射光と基板界面での反射
光との干渉によって550nmでの透過率が90%程度
に増加するが、この場合の膜厚は約1500Å〜200
0Åとなり、厚すぎるために抵抗値を所定の値に合わせ
ることが困難になる。従ってタッチパネル用導電膜の膜
厚は100Å〜300Åが実用的な範囲であるといえ
る。この場合の550nmの透過率は90%〜85%と
なる。The resistance value of the conductive film for the pen input touch panel is required to have a high resistance value unlike that for a liquid crystal display, and since the high transmittance and the high stability are required, the film thickness is 100Å to 300Å. Become. When the film thickness of the conductive film is further increased, the transmittance at 550 nm increases to about 90% due to the interference between the reflected light on the film surface and the reflected light on the substrate interface. About 1500Å ~ 200
It becomes 0 Å, and it is difficult to adjust the resistance value to a predetermined value because it is too thick. Therefore, it can be said that the practical thickness of the conductive film for a touch panel is 100Å to 300Å. In this case, the transmittance at 550 nm is 90% to 85%.
【0006】導電膜の膜厚を変えないで透過率を増加す
る方法として多層膜化が知られており、それは導電膜と
ガラス基板の間に高屈折率の膜と低屈折率の膜を新たに
設けることで達成される。この方法は基板界面と多層膜
間での光の干渉作用を応用したもので最外層の屈折率と
膜厚に応じて中間膜の屈折率と膜厚をコントロールする
ことで反射率を小さくすることが可能で、その結果高透
過率化が達成出来る。例えば、裳華房 応用物理学選書
3「薄膜」(金原、藤原著)P.197〜200には薄
膜の反射と透過についての理論が述べられ、屈折率1.
5の基板上の薄膜は屈折率=2.0の場合エネルギー反
射率は4〜20%の値をとり膜厚が決まれば、ある波長
での反射率は決められる。また、P.225〜229に
は多層膜を反射防止の観点から実例をあげて示してあ
り、この方法を応用することで透過率を増加させること
が可能となる。しかし実際にこの理論を応用する場合
は、最外層の屈折率と膜厚に応じて、中間膜について光
学設計を行う必要がある。即ち中間膜のうち、高屈折率
膜の屈折率と膜厚をどのようにするか、低屈折率膜の屈
折率と膜厚をどのようにするかを決定するためは因子の
変数が多いために非常に多数の組合せが考えられ、その
中から最適な組合せを見出すのは困難なことであった。
また、屈折率を決めても実際に成膜した膜がそのような
値になるかどうかは材料の選択や組成、成膜条件とも関
連するため、光学設計した通りの透過率にするのは至難
の技であった。A multilayer film is known as a method of increasing the transmittance without changing the film thickness of the conductive film. It is necessary to add a high refractive index film and a low refractive index film between the conductive film and the glass substrate. It is achieved by providing the. This method applies the interference effect of light between the substrate interface and the multilayer film, and the reflectance is reduced by controlling the refractive index and film thickness of the intermediate film according to the refractive index and film thickness of the outermost layer. It is possible to achieve high transmittance as a result. For example, P. Kabo, Applied Physics Selection 3 "Thin Film" (Kanehara, Fujiwara) P. 197-200 describes the theory of reflection and transmission of thin films, with a refractive index of 1.
The thin film on the substrate of No. 5 has an energy reflectance of 4 to 20% when the refractive index is 2.0 and the reflectance at a certain wavelength can be determined if the film thickness is determined. In addition, P. Reference numerals 225 to 229 show examples of the multilayer film from the viewpoint of antireflection, and it is possible to increase the transmittance by applying this method. However, when actually applying this theory, it is necessary to perform optical design of the intermediate film according to the refractive index and the film thickness of the outermost layer. That is, among the intermediate films, there are many variable factors for determining the refractive index and film thickness of the high refractive index film and the refractive index and film thickness of the low refractive index film. It was difficult to find the optimum combination among them, because there were a great many combinations.
In addition, even if the refractive index is determined, whether or not the film actually formed has such a value is related to the material selection, composition, and film formation conditions, so it is extremely difficult to achieve the transmittance as optically designed. It was a skill.
