JPH07296672A - Touch panel - Google Patents

Touch panel

Info

Publication number
JPH07296672A
JPH07296672A JP8504894A JP8504894A JPH07296672A JP H07296672 A JPH07296672 A JP H07296672A JP 8504894 A JP8504894 A JP 8504894A JP 8504894 A JP8504894 A JP 8504894A JP H07296672 A JPH07296672 A JP H07296672A
Authority
JP
Japan
Prior art keywords
layer
touch panel
transparent electrode
refractive index
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8504894A
Other languages
Japanese (ja)
Inventor
Satoru Miyashita
悟 宮下
Osamu Yokoyama
修 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP8504894A priority Critical patent/JPH07296672A/en
Publication of JPH07296672A publication Critical patent/JPH07296672A/en
Pending legal-status Critical Current

Links

Landscapes

  • Surface Treatment Of Optical Elements (AREA)
  • Push-Button Switches (AREA)

Abstract

PURPOSE:To provide a touch panel which has high transparency and appearance and excellent position detecting ability by a method wherein a transparent electrode the film thickness of which is controlled is additionally functioned as a reduction reflection coating high refraction layer and a high molecule layer containing conductive particles the film thickness of which is controlled is formed on an outermost surface. CONSTITUTION:At least one base material of transparent electrode base sheets 13 and 14 has refraction of 1.48-1.63. A reduction reflection film consisting of a first layer formed of a transparent electrode having refraction n1 (1.65<=n1<=2.2) and a second layer formed of a high molecule containing conductive particles and having refraction n2 (1.45<=n2<=1.65) is formed on the surface of a transparent base material. A touch panel having optical film thicknesses n1d1 and n2d2 corresponding to the first and second layers which are both lambda0 (lambda0=530nm, hereinafter a similar wavelength indicated) or less and lambda0/20 or more is provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、透明度が高くて見栄え
の良い、位置検出性に優れた抵抗検出方式のタッチパネ
ルに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a resistance detection type touch panel which is highly transparent and has a good appearance and is excellent in position detection.

【0002】[0002]

【従来の技術】入力装置に用いられるタッチパネルは、
抵抗検出方式、静電容量方式、電磁誘導方式等検出方式
に違いがあるものの、一枚以上の透明電極を有する透明
基板から構成される構造が一般的である。透明基板とし
てはガラス板かPET(ポリエチレンテレフタレート)
が通常用いられており、透明電極としてはITOや酸化
スズが用いられている。透明電極は全面均一の場合もあ
るし、パターンニングして用いる場合もある。ペン入力
面は書き味改善や防眩のため、プラスチックフィルムを
張り付けたり、表面に微細な凹凸面を設けた構造を取る
ようになった。タッチパネルは単体の入力装置としてだ
けでなく、CRTやLCDと組み合せ、表示画面上で情
報操作できる装置としても利用されている。
2. Description of the Related Art Touch panels used for input devices are
Although there are differences in detection methods such as a resistance detection method, an electrostatic capacitance method, and an electromagnetic induction method, a structure composed of a transparent substrate having one or more transparent electrodes is general. Glass plate or PET (polyethylene terephthalate) as transparent substrate
Is usually used, and ITO or tin oxide is used as the transparent electrode. The transparent electrode may be uniform over the entire surface or may be used after being patterned. In order to improve the writing quality and to prevent glare, the pen input surface has come to have a structure in which a plastic film is attached or a fine uneven surface is provided on the surface. The touch panel is used not only as a single input device, but also as a device that can be operated with information on a display screen in combination with a CRT or LCD.

【0003】[0003]

【発明が解決しようとする課題】しかし、タッチパネル
は一枚以上の透明電極を有する透明基板から構成されて
いるため、屈折率の高い透明電極と空気界面による表面
反射により、10%以上の光量が失われてしまうという
課題があった。特に最も一般的な抵抗検出方式は、空気
を介して透明電極面を対向させた一組の透明基板から構
成されるため、透過率が低くならざるをえなかった。ま
た、表面反射によりパネルが見づらく、特に表示素子と
併用して用いる場合には大きな問題であった。
However, since the touch panel is composed of a transparent substrate having one or more transparent electrodes, the amount of light of 10% or more is generated due to the surface reflection by the transparent electrode having a high refractive index and the air interface. There was a problem of being lost. In particular, the most common resistance detection method has a low transmittance because it is composed of a pair of transparent substrates whose transparent electrode surfaces face each other through air. Further, the panel is difficult to see due to surface reflection, which is a big problem particularly when used in combination with a display element.

【0004】減反射コーティングとしては、フッ化マグ
ネシウム等の低屈折率材料を蒸着する方法や、屈折率の
異なる材料を多層形成する方法が知られ(特開平1−2
57801)、眼鏡レンズなどで実用化されている。ま
た、屈折率の低い含フッ素化合物で薄膜を形成する方法
も提示されている(特開昭58−211701)。更に
屈折率の異なる材料を多層蒸着する方法において、高屈
折率膜に透明導電膜を用いる方法も提示されている(特
開昭61−168899)。しかし、従来の減反射コー
ティング材料は最表面層の絶縁性が高く、抵抗検出方式
では、電極上に形成されると位置検出できないという致
命的な欠陥があった。
As the antireflection coating, a method of depositing a low refractive index material such as magnesium fluoride or a method of forming a multi-layered material having different refractive indexes (Japanese Patent Laid-Open No. 1-22).
57801), and has been put to practical use in eyeglass lenses and the like. Also, a method of forming a thin film from a fluorine-containing compound having a low refractive index has been proposed (Japanese Patent Laid-Open No. 58-211701). Further, in a method of multi-layer vapor deposition of materials having different refractive indexes, a method of using a transparent conductive film as a high refractive index film has also been proposed (JP-A 61-168899). However, the conventional antireflection coating material has a fatal defect that the outermost surface layer has a high insulating property and the resistance detection method cannot detect the position when it is formed on the electrode.

【0005】そこで本発明はこのような課題を解決する
もので、その目的とするところは、透明度が高くて見栄
えの良い、位置検出性に優れたタッチパネルを提供する
ところにある。
Therefore, the present invention solves such a problem, and an object of the present invention is to provide a touch panel having a high transparency, a good appearance, and excellent position detectability.

【0006】[0006]

【課題を解決するための手段】上記目的は、空気を介し
て透明電極面を対向させた一組の透明基板から構成され
る抵抗検出方式のタッチパネルにおいて、透明電極基板
の少なくとも一方の基材が屈折率1.48から1.63
であり、透明基材表面に透明電極材料からなる屈折率n
1(1.65≦n1≦2.2)の第1層と、導電性微粒子
を含んだ高分子からなる屈折率n2(1.45≦n2
1.65)の第2層からなる減反射膜が形成されてお
り、第1層と第2層に対応する光学的膜厚n11とn2
2がともにλ0以下、λ0/20以上であることにより
達成される。
In the resistance detection type touch panel composed of a pair of transparent substrates whose transparent electrode surfaces are opposed to each other through air, at least one base material of the transparent electrode substrate is Refractive index 1.48 to 1.63
And the refractive index n made of a transparent electrode material on the surface of the transparent substrate.
1 (1.65 ≦ n 1 ≦ 2.2) and a refractive index n 2 (1.45 ≦ n 2 ≦) made of a polymer containing conductive particles.
1.65) has an antireflection film formed of the second layer, and has optical film thicknesses n 1 d 1 and n 2 corresponding to the first layer and the second layer.
d 2 are both lambda 0 or less, is achieved by at lambda 0/20 or more.

