TW200538289A - Thin film laminate - Google Patents

Thin film laminate Download PDF

Info

Publication number
TW200538289A
TW200538289A TW94110331A TW94110331A TW200538289A TW 200538289 A TW200538289 A TW 200538289A TW 94110331 A TW94110331 A TW 94110331A TW 94110331 A TW94110331 A TW 94110331A TW 200538289 A TW200538289 A TW 200538289A
Authority
TW
Taiwan
Prior art keywords
layer
thin film
interface
refractive index
composition
Prior art date
Application number
TW94110331A
Other languages
Chinese (zh)
Other versions
TWI379770B (en
Inventor
Yoshiko Hattori
Koichi Mikami
Yukimitsu Iwata
Hidetake Miyazaki
Original Assignee
Dainippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Printing Co Ltd filed Critical Dainippon Printing Co Ltd
Publication of TW200538289A publication Critical patent/TW200538289A/en
Application granted granted Critical
Publication of TWI379770B publication Critical patent/TWI379770B/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/111Anti-reflection coatings using layers comprising organic materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/16Optical coatings produced by application to, or surface treatment of, optical elements having an anti-static effect, e.g. electrically conducting coatings
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133502Antiglare, refractive index matching layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Liquid Crystal (AREA)
  • Vessels, Lead-In Wires, Accessory Apparatuses For Cathode-Ray Tubes (AREA)

Abstract

Disclosed is a thin film laminate wherein interface reflection and interference patterns are effectively prevented by substantially eliminating an interface. The thin film laminate comprises a light-transmitting base and an antistatic layer and hard coat layer arranged on the light-transmitting base in this order. This thin film laminate is characterized in that there is substantially no interface between the light-transmitting base and the antistatic layer and/or there is no interface between the antistatic layer and the hard coat layer.

Description

200538289 (1) 九、發明說明 【發明所屬之技術領域】 本發明係關於一種防止界面反射及干涉條紋之薄膜層 合物。 【先前技術】 在液晶顯示器(LCD)或陰極管顯示裝置(CRT)等影像 • 顯示裝置中,其被期待之顯示面,係由螢光燈等外部光源 所照射之光線造成的反射要少,並且可辨認性(Legibility) 要高。相對於此,如影像顯示裝置設置一薄膜層合物(例 如,防反射層合物),且該層合物係藉由將透明物體表面 以低折射率的透明薄膜包覆,而降低反射率者,就可降低 影像顯示裝置顯示面上之反射特性,且提高其可辨認性。 爲達到防反射目的之薄膜層合物,其製造方法,基於 製造容易性及低成本性之觀點,係以塗佈用於各層之形成 • 上而製作之塗工液的方法,即所謂之濕式塗佈法爲主。以 該濕式塗佈法所形成之薄膜層合物,其一個例子,例如有 在該透光性基材之表面上,依序形成防帶電層、硬膜 (Hard coat)層、折射率層,而構成防反射層合物。 爲減低光之反射性,例如有層壓一折射率大(例如, 折射率1 · 5左右之硬膜層)之層及一折射率小之層的方 法。在濕式塗佈法上,選擇折射率差較大之材料加以塗 佈,就可以形成此種二層之結構。 然而,在層壓了折射率差較大之防反射層合物中,彼 -5 - 200538289 (2) 此重合之界面中常常會見到界面反射及干涉條紋產生之情 形。其中,尤以影像顯示裝置之顯示畫面中,黑色再次出 現時,常被指出干涉條紋會顯著發生,且影像的可辨認性 有降低之情形。再者,如層壓了折射率(例如未達1.2 時)非常低之層的時候,要製造出一防反射層合物,其能 與他層緊密接合,且同時其本身又具有機械強度者,可說 是十分地困難。 • 相對於此,特開2003 -75 605號公報中,曾指出在透 明基材薄膜上,先折射率1.5〜1.7之中折射率層、再折射 率1 . 6〜1 . 8之高折射率層、然後再較高折射率更低之折射 率材料所構成的低折射率層,依此順序由透明基材薄膜側 所層壓出之防反射硬膜層板,就可消除界面反射及干涉條 紋等之問題。此先行技術係着眼於構成各層之材料本身而 開發者。 然而,經本發明者們確認後,發現在薄膜層合物中, ® 着眼於透光性基材及防帶電層之界面,以及防帶電層及硬 膜層之界面,並藉由改善該界面狀態而能有效防止界面反 射及干涉條紋等問題之提案,目前尙無人提出。 相關申請案 本申請案,係以特願2004- 1 06597號(日本國)及特 願2005-92521號(日本國)之專利申請案爲基礎,而同 時倂案主張優先權者;本申請案之說明書中,係包含前述 該等專利申請案之內容。 -6 - 200538289 (3) 【發明內容】 發明之揭示 本發明者們,在本發明中所主張之發明訣竅,係在透 光性基材及防帶電層之界面,以及防帶電層及硬膜層之界 面中,藉由使這些界面實質地不存在,從而能有效地改善 在各界面中之界面反射及干涉條紋的發生。據此,本發明 之目的係提供一種薄膜層合物,基於着眼在透光性基材及 ® 防帶電層之界面,以及防帶電層及硬膜層之界面,並實質 地消滅該等界面,而使薄膜層合物具有機械性強度、優良 的防反射功能,且提高其可辨認性。 從而,本發明之薄膜層合物,其特徵爲其係依序具有 透光性基材、位於該透光性基材上之防帶電層及硬膜 (Hard coat)層的薄膜層合物,且 該透光性基材及該防帶電層係不存在界面,及/或 該防帶電層及該硬膜層係不存在界面。 ^ 由本發明所提供之薄膜層合物,其可在透光性基材及 防帶電層之界面,以及防帶電層及硬膜層之界面中,有效 地改善界面反射及干涉條紋之發生。再者,在可形成此種 多層壓合構造的防帶電層用之組成物,以及硬膜層用之組 成物間,藉由選擇該二組成物之製作成分,就可提升各層 之緊密接着性,並加強薄膜層合體本身之機械強度。 實施發明之最佳型態 薄膜層合物 200538289 (4) 本發明之薄膜層合物,係其透光性基材及防帶電層之 界面,及/或硬膜層及防帶電層之界面,均爲(實質上) 不存在之薄膜層合物。本發明中,所謂的「界面(實質 上)不存在」,係包括經判斷後,二個面重合,惟實際上 並無界面存在;以及,由折射率來觀察,二個面上並無界 面存在之情事而言。 本發明中,「界面(實質上)不存在」之態樣,例如 # 有透光性基材及防帶電層之界面的折射率,係由透光性基 材之折射率向防帶電層之折射率,呈現階梯型變化者。再 者,其他之理想態樣,例如有防帶電層及硬膜層之界面的 折射率,係由防帶電層之折射率向硬膜層之折射率,呈現 階梯型變化者。 本發明中,所謂的「界面(實質上)不存在」,係包 括經判斷後,二個面重合,惟實際上並無界面存在;以 及,由折射率來觀察,二個面上並無界面存在之情事而 ® 言。「界面(實質上)不存在」之具體基準,其測定方 法,舉例來說,有將光學層合物的橫斷面,以雷射顯微鏡 加以觀察,干涉條紋在可目視之層合物橫斷面上係存在有 界面,及干涉條紋在無法目視之層合物橫斷面上係不存在 界面;所進行之測定。由於雷射顯微鏡可對於折射率相異 之物,在不受破壞之情形下進行橫斷面的觀察,所以會產 生折射率差異不大之材料物間,其界面係不存在之測定結 果。據此,由折射率觀之,即可判斷透光性基材及硬膜層 間,其界面係不存在。再者,就防帶電層而言,就產生了 -8- 200538289 (5) 硬膜層及透光性基材間,係不存在明確之線狀界面的測定 結果。 界面之實質上的消滅 如依據本發明之理想態樣,爲使透光性基材及防帶電 層之界面係實質上不存在起見,可使用對於透光性基材具 有滲透性的防帶電層用之組成物,而形成(防帶電層)並 • 達成目的。再者,爲使防帶電層及硬膜層之界面係實質上 不存在起見,則可使用對於防帶電層具有滲透性的硬膜層 用之組成物,而形成硬膜層並達成目的。 本發明中,使用對於透光性基材具有滲透性的防帶電 層用之組成物而塗佈時,該組成物即會滲透(潤濕)至透 光性基材內。其後,藉由使該組成物硬化之方式,可在透 光性基材上形成防帶電層,並在該二者之重合面上,其界 面將實質上不存在。此機制並不容易理解,惟一般咸認, ® 恐係在透光性基材及防帶電層間,由該透光性基材之成份 向該防帶電層之成份,呈現階梯性之成份變化所致者。此 一推測機制,在防帶電層之表面上形成硬膜層時,亦作相 同之思考。 本發明之光學層合物,係在透光性基材上,依序由防 帶電層及硬膜層所形成者;此外,亦可在透光性基材上, 依序由硬膜層及防帶電層所形成者。 1.透光性基材 -9- 200538289 (6) 透光性基材,只要是可透光者即可,不論透明、半透 明、無色或有色,惟以無色透明者爲理想。透光性基材之 具體例子,有玻璃板、三乙酸酯纖維素(T A C)、聚對苯二 甲酸乙二醇酯(PET)、二乙酸纖維素、乙酸酯丁酸酯纖維 素、聚醚颯、丙烯系樹脂;聚氨酯系樹脂;聚酯;聚碳酸 酯;聚醚酮;(變)丙烯腈等所形成之薄膜等。本發明之 理想態樣,例如三乙酸酯纖維素(TAC)。透光性基材之厚 _ 度,係30"m〜2〇〇//m左右,理想則爲50//m〜200//m。 2 .防帶電層 本發明之防帶電層,可以含有防帶電劑、樹脂、及溶 劑之具滲透性的防帶電層用之組成物來形成。防帶電層用 之組成物,係以相對於透光性基材具有滲透性者而製得。 防帶電層之厚度,係以30 nm〜5 // m左右爲理想。 防帶電劑(導電劑) 用以形成防帶電層之防帶電劑,其具體例子有第四級 錢鹽、吡啶錄鹽、具第一〜第三胺基等陽離子性基之各種 陽離子性化合物、磺酸鹼、硫酸酯鹼、磷酸酯鹼、膦酸鹼 等具陰離子性基之陰離子性化合物、胺基酸系、胺基硫酸 酯系等兩性化合物、胺醇系、甘油系、聚乙二醇系等非離 子性化合物、錫及鈦之烷氧基金屬等有機金屬化合物,以 及其等之乙醯基乙醯鹽等金屬鉗合化合物等,甚至還有上 述列舉化合物之高分子量化之化合物等。再者,第三級胺 基、第四級銨基、或具有金屬鉗合部且可以電離放射線聚 -10- 200538289 (7) 合之單體或齊(分子量)聚(合)物、或可以電離放射線 聚合、且具有可聚合之官能基偶合劑等之,有機金屬化合 物等聚合性化合物,亦可作爲防帶電劑使用。 再者,尙有導電性超微粒子。該導電性超微粒子之具 體例子,有由金屬氧化物所衍生者。此種金屬氧化物,例 如有ZnO (折射率1 .90,以下括弧中之數字均係表示折射 率)、Ce02(l .95)、Sb202(l .71)、Sn02(l ·997)、許多被簡 •稱爲 ΙΤΟ 之氧化銦錫(1 .95)、Ιη203 (2·00)、Α12〇3(1 ·63)、 摻雜銻之氧化錫(簡稱·· A TO,2 · 0 )、摻雜鋁之氧化鋅 (簡稱:AZO ’ 2·0 )等。所謂的「微粒子」,係指1微 米(micron,//)以下,亦即亞微細粒(submicron)之大小 者,理想者則爲平均粒徑〇· 1 nm〜0.3 // m者。 樹脂 樹脂具體例子,可使用者有熱可塑性樹脂、熱硬化性 ^ 樹脂、或電離放射線硬化性樹脂、或電離放射線硬化性化 合物(包含有機反應性矽化合物)。樹脂,可使用熱可塑 性之樹脂,但理想者爲熱硬化性樹脂,更理想者爲電離放 射線硬化性樹脂,或含有電離放射線硬化性化合物之電離 放射線硬化性組成物。 電離放射線硬化性組成物,係分子中適當地混合聚合 性不飽和鍵結或具有環氧基之預聚體、齊(分子量)聚 (合)物、及/或單體。在此,所謂「電離放射線」,係 指電磁波或帶電粒子線中,將分子以聚合或架橋而獲致之 -11 - 200538289 (8) 具能量量子者而言’一般係使用紫外線或電子線。 電離放射線硬化性組成物中之預聚體、齊(分子量) 聚(合)物,其例子有不飽和二羧酸及多價醇之縮合物等 不飽和聚酯類、聚酯甲基丙烯酸鹽、聚醚甲基丙烯酸鹽、 聚醇甲基丙嫌酸鹽、三聚氰胺甲基丙燦酸鹽等甲基丙烯酸 鹽類、聚酯丙烯酸鹽、環氧基丙烯酸鹽、聚氨酯丙烯酸 鹽、聚醚丙烯酸鹽、聚醇丙烯酸鹽、三聚氰胺丙烯酸鹽等 ^ 丙烯酸鹽類、及陽離子聚合型環氧基化合物。 