【0007】多層膜化による反射率特性の改善方法の1
つとして、特開平4−154647が示されている。こ
の方法は、透明導電膜と基板の間に屈折率n=1.8〜
2.5の高屈折率膜を、nd=0.015〜0.045
μmとn=1.35〜1.55の低屈折率膜をnd=
0.045〜0.075μm形成し、その上に0.15
μm以上の透明導電膜を形成する方法、及び、透明導電
膜上にn=1.35〜1.55の低屈折率膜をnd=
0.08〜0.15μmの膜厚で形成する方法である。
その実施例によれば、8000ÅのITO膜を直接ガラ
ス基板に成膜すると、その分光反射特性は波長によって
極大値(約20%)と極小値(約10%)を持つ波形を
示すが、透明導電膜の上下に2層からなるアンダーコー
ト膜と低屈折率のオーバーコート膜を形成することによ
り、極大極小の差を小さくし、かつ反射率を8〜10%
程度に出来るとしている。このことより色ムラを抑える
効果を述べている。One of the methods for improving the reflectance characteristics by forming a multilayer film
Japanese Patent Laid-Open No. 4-154647 is disclosed as one example. This method has a refractive index n = 1.8 to between the transparent conductive film and the substrate.
A high refractive index film of 2.5, nd = 0.015 to 0.045
μm and a low refractive index film of n = 1.35 to 1.55 nd =
0.045-0.075 μm formed, and 0.15 on it
A method of forming a transparent conductive film having a thickness of μm or more, and a low refractive index film of n = 1.35 to 1.55 on the transparent conductive film nd =
This is a method of forming a film having a thickness of 0.08 to 0.15 μm.
According to the example, when an ITO film of 8000 Å is directly formed on a glass substrate, its spectral reflection characteristic shows a waveform having a maximum value (about 20%) and a minimum value (about 10%) depending on the wavelength, but it is transparent. By forming a two-layer undercoat film and a low-refractive-index overcoat film above and below the conductive film, the difference between the maximum and minimum can be reduced and the reflectance can be 8 to 10%.
It is supposed to be possible. From this, the effect of suppressing color unevenness is described.
【0008】また、従来の技術として、液晶ディスプレ
ー用透明導電膜をソーダライムガラス基板に形成する場
合、特にITO膜やATO膜、FTO膜を形成する場合
には基板と導電膜の間にソーダライムガラス基板からの
ナトリウムイオンの拡散を抑制する目的で主に二酸化珪
素(SiO2 )膜を設けることが行われており、この方
法によって液晶ディスプレーの寿命が伸びることが知ら
れている。タッチパネル用基板にも主に安価なソーダラ
イムガラスが用いられ、導電膜をパターニングして使用
する場合には導電膜をエッチングした部分からのNaイ
オンの拡散を防止する必要がある。As a conventional technique, when a transparent conductive film for liquid crystal display is formed on a soda lime glass substrate, particularly when an ITO film, an ATO film or an FTO film is formed, soda lime is formed between the substrate and the conductive film. It is known that a silicon dioxide (SiO 2 ) film is mainly provided for the purpose of suppressing the diffusion of sodium ions from the glass substrate, and it is known that this method prolongs the life of the liquid crystal display. Inexpensive soda lime glass is mainly used also for the touch panel substrate, and when the conductive film is patterned and used, it is necessary to prevent Na ions from diffusing from the etched part of the conductive film.
【0009】本発明は、前述の実情からみてなされたも
ので、タッチパネル用の導電膜付きガラスとして、55
0nmにおいて89%以上の高透過率の透明導電膜を成
膜する方法を提供することを目的とする。The present invention has been made in view of the above-mentioned circumstances, and is 55 as a glass with a conductive film for a touch panel.
It is an object of the present invention to provide a method for forming a transparent conductive film having a high transmittance of 89% or more at 0 nm.
【0010】[0010]
【課題を解決する手段】本発明者らは、550nmにお
いて89%以上の高透過率の透明導電膜を成膜する方法
について鋭意検討した結果、透明ガラス基板上に屈折率
1.6〜2.5の透明膜を0.05〜0.2μm形成
し、その上に屈折率1.35〜1.5の透明膜を0.0
2〜0.045μm形成する。更にその上に屈折率1.
7〜2.2の透明導電膜を0.01〜0.03μm形成
した3層構造の膜とすることにより、高透過率の導電膜
付きガラスが得られることを見出し、本発明を完成する
に至った。以下、本発明を詳細に説明する。Means for Solving the Problems The inventors of the present invention have made earnest studies on a method for forming a transparent conductive film having a high transmittance of 89% or more at 550 nm, and as a result, have a refractive index of 1.6 to 2. 5 to form a transparent film having a thickness of 0.05 to 0.2 μm, on which a transparent film having a refractive index of 1.35 to 1.5 is formed.
2 to 0.045 μm is formed. Furthermore, a refractive index of 1.
It was found that a glass with a conductive film having a high transmittance can be obtained by forming a transparent conductive film of 7 to 2.2 into a film having a three-layer structure in which 0.01 to 0.03 μm is formed, and to complete the present invention. I arrived. Hereinafter, the present invention will be described in detail.