【0007】また、透明電極基板の少なくとも一方の基
材が屈折率1.48から1.63であり、透明基材表面
から順次形成された低屈折材料からなる屈折率n
1(1.35≦n1≦1.5)の第1層と、透明電極材料
からなる屈折率n2(1.65≦n2≦2.2)の第2層
と、導電性微粒子を含んだ高分子からなる屈折率n
3(1.45≦n3≦1.65)の第3層からなる減反射
膜が形成されており、上記第1層と第2層と第3層に対
応する光学的膜厚n11、n22、n33がともにλ0
以下、λ0/20以上であることにより達成される。
At least one base material of the transparent electrode substrate has a refractive index of 1.48 to 1.63, and the refractive index n is made of a low-refractive material formed in order from the transparent base material surface.
1 (1.35 ≦ n 1 ≦ 1.5), a second layer made of a transparent electrode material and having a refractive index n 2 (1.65 ≦ n 2 ≦ 2.2), and conductive fine particles. Refractive index n consisting of polymer
3 (1.45 ≦ n 3 ≦ 1.65) is formed as the antireflection film, and the optical film thickness n 1 d corresponding to the first layer, the second layer, and the third layer is formed. 1 , 1 , n 2 d 2 and n 3 d 3 are all λ 0
Hereinafter, it is accomplished by at lambda 0/20 or more.

【0008】[0008]

【作用】屈折率の異なる多層膜形成による減反射効果発
現の理論式は一般に知られている。しかし使用目的によ
り材料、製造コスト、追加される必要特性等により限定
され、膜の構成は異なってくる。タッチパネルにおいて
は、基材の透明性や機械的強度が必要であり、抵抗検出
方式では特に低コスト化が強く求められるため、多層膜
形成はせいぜい3層までである。透明電極が高屈折率層
を兼ねるため、透明電極層も含め2層あるいは3層の構
成となる。また最表面層に導電性があり、屈折率がさほ
ど高くない材料を用いる必要がある。
Function: The theoretical formula for expressing the antireflection effect by forming a multilayer film having different refractive indexes is generally known. However, the structure of the membrane varies depending on the purpose of use, the manufacturing cost, the required additional characteristics, and the like. In the touch panel, the transparency and mechanical strength of the base material are required, and cost reduction is strongly required especially in the resistance detection method. Therefore, the multilayer film formation is limited to at most three layers. Since the transparent electrode also serves as the high refractive index layer, it has a two-layer or three-layer structure including the transparent electrode layer. Further, it is necessary to use a material whose outermost surface layer has conductivity and whose refractive index is not so high.

【0009】通常に入手できる透明性の基材は、屈折率
1.48から1.63である。また透明電極として通常
用いられる酸化スズやITO、酸化亜鉛などは、屈折率
が1.65から2.2と高く、膜の酸化状態により屈折
率や導電率を制御することができるが、屈折率において
この範囲を逸脱することは困難である。最表面層には導
電性微粒子を含んだ高分子層を用いる必要がある。導電
性微粒子は、一次粒径0.1μm以下の酸化スズまたは
ITOを主成分とする透明性酸化物であり、高分子は熱
硬化性ポリシロキサンまたは光硬化性アクリル樹脂であ
る。減反射効果を発現させるためには膜の屈折率は1.
65以下である必要があり、膜を形成する材料の特性か
ら1.45以上であれば制御可能である。導電率も位置
検出精度に対応させて制御することができる。また導電
性微粒子の分散が十分であれば、膜厚がλ0以下と薄い
ため、導電性微粒子を含んだ高分子層の吸収による光の
減衰もほとんど無い。減反射コーティングとして3層の
膜構成を取る場合、第1層の屈折率は1.5以下でない
と形成する意味がなく、材料の限定から1.35以上と
なる。
Transparent substrates that are commonly available have a refractive index of 1.48 to 1.63. Further, tin oxide, ITO, zinc oxide, etc., which are usually used as transparent electrodes, have a high refractive index of 1.65 to 2.2, and the refractive index and conductivity can be controlled by the oxidation state of the film. It is difficult to deviate from this range in. It is necessary to use a polymer layer containing conductive fine particles as the outermost surface layer. The conductive fine particles are a transparent oxide containing tin oxide or ITO having a primary particle diameter of 0.1 μm or less as a main component, and the polymer is a thermosetting polysiloxane or a photocurable acrylic resin. In order to exert the antireflection effect, the refractive index of the film is 1.
It needs to be 65 or less, and can be controlled if it is 1.45 or more from the characteristics of the material forming the film. The conductivity can also be controlled according to the position detection accuracy. Further, if the conductive fine particles are sufficiently dispersed, the film thickness is as thin as λ 0 or less, so that there is almost no light attenuation due to absorption by the polymer layer containing the conductive fine particles. When a three-layer film structure is used as the antireflection coating, it is meaningless to form it unless the refractive index of the first layer is 1.5 or less, and is 1.35 or more because of the material limitation.

【0010】形成した多層膜間の反射光を干渉させて減
反射効果を発現させるためには、光学的膜厚ndがλ0
以下、λ0/20以上であることが望ましい。λ0は可視
光中心波長である。λ0以上あると色づきが発生しやす
い上、減反射効果が顕著でなく、λ0/20以上ないと
光学的干渉が起こらない。2層及び3層の減反射コーテ
ィングにおいて、以上の膜厚内であれば色消しも考慮し
ていろんな膜厚の組合せが可能である。しかし理論式か
ら導かれた以下の膜厚構成を取ることが一般的であり、
また減反射効果が高い。2層膜においてはn11=n2
2=λ0/4または、n11=2n22=λ0/2の構
成であり、±λ0/10程度の膜厚ばらつきは許容でき
る。3層膜においてはn11=n22=n33=λ0
4または、2n11=n22=2n33=λ0/2の構
成であり、同じく±λ0/10程度の膜厚ばらつきは許
容できる。
In order to cause the reflected light between the formed multilayer films to interfere with each other to exert the antireflection effect, the optical film thickness nd is λ 0.
Hereinafter, it is desirable that the lambda 0/20 or more. λ 0 is a visible light central wavelength. on coloring that there lambda 0 or is likely to occur, antireflection effect is not remarkable, lambda 0/20 or more and without does not occur optical interference. In the two-layer and three-layer antireflection coatings, various film thickness combinations are possible in consideration of achromatism within the above film thickness. However, it is common to take the following film thickness composition derived from the theoretical formula,
Moreover, the antireflection effect is high. In a two-layer film, n 1 d 1 = n 2
d 2 = λ 0/4 or a structure of n 1 d 1 = 2n 2 d 2 = λ 0/2, the thickness variation of about ± λ 0/10 is acceptable. In the three-layer film, n 1 d 1 = n 2 d 2 = n 3 d 3 = λ 0 /
4 or a configuration of 2n 1 d 1 = n 2 d 2 = 2n 3 d 3 = λ 0/2, also the thickness variation of about ± λ 0/10 is acceptable.