電離放射線硬化性組成物中之單體,其例子有苯乙 條、α -甲基苯乙嫌等苯乙儲系單體、丙儲酸甲酯、丙燦 酸-2 -乙基己酯、丙烯酸甲氧基乙酯、丙烯酸丁氧基乙 酯、丙烯酸丁酯、丙烯酸甲氧基丁酯、丙烯酸苯基等丙烯 酸酯類、甲基丙烯酸甲酯、甲基丙烯酸乙酯、甲基丙烯酸 丙酯、甲基丙烯酸甲氧基乙酯、甲基丙烯酸乙氧基甲酯、 甲基丙烯酸苯酯、甲基丙烯酸十二(烷)酯等甲基丙烯酸 • 酯類、丙烯酸-2- ( Ν,Ν-二乙胺基)乙酯、丙烯酸-2-(Ν,Ν -二甲胺基)乙酯、丙烯酸-2- (Ν,Ν -二苄胺基) 乙酯、丙烯酸-2- ( Ν,Ν-二乙胺基)丙酯等不飽和取代之 取代胺基醇酯類、丙烯醯胺、甲基丙烯醯胺等不飽和羧酸 醯胺、乙二醇二丙烯酸酯、丙二醇二丙烯酸酯、新戊醇二 丙烯酸酯、1,6 _己二醇二丙烯酸酯、三乙二醇二丙烯酸 酯等化合物、二丙二醇二丙烯酸酯、乙二醇二丙烯酸酯、 丙二醇二甲基丙烯酸酯、二乙二醇二甲基丙烯酸酯等多官 能性化合物’及/或分子中具有二個以上硫代基之聚硫醇 -12- 200538289 (9) 化合物,例如三羥甲基丙烷三锍基乙酸酯、三羥甲基丙烷 三锍基丙酸酯、季戊四醇四锍基乙酸酯等。一般而言,電 離放射線硬化性組成物中之單體,可根據需要,而混合一 種或二種以上加以使用。 電離放射線硬化性組成物在塗佈或硬化時,如需要彈 性度時,可減少單體數量,或使用官能基數爲1或2之丙 烯酸酯單體。電離放射線硬化性組成物在塗佈或硬化時, ® 如需要耐磨損性、耐熱性、耐溶劑性時,亦可設計官能基 數爲3以上之丙烯酸酯單體的電離放射線硬化性組成物。 在此,官能基爲1者,例如有2 -羥基丙烯酸酯、2 -己基丙 烯酸酯、苯氧乙基丙烯酸酯。官能基爲2者,例如有乙二 醇二丙烯酸酯、1,6-己二醇二丙烯酸酯。官能基爲3 者,例如有三甲醇丙烷三丙烯酸酯、季戊四醇三丙烯酸 酯、季戊四醇四丙烯酸酯、二季戊四醇六丙烯酸酯等。 電離放射線硬化性組成物在塗佈或硬化時,如需要調 ® 整彈性度及表面硬度等之物性時,可在電離放射線硬化性 組成物上添加電離放射線照射時不會硬化之樹脂。具體之 樹脂例子係如下所示。聚氨酯樹脂、纖維素樹脂、聚乙烯 丁醛樹脂、聚酯樹脂、丙烯酸樹脂、聚氯乙烯樹脂、聚乙 酸乙烯酯等熱可塑性樹脂。其中,又以聚氨酯樹脂、纖維 素樹脂、聚乙烯丁醛樹脂’基於其等之添加可提升彈性度 的觀點,係較爲理想。 電離放射線硬化性組成物在塗佈後時,如需要以紫外 線照射使其硬化時,可添加光聚合引發劑及光聚合促進 -13- 200538289 (10) 劑。光聚合引發劑,在具有自由基聚合性不飽和基之樹脂 系方面,例如可單獨或混用乙醯苯酚類、二苯甲酮類、噻 噸酮類、二苯乙醇酮、二苯乙醇酮甲醚等。再者,在具有 陽離于聚合性官能基之樹脂系方面,光聚合引發劑例如可 單獨或混用芳香族重氮銷、芳香族鎏鹽、芳香族碘鹽、間 賽綸(metacelon)化合物、二苯乙醇酮磺酸酯。光聚合引發 劑之添加量,係相對於電離放射線硬化性組成物1 〇 〇重量 # 份,爲0.1〜10重量份。 電離放射線硬化性組成物中,亦可倂用以下有機反應 性矽化合物。有機矽化合物,係以一般式Rm Si (OR,)n (式 中’ R及R’表不碳數1〜10之院基,m及n表示滿足m+n =4之關係的整數)。表示之。 具體而言,例如有四甲氧基矽烷、四乙氧基矽烷、 四-iso -丙氧基矽烷、四-η -丙氧基矽烷、四-η -丁氧基矽 院、四-sec -丁氧基砂院、四-tert -丁氧基砂院、四戊乙氧 ® 基矽烷、四戊-iso-丙氧基矽烷、四戊-n-丙氧基矽烷、四 戊-η-丁氧基矽烷、四戊-sec-丁氧基矽烷、四戊-tert-丁氧 基矽烷、甲基三乙氧基矽烷、甲基三丙氧基矽烷、甲基三 丁氧基矽烷、二甲基二甲氧基矽烷、二甲基二乙氧基矽 烷、二甲基乙氧基矽烷、二甲基甲氧基矽烷、二甲基丙氧 基矽烷、二甲基丁氧基矽烷、甲基二甲氧基矽烷、甲基二 乙氧基矽烷、己基三甲氧基矽烷等。 可在電離放射線硬化性組成物上倂用之有機矽化合 物,爲矽烷偶合劑。具體而言,有7 - ( 2-胺乙基)胺丙 -14- 200538289 (11) 基三甲氧基矽烷、r - (2 -胺乙基)胺丙基甲基二甲氧基 矽烷、- ( 3,4 -乙氧基環己基)乙基三甲氧基矽烷、 r-胺丙基三乙氧基矽烷、r-甲基丙烯氧基丙基甲氧基砂 烷、N- /3 - ( N-乙烯苄基胺乙基)· 7'-胺丙基甲氧基砂 烷·鹽酸鹽、r -環氧丙氧基丙基三甲氧基矽烷、胺基石夕 烷、甲基甲氧基矽烷、乙烯基三乙酸基矽烷、r ·毓基丙 基三甲氧基矽烷、r-氯丙基三甲氧基矽烷、己甲基二矽 • 氨烷、乙烯基三(々-甲氧乙氧基)矽烷、八癸基二甲基 [3-(三甲氧基甲矽烷基)丙基]氯化銨、甲基三氯矽烷、 二甲基二氯矽烷等。 溶劑 溶劑之具體例子,有異丙醇、甲醇、乙醇等醇類;丙 二醇等乙二醇;丙二醇單丙醚等乙二醇醚類;甲乙酮(以 下,適當情形下稱爲「MEK」)、甲基異丁酮(以下,適 ® 當情形下稱爲「MIBK」)、環己酮等酮類;乙酸乙酯、 乙酸丁酯等酯類;鹵化碳化氫;甲苯、二甲苯等芳香族碳 化氫;或其等之混合物。其中,理想者爲酮類。 本發明中’係利用對於透光性基材具有滲透性(、潤濕 性)之溶劑。從而,本發明中,所謂的滲透性溶劑之「声 透性」,係包含對於透光性基材具有滲透性、膨膜性、潤 濕性等全部之槪念。滲透性溶劑之具體例子,有異丙醇、 甲醇、乙醇等醇類;甲乙酮、甲基異丁酮、環己酮等嗣 類;乙酸甲酯、乙酸乙酯、乙酸丁酯等酯類;氯仿、二 -15- 200538289 (12) 甲烷、四氯乙烷等鹵化碳化氫;或其等之混合物。其中’ 理想者爲酯類。 溶劑之具體例子,有丙酮、乙酸甲酯、乙酸乙酯、乙 酸丁酯、氯仿、二氯甲烷、四氯乙烷、四氫呋喃、甲乙 酮、甲基異丁酮、環己酮、硝基甲烷、1,4 -二噁烷、二 氧雜環戊烷、N -甲基吡咯烷酮、N,N -二甲基甲醯胺、甲 醇、乙醇、異丙醇、丁醇、異丁醇、二異丙醚、甲基溶纖 • 劑、乙基溶纖劑、丁基溶纖劑。其中,理想者爲乙酸甲 酯、乙酸乙酯、乙酸丁酯、甲乙酮等。 3 .硬膜層 相對於上述之防帶電層,具滲透性之硬膜層用之組成 物係以製作成下述內容者爲理想。所謂的「硬膜層」’係 指在 J I S 5 6 0 0 - 5 - 4 : 1 9 9 9所規定之鉛筆硬度試驗中, 「H」以上之硬度者而言。硬膜層之膜厚度爲〇.1〜100/im’ 理想者爲0.8〜20 // m。 樹脂 硬膜層係以使用電離放射線硬化型組成物而形成者爲 理想’更理想者爲具有(甲基)丙烯酸酯系之官能基者。 舉例而言,可使用者有較低分子量之聚酯樹脂、聚醚樹 月旨、丙烯酸樹脂、環氧樹脂、氨基甲酸乙酯樹脂、醇酸樹 月旨、螺縮醛樹脂、聚丁二烯樹脂、聚硫醇聚醚樹脂、多價 醇、乙二醇二(甲基)丙烯酸酯、戊赤蘚醇二(甲基)丙 嫌酸酯單硬脂酸酯等二(甲基)丙烯酸酯;三羥甲基丙烷 -16- 200538289 (13) 三(甲基)丙烯酸酯、戊赤蘚醇三(甲基)丙烯酸酯等三 (甲基)丙烯酸酯、戊赤蘚醇四(甲基)丙烯酸酯衍生 物、二戊赤蘚醇五(甲基)丙烯酸酯等多官能化合物之單 體類、或環氧基丙烯酸酯或氨基甲酸乙酯丙烯酸酯等齊 (分子量)聚(合)物。本發明中,係以戊赤蘚醇三(甲 基)丙烯酸酯、異氰尿酸乙氧基變性二丙烯酸酯爲理想。 Φ溶劑 溶劑與防帶電層用之組成物中所說明者相同即可。 4.低折射率層 本發明之薄膜層合物,如進一步具有低折射率層者係 較爲理想。 低折射率層,其構成者可爲含矽或氟化鎂之樹脂、低 折射率樹脂之氟系樹脂、含矽或氟化鎂之氟系樹脂;並爲 ^ 折射率1 .46以下之30 nm〜1 左右的薄膜;且以矽或氟 化鎂之化學蒸鍍法或物理蒸鍍法所製得者。關於氟樹脂以 外之樹脂,則與構成防帶電層所使用之樹脂相同。 低折射率層,係以含矽之氟化亞乙烯共聚物所構成者 爲更理想。該含矽之氟化亞乙烯共聚物,具體而言,係以 含氟化亞乙烯30〜90%、六氟丙烯5〜50% (以下亦包含, 且百分率皆以質量爲基準)之單體組成物爲原料,並經由 共聚合所製得者;同時,在含氟比例60〜70%之含氟共聚 物1 〇〇份中,由具有乙烯性不飽和基的聚合性化合物 -17- 200538289 (14) 8 0〜1 50份所構成之樹脂組成物,其可形成膜厚度2 00nm 以下之薄膜,並形成具耐擦傷性之折射率未達1 .60 (理想 爲1.46以下)的低折射率層。 構成低折射率層的上述含矽之氟化亞乙烯共聚物,其 單體組成物中,各成分之比例爲氟化亞乙烯30〜90%,理 想爲4 0〜8 0 %,更理想爲4 0〜7 0 % ;六氟丙烯5〜5 0 %,理想 爲10〜5 0%,更理想爲15〜45%。該單體組成物,亦可進一 Φ 步含有四氟乙烯〇〜40%,理想爲〇〜35%,更理想則爲 1 0 〜3 0 % 〇 上述之單體組成物,在不損及該含矽之氟化亞乙烯共 聚物的使用目的及效果之範圍下,亦可包含其他共聚物成 分,例如2 0 %以下或理想爲1 〇 %以下。此種其他的共聚物 成分’具體例子包括氟乙烯、三氟乙烯、氯化三氟乙烯、 1,2 -二氯-1’ 2 -二氟乙烯、2 -溴-3,3,3 -三氟乙烯、3-溴-3’ 3 -二集丙烯、3,3’ 3 -三氟丙烯、1,1,2 -三氯-^ 3,3,3 -三氟丙烯、三氟甲基丙烯酸等具氟原子之聚 合性單體。 由上述單體組成物所製得之含氟共聚物,其含氟比例 須爲ό 0〜7 0 %,理想的含氟比例爲6 2〜7 0 %,最理想的含氟 比例則爲ό 4〜6 8 %。含氣比例在此範圍內時,該含氟共聚 物對於溶劑即具有良好之溶解性,同時,含有此種含氟共 聚物爲成分時,其所形成之薄膜對於各種基材會具有優良 的緊密接合性’且具有咼透明性及低折射率,同時還有優 良的充分機械強度,從而該薄膜所形成之表面的耐擦傷性 -18- 200538289 (15) 等機械特性,就非常地高而極爲合適。 該含氟共聚物,其分子量如以聚乙烯換算數(量平) 均分子量時,爲 5,000〜200,〇〇〇,理想則爲 1〇,〇〇〇〜 100,000。使用此種具有大分子量之含氟共聚物時,所製 得之氟系樹脂組成物的黏度,就會成爲適合之大小,從 而,就可作爲確實具有合適塗佈性之氟系樹脂組成物。該 含氟共聚物,其本身之折射率應在1.4 5以下,理想在 Φ 1 ·4 2以下,更理想則在1 · 4 〇以下。使用之含氟共聚物的 折射率超過1.45時,所製得之氟系塗料所形成的薄膜, 其防反射效果就會很小。 此外’低折射率層亦可以Si02所構成之薄膜而形 成,其亦可以蒸鍍法、濺鍍法、或電漿CVD法等,或由 含Si〇2溶膠之溶膠液構成Si〇2凝膠膜的形成方法而形 成。再者,低折射率層,除Si〇2以外亦可由MgF2薄膜及 其他材料而製得,惟基於對下層之密着性較高的觀點,係 ® 以使用s 1 0 2薄膜爲理想。上述方法中,如使用電漿c V D 法時’係以有機矽氧烷作爲原料氣體,並於無其他無機質 之蒸鍍來源的存在條件下進行者爲理想,再者,被蒸鍍體 係以儘可能維持低溫而進行者爲理想。 薄膜層合物之製造方法 組成物之製作 防帶電層、硬膜層、及低折射率層用之各組成物,可 依據一般的製作方法,將前述之各成分混合後,再進行分 -19- 200538289 (16) 散處理來製作即可。在混合及分散時,可利用塗料分散震 邊機(Paint Shaker )或珠磨機(Bead Mi 11)等,適切地進 行分散處理。 塗工 各組成物在透光性基材表面、防帶電層表面上,其塗 佈法之具體例子,有自旋式塗佈(spin coat)法、浸漬(dip) • 式塗佈法 '噴灑(spray)式塗佈法、斜板式塗佈(Slide Spray)法、條碼法、滾筒式塗佈機(R〇u coater)法、彎月 型塗佈機(Meniscus Coater)法、彈性凸板(flex〇)印刷法、 網版(screen)印刷法、皮德塗佈機法等各種方法。 理想之實施態樣 本發明中’薄膜層合物之理想實施態樣,係敘述如 下。 防帶電層之形成 以三乙酸酯纖維素(TAC)作爲透光型基材,於其上塗 佈下述具滲透性的防帶電層用之組成物,而形成防帶電 層。 防帶電層用之組成物的製作 防帶電劑 防帶電劑可使用任一者,惟以金屬微粒子爲理想,並 以摻雜銻之氧化錫(ΑΤΟ )爲最理想。 -20- 200538289 (17) 樹脂 棱f脂’例如有電離放射線硬化性組成物,理想者如有 官能基數爲1或2以上之丙烯酸酯單體。舉例來說,官能 基爲1者,有2-羥基丙烯酸酯、2-己基丙烯酸酯、苯氧乙 基丙烯酸酯。官能基爲2者,有乙二醇二丙烯酸酯、1, 6 -己二醇二丙烯酸酯。官能基爲3者,有羥甲基丙烷三丙 ® 嫌酸酯、戊赤蘚醇三丙烯酸酯、戊赤蘚醇四丙烯酸酯、二 戊赤蘚醇六丙烯酸酯等。最理想者有丨,6_己二醇二丙烯 酸酯。 溶劑 溶劑之理想例子,有甲乙酮、甲基異丁酮、環己酮 (較理想者)等酮類;乙酸乙酯、乙酸丁酯(較理想者) 等酯類;鹵化碳化氫;甲苯、二甲苯等芳香族碳化氫;或 ® 其等之混合物。樹脂與溶劑之添加比率,如以重量基準而 言,爲1 : 1〜1 : 3,理想者爲3 ·· 4。 本發明之理想態樣中,防帶電層係以防帶電劑(理想 者爲金屬性微粒子)、作爲樹脂的電離放射線硬化性組成 物、作爲溶劑的酮類及/或酯類,加以混合之組成物所形 成者爲理想。 本發明的理想防帶電層用之組成物,例如有作爲防帶 電劑的摻雜銻之氧化錫(ΑΤΟ )、作爲樹脂的1,6-己二 醇二丙烯酸酯、二戊赤蘚醇六丙烯酸酯、戊赤蘚醇三丙烯 -21 - 200538289 (18) 酸酯、或二戊赤蘚醇單羥基戊丙烯酸酯(dppa)、以及作 爲溶劑之環己酮、乙酸丁酯、或其等之混合物所形成的混 合組成物。 更理想的防帶電層用之組成物,例如有作爲防帶電劑 的摻雜銻之氧化錫(ΑΤΟ )、作爲樹脂的1,6-己二醇二 丙烯酸酯、以及作爲溶劑之環己酮、乙酸丁酯所形成的混 合組成物。此時,環己酮與乙酸丁酯之混合比率,如以重 • 量基準而言,爲20: 80〜80: 20,理想者爲30: 70。 硬膜層之形成 在防帶電層上,塗佈下述的硬膜層用之組成物,而製 得光學層合物。 硬膜層用之組成物的製作 樹脂 ® 樹脂之具體例子,理想者如電離放射線硬化性組成 物,更理想者爲戊赤蘚醇三丙烯酸酯(PETΑ)。 溶劑 溶劑之理想例子,有MEK、MIBK、環己酮(較理想 者)等酮類;乙酸乙酯、乙酸丁酯(較理想者)等酯類; 鹵化碳化氫;甲苯、二甲苯等芳香族碳化氫;或其等之混 合物、MEK、MIBK。 樹脂與溶劑之添加比率,如以重量基準而言,爲 -22- 200538289 (19) 20 : 80〜80 : 20 ,理想者爲 55 : 70 。 本發明的硬膜層用之組成物,理想者有作爲樹脂之戊 赤蘚醇三丙烯酸酯、或異氰尿酸乙氧基變性二丙烯酸酯、 以及作爲溶劑之環己酮、Μ IB K、Μ E K、或其等之混合物 所形成的混合組成物。溶劑,理想者例如有環己酮、 MIBK、ΜΕΚ之混合組成物。此時,環己酮、ΜΙΒΚ、ΜΕΚ 之混合比率,如以重量基準而言,爲5 : 2 : 3。 薄膜層合物之利用 本發明之薄膜層合物係具有下述用途。 