【0011】前述したように、シート抵抗が200〜3
000Ω/□の安定性の良い導電膜で実用的な膜厚は1
00〜300Åであり、この膜厚での透過率は85〜9
0%(550nm)となる。本発明は透明導電膜とガラ
ス基板の間に高屈折率膜と低屈折率膜2層を設けること
により光の干渉作用を利用して基板ガラス界面での反射
を減少させ、透過率を増加する方法である。As described above, the sheet resistance is 200 to 3
It is a conductive film with a good stability of 000Ω / □ and the practical film thickness is 1
It is 00 to 300Å, and the transmittance at this film thickness is 85 to 9
It becomes 0% (550 nm). In the present invention, by providing a high refractive index film and a low refractive index film 2 layers between a transparent conductive film and a glass substrate, the reflection at the substrate glass interface is reduced and the transmittance is increased by utilizing the interference effect of light. Is the way.
【0012】本発明の基板上に形成される第1層膜であ
るn=1.6〜2.5の透明膜としては、TiO2 、Z
rO2 、Ta2 O5 、Y2 O3 、Sb2 O3 、TeO2
やTiO2 とSiO2 、ZrO2 とSiO2 の複合酸化
物等が使用可能である。As the first layer film formed on the substrate of the present invention, the transparent film of n = 1.6 to 2.5 is TiO 2 , Z.
rO 2 , Ta 2 O 5 , Y 2 O 3 , Sb 2 O 3 , TeO 2
Alternatively, composite oxides of TiO 2 and SiO 2 , ZrO 2 and SiO 2 , and the like can be used.
【0013】第2層膜であるn=1.35〜1.5の透
明膜としては、SiO2 、MgF2、SiO2 とTiO
2 の複合酸化物、SiO2 とZrO2 の複合酸化物等の
膜が使用可能である。The transparent film of n = 1.35-1.5, which is the second layer film, includes SiO 2 , MgF 2 , SiO 2 and TiO 2.
A film of a composite oxide of 2 or a composite oxide of SiO 2 and ZrO 2 can be used.
【0014】また、最上層の透明導電膜としては、IT
O、FTO、ATO、AlドープZnO、InドープZ
nO等が用いられるが、本発明の範囲はこれに限定され
るものではない。As the uppermost transparent conductive film, IT is used.
O, FTO, ATO, Al-doped ZnO, In-doped Z
Although nO or the like is used, the scope of the present invention is not limited to this.
【0015】ここで、本発明と多層膜化による反射率特
性の改善方法の1つとして示された特開平4−1546
47との相違点について述べる。第1の相違点として透
明導電膜の膜厚がある。本発明ではタッチパネル用途を
主目的としているので、透明導電膜の膜厚は100Å〜
300Åと特開平4−154647の記載に比べ薄い領
域である。特開平4−154647の実施例記載の透明
導電膜の膜厚は8000Åであり、これだけ厚い膜では
通常の膜ではシート抵抗は100Ω/□以下を示し、タ
ッチパネル用途には使用出来ないし、また厚くなること
によって透過率の値が低下する。このため、550nm
で90%以上の透過率を示しても波長に依存した極大極
小を示すようになるために色付いて見えるようになり問
題となる(特開平4−154647記載、第10図の1
01参照)。特開平4−154647請求項1記載の下
地膜のみでは極大極小を減少するのは難しく、特開平4
−154647に記載の第8図の81に示されるように
反射率が8%〜20%となり、可視光領域での平均反射
率は15%程度を示しており、確かに極大極小の幅は抑
えられるが平均反射率は変わっていない。それに比較し
て、本発明の場合、導電膜が100Å〜300Åの膜厚
であり、下地膜の形成により400nm〜750nmの
可視光領域での透過率は80%以上を示し、550nm
での透過率は89%以上に増加する。Here, the present invention and one of the methods for improving the reflectance characteristics by forming a multi-layered film are disclosed in Japanese Patent Laid-Open No. 4-1546.
Differences from 47 will be described. The first difference is the thickness of the transparent conductive film. Since the main purpose of the present invention is a touch panel application, the thickness of the transparent conductive film is 100Å ~
The area is 300 Å, which is thinner than that described in JP-A-4-154647. The transparent conductive film described in the example of JP-A-4-154647 has a film thickness of 8000 Å. With such a thick film, a normal film has a sheet resistance of 100 Ω / □ or less, which cannot be used for a touch panel and becomes thick. This reduces the transmittance value. Therefore, 550 nm
Even if it shows a transmittance of 90% or more, it shows a maximum and a minimum depending on the wavelength, so that it becomes colored and becomes a problem (described in JP-A-4-154647, FIG. 10-1).