【0011】[0011]

【実施例】【Example】

(実施例1)屈折率1.52のガラス基板上に、屈折率
1.7のITOをn11=λ0/2の膜厚になるようス
パッタ法で形成した。次にメチルセロソルブにγ−グリ
シドキシプロピルトリメトキシシランを溶解し触媒量の
塩酸を加え、室温で攪拌して加水分解を行なった。そこ
に平均粒径80Åの酸化スズ微粒子の分散液を混合し、
更に過塩素酸マグネシウムを触媒量添加し、十分に攪拌
し塗布液とした。この塗布液をITO透明電極上にロー
ルコート法で塗布し、150℃で乾燥させ、屈折率1.
5光学的膜厚n22=λ0/4の酸化スズ微粒子を含ん
だシロキサン高分子層を形成した。膜厚は50nm程度
の範囲で十分制御できた。表面硬度は鉛筆硬度で5H以
上と高く、曇度も0.5%以下で、透明感が高かった。
2層の膜の密着性は、碁盤目試験100/100と良好
で、耐擦傷性は#0000のスチールウールを1kg/
cm2 の荷重をかけて10往復させても傷が認められな
かった。また、アルコール、酸、アルカリ、洗剤の滴下
実験において異常は認められなかった。
(Example 1) on a glass substrate having a refractive index of 1.52, the ITO having a refractive index of 1.7 was formed by n 1 d 1 = λ 0/ 2 of the film sputtering to a thickness. Next, γ-glycidoxypropyltrimethoxysilane was dissolved in methyl cellosolve, a catalytic amount of hydrochloric acid was added, and the mixture was stirred at room temperature for hydrolysis. Mix there with a dispersion of tin oxide fine particles with an average particle size of 80Å,
Further, magnesium perchlorate was added in a catalytic amount and sufficiently stirred to obtain a coating liquid. This coating solution was applied onto an ITO transparent electrode by a roll coating method, dried at 150 ° C., and had a refractive index of 1.
5 to form a siloxane polymer layer containing tin oxide fine particles of the optical thickness n 2 d 2 = λ 0/ 4. The film thickness could be controlled sufficiently in the range of about 50 nm. The surface hardness was as high as 5H or more in pencil hardness, the haze was 0.5% or less, and the transparency was high.
The adhesion of the two-layered film was as good as the cross-cut test 100/100, and the scratch resistance was 1 kg / kg of # 0000 steel wool.
No scratch was observed even after 10 reciprocations with a load of cm 2 . No abnormalities were found in the dropping experiments of alcohol, acid, alkali and detergent.

【0012】このようにして作製した透明基板を用いた
タッチパネルの、模式的な断面図を図1に示す。図1に
おいて、11はガラス基板、12がPET基板、13と
14がITO透明電極、15がスペーサーである。ま
た、16が前述の方法で形成した酸化スズ微粒子を含ん
だシロキサン高分子層である。2層膜の構成をとってい
るが抵抗検出方式のタッチパネルとして、全く問題なく
位置検出することができた。図2にガラス基板上に2層
からなる減反射コーティングを施した時の反射率の分光
特性を示す。全線透過率は83%から92%に向上して
いた。
FIG. 1 shows a schematic cross-sectional view of a touch panel using the transparent substrate thus manufactured. In FIG. 1, 11 is a glass substrate, 12 is a PET substrate, 13 and 14 are ITO transparent electrodes, and 15 is a spacer. Further, 16 is a siloxane polymer layer containing tin oxide fine particles formed by the above method. Although it has a two-layer film structure, it was possible to detect the position as a resistance detection type touch panel without any problem. FIG. 2 shows the spectral characteristics of reflectance when a two-layer antireflection coating is applied on a glass substrate. The total line transmittance was improved from 83% to 92%.

【0013】このタッチパネルに対し、信頼性試験をお
こなった。50℃、90%RHで1000時間の高温高
湿試験において、剥がれ、クラック等は発生せず、ヤケ
も発生しなかった。また−20℃、25℃、60℃の熱
衝撃試験においても、異常は認められなかった。200
00ラングレイの日光暴露試験においても、異常は認め
られなかった。本実施例において、透明感のある見やす
いタッチパネルを歩留まり良く、コストもほとんど割高
にならず達成できた。表面反射による眩しさはほとんど
感じなかった。
A reliability test was conducted on this touch panel. In a high temperature and high humidity test at 50 ° C. and 90% RH for 1000 hours, peeling, cracking, etc. did not occur, and burning did not occur. No abnormality was found in the thermal shock tests at -20 ° C, 25 ° C, and 60 ° C. 200
No abnormality was observed in the 00 Langley sun exposure test. In the present embodiment, a transparent touch panel which is easy to see and has a high yield was achieved, and the cost could be achieved at almost no high cost. Almost no glare due to surface reflection was felt.

【0014】(実施例2)屈折率1.5のガラス基板上
に、屈折率1.9の酸化スズ膜をn11=0.43λ0
の膜厚になるようCVD法で形成した。実施例1と同様
の塗布液中にこのガラス基板を浸し、適当な速度で引き
上げ150℃で30分間加熱して硬化させ、屈折率1.
5光学的膜厚n22=0.23λ0の酸化スズ微粒子を
含んだシロキサン高分子層を形成した。膜厚は50nm
程度の範囲で十分制御できた。表面硬度は鉛筆硬度で5
H以上と高く、曇度も0.5%以下で、透明感が高かっ
た。2層の膜の密着性は、碁盤目試験100/100と
良好で、耐擦傷性は#0000のスチールウールを1k
g/cm2 の荷重をかけて10往復させても傷が認めら
れなかった。また、アルコール、酸、アルカリ、洗剤の
滴下実験において異常は認められなかった。
(Example 2) A tin oxide film having a refractive index of 1.9 was formed on a glass substrate having a refractive index of 1.5, n 1 d 1 = 0.43λ 0.
It was formed by the CVD method so as to have a film thickness of. This glass substrate was dipped in a coating solution similar to that of Example 1, pulled up at an appropriate speed and heated at 150 ° C. for 30 minutes to be cured to have a refractive index of 1.
5 A siloxane polymer layer containing tin oxide fine particles having an optical film thickness n 2 d 2 = 0.23λ 0 was formed. The film thickness is 50 nm
It was possible to control it well within the range. Surface hardness is 5 in pencil hardness
It was as high as H or higher, and the haze was 0.5% or less, and the transparency was high. The adhesion of the two-layered film is good as a cross-cut test of 100/100, and the scratch resistance is # 0000 for steel wool of # 0000.
No scratches were observed even after 10 reciprocations with a load of g / cm 2 . No abnormalities were found in the dropping experiments of alcohol, acid, alkali and detergent.