防反射層合物 本發明之薄膜層合物’可作爲防反射層合物而利用。 偏光板 本發明之另一態樣,係提供一偏光板,其係具有偏光 元件及本發明之薄膜層合物的偏光板。具體而言,本發明 所提供之偏光板,係於偏光元件之表面上,由本發明之薄 膜層合物中的防眩層所存在之面,與該薄膜層合物所處之 面爲對立面’而同時存在於偏光板中者。 偏光元件,舉例而言,可使用碘或染料進行染色,進 一步有聚乙烯醇、聚乙烯甲縮醛薄膜、聚乙烯聚甲醛薄 膜、環丙基甲酸乙烯共聚物系鹼化薄膜等。在層壓處理 時’爲增加接着性或防電起見,係以在透光性基材(理想 -23- 200538289 (20) 者爲三乙醯薄膜)上進行鹼化處理者爲理想。 影像顯示裝置 本發明之再一悲樣’係提供一影像顯示裝置。此影像 顯示裝置,係具有透過性顯示體,以及由該透過性顯示體 的背面照射之光源裝置,並在該透過性顯示體之表面,形 成本發明之薄膜層合物或本發明之偏光板者。本發明之影 像顯示裝置,基本上可由光源裝置(Back Light)、顯示元 ® 件、及本發明之薄膜層合物所構成。影像顯示裝置,可使 用於透過型顯示裝置,尤其是電視、電腦、文字處理器等 顯示器顯示上。其中,特別是可用在CRT、液晶面板等高 精細影像用之顯示器表面上。 本發明之影像顯示裝置,如爲液晶顯示裝置時,光源 裝置之光源可由本發明的薄膜層合物下方加以照射。再 者,S TN型之液晶顯示裝置,可於液晶表示元件與偏光板 間,插入位相差板即可。如有必要’可在該液晶顯不裝置 ®之各層間設置接着劑層。 【實施方式】 [實施例] 茲依據下述實施例’詳細地說明本發明之內容’惟本 發明之內容並不限於下述實施例進行解釋。 各層用之組成物的製作 茲依據下述組成’混合並製作各層用之組成物。 -24- 200538289 (21) 防帶電層用之組成物 基本組成物1 防帶電劑(ΑΤΟ) 戊赤蘚醇三丙烯酸酯 (日本化藥(股)製,商品名稱:ΡΕΤ30) 環己酮 ΜΙΒΚ 分散劑 3 0質量份 1 〇質量份 3 0質量份 3 0質量份 2.5質量份 基本組成物2 防帶電劑(ΑΤΟ) 戊赤蘚醇三丙烯酸酯 (日本化藥(股)製,商品名稱:ΡΕΤ30) 甲苯 •分散劑 3 0質量份 1 〇質量份 6 0質量份 2.5質量份200538289 (1) IX. Description of the invention [Technical field to which the invention belongs] The present invention relates to a thin film laminate for preventing interface reflection and interference fringes. [Prior art] In an image and display device such as a liquid crystal display (LCD) or a cathode ray tube display (CRT), the expected display surface is less reflected by light emitted by an external light source such as a fluorescent lamp. And legibility is high. In contrast, for example, an image display device is provided with a thin film laminate (for example, an anti-reflection laminate), and the laminate reduces the reflectance by covering the surface of a transparent object with a transparent film with a low refractive index. This can reduce the reflection characteristics on the display surface of the image display device and improve its recognizability. In order to achieve the anti-reflection film laminate, the manufacturing method is based on the viewpoint of ease of production and low cost, and is a method of applying a coating liquid used for forming and forming each layer, which is called wet The coating method is mainly used. An example of the thin film laminate formed by the wet coating method is, for example, sequentially forming an antistatic layer, a hard coat layer, and a refractive index layer on the surface of the transparent substrate. , And constitute an anti-reflection laminate. In order to reduce the reflectivity of light, for example, there is a method of laminating a layer having a large refractive index (for example, a hard film layer having a refractive index of about 1.5) and a layer having a small refractive index. In the wet coating method, a material having a large refractive index difference and coating is used to form such a two-layer structure. However, in laminated antireflection laminates with a large difference in refractive index, the same -5-200538289 (2) This overlapped interface often sees the occurrence of interface reflections and interference fringes. Among them, especially in the display screen of the image display device, when black appears again, it is often pointed out that interference fringes will occur significantly, and the visibility of the image may be reduced. Furthermore, if a layer with a very low refractive index (for example, less than 1.2) is laminated, an anti-reflection laminate must be manufactured, which can be tightly bonded to other layers, and at the same time it has mechanical strength. It can be said to be extremely difficult. • In contrast, Japanese Patent Application Laid-Open No. 2003-75 605 pointed out that on a transparent substrate film, a refractive index layer having a refractive index of 1.5 to 1.7 and then a high refractive index of 1.6 to 1.8 Layer, and then a low refractive index layer composed of a higher refractive index material with a lower refractive index. In this order, an anti-reflection hard film layer laminated from the transparent substrate film side can eliminate interface reflection and interference. Problems such as streaks. This advance technology was developed by focusing on the materials that make up each layer. However, after confirming by the inventors, it was found that in the film laminate, ® focused on the interface between the light-transmitting substrate and the antistatic layer, and the interface between the antistatic layer and the hard film layer, and improved the interface state. No proposal has been proposed to effectively prevent problems such as interface reflection and interference fringes. Related Applications This application is based on patent applications of Japanese Patent Application No. 2004-1 06597 (Japan) and Japanese Patent Application No. 2005-92521 (Japan), while claiming priority at the same time; this application The description contains the contents of the aforementioned patent applications. -6-200538289 (3) [Disclosure of the invention] Disclosure of the invention The inventors claimed the invention know-how in the interface between the light-transmitting substrate and the antistatic layer, and the antistatic layer and hard film. In the interface of the layer, by making these interfaces substantially non-existent, the interface reflection and the occurrence of interference fringes in the interfaces can be effectively improved. Accordingly, the object of the present invention is to provide a thin film laminate based on focusing on the interface between the light-transmitting substrate and the anti-charge layer, and the interface between the anti-charge layer and the hard coat layer, and substantially eliminating these interfaces, The thin film laminate has mechanical strength, excellent anti-reflection function, and improved visibility. Therefore, the thin film laminate of the present invention is characterized in that it is a thin film laminate having a light-transmitting substrate, an anti-charge layer and a hard coat layer on the light-transmitting substrate in this order, In addition, there is no interface between the translucent substrate and the antistatic layer, and / or no interface exists between the antistatic layer and the hard film layer. ^ The thin film laminate provided by the present invention can effectively improve the interface reflection and the occurrence of interference fringes at the interface