01). JP-A-4-154647, it is difficult to reduce the maximum and the minimum with only the underlayer film described in claim 1,
As shown at 81 in FIG. 8 in 154647, the reflectance is 8% to 20%, and the average reflectance in the visible light region is about 15%, and the maximum and minimum widths are certainly suppressed. However, the average reflectance has not changed. In comparison, in the case of the present invention, the conductive film has a film thickness of 100 Å to 300 Å, and the formation of the base film has a transmittance of 80% or more in the visible light region of 400 nm to 750 nm, which is 550 nm.
Transmittance increases to 89% or more.
【0016】第2の相違点として、特開平4−1546
47の主目的は、nd=1500Å以上の厚い透明導電
膜の色ムラ防止であり、その解決方法としては導電膜の
下地膜をコントロールすることによって行うというより
は、導電膜上に低屈折率膜を形成することに主眼が置か
れている。一方、本発明は、もともと85%〜90%と
高い透過率を示す導電膜を、下地膜を形成することによ
って更に高透過率化を意図したものであり、その目的が
異なる。As a second difference, Japanese Patent Laid-Open No. 1546/1991.
The main purpose of 47 is to prevent color unevenness of a thick transparent conductive film having a thickness of nd = 1500Å or more. A solution to this problem is not to control the underlying film of the conductive film, but to form a low refractive index film on the conductive film. The focus is on forming. On the other hand, the present invention intends to further increase the transmittance by forming a base film from a conductive film which originally has a high transmittance of 85% to 90%, and the purpose is different.
【0017】以上のように、本発明は、特開平4−15
4647号記載の発明と目的、構成及び効果の面で相違
する。As described above, the present invention is disclosed in JP-A-4-15.
The invention is different from the invention described in No. 4647 in terms of objects, configurations and effects.
【0018】すなわち、本発明者らは特開平4−154
647記載の形成方法では透過率増加は見込めず、30
0Å以下の導電膜に対する最適下地膜の屈折率と膜厚の
組合せにより、高い透過率を示す導電膜が得られること
を見いだしたものである。That is, the inventors of the present invention disclosed in Japanese Unexamined Patent Publication No. 4-154.
In the forming method described in 647, an increase in transmittance cannot be expected, and
It was found that a conductive film exhibiting a high transmittance can be obtained by combining the optimum refractive index and film thickness of the underlying film with respect to a conductive film of 0 Å or less.
【0019】さらにまた、タッチパネル用透明導電膜に
おいて、パターニングする場合は基板からのNaイオン
の拡散を防止することが望ましく、その場合は導電膜下
地の低屈折率膜としてSiO2 を用い、膜厚を200Å
以上とすることでNaイオンの表面への拡散を抑制する
ことが可能であることも見出した。Furthermore, when patterning the transparent conductive film for a touch panel, it is desirable to prevent Na ions from diffusing from the substrate. In that case, SiO 2 is used as the low refractive index film underlying the conductive film, and the film thickness is reduced. To 200Å
It was also found that the above can suppress the diffusion of Na ions to the surface.
【0020】これらそれぞれ異なった屈折率を持つ膜を
成膜する方法としては、一般に知られている方法を採用
できる。即ち、スパッター法、電子ビーム蒸着法、イオ
ンプレーティング法、化学気相成膜法(CVD法)、パ
イロゾル法、スプレー法、ディップ法等で所定の材料を
所定の厚さで積層成膜することで本発明の目的が達成さ
れる。As a method of forming these films having different refractive indexes, a generally known method can be adopted. That is, a predetermined material having a predetermined thickness is laminated and formed by a sputtering method, an electron beam evaporation method, an ion plating method, a chemical vapor deposition method (CVD method), a pyrosol method, a spray method, a dip method, or the like. The object of the present invention is achieved.
【0021】[0021]
【実施例】以下、実施例により本発明を更に具体的に説
明する。ただし、本発明はこれらに何ら限定されるもの
ではない。The present invention will be described in more detail with reference to the following examples. However, the present invention is not limited to these.
【0022】(実施例1)厚さ1mmで10cm角のソ
ーダライムガラス(n=1.52)を超音波霧化による
常圧CVD法(パイロゾル成膜法)成膜装置にセットし
450℃に加熱した。Ti(C4 H9 O)4 のC4 H9
OH溶液(濃度は0.25mol/l)を超音波により
2.2ml/min霧化させ基板に導入し、8分間成膜
した。得られた膜はn=2.10、膜厚1000ÅのT
iO2 膜(アナターゼ結晶膜)であった。引き続き、S
i(C2 H5 O)4 のC2 H5 OH溶液(濃度は0.5
mol/l)を超音波により1.5ml/min霧化さ
せ基板に導入し、2分間成膜した。得られた膜はn=
1.45、膜厚300ÅのSiO2 膜であった。次いで
InCl3 のCH3 OH溶液(濃度は0.25mol/
l)にSnCl4 をInに対して10原子%添加した溶
液を超音波により2.5ml/min霧化させ基板に導
入し、2分間成膜した。その後成膜装置より取り出し、
空気中で冷却した。 得られた膜はn=1.95、膜厚
230ÅのITO結晶膜であった。この膜のシート抵抗
を9点測定したところ、平均550Ω/□、比抵抗1.