【0015】図3にガラス基板上に2層からなる減反射
コーティングを施した時の反射率の分光特性を示す。全
線透過率は83%から92%に向上していた。このよう
にして作製した透明基板を用いたタッチパネルを、実施
例1と同様に組み立てた。2層膜の構成をとっているが
抵抗検出方式のタッチパネルとして、全く問題なく位置
検出することができた。バックライトを有するLCDと
タッチパネルを組み合せたところ、表示表面における輝
度は、従来の55カンデラから60カンデラに向上し
た。面内の輝度分布もほとんど観察されず、明るく見栄
えの良いパネルを達成できた。
FIG. 3 shows the spectral characteristics of reflectance when a two-layer antireflection coating is applied on a glass substrate. The total line transmittance was improved from 83% to 92%. A touch panel using the transparent substrate thus manufactured was assembled in the same manner as in Example 1. Although it has a two-layer film structure, it was possible to detect the position as a resistance detection type touch panel without any problem. When the LCD having a backlight and the touch panel were combined, the brightness on the display surface was improved from the conventional 55 candelas to 60 candelas. Almost no in-plane luminance distribution was observed, and a bright and attractive panel was achieved.

【0016】このタッチパネルに対し、信頼性試験をお
こなった。50℃、90%RHで1000時間の高温高
湿試験において、剥がれ、クラック等は発生せず、ヤケ
も発生しなかった。また−20℃、25℃、60℃の熱
衝撃試験においても、異常は認められなかった。200
00ラングレイの日光暴露試験においても、異常は認め
られなかった。
A reliability test was conducted on this touch panel. In a high temperature and high humidity test at 50 ° C. and 90% RH for 1000 hours, peeling, cracking, etc. did not occur, and burning did not occur. No abnormality was found in the thermal shock tests at -20 ° C, 25 ° C, and 60 ° C. 200
No abnormality was observed in the 00 Langley sun exposure test.

【0017】(実施例3)屈折率1.5のガラス基板上
に、屈折率1.9の酸化スズ膜をn11=0.1λ0
膜厚になるようCVD法で形成した。実施例1と同様の
塗布液中にこのガラス基板を浸し、適当な速度で引き上
げ150℃で30分間加熱して硬化させ、屈折率1.5
光学的膜厚n22=0.33λ0の酸化スズ微粒子を含
んだシロキサン高分子層を形成した。膜厚は50nm程
度の範囲で十分制御できた。表面硬度は鉛筆硬度で5H
以上と高く、曇度も0.5%以下で、透明感が高かっ
た。2層の膜の密着性は、碁盤目試験100/100と
良好で、耐擦傷性は#0000のスチールウールを1k
g/cm2 の荷重をかけて10往復させても傷が認めら
れなかった。また、アルコール、酸、アルカリ、洗剤の
滴下実験において異常は認められなかった。
(Example 3) A tin oxide film having a refractive index of 1.9 was formed on a glass substrate having a refractive index of 1.5 by the CVD method so as to have a film thickness of n 1 d 1 = 0.1λ 0 . The glass substrate was dipped in the same coating solution as in Example 1, pulled up at an appropriate speed and heated at 150 ° C. for 30 minutes to be cured, so that the refractive index was 1.5.
A siloxane polymer layer containing tin oxide fine particles having an optical film thickness n 2 d 2 = 0.33λ 0 was formed. The film thickness could be controlled sufficiently in the range of about 50 nm. Surface hardness is pencil hardness 5H
It was high as above, the haze was 0.5% or less, and the transparency was high. The adhesion of the two-layered film is good as a cross-cut test of 100/100, and the scratch resistance is # 0000 for steel wool of # 0000.
No scratches were observed even after 10 reciprocations with a load of g / cm 2 . No abnormalities were found in the dropping experiments of alcohol, acid, alkali and detergent.

【0018】図4にガラス基板上に2層からなる減反射
コーティングを施した時の反射率の分光特性を示す。全
線透過率は82%から91%に向上していた。このよう
にして作製した透明基板を用いたタッチパネルを、実施
例1と同様に組み立てた。2層膜の構成をとっているが
抵抗検出方式のタッチパネルとして、全く問題なく位置
検出することができた。
FIG. 4 shows the spectral characteristics of the reflectance when a two-layer antireflection coating is applied on a glass substrate. The total line transmittance was improved from 82% to 91%. A touch panel using the transparent substrate thus manufactured was assembled in the same manner as in Example 1. Although it has a two-layer film structure, it was possible to detect the position as a resistance detection type touch panel without any problem.

【0019】(実施例4)屈折率1.52のガラス基板
上に、屈折率1.85のITOをn11=λ0/4の膜
厚になるようスパッタ法で形成した。同じく屈折率1.
6のPETフィルム上に、屈折率1.8のITOをn1
1=λ0/4の膜厚になるようスパッタ法で形成した。
次にエチルセロソルブに3−メタアクリロキシプロピル
トリメトキシシランを溶解し触媒量の塩酸を加え、室温
で攪拌して加水分解を行なった。そこに平均粒径200
ÅのITO微粒子の分散液を混合し、更にベンゾフェノ
ンを触媒量添加し、十分に攪拌し塗布液とした。
[0019] (Example 4) on a glass substrate having a refractive index of 1.52, the ITO having a refractive index of 1.85 was formed by n 1 d 1 = λ 0/ 4 of the film sputtering to a thickness. Similarly, the refractive index is 1.
On the PET film 6, the ITO having a refractive index 1.8 n 1
It was formed by d 1 = λ 0/4 of the film sputtering to a thickness.
Next, 3-methacryloxypropyltrimethoxysilane was dissolved in ethyl cellosolve, a catalytic amount of hydrochloric acid was added, and the mixture was stirred at room temperature for hydrolysis. Average particle size of 200
The dispersion liquid of ITO fine particles of Å was mixed, benzophenone was further added in a catalytic amount, and the mixture was sufficiently stirred to obtain a coating liquid.

【0020】イエロールーム内で、この塗布液をITO
付きガラス板の透明電極面、及びITO付きPETフィ
ルムの透明電極面に、ロールコート法で塗布し成膜し
た。50℃で3時間加熱した後、紫外線を1ジュール照
射し、屈折率1.6光学的膜厚n22=λ0/4のIT
O微粒子を含んだアクリルシロキサン高分子層とした。
膜厚は50nm程度の範囲で十分制御できた。表面硬度
は鉛筆硬度で5H以上と高く、曇度も1%以下で、透明
感が高かった。2層の膜の密着性は、碁盤目試験100
/100と良好で、耐擦傷性は#0000のスチールウ
ールを1kg/cm2 の荷重をかけて10往復させても
傷が認められなかった。また、アルコール、酸、アルカ
リ、洗剤の滴下実験において異常は認められなかった。
図5にガラス基板上に2層からなる減反射コーティング
を施した時の反射率の分光特性を示す。
In a yellow room, this coating solution is ITO
A transparent electrode surface of the attached glass plate and a transparent electrode surface of the PET film with ITO were applied by a roll coating method to form a film. After heating for 3 hours at 50 ° C., ultraviolet rays are 1 Joule irradiation, IT 1.6 index optical thickness n 2 d 2 = λ 0/ 4
An acrylic siloxane polymer layer containing O particles was formed.
The film thickness could be controlled sufficiently in the range of about 50 nm. The surface hardness was as high as 5H or more in pencil hardness, the haze was 1% or less, and the transparency was high. The adhesion of the two-layer film is 100
The scratch resistance was as good as / 100, and scratches were not recognized even when the steel wool of # 0000 was reciprocated 10 times with a load of 1 kg / cm 2 . No abnormalities were found in the dropping experiments of alcohol, acid, alkali and detergent.
FIG. 5 shows the spectral characteristics of reflectance when a two-layer antireflection coating is applied on a glass substrate.