between the light-transmitting substrate and the anti-charge layer, and at the interface between the anti-charge layer and the hard film layer. In addition, between the composition for the antistatic layer and the composition for the hard film layer that can form such a multi-layer structure, by selecting the components of the two compositions, the adhesion of each layer can be improved. And strengthen the mechanical strength of the film laminate itself. The best type of thin film laminate for implementing the invention 200538289 (4) The thin film laminate of the present invention is the interface between the light-transmitting substrate and the antistatic layer, and / or the interface between the hard film layer and the antistatic layer, Both are (substantially) non-existent thin film laminates. In the present invention, the so-called "interface (substantially) does not exist" refers to the fact that after judgment, the two surfaces overlap, but there is no interface in reality; and when viewed from the refractive index, there is no interface on the two surfaces In the context of existence. In the present invention, the state of “the interface (substantially) does not exist”, for example, the refractive index of the interface between the transparent substrate and the antistatic layer is from the refractive index of the transparent substrate to the antistatic layer. Refractive index, showing a step change. Furthermore, other ideal states, such as the refractive index at the interface between the antistatic layer and the hard film layer, are those that change stepwise from the refractive index of the antistatic layer to the refractive index of the hard film layer. In the present invention, the so-called "interface (substantially) does not exist" refers to the fact that after judgment, the two surfaces overlap, but there is no interface in reality; and when viewed from the refractive index, there is no interface on the two surfaces Existing Love Talks. The specific criterion of "the interface (substantially does not exist)" is measured by, for example, a cross section of an optical laminate and observation with a laser microscope, and the interference fringes cross the visible laminate An interface exists on the surface, and an interference fringe does not exist on the cross section of the laminate which cannot be visually observed; the measurement is performed. Since the laser microscope can observe cross-sections of objects with different refractive indexes without being damaged, it will produce measurement results of materials with little difference in refractive index and no interface between them. From this, it can be judged from the refractive index view that the interface between the translucent substrate and the hard film layer does not exist. In addition, as for the antistatic layer, -8-200538289 (5) There is no clear linear interface measurement result between the hard coat layer and the transparent substrate. Substantially Destroying the Interface As in the ideal aspect of the present invention, in order to make the interface system of the light-transmitting substrate and the antistatic layer substantially non-existent, an antistatic that has permeability to the light-transmitting substrate can be used Layer to form a composition (anti-static layer) and achieve the goal. Furthermore, in order to make the interface between the antistatic layer and the hard film layer substantially non-existent, a composition for a hard film layer having permeability to the antistatic layer can be used to form the hard film layer and achieve the object. In the present invention, when a composition for an antistatic layer having permeability to a light-transmitting substrate is applied, the composition will penetrate (wet) into the light-transmitting substrate. Thereafter, by hardening the composition, an antistatic layer can be formed on the light-transmitting substrate, and the interface between the two will not substantially exist. This mechanism is not easy to understand, but it is generally recognized that ® may be between the transparent substrate and the anti-charge layer, and the composition of the transparent substrate changes from the component of the anti-charge layer to a stepwise composition change. To those. This speculative mechanism also thinks the same way when a hard coat layer is formed on the surface of the antistatic layer. The optical laminate of the present invention is formed on a light-transmitting substrate and is sequentially formed of an anti-charge layer and a hard film layer; in addition, it can be sequentially formed on the light-transmitting substrate by a hard film layer and a hard film layer. Formed by anti-charge layer. 1. Translucent substrate -9- 200538289 (6) Translucent substrate is only required to be transparent, whether it is transparent, translucent, colorless or colored, but colorless and transparent is ideal. Specific examples of the light-transmitting substrate include glass plates, cellulose triacetate (TAC), polyethylene terephthalate (PET), cellulose diacetate, cellulose acetate butyrate, Polyether resins, acrylic resins; polyurethane resins; polyesters; polycarbonates; polyether ketones; (transformed) acrylonitrile and other films. An ideal aspect of the present invention is, for example, triacetate cellulose (TAC). The thickness of the light-transmitting substrate is about 30 " m ~ 200 // m, and preferably 50 // m ~ 200 // m. 2. Antistatic layer The antistatic layer of the present invention may be formed by a composition for an antistatic layer which is permeable to antistatic agents, resins, and solvents. The composition for the antistatic layer is made of a material having permeability to a light-transmitting substrate. The thickness of the anti-charge layer is preferably about 30 nm to 5 // m. Antistatic agent (conductive agent) Antistatic agent used to form an antistatic layer. Specific examples include fourth-grade money salts, pyridinium salts, various cationic compounds with cationic groups such as the first to third amine groups, Anionic compounds with anionic groups, such as sulfonic acid bases, sulfate bases, phosphate bases, and phosphonic acid bases, amphoteric compounds such as amino acids, amino sulfates, amino