3×10-3Ωcmであった。シート抵抗の均一性は±45
Ω/□以内であった。透過率は550nmで95.1%
を示した。この試料の分光特性(透過率)を、図1−1
に示した。Example 1 A soda lime glass (n = 1.52) having a thickness of 1 mm and a size of 10 cm was set in an atmospheric pressure CVD (pyrosol film forming) film forming apparatus by ultrasonic atomization and set to 450 ° C. Heated. Ti (C 4 H 9 O) 4 C 4 H 9
An OH solution (concentration: 0.25 mol / l) was atomized by ultrasonic waves at 2.2 ml / min, introduced into the substrate, and a film was formed for 8 minutes. The film obtained has n = 2.10 and a T of 1000 Å.
It was an iO 2 film (anatase crystal film). Continue to S
i (C 2 H 5 O) 4 in C 2 H 5 OH solution (concentration: 0.5
(ml / l) was atomized by ultrasonic waves at 1.5 ml / min and introduced into the substrate, and a film was formed for 2 minutes. The resulting film has n =
It was a SiO 2 film having a film thickness of 1.45 and a film thickness of 300 Å. Then, a solution of InCl 3 in CH 3 OH (concentration: 0.25 mol /
A solution obtained by adding 10 atomic% of SnCl 4 to In in 1) was atomized by ultrasonic waves at 2.5 ml / min and introduced into the substrate to form a film for 2 minutes. After that, take it out from the film forming device,
Cooled in air. The obtained film was an ITO crystal film with n = 1.95 and a film thickness of 230Å. When the sheet resistance of this film was measured at 9 points, the average was 550 Ω / □ and the specific resistance was 1.
It was 3 × 10 −3 Ωcm. Sheet resistance uniformity ± 45
Within Ω / □. Transmittance is 95.1% at 550 nm
showed that. The spectral characteristics (transmittance) of this sample are shown in FIG.
It was shown to.
【0023】(実施例2)実施例1において、Ti(C
4 H9 O)4 のC4 H9 OH溶液での成膜時間を6分間
に変えた以外は実施例1と同様の条件で成膜を行った。
得られたTiO2はn=2.12、膜厚は790Åであ
った。3層成膜後のシート抵抗、比抵抗、均一性は実施
例1の膜と全く同じ値を示した。この膜の透過率は55
0nmで93.5%であった。この試料の分光特性(透
過率)を、図1−2に示した。(Example 2) In Example 1, Ti (C
Film formation was performed under the same conditions as in Example 1 except that the film formation time of the 4 H 9 O) 4 solution in C 4 H 9 OH was changed to 6 minutes.
The obtained TiO 2 had n = 2.12 and the film thickness was 790Å. The sheet resistance, the specific resistance, and the uniformity after the three-layer film formation showed the same values as those of the film of Example 1. The transmittance of this membrane is 55.
It was 93.5% at 0 nm. The spectral characteristics (transmittance) of this sample are shown in FIG.
【0024】(実施例3)実施例1において、Ti(C
4 H9 O)4 のC4 H9 OH溶液の代わりにZr(C4
H9 O)4 のC4 H9 OH溶液(濃度は0.15mol
/l)を用い、超音波により2.5ml/min霧化さ
せ基板に導入し、18分間成膜した。得られた膜は、n
=1.95、膜厚1160ÅのZrO2 膜であった。そ
れ以外は実施例1と同様の条件で成膜を行った。得られ
た膜のシート抵抗、比抵抗、均一性は実施例1の膜と全
く同じ値を示した。この膜は透過率が550nmで9
3.9%の良好な膜であった。この試料の分光特性(透
過率)を、図1−3に示した。(Example 3) In Example 1, Ti (C
Instead of a C 4 H 9 OH solution of 4 H 9 O) 4 , Zr (C 4
H 9 O) 4 in C 4 H 9 OH (concentration is 0.15 mol
/ L), and atomized by ultrasonic waves at 2.5 ml / min, and introduced into the substrate to form a film for 18 minutes. The resulting film has n
= 1.95 and a film thickness of 1160Å was a ZrO 2 film. Other than that, the film formation was performed under the same conditions as in Example 1. The sheet resistance, the specific resistance and the uniformity of the obtained film showed exactly the same values as those of the film of Example 1. This film has a transmittance of 550 nm of 9
It was a good film of 3.9%. The spectral characteristics (transmittance) of this sample are shown in FIGS.