【0021】実施例1と同様の構造をもつ抵抗検出方式
のタッチパネルを組み立てたところ、2層膜の構成をと
っているが抵抗検出方式のタッチパネルとして、全く問
題なく位置検出することができた。タッチパネルとして
の全線透過率が、10%以上改善されて89%となり、
また曇度も2%以下で透明感が高かった。反射型のLC
Dとタッチパネルを組み合せたところ、表示表面におけ
る明るさが格段に改善され、見やすく見栄えの良いパネ
ルを達成できた。このLCD付タッチパネルに対し、信
頼性試験をおこなった。50℃、90%RHで1000
時間の高温高湿試験において、剥がれ、クラック等は発
生せず、ヤケも発生しなかった。また−20℃、25
℃、60℃の熱衝撃試験においても、異常は認められな
かった。20000ラングレイの日光暴露試験において
も、異常は認められなかった。
When a resistance detection type touch panel having the same structure as that of Example 1 was assembled, the resistance detection type touch panel could detect the position without any problem although it had a two-layer film structure. The total line transmittance as a touch panel is improved by 10% or more to 89%,
Further, the haze was 2% or less, and the transparency was high. Reflective LC
When D and a touch panel were combined, the brightness on the display surface was significantly improved, and a panel that was easy to see and looked good was achieved. A reliability test was performed on the LCD touch panel. 1000 at 50 ° C, 90% RH
In the high-temperature high-humidity test for a long time, peeling, cracks, etc. did not occur, and burns did not occur. Also, -20 ℃, 25
No abnormality was found in the thermal shock tests at 60 ° C and 60 ° C. No abnormality was observed in the 20,000 Langley sun exposure test.

【0022】(実施例5)屈折率1.52のガラス基板
上に、屈折率1.47の二酸化珪素膜をn11=λ0
4の膜厚になるよう電子線蒸着法により形成し、屈折率
2.0の酸化スズ膜をn22=λ0/4の膜厚になるよ
うCVD法で形成した。次にアルコール系溶媒にアクリ
ル系のオリゴマーを溶解し、平均粒径400ÅのITO
微粒子の分散液を混合し、十分に攪拌し塗布液とした。
(Embodiment 5) A silicon dioxide film having a refractive index of 1.47 was formed on a glass substrate having a refractive index of 1.52 by n 1 d 1 = λ 0 /
It was formed by electron beam evaporation method so that a film thickness of 4, a tin oxide film having a refractive index of 2.0 was formed by n 2 d 2 = λ 0/ 4 of the film CVD method so that the thickness. Next, dissolve the acrylic oligomer in an alcohol solvent and use ITO with an average particle size of 400Å.
The dispersion liquid of fine particles was mixed and sufficiently stirred to obtain a coating liquid.

【0023】この塗布液をガラス基板の酸化スズ透明電
極上に、ロールコート法で塗布し成膜した。50℃で2
時間加熱した後、電子線を200キロボルトの加速電圧
で照射して硬化させ、屈折率1.65光学的膜厚n33
=λ0/4のITO微粒子を含んだアクリル高分子層と
した。膜厚は50nm程度の範囲で十分制御できた。表
面硬度は鉛筆硬度で5H以上と高く、曇度も1%以下
で、透明感が高かった。2層の膜の密着性は、碁盤目試
験100/100と良好で、耐擦傷性は#0000のス
チールウールを1kg/cm2 の荷重をかけて10往復
させても傷が認められなかった。また、アルコール、
酸、アルカリ、洗剤の滴下実験において異常は認められ
なかった。図6にガラス基板上に3層からなる減反射コ
ーティングを施した時の反射率の分光特性を示す。
This coating solution was applied onto a tin oxide transparent electrode on a glass substrate by a roll coating method to form a film. 2 at 50 ° C
After heating for a period of time, the electron beam is irradiated with an accelerating voltage of 200 kilovolts to cure, and a refractive index of 1.65 optical film thickness n 3 d 3
= And an acrylic polymer layer containing lambda 0/4 of the ITO fine particles. The film thickness could be controlled sufficiently in the range of about 50 nm. The surface hardness was as high as 5H or more in pencil hardness, the haze was 1% or less, and the transparency was high. The adhesion of the two-layered film was as good as a cross-cut test of 100/100, and the scratch resistance was not recognized even when the steel wool of # 0000 was reciprocated 10 times with a load of 1 kg / cm 2 . Also alcohol,
No abnormalities were found in the acid, alkali and detergent dropping experiments. FIG. 6 shows the spectral characteristics of reflectance when a three-layer antireflection coating is applied on a glass substrate.

【0024】実施例1と同様の構造をもつ抵抗検出方式
のタッチパネルを組み立て、PETフィルム表面に防眩
フィルムを貼りつけた。3層膜の構成をとっているが抵
抗検出方式のタッチパネルとして、全く問題なく位置検
出することができた。タッチパネルとしての全線透過率
が改善されて85%となった。また外光の映り込みがな
く、見やすく見栄えの良いパネルを達成できた。
A resistance detection type touch panel having the same structure as in Example 1 was assembled, and an antiglare film was attached to the surface of the PET film. Although it has a three-layered film structure, it can detect the position without any problem as a resistance detection type touch panel. The total line transmittance as a touch panel was improved to 85%. In addition, there was no reflection of outside light, and we were able to achieve a panel that is easy to see and looks good.

【0025】(実施例6)屈折率1.5のガラス基板上
に、屈折率1.46の二酸化珪素膜をn11=λ0/4
の膜厚になるようスパッタ法により形成し、連続して屈
折率1.8のITOをn11=λ0/2の膜厚になるよ
うスパッタ法で形成した。同じく屈折率1.55のPE
S(ポリエーテルサルフォン)フィルム上に、屈折率
1.46の二酸化珪素膜をn11=λ0/4の膜厚にな
るようスパッタ法により形成し、連続して屈折率1.8
のITOをn11=λ0/2の膜厚になるようスパッタ
法で形成した。
[0025] (Example 6) on a glass substrate having a refractive index of 1.5, the silicon dioxide film having a refractive index 1.46 n 1 d 1 = λ 0 /4
The film is formed by sputtering to a thickness, an ITO having a refractive index of 1.8 was formed by n 1 d 1 = λ 0/ 2 of the film sputtering to a thickness continuously. PE with a refractive index of 1.55
S in (polyethersulfone) film was formed by sputtering so that the silicon dioxide film having a refractive index of 1.46 on the thickness of n 1 d 1 = λ 0/ 4, the refractive index of 1.8 in succession
Was formed by sputtering so that the ITO film thickness of the n 1 d 1 = λ 0/ 2.