alcohols, glycerols, and polyethylene glycols And other non-ionic compounds, organometallic compounds such as tin and titanium alkoxy metals, and metal clamping compounds such as acetoacetamidine salts, and even high molecular weight compounds of the above-listed compounds, etc. . Furthermore, the tertiary amine group, the tertiary ammonium group, or a metal clamping portion and can be ionized radiation poly-10-200538289 (7) combined monomers or homo (molecular weight) poly (complex), or may Polymerizable compounds, such as organometallic compounds, which are polymerized by ionizing radiation and have a polymerizable functional group coupling agent, can also be used as antistatic agents. Furthermore, there are conductive ultrafine particles. Specific examples of the conductive ultrafine particles include those derived from a metal oxide. Such metal oxides include, for example, ZnO (refractive index 1.90, and the numbers in parentheses below indicate the refractive index), Ce02 (1.95), Sb202 (1.71), Sn02 (l.997), many • Indium tin oxide (1.95), Iη203 (2.00), A12〇3 (1.63), ITO, called antimony-doped tin oxide (referred to as ATO, 2 · 0), Aluminum doped zinc oxide (abbreviation: AZO '2.0) and the like. The so-called "fine particles" refer to those with a size of 1 micron (micron) or less, that is, the size of submicron particles, and ideally, those with an average particle size of 0.1 nm to 0.3 // m. Resins Specific examples of resins include thermoplastic resins, thermosetting resins, or ionizing radiation-curable resins, or ionizing radiation-curable compounds (including organic reactive silicon compounds). As the resin, a thermoplastic resin can be used, but a thermosetting resin is preferable, and an ionizing radiation-curable resin or an ionizing radiation-curable composition containing an ionizing radiation-curable compound is more preferable. The ionizing radiation-hardening composition is a polymer in which a polymerizable unsaturated bond or a prepolymer having an epoxy group, an oligo (molecular weight) poly (complex), and / or a monomer are appropriately mixed in the molecule. Here, the so-called "ionizing radiation" refers to those obtained by polymerizing or bridging molecules in electromagnetic waves or charged particle beams. -11-200538289 (8) Those with energy quantums' generally use ultraviolet rays or electron rays. Examples of prepolymers and oligo (molecular weight) poly (complexes) in ionizing radiation-curable compositions include unsaturated polyesters such as unsaturated dicarboxylic acids and polyvalent alcohol condensates, and polyester methacrylates. Methacrylates such as polyether methacrylate, polymethylolpropionate, melamine methylpropionate, polyester acrylate, epoxy acrylate, polyurethane acrylate, polyether acrylate , Polyacrylates, melamine acrylates, etc. ^ acrylates, and cationic polymerized epoxy compounds. Examples of monomers in the ionizing radiation-hardening composition include styrene ethyl monomers, styrene ethyl monomers such as α-methylphenethylbenzene, methyl propionate, propionate 2-ethylhexyl ester, Acrylates such as methoxyethyl acrylate, butoxyethyl acrylate, butyl acrylate, methoxybutyl acrylate, phenyl acrylate, methyl methacrylate, ethyl methacrylate, propyl methacrylate Methacrylic acid esters such as methoxyethyl methacrylate, ethoxymethyl methacrylate, phenyl methacrylate, dodecyl methacrylate, etc., acrylic acid 2- (Ν, Ν -Diethylamino) ethyl, 2- (N, N-dimethylamino) ethyl acrylate, 2- (N, N-dibenzylamino) ethyl acrylate, 2- (N, N, Unsaturated substituted amino alcohol esters such as N-diethylamino) propyl ester, unsaturated carboxylic acid amines such as acrylamide, methacrylamide, ethylene glycol diacrylate, propylene glycol diacrylate, Neopentyl alcohol diacrylate, 1,6-hexanediol diacrylate, triethylene glycol diacrylate and other compounds, dipropylene glycol dipropylene Polyfunctional compounds such as acid esters, ethylene glycol diacrylates, propylene glycol dimethacrylates, diethylene glycol dimethacrylates' and / or polythiols having two or more thio groups in the molecule-12 -200538289 (9) Compounds, such as trimethylolpropane trimethylacetate, trimethylolpropane trimethylpropionate, pentaerythritol tetramethylacetate and the like. Generally, the monomers in the ionizing radiation-curable composition may be used singly or in combination of two or more kinds. When coating or curing the ionizing radiation-hardening composition, if elasticity is required, the number of monomers can be reduced, or an acrylic monomer having 1 or 2 functional groups can be used. When coating or curing the ionizing radiation-hardening composition, ® If abrasion resistance, heat resistance, and solvent resistance are required, an ionizing radiation-hardening composition of an acrylate monomer having a functional group of 3 or more can be designed. Here, the functional group is one, and examples thereof include 2-hydroxyacrylate, 2-hexylacrylate, and phenoxyethylacrylate. The functional group is two, and examples thereof include ethylene glycol diacrylate and 1,6-hexanediol diacrylate. The functional group is three, and examples thereof include trimethylolpropane triacrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate, and dipentaerythritol hexaacrylate. When coating or curing the ionizing radiation-hardening composition, if it is necessary to adjust the physical properties such as elasticity and surface hardness, a resin that does not harden upon irradiation with ionizing radiation can be added to the ionizing radiation-hardening composition. Specific resin examples are shown below. Thermoplastic resins such as polyurethane resin, cellulose resin, polyethylene butyraldehyde resin, polyester resin, acrylic resin, polyvinyl chloride resin, and polyvinyl acetate. Among them, a polyurethane resin, a cellulose resin, and a polyvinyl butyral resin 'are preferable from the viewpoint that the addition thereof can improve the elasticity. After coating the ionizing radiation-curable composition, if it is necessary to harden it by irradiation with ultraviolet rays, a photopolymerization initiator and a photopolymerization accelerator -13- 200538289 (10) can be added. Photopolymerization initiators, for resins having a radically