【0025】(比較例1)実施例1に示したパイロゾル
成膜装置を用いて、実施例1と同じ条件でITO成膜の
みを行った。得られた膜のシート抵抗、比抵抗、均一性
は実施例1の膜と全く同じ値を示した。この膜の透過率
は550nmで85.4%であった。この試料の分光特
性(透過率)を、図2−1に示した。Comparative Example 1 Using the pyrosol film forming apparatus shown in Example 1, only ITO film formation was carried out under the same conditions as in Example 1. The sheet resistance, the specific resistance and the uniformity of the obtained film showed exactly the same values as those of the film of Example 1. The transmittance of this film was 85.4% at 550 nm. The spectral characteristics (transmittance) of this sample are shown in FIG.
【0026】(比較例2)実施例1において、Ti(C
4 H9 O)4 のC4 H9 OH溶液での成膜時間を3分間
に変えた以外は実施例1と同様の条件で成膜を行った。
得られたTiO2はn=2.07、膜厚は390Åであ
った。3層成膜後のシート抵抗、比抵抗、均一性は実施
例1の膜と全く同じ値を示した。この膜の透過率は55
0nmで82.8%であった。この試料の分光特性(透
過率)を、図2−2に示した。Comparative Example 2 In Example 1, Ti (C
Film formation was performed under the same conditions as in Example 1 except that the film formation time of the 4 H 9 O) 4 solution in C 4 H 9 OH was changed to 3 minutes.
The obtained TiO 2 had n = 2.07 and a film thickness of 390Å. The sheet resistance, the specific resistance, and the uniformity after the three-layer film formation showed the same values as those of the film of Example 1. The transmittance of this membrane is 55.
It was 82.8% at 0 nm. The spectral characteristics (transmittance) of this sample are shown in FIG. 2-2.
【0027】(比較例3)実施例1において、ITOの
成膜時間を10分間に変えた以外は実施例1と同様の条
件で成膜を行った。得られた膜はn=1.95、膜厚9
80ÅのITO結晶膜であった。この膜のシート抵抗は
9点測定したところ、平均58Ω/□、比抵抗5.7×
10-4Ωcmであった。シート抵抗の均一性は±5Ω/□
以内であった。透過率は550nmで76.5%であっ
た。この試料の分光特性(透過率)を、図2−3に示し
た。Comparative Example 3 A film was formed under the same conditions as in Example 1 except that the ITO film forming time was changed to 10 minutes. The obtained film has n = 1.95 and a film thickness of 9
It was an 80 liter ITO crystal film. When the sheet resistance of this film was measured at 9 points, the average was 58 Ω / □ and the specific resistance was 5.7 ×.
It was 10 −4 Ωcm. Sheet resistance uniformity is ± 5Ω / □
It was within. The transmittance was 76.5% at 550 nm. The spectral characteristics (transmittance) of this sample are shown in FIG.
【0028】以上の結果より、ガラス基板に直接ITO
成膜したもの(比較例1)の試料の550nmでの透過
率は85.4%であるが、2層の下地膜を設けることに
よって(実施例1〜3)90%以上の透過率が得られ、
また平均透過率も5〜10%増加し、高透過率化の効果
が大きいことが判る。From the above results, ITO is directly attached to the glass substrate.
The sample of the formed film (Comparative Example 1) has a transmittance of 85.4% at 550 nm, but by providing two layers of the undercoat film (Examples 1 to 3), a transmittance of 90% or more was obtained. The
Also, the average transmittance is increased by 5 to 10%, which shows that the effect of increasing the transmittance is great.
【0029】また、特開平4−154647に示された
下地膜上に200ÅのITOを成膜した試料(比較例
2)の550nmにおける透過率は82.8%であり、
実施例1に比べ450nm〜750nmの領域で2%〜
10%低い値を示した。また、実施例1の下地膜上に9
50Åの厚いITO膜を成膜すると(比較例3)、7
6.5%と低い値を示し、透明導電膜の膜厚によって下
地膜を選択する必要があることが判る。即ち、100Å
〜300Åの透明導電膜に本発明を適用することによっ
て550nmの透過率を顕著に増加することが可能であ
る。Further, the sample (Comparative Example 2) in which 200 Å ITO was formed on the undercoating film disclosed in JP-A-4-154647 had a transmittance at 550 nm of 82.8%.
Compared to Example 1, 2% to 450 nm to 750 nm in the region
The value was 10% lower. In addition, on the base film of Example 1, 9
When a thick ITO film of 50 Å is formed (Comparative Example 3), 7
It shows a low value of 6.5%, which shows that it is necessary to select the base film depending on the film thickness of the transparent conductive film. That is, 100Å
By applying the present invention to a transparent conductive film having a thickness of up to 300 Å, it is possible to significantly increase the transmittance at 550 nm.