【0026】次に平均粒径50Åから100Åのアンチ
モン含有酸化スズ超微粒子が分散している、シロキサン
系低分子が溶解したアルコール溶液「透明帯電防止コー
ティング液P104」(秩父セメント社製)を、ガラス
基板とPESフィルムの両面にディッピングにより塗布
した。引き上げ速度20cm/分で成膜し、80℃で3
0分間加熱して定着させた。更に引き上げ速度20cm
/分で重ねて成膜し、120℃で1時間加熱して硬化さ
せた。屈折率1.5光学的膜厚n33=λ0/4の酸化
スズ微粒子を含んだシロキサン高分子層を形成した。膜
厚は50nm程度の範囲で十分制御できた。表面硬度は
鉛筆硬度で5H以上と高く、曇度も0.5%以下で、透
明感が高かった。2層の膜の密着性は、碁盤目試験10
0/100と良好で、耐擦傷性は#0000のスチール
ウールを1kg/cm2 の荷重をかけて10往復させて
も傷が認められなかった。また、アルコール、酸、アル
カリ、洗剤の滴下実験において異常は認められなかっ
た。図7にガラス基板上に3層からなる減反射コーティ
ングを施した時の反射率の分光特性を示す。
Next, an alcohol solution "Transparent antistatic coating liquid P104" (manufactured by Chichibu Cement Co., Ltd.) in which siloxane low molecular weight molecules in which ultrafine particles of antimony-containing tin oxide having an average particle size of 50Å to 100Å are dispersed, Both sides of the substrate and PES film were coated by dipping. Film is formed at a pulling rate of 20 cm / min, and the film is formed at 80 ° C for 3
It was fixed by heating for 0 minutes. Further pulling speed 20 cm
The layers were stacked at a rate of 1 / min, and heated at 120 ° C. for 1 hour to cure. To form a siloxane polymer layer containing tin oxide fine particles having a refractive index of 1.5 optical thickness n 3 d 3 = λ 0/ 4. The film thickness could be controlled sufficiently in the range of about 50 nm. The surface hardness was as high as 5H or more in pencil hardness, the haze was 0.5% or less, and the transparency was high. The adhesiveness of the two-layer film is determined by a cross-cut test 10
The scratch resistance was as good as 0/100, and scratches were not observed even when # 0000 steel wool was reciprocated 10 times with a load of 1 kg / cm 2 . No abnormalities were found in the dropping experiments of alcohol, acid, alkali and detergent. FIG. 7 shows the spectral characteristics of reflectance when a three-layer antireflection coating is applied on a glass substrate.

【0027】実施例1と同様の構造をもつ抵抗検出方式
のタッチパネルを組み立てた。3層膜の構成をとってい
るが抵抗検出方式のタッチパネルとして、全く問題なく
位置検出することができた。タッチパネルとしての全線
透過率が、10%以上改善されて90%となり、また曇
度も1%以下で透明感が高かった。反射型のLCDとタ
ッチパネルを組み合せたところ、表示表面における明る
さが格段に改善され、見やすく見栄えの良いパネルを達
成できた。このLCD付タッチパネルに対し、信頼性試
験をおこなった。50℃、90%RHで1000時間の
高温高湿試験において、剥がれ、クラック等は発生せ
ず、ヤケも発生しなかった。また−20℃、25℃、6
0℃の熱衝撃試験においても、異常は認められなかっ
た。20000ラングレイの日光暴露試験においても、
異常は認められなかった。
A resistance detection type touch panel having the same structure as in Example 1 was assembled. Although it has a three-layered film structure, it can detect the position without any problem as a resistance detection type touch panel. The total line transmittance as a touch panel was improved by 10% or more to 90%, and the haze was 1% or less, and the transparency was high. When a reflective LCD and a touch panel were combined, the brightness on the display surface was significantly improved, and a panel that was easy to see and looked good was achieved. A reliability test was performed on the LCD touch panel. In a high temperature and high humidity test at 50 ° C. and 90% RH for 1000 hours, peeling, cracking, etc. did not occur, and burning did not occur. Also, -20 ° C, 25 ° C, 6
No abnormality was observed in the 0 ° C. thermal shock test. Even in the sunlight exposure test of 20,000 Langley,
No abnormality was found.

【0028】(実施例7)屈折率1.52のガラス基板
上に、屈折率1.38の弗化マグネシウム膜をn11
0.23λ0の膜厚になるよう電子線蒸着法により形成
し、屈折率1.9の酸化スズ膜をn22=0.65λ0
の膜厚になるようCVD法で形成した。次に実施例4と
同様の塗布液をガラス基板の酸化スズ透明電極上に、ロ
ールコート法で塗布し成膜した。50℃で2時間加熱し
た後、電子線を200キロボルトの加速電圧で照射して
硬化させ、屈折率1.65光学的膜厚n33=0.23
λ0のITO微粒子を含んだアクリル高分子層とした。
膜厚は50nm程度の範囲で十分制御できた。表面硬度
は鉛筆硬度で5H以上と高く、曇度も1%以下で、透明
感が高かった。2層の膜の密着性は、碁盤目試験100
/100と良好で、耐擦傷性は#0000のスチールウ
ールを1kg/cm2 の荷重をかけて10往復させても
傷が認められなかった。また、アルコール、酸、アルカ
リ、洗剤の滴下実験において異常は認められなかった。
図8にガラス基板上に3層からなる減反射コーティング
を施した時の反射率の分光特性を示す。
Example 7 A magnesium fluoride film having a refractive index of 1.38 was formed on a glass substrate having a refractive index of 1.52 by n 1 d 1 =
A tin oxide film having a refractive index of 1.9 was formed by electron beam evaporation to a film thickness of 0.23λ 0 and n 2 d 2 = 0.65λ 0.
It was formed by the CVD method so as to have a film thickness of. Next, the same coating solution as in Example 4 was applied onto the tin oxide transparent electrode on the glass substrate by the roll coating method to form a film. After heating at 50 ° C. for 2 hours, the electron beam is irradiated with an accelerating voltage of 200 kilovolts to cure, and a refractive index of 1.65 optical film thickness n 3 d 3 = 0.23
An acrylic polymer layer containing ITO fine particles of λ 0 was formed.
The film thickness could be controlled sufficiently in the range of about 50 nm. The surface hardness was as high as 5H or more in pencil hardness, the haze was 1% or less, and the transparency was high. The adhesion of the two-layer film is 100
The scratch resistance was as good as / 100, and scratches were not recognized even when the steel wool of # 0000 was reciprocated 10 times with a load of 1 kg / cm 2 . No abnormalities were found in the dropping experiments of alcohol, acid, alkali and detergent.
FIG. 8 shows the spectral characteristics of reflectance when a three-layer antireflection coating is applied on a glass substrate.

【0029】実施例1と同様の構造をもつ抵抗検出方式
のタッチパネルを組み立て、PETフィルム表面に防眩
フィルムを貼りつけた。3層膜の構成をとっているが抵
抗検出方式のタッチパネルとして、全く問題なく位置検
出することができた。タッチパネルとしての全線透過率
が改善されて85%となった。また外光の映り込みがな
く、見やすく見栄えの良いパネルを達成できた。
A resistance detection type touch panel having the same structure as in Example 1 was assembled, and an antiglare film was attached to the surface of the PET film. Although it has a three-layered film structure, it can detect the position without any problem as a resistance detection type touch panel. The total line transmittance as a touch panel was improved to 85%. In addition, there was no reflection of outside light, and we were able to achieve a panel that is easy to see and looks good.