polymerizable unsaturated group, for example, acetophenones, benzophenones, thioxanthone, benzophenone, and benzophenone methyl Ether, etc. In addition, in the case of a resin system having a polymerizable functional group, the photopolymerization initiator may be used alone or in combination with an aromatic diazonium pin, an aromatic phosphonium salt, an aromatic iodide salt, a metacelon compound, Diphenethyl ketone sulfonate. The photopolymerization initiator is added in an amount of 0.1 to 10 parts by weight based on 100 parts by weight of the ionizing radiation curable composition. Among the ionizing radiation-curable compositions, the following organic reactive silicon compounds may be used. The organosilicon compound is represented by the general formula Rm Si (OR,) n (where 'R and R' represent a radical with a carbon number of 1 to 10, and m and n represent integers satisfying the relationship of m + n = 4). Express it. Specifically, there are, for example, tetramethoxysilane, tetraethoxysilane, tetra-iso-propoxysilane, tetra-η-propoxysilane, tetra-η-butoxysilicon, tetra-sec- Butoxy sand courtyard, tetra-tert-butoxy sand courtyard, tetrapentethoxy®-based silane, tetrapent-iso-propoxysilane, tetrapent-n-propoxysilane, tetrapent-η-butane Oxysilane, tetrapentyl-sec-butoxysilane, tetrapentyl-tert-butoxysilane, methyltriethoxysilane, methyltripropoxysilane, methyltributoxysilane, dimethyl Dimethoxysilane, dimethyldiethoxysilane, dimethylethoxysilane, dimethylmethoxysilane, dimethylpropoxysilane, dimethylbutoxysilane, methyl Dimethoxysilane, methyldiethoxysilane, hexyltrimethoxysilane, etc. An organosilicon compound that can be used on an ionizing radiation-curable composition is a silane coupling agent. Specifically, there are 7-(2-aminoethyl) aminopropyl-14- 200538289 (11) yltrimethoxysilane, r-(2-aminoethyl) aminopropylmethyldimethoxysilane,- (3,4-ethoxycyclohexyl) ethyltrimethoxysilane, r-aminopropyltriethoxysilane, r-methacryloxypropylmethoxysalane, N- / 3-( N-vinylbenzylaminoethyl) · 7'-Aminopropylmethoxysalane · Hydrochloride, r-glycidoxypropyltrimethoxysilane, aminolithoxane, methylmethoxy Silane, vinyltriacetylsilane, r · ylpropyltrimethoxysilane, r-chloropropyltrimethoxysilane, hexylmethyldisilazine, aminotris (vinyl-methoxyethoxy) ) Silane, octadecyldimethyl [3- (trimethoxysilyl) propyl] ammonium chloride, methyltrichlorosilane, dimethyldichlorosilane, etc. Specific examples of solvents include alcohols such as isopropanol, methanol, and ethanol; ethylene glycol such as propylene glycol; ethylene glycol ethers such as propylene glycol monopropyl ether; methyl ethyl ketone (hereinafter, referred to as "MEK" as appropriate), and methyl alcohol Ketones such as methyl isobutyl ketone (hereinafter, referred to as “MIBK” in appropriate cases), cyclohexanone; esters such as ethyl acetate and butyl acetate; halogenated hydrocarbons; aromatic hydrocarbons such as toluene and xylene ; Or a mixture thereof. Among them, ketones are preferred. In the present invention, a solvent is used which is permeable (and wettable) to a light-transmitting substrate. Therefore, in the present invention, the so-called "sound permeability" of a permeable solvent includes the concept of having permeability, film-swelling property, and wettability to a light-transmitting substrate. Specific examples of permeable solvents include alcohols such as isopropanol, methanol, and ethanol; amidines such as methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone; esters such as methyl acetate, ethyl acetate, and butyl acetate; chloroform , Bi-15-200538289 (12) Halogenated hydrocarbons such as methane and tetrachloroethane; or mixtures thereof. Among them, the ideal is an ester. Specific examples of the solvent include acetone, methyl acetate, ethyl acetate, butyl acetate, chloroform, methylene chloride, tetrachloroethane, tetrahydrofuran, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, nitromethane, 1 4,4-dioxane, dioxolane, N-methylpyrrolidone, N, N-dimethylformamide, methanol, ethanol, isopropanol, butanol, isobutanol, diisopropyl ether , Methyl cellosolve • ethylcellosolve, butyl cellosolve. Among them, methyl acetate, ethyl acetate, butyl acetate, methyl ethyl ketone and the like are preferable. 3. Hard film layer The composition for the hard film layer which is permeable to the antistatic layer described above is preferably one produced as described below. The so-called "hard film layer" means those having a hardness of "H" or higher in the pencil hardness test specified in J I S 5 6 0-5-4: 1 99. The film thickness of the hard coat layer is 0.1 to 100 / im ', and preferably 0.8 to 20 // m. The resin hard coat layer is preferably formed using an ionizing radiation-curable composition, and more preferably, it has a (meth) acrylate-based functional group. For example, users can have lower molecular weight polyester resin, polyether resin, acrylic resin, epoxy resin, urethane resin, alkyd resin, spiral resin, polybutadiene Resin, polythiol polyether resin, polyvalent alcohol, di (meth) acrylate such as ethylene glycol di (meth) acrylate, penterythritol di (meth) propionate monostearate ; Trimethylolpropane-16- 200538289 (13) Tris (meth) acrylates such as tris (meth) acrylate, erythritol tris (meth) acrylate, tetras (methyl) erythritol Polyfunctional monomers such as acrylate derivatives, dipentyl erythritol penta (meth) acrylate, or homogeneous (molecular weight) polymers such as epoxy acrylate or urethane acrylate. In the present invention, penterythritol tri (meth) acrylate and isocyanurate ethoxy-modified diacrylate are preferably used. Φ Solvent The solvent may be the same as that described in the composition for the antistatic layer. 