【0030】[0030]
【発明の効果】本発明によれば、85%〜90%のある
程度高い透過率を持つ透明導電膜の550nmでの透過
率を可視光領域での透過率を大きく低下することなく8
9%以上に増加する効果がある。特にタッチパネル用の
透明導電膜付きガラスに要求される高透過率を達成する
ことが可能である。また、下地膜として一般的な材料を
選択でき、成膜方法も通常行われている方法を採用出来
ることから、実用的にも優れた方法である。According to the present invention, the transmittance at 550 nm of a transparent conductive film having a somewhat high transmittance of 85% to 90% can be achieved without significantly reducing the transmittance in the visible light region.
It has the effect of increasing to 9% or more. In particular, it is possible to achieve the high transmittance required for glass with a transparent conductive film for touch panels. In addition, since a general material can be selected as the base film and a commonly used film forming method can be adopted, it is an excellent method in practice.
【図1】本発明による実施例1〜3で得られたサンプル
の分光特性(透過率)を示したものである。FIG. 1 shows spectral characteristics (transmittance) of samples obtained in Examples 1 to 3 according to the present invention.
【図2】比較例1〜3で得られたサンプルの分光特性
(透過率)を示したものである。FIG. 2 shows the spectral characteristics (transmittance) of the samples obtained in Comparative Examples 1 to 3.
図中、1は実施例1、2は実施例2、3は実施例3、4
は比較例1、5は比較例2、及び6は比較例3の場合を
それぞれ示す。In the figure, 1 is Example 1, 2 is Example 2, 3 is Example 3, 4
Indicates Comparative Examples 1 and 5, Comparative Examples 2 and 6 indicate Comparative Example 3, respectively.
Claims (6)
5、膜厚が0.05〜0.2μmの透明膜、その上に屈
折率1.35〜1.5、膜厚が0.02〜0.045μ
mの透明膜、更にその上に屈折率1.7〜2.2で膜厚
が0.01〜0.03μmの透明導電膜の3層膜を有す
ることを特徴とする透明導電膜付ガラス。1. A transparent glass substrate having a refractive index of 1.6-2.
5, a transparent film having a thickness of 0.05 to 0.2 μm, a refractive index of 1.35 to 1.5, and a thickness of 0.02 to 0.045 μ
glass having a transparent conductive film, further comprising a transparent conductive film having a refractive index of 1.7 to 2.2 and a film thickness of 0.01 to 0.03 μm.
000Ω/□であることを特徴とする請求項1記載の透
明導電膜付ガラス。2. A transparent conductive film having a sheet resistance value of 200 to 3
The glass with a transparent conductive film according to claim 1, which has a resistance of 000 Ω / □.
透過率が89%以上であることを特徴とする請求項1及
び請求項2記載の透明導電膜付ガラス。3. The glass with a transparent conductive film according to claim 1, wherein the glass with a transparent conductive film has a transmittance at 550 nm of 89% or more.
されることを特徴とする請求項1〜請求項3記載の透明
導電膜付ガラス。4. The glass with a transparent conductive film according to claim 1, wherein the glass with a transparent conductive film is used for a touch panel.
請求項3記載の透明導電膜付ガラス。5. The first layer film is silicon dioxide.
The glass with a transparent conductive film according to claim 3.
の透明膜を0.05〜0.2μm形成し、その上に屈折
率1.35〜1.5の透明膜を0.02〜0.045μ
m形成する。更にその上に屈折率1.7〜2.2の透明
導電膜を0.01〜0.03μm形成した3層膜を形成
することを特徴とする透明導電膜付ガラスの成膜方法。6. A transparent glass substrate having a refractive index of 1.6 to 2.5.
Transparent film of 0.05 to 0.2 μm is formed, and a transparent film having a refractive index of 1.35 to 1.5 is formed on it by 0.02 to 0.045 μm.