【0030】[0030]

【発明の効果】以上述べたように本発明によれば、膜厚
を制御した透明電極が減反射コーティングの高屈折層を
兼ね、導電性微粒子を含んだ高分子層が膜厚を制御され
て最表面に形成されることにより、透明度が高くて見栄
えの良い、位置検出性に優れたタッチパネルを提供する
ことができた。製造安定性や、信頼性においても実用に
かなうものであった。本発明のタッチパネルは部品構成
上は全く従来と変わらないため、本発明の導入により即
座に大きな効果を得ることができる。
As described above, according to the present invention, the transparent electrode having a controlled film thickness also serves as the high refractive layer of the antireflection coating, and the polymer layer containing the conductive fine particles has a controlled film thickness. By being formed on the outermost surface, it was possible to provide a touch panel having high transparency, good appearance, and excellent position detection. It was also practical in terms of manufacturing stability and reliability. Since the touch panel of the present invention is completely the same as the conventional one in terms of component structure, the introduction of the present invention can immediately obtain a great effect.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1におけるタッチパネルの概念
を模式的に表す断面図である。
FIG. 1 is a sectional view schematically showing the concept of a touch panel according to a first embodiment of the present invention.

【図2】本発明の実施例1における透明基板に形成され
た透明電極面の、反射率の分光特性を示すスペクトル図
である。
FIG. 2 is a spectrum diagram showing a spectral characteristic of reflectance of a transparent electrode surface formed on a transparent substrate in Example 1 of the present invention.

【図3】本発明の実施例2における透明基板に形成され
た透明電極面の、反射率の分光特性を示すスペクトル図
である。
FIG. 3 is a spectrum diagram showing a spectral characteristic of reflectance of a transparent electrode surface formed on a transparent substrate in Example 2 of the present invention.

【図4】本発明の実施例3における透明基板に形成され
た透明電極面の、反射率の分光特性を示すスペクトル図
である。
FIG. 4 is a spectrum diagram showing a spectral characteristic of reflectance of a transparent electrode surface formed on a transparent substrate in Example 3 of the present invention.

【図5】本発明の実施例4における透明基板に形成され
た透明電極面の、反射率の分光特性を示すスペクトル図
である。
FIG. 5 is a spectrum diagram showing a spectral characteristic of reflectance of a transparent electrode surface formed on a transparent substrate in Example 4 of the present invention.

【図6】本発明の実施例5における透明基板に形成され
た透明電極面の、反射率の分光特性を示すスペクトル図
である。
FIG. 6 is a spectrum diagram showing a spectral characteristic of reflectance of a transparent electrode surface formed on a transparent substrate in Example 5 of the present invention.

【図7】本発明の実施例6における透明基板に形成され
た透明電極面の、反射率の分光特性を示すスペクトル図
である。
FIG. 7 is a spectrum diagram showing a spectral characteristic of reflectance of a transparent electrode surface formed on a transparent substrate in Example 6 of the present invention.

【図8】本発明の実施例7における透明基板に形成され
た透明電極面の、反射率の分光特性を示すスペクトル図
である。
FIG. 8 is a spectrum diagram showing a spectral characteristic of reflectance of a transparent electrode surface formed on a transparent substrate in Example 7 of the present invention.

【符号の説明】[Explanation of symbols]

11‥‥‥‥ガラス基板 12‥‥‥‥PET基板 13‥‥‥‥ITO透明電極 14‥‥‥‥ITO透明電極 15‥‥‥‥スペーサー 16‥‥‥‥導電性微粒子を含んだ高分子層 21‥‥‥‥2層からなる減反射コーティングを施した
面の分光反射特性曲線 31‥‥‥‥3層からなる減反射コーティングを施した
面の分光反射特性曲線
11: Glass substrate 12: PET substrate 13: ITO transparent electrode 14: ITO transparent electrode 15: Spacer 16: Polymer layer containing conductive fine particles 21 ... Spectral reflection characteristic curve of surface with two-layer antireflection coating 31 .... Spectral reflection characteristic curve of surface with three-layer antireflection coating

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 空気を介して透明電極面を対向させた一
組の透明基板から構成される抵抗検出方式のタッチパネ
ルにおいて、透明電極基板の少なくとも一方の基材が屈
折率1.48から1.63であり、透明基材表面に透明
電極材料からなる屈折率n1(1.65≦n1≦2.2)
の第1層と、導電性微粒子を含んだ高分子からなる屈折
率n2(1.45≦n2≦1.65)の第2層からなる減
反射膜が形成されており、第1層と第2層に対応する光
学的膜厚n11とn22がともにλ0(λ0=520n
m、以下同様の波長を示す)以下、λ0/20以上であ
ることを特徴とするタッチパネル。
1. A resistance detection type touch panel comprising a pair of transparent substrates whose transparent electrode surfaces are opposed to each other through air, wherein at least one base material of the transparent electrode substrate has a refractive index of 1.48 to 1. 63, the refractive index n 1 (1.65 ≦ n 1 ≦ 2.2) made of a transparent electrode material on the surface of the transparent substrate.
And a second layer having a refractive index of n 2 (1.45 ≦ n 2 ≦ 1.65) made of a polymer containing conductive fine particles are formed. And the optical film thicknesses n 1 d 1 and n 2 d 2 corresponding to the second layer are both λ 00 = 520n
m, show similar wavelengths below) below a touch panel, characterized in that at lambda 0/20 or more.
【請求項2】 少なくとも一方の透明基材表面に、透明
電極も含め2層から構成される減反射膜を有する上記タ
ッチパネルにおいて、第1層と第2層に対応する光学的
膜厚n11とn22が、n11=n22=λ0/4(±
λ0/10)の範囲であることを特徴とする請求項1記
載のタッチパネル。
2. In the above touch panel having a two-layer antireflection film including a transparent electrode on the surface of at least one transparent substrate, an optical film thickness n 1 d corresponding to the first layer and the second layer. 1 and n 2 d 2 is, n 1 d 1 = n 2 d 2 = λ 0/4 (±
The touch panel of claim 1, wherein the range of λ 0/10).
【請求項3】 少なくとも一方の透明基材表面に、透明
電極も含め2層から構成される減反射膜を有する上記タ
ッチパネルにおいて、第1層と第2層に対応する光学的
膜厚n11とn22がn11=2n22=λ0/2(±
λ0/10)であることを特徴とする請求項1記載のタ
ッチパネル。
3. An optical film thickness n 1 d corresponding to the first layer and the second layer in the touch panel having a reflection-reducing film including two layers including a transparent electrode on at least one transparent substrate surface. 1 and n 2 d 2 is n 1 d 1 = 2n 2 d 2 = λ 0/2 (±
The touch panel according to claim 1, characterized in that the λ 0/10).
【請求項4】 空気を介して透明電極面を対向させた一
組の透明基板から構成される抵抗検出方式のタッチパネ
ルにおいて、透明電極基板の少なくとも一方の基材が屈
折率1.48から1.63であり、透明基材表面から順
次形成された低屈折材料からなる屈折率n1(1.35
≦n1≦1.5)の第1層と、透明電極材料からなる屈
折率n2(1.65≦n2≦2.2)の第2層と、導電性
微粒子を含んだ高分子からなる屈折率n3(1.45≦
3≦1.65)の第3層からなる減反射膜が形成され
ており、上記第1層と第2層と第3層に対応する光学的
膜厚n11、n22、n33がともにλ0以下、λ0/2
0以上であることを特徴とするタッチパネル。
4. In a resistance detection type touch panel comprising a pair of transparent substrates whose transparent electrode surfaces are opposed to each other via air, at least one base material of the transparent electrode substrate has a refractive index of 1.48 to 1. 63, the refractive index n 1 (1.35
≦ n 1 ≦ 1.5) first layer, a transparent electrode material having a refractive index n 2 (1.65 ≦ n 2 ≦ 2.2) second layer, and a polymer containing conductive particles. Refractive index n 3 (1.45 ≦
n 3 ≦ 1.65), and an antireflection film composed of a third layer is formed, and optical film thicknesses n 1 d 1 and n 2 d 2 corresponding to the first layer, the second layer and the third layer are formed. , n 3 d 3 are both λ 0 below, λ 0/2
A touch panel which is 0 or more.
【請求項5】 少なくとも一方の透明基材表面に、透明
電極も含め3層から構成される減反射膜を有する上記タ
ッチパネルにおいて、第1層と第2層と第3層に対応す
る光学的膜厚n11、n22、n33が、n11=n2
2=n33=λ0/4(±λ0/10)の範囲であるこ
とを特徴とする請求項4記載のタッチパネル。
5. An optical film corresponding to the first layer, the second layer, and the third layer in the touch panel having a reflection-reducing film including three layers including a transparent electrode on at least one transparent substrate surface. The thicknesses n 1 d 1 , n 2 d 2 and n 3 d 3 are n 1 d 1 = n 2
d 2 = n 3 d 3 = λ 0/4 The touch panel according to claim 4, wherein the range of (± λ 0/10).
【請求項6】 少なくとも一方の透明基材表面に、透明
電極も含め3層から構成される減反射膜を有する上記タ
ッチパネルにおいて、第1層と第2層と第3層に対応す
る光学的膜厚n11、n22、n33が2n11=n2
2=2n33=λ0/2(±λ0/10)の範囲である
ことを特徴とする請求項4記載のタッチパネル。
6. An optical film corresponding to the first layer, the second layer and the third layer in the touch panel having a reflection-reducing film including three layers including a transparent electrode on at least one transparent substrate surface. Thickness n 1 d 1 , n 2 d 2 , n 3 d 3 is 2n 1 d 1 = n 2
d 2 = 2n 3 d 3 = λ 0/2 The touch panel according to claim 4, wherein the range of (± λ 0/10).
JP8504894A 1994-04-22 1994-04-22 Touch panel Pending JPH07296672A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8504894A JPH07296672A (en) 1994-04-22 1994-04-22 Touch panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8504894A JPH07296672A (en) 1994-04-22 1994-04-22 Touch panel