4. Low-refractive index layer The film laminate of the present invention is preferably one having a low-refractive index layer. The low-refractive index layer may be composed of a resin containing silicon or magnesium fluoride, a fluorine-based resin containing low-refractive index resin, or a fluorine-based resin containing silicon or magnesium fluoride; and 30 having a refractive index of 1.46 or less Films with a thickness of about nm to 1; and those obtained by chemical vapor deposition or physical vapor deposition of silicon or magnesium fluoride. The resins other than the fluororesin are the same as those used for the antistatic layer. The low refractive index layer is more preferably composed of a silicon-containing fluorinated vinylidene copolymer. The silicon-containing fluorinated vinylidene copolymer is specifically a monomer containing 30 to 90% of fluorinated ethylene and 5 to 50% of hexafluoropropylene (also included below, and the percentages are based on mass) The composition is a raw material and is prepared by copolymerization; at the same time, in 100 parts of a fluorine-containing copolymer having a fluorine content of 60 to 70%, a polymerizable compound having an ethylenically unsaturated group is 17-200538289. (14) A resin composition composed of 80 to 150 parts, which can form a thin film with a thickness of less than 200 nm, and form a low refractive index with abrasion resistance and a refractive index of less than 1.60 (ideally 1.46 or less) Rate layer. In the above-mentioned silicon-containing fluorinated vinylidene copolymer constituting the low refractive index layer, the proportion of each component in the monomer composition is 30 to 90%, preferably 40 to 80%, and more preferably 40 to 70%; 5 to 50% of hexafluoropropylene, ideally 10 to 50%, and more preferably 15 to 45%. The monomer composition may further contain tetrafluoroethylene 0 to 40%, preferably 0 to 35%, and more preferably 10 to 30%. The above monomer composition does not harm the Within the scope of the purpose and effect of the silicon-containing vinylidene fluoride copolymer, other copolymer components may also be included, for example, 20% or less or ideally 10% or less. Specific examples of such other copolymer components include fluoroethylene, trifluoroethylene, trifluoroethylene chloride, 1,2-dichloro-1 '2-difluoroethylene, and 2-bromo-3,3,3-trifluoroethylene. Fluorinated ethylene, 3-bromo-3 '3-dipropylene, 3,3' 3-trifluoropropylene, 1,1,2-trichloro- ^ 3,3,3-trifluoropropylene, trifluoromethacrylic acid Such as a fluorine-containing polymerizable monomer. The fluorine-containing copolymer prepared from the above monomer composition must have a fluorine content of ό 0 to 70%, an ideal fluorine content of 62 to 70%, and an optimal fluorine content of ό 4 ~ 68%. When the gas content is within this range, the fluorinated copolymer has good solubility in solvents. At the same time, when the fluorinated copolymer is contained as a component, the formed film will have excellent tightness to various substrates. 'Bondability', with 咼 transparency and low refractive index, as well as excellent sufficient mechanical strength, so the mechanical properties such as scratch resistance of the surface formed by this film -18- 200538289 (15) are very high and extremely Suitable. The molecular weight of the fluorinated copolymer is 5,000 to 200,000, and preferably 10,000 to 100,000, when the molecular weight is calculated in terms of polyethylene (equivalent level). When such a fluorinated copolymer having a large molecular weight is used, the viscosity of the fluororesin composition to be obtained becomes a suitable size, and thus it can be used as a fluororesin composition having proper coating properties. The fluorinated copolymer should have a refractive index of 1.45 or less, preferably Φ 1 · 4 2 or less, and more preferably 1 · 4 0 or less. When the refractive index of the fluorinated copolymer used exceeds 1.45, the anti-reflection effect of the thin film formed by the obtained fluorinated coating will be small. In addition, the 'low-refractive-index layer can also be formed of a thin film made of SiO2, and it can also be formed by a vapor deposition method, a sputtering method, or a plasma CVD method, or a SiO2 gel composed of a sol solution containing a SiO2 sol. It is formed by a film formation method. In addition, the low-refractive-index layer can be made of MgF2 film and other materials besides SiO2, but from the viewpoint of high adhesion to the lower layer, it is ideal to use s 1 02 film. In the above method, if the plasma c VD method is used, it is desirable to use organosiloxane as the raw material gas and perform it in the absence of other inorganic evaporation sources. Furthermore, the evaporation system is used to make the best It may be desirable to keep the temperature low. Method for manufacturing a thin film laminate Composition of each composition for the preparation of an antistatic layer, a hard coat layer, and a low-refractive index layer can be mixed according to the general production method, and then divided into -19 -200538289 (16) can be produced by bulk processing. When mixing and dispersing, a paint dispersing shaker (Bead Mi 11) or a bead mill (Bead Mi 11) can be used to appropriately disperse. Each composition of the coater is on the surface of the light-transmitting substrate and the surface of the antistatic layer. Specific examples of the coating method include spin coating method and dip coating method. (Spray) coating method, slide spray method, barcode method, Rouer coater method, Meniscus Coater method, elastic convex plate ( flexo) various methods such as a printing method, a screen printing method, and a Peder coater method. Desirable implementation aspect The ideal implementation aspect of the 'thin film laminate in the present invention is described below. Formation of antistatic layer Using triacetate cellulose (TAC) as a light-transmitting substrate, the following anti-static layer composition was coated thereon to form an antistatic layer. Preparation of composition for antistatic layer Antistatic agent Any of antistatic agent can be used, but metal particles are ideal, and antimony-doped tin oxide (ATO) is the most ideal. -20- 200538289 (17) Resin F-lipids are, for example, ionizing radiation-curable compositions, and ideally, there are acrylate monomers having 1 or 2 or more functional groups. For example, one of the functional groups is 2-hydroxyacrylate, 2-hexylacrylate, and phenoxyethylacrylate. Two functional groups include ethylene glycol diacrylate and 1,6-hexanediol diacrylate. The functional groups are three, including methylolpropane tripropyl ® phosphonate, penterythritol triacrylate, penterythritol tetraacrylate, dipenterythritol hexaacrylate, and the