m. A method for forming a glass with a transparent conductive film, further comprising forming a three-layer film on which a transparent conductive film having a refractive index of 1.7 to 2.2 is formed in a range of 0.01 to 0.03 μm.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6054843A JPH07242442A (en) | 1994-03-01 | 1994-03-01 | Glass with transparent conductive film and production of transparent conductive film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6054843A JPH07242442A (en) | 1994-03-01 | 1994-03-01 | Glass with transparent conductive film and production of transparent conductive film |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH07242442A true JPH07242442A (en) | 1995-09-19 |
Family
ID=12981901
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6054843A Pending JPH07242442A (en) | 1994-03-01 | 1994-03-01 | Glass with transparent conductive film and production of transparent conductive film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07242442A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003045867A1 (en) * | 2001-11-26 | 2003-06-05 | Nissha Printing Co., Ltd. | Glass substrate with transparent electroconductive film and method for preparation thereof |
JP2008243622A (en) * | 2007-03-27 | 2008-10-09 | Gunze Ltd | Transparent planar body and transparent touch switch |
JP2010208169A (en) * | 2009-03-11 | 2010-09-24 | Gunze Ltd | Transparent planar article and transparent touch switch |
JP2011049460A (en) * | 2009-08-28 | 2011-03-10 | Mitsubishi Heavy Ind Ltd | Photoelectric converter and substrate with transparent electrode layer |
JP2011084075A (en) * | 2007-01-18 | 2011-04-28 | Nitto Denko Corp | Transparent conductive film and touch panel |
US8603611B2 (en) | 2005-05-26 | 2013-12-10 | Gunze Limited | Transparent planar body and transparent touch switch |
US9513747B2 (en) | 2010-11-04 | 2016-12-06 | Nitto Denko Corporation | Transparent conductive film and touch panel |
-
1994
- 1994-03-01 JP JP6054843A patent/JPH07242442A/en active Pending
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003045867A1 (en) * | 2001-11-26 | 2003-06-05 | Nissha Printing Co., Ltd. | Glass substrate with transparent electroconductive film and method for preparation thereof |
US8603611B2 (en) | 2005-05-26 | 2013-12-10 | Gunze Limited | Transparent planar body and transparent touch switch |
JP2011084075A (en) * | 2007-01-18 | 2011-04-28 | Nitto Denko Corp | Transparent conductive film and touch panel |
JP2011136562A (en) * | 2007-01-18 | 2011-07-14 | Nitto Denko Corp | Transparent conductive film and touch panel |
TWI448386B (en) * | 2007-01-18 | 2014-08-11 | Nitto Denko Corp | A transparent conductive film, a method for manufacturing the same, and a touch panel provided with the same |
TWI449626B (en) * | 2007-01-18 | 2014-08-21 | Nitto Denko Corp | Transparent conductive film and its touch panel |
TWI449627B (en) * | 2007-01-18 | 2014-08-21 | Nitto Denko Corp | A transparent conductive film, a method for manufacturing the same, and a touch panel provided with the same |
JP2008243622A (en) * | 2007-03-27 | 2008-10-09 | Gunze Ltd | Transparent planar body and transparent touch switch |
JP2010208169A (en) * | 2009-03-11 | 2010-09-24 | Gunze Ltd | Transparent planar article and transparent touch switch |
JP2011049460A (en) * | 2009-08-28 | 2011-03-10 | Mitsubishi Heavy Ind Ltd | Photoelectric converter and substrate with transparent electrode layer |
US9513747B2 (en) | 2010-11-04 | 2016-12-06 | Nitto Denko Corporation | Transparent conductive film and touch panel |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20070273973A1 (en) | Optical layer system having antireflection properties | |
JP5549216B2 (en) | Transparent conductive laminate, method for producing the same, and touch panel | |
KR102500410B1 (en) | Anti-reflective coated glass article | |
US20130087374A1 (en) | Conductive film with high transmittance having a number of anti reflection coatings, touch panel using the same and manufacturing method thereof | |
EP1423737A2 (en) | Anti-reflection coatings and associated methods | |
JP4349794B2 (en) | Method for producing conductive transparent substrate with multilayer antireflection film | |
JP2509215B2 (en) | Transparent conductive film with antireflection function | |
US20150022496A1 (en) | Transparent conductive film having excellent electrical characteristics and touch panel using the same | |
CN102194539A (en) | Transparent electric-conducting laminate body and manufacturing method thereof | |
JP2001209038A (en) | Substrate for liquid crystal display element | |
US20100127611A1 (en) | Transparent electrode | |
JP3957824B2 (en) | Low reflection glass for touch panel substrates | |
JPH07242442A (en) | Glass with transparent conductive film and production of transparent conductive film | |
JPH04154647A (en) | Transparent electrically conductive laminate | |
CN102831962A (en) | Medium conductive film, preparation method and electrochromic rear view mirror | |
JP4909559B2 (en) | Transparent conductive substrate | |
JPH0741337A (en) | Optical coloring prevention transparent body | |
JPH07296672A (en) | Touch panel | |
JPH1185396A (en) | Low reflection glass for substrate of touch panel | |
JP3934742B2 (en) | Anti-reflection coating | |
JP4245339B2 (en) | Method for producing conductive transparent substrate with multilayer film | |
JP5111776B2 (en) | Transparent conductive substrate | |
JP3630374B2 (en) | Glass with transparent conductive film and method for forming transparent conductive film | |
KR102064878B1 (en) | Glass for display touch panel | |
JPH07257944A (en) | Formation of transparent electrically conductive film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040614 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20041018 |