Publications (1)

Publication Number Publication Date
JPH07296672A true JPH07296672A (en) 1995-11-10

Family

ID=13847796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8504894A Pending JPH07296672A (en) 1994-04-22 1994-04-22 Touch panel

Country Status (1)

Country Link
JP (1) JPH07296672A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001057579A3 (en) * 2000-02-02 2002-02-21 3M Innovative Properties Co Triple layer anti-reflective coating for a touch screen
US6809280B2 (en) 2002-05-02 2004-10-26 3M Innovative Properties Company Pressure activated switch and touch panel
US7260999B2 (en) 2004-12-23 2007-08-28 3M Innovative Properties Company Force sensing membrane
US7468199B2 (en) 2004-12-23 2008-12-23 3M Innovative Properties Company Adhesive membrane for force switches and sensors
US7509881B2 (en) 2005-07-29 2009-03-31 3M Innovative Properties Company Interdigital force switches and sensors
JP5621596B2 (en) * 2009-02-13 2014-11-12 日立化成株式会社 Light control film
US9983456B2 (en) 2008-08-19 2018-05-29 Hitachi Chemical Company, Ltd. Light control film
US10156767B2 (en) 2008-08-19 2018-12-18 Hitachi Chemical Company, Ltd. Light control film
US10288976B2 (en) 2009-02-13 2019-05-14 Hitachi Chemical Company, Ltd. Light control film

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001057579A3 (en) * 2000-02-02 2002-02-21 3M Innovative Properties Co Triple layer anti-reflective coating for a touch screen
US6809280B2 (en) 2002-05-02 2004-10-26 3M Innovative Properties Company Pressure activated switch and touch panel
US7260999B2 (en) 2004-12-23 2007-08-28 3M Innovative Properties Company Force sensing membrane
JP2008525804A (en) * 2004-12-23 2008-07-17 スリーエム イノベイティブ プロパティズ カンパニー Force detection membrane
US7468199B2 (en) 2004-12-23 2008-12-23 3M Innovative Properties Company Adhesive membrane for force switches and sensors
US7509881B2 (en) 2005-07-29 2009-03-31 3M Innovative Properties Company Interdigital force switches and sensors
US9983456B2 (en) 2008-08-19 2018-05-29 Hitachi Chemical Company, Ltd. Light control film
US10156767B2 (en) 2008-08-19 2018-12-18 Hitachi Chemical Company, Ltd. Light control film
JP5621596B2 (en) * 2009-02-13 2014-11-12 日立化成株式会社 Light control film
US10175551B2 (en) 2009-02-13 2019-01-08 Hitachi Chemical Company, Ltd. Light control film
US10288976B2 (en) 2009-02-13 2019-05-14 Hitachi Chemical Company, Ltd. Light control film

Similar Documents

Publication Publication Date Title
TWI460742B (en) Transparent conductive film
KR20110037881A (en) Transparent conductive film
KR20140053939A (en) Transparent conductive film and touch panel
JP2002326301A (en) Transparent conductive laminate and touch panel
TW201506735A (en) Double-sided transparent conductive film and touch panel
WO2004031813A1 (en) Anti-reflection film
KR960706687A (en) Multilayer Anti-reflective Coating for Image Display Panel
TW200538289A (en) Thin film laminate
JPH07219697A (en) Touch panel and its manufacture
JP2000214302A (en) Antireflection film and its production
JP2001209038A (en) Substrate for liquid crystal display element
JPH11258405A (en) Antireflection film
JP2007144926A (en) Electroconductive anti-reflection laminate and display
JPH07296672A (en) Touch panel
JP2007038447A (en) Reflection preventing laminate, optical member, and liquid crystal display element
WO2010134457A1 (en) Optical product and plastic lens for eyeglass
JP2002296406A (en) Antireflection base material with few reflection interference color
JP2003094548A (en) Reflection-proof film
JP4826007B2 (en) Touch panel
CN108376041B (en) Touch module, OGS touch screen and electronic equipment
TW201339626A (en) Antireflective member
JP4320866B2 (en) Antireflection laminate, optical functional laminate, and display device
JP2000221302A (en) Antireflection film and its production
JP2002243902A (en) Antireflection film
JPH07242442A (en) Glass with transparent conductive film and production of transparent conductive film