like. The most desirable is 6-hexanediol diacrylate. Solvents Ideal examples of solvents are ketones such as methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone (preferably); esters such as ethyl acetate, butyl acetate (preferably); halogenated hydrocarbons; toluene, dioxin Aromatic hydrocarbons such as toluene; or ® mixtures thereof. The addition ratio of the resin to the solvent is 1: 1 to 1: 3 on a weight basis, and is preferably 3 ·· 4. In an ideal aspect of the present invention, the antistatic layer is composed of an antistatic agent (ideally, metallic fine particles), an ionizing radiation hardening composition as a resin, and ketones and / or esters as a solvent. Those who form things are ideal. The composition for an ideal antistatic layer of the present invention includes, for example, antimony-doped tin oxide (ATTO) as an antistatic agent, 1,6-hexanediol diacrylate as a resin, and dipenterythritol hexaacrylic acid Ester, erythritol tripropylene-21-200538289 (18) acid ester, or dipenterythritol monohydroxypentyl acrylate (dppa), and cyclohexanone, butyl acetate, or a mixture thereof as a solvent The resulting mixed composition. More desirable compositions for the antistatic layer include antimony-doped tin oxide (ATO) as an antistatic agent, 1,6-hexanediol diacrylate as a resin, and cyclohexanone as a solvent, A mixed composition formed by butyl acetate. At this time, the mixing ratio of cyclohexanone to butyl acetate is 20: 80 to 80: 20 on a weight basis, and ideally 30: 70. Formation of Hard Film Layer On the antistatic layer, a composition for a hard film layer described below was applied to obtain an optical laminate. Preparation of the composition for the hard coat layer A specific example of the resin ® resin is preferably an ionizing radiation-curable composition, and more preferably penterythritol triacrylate (PETA). Solvent Ideal examples of solvents are ketones such as MEK, MIBK, cyclohexanone (preferred); esters such as ethyl acetate, butyl acetate (preferred); halogenated hydrocarbons; aromatics such as toluene and xylene Hydrocarbons; or mixtures thereof, MEK, MIBK. The addition ratio of resin and solvent is -22-200538289 (19) 20: 80 ~ 80: 20 on a weight basis, and ideally 55:70. The composition for the hard coat layer of the present invention is preferably erythritol triacrylate or isocyanurate ethoxylated diacrylate as resin, and cyclohexanone as solvent, M IB K, M A mixed composition of EK, or a mixture thereof. The solvent is preferably a mixed composition of, for example, cyclohexanone, MIBK, and MEK. At this time, the mixing ratio of cyclohexanone, MIBK, and MEK is 5: 2: 3 on a weight basis. Use of thin film laminate The thin film laminate of the present invention has the following applications. Anti-reflection laminate The film laminate of the present invention can be used as an anti-reflection laminate. Polarizing plate Another aspect of the present invention is to provide a polarizing plate, which is a polarizing plate having a polarizing element and the film laminate of the present invention. Specifically, the polarizing plate provided by the present invention is on the surface of the polarizing element, the side where the anti-glare layer in the film laminate of the present invention exists, and the side where the film laminate is located is the opposite side. Those who are also present in the polarizer. For example, the polarizing element can be dyed with iodine or a dye, and further includes a polyvinyl alcohol, a polyethylene methylal film, a polyethylene polyoxymethylene film, a cyclopropyl formate copolymer-based alkalized film, and the like. In the case of lamination, it is desirable to perform alkali treatment on a light-transmitting substrate (ideally -23-200538289 (20) is triethylpyrene film) in order to increase adhesion or prevent electricity. Image display device Another aspect of the present invention is to provide an image display device. This image display device has a transmissive display body and a light source device irradiated from the back surface of the transmissive display body. On the surface of the transmissive display body, a film laminate of the present invention or a polarizing plate of the present invention is formed. By. The image display device of the present invention is basically composed of a light source device (Back Light), a display element ®, and the thin film laminate of the present invention. The image display device can be used for the display of a transmissive display device, especially a television, a computer, a word processor, and the like. Among them, it can be used on the display surface of high-definition images such as CRT and LCD panels. When the image display device of the present invention is a liquid crystal display device, the light source of the light source device can be irradiated from under the thin film laminate of the present invention. In addition, the S TN type liquid crystal display device may be provided with a phase difference plate between the liquid crystal display element and the polarizing plate. If necessary ', an adhesive layer may be provided between the layers of the liquid crystal display device ®. [Embodiments] [Examples] The contents of the present invention will be described in detail according to the following Examples', but the contents of the present invention are not limited to the following Examples for explanation. Preparation of composition for each layer The composition for each layer is mixed and prepared according to the following composition '. -24- 200538289 (21) Composition for anti-static layer Basic composition 1 Anti-static agent (ΑΤΟ) Pentoerythritol triacrylate (manufactured by Nippon Kayaku Co., Ltd., trade name: PET 30) Cyclohexanone ΙΒΚ dispersed Agent 3 0 parts by mass 1 0 parts by mass 30 parts by mass 30 parts by mass 2.5 parts by mass Basic composition 2 Antistatic agent (ΑΤΟ) penterythritol triacrylate (made by Nippon Kayaku Co., Ltd., trade name: PET30) ) Toluene • Dispersant 30 parts by mass 10 parts by mass 60 parts by mass 2.5 parts by mass

防帶電層用之組成物1 基本組成物1 引發劑 (Ciba Specialty Chemicals (股) 製,商品名稱:IRGACURE⑧907 ) 環己酮 MIBK 1 〇 〇質量份 相對於樹脂成 分爲5質量份 2 1 9質量份 2 1 9質量份 -25 200538289 (22) 1〇〇質量份 3.5質量份 相對於樹脂成 分爲5質量份 460質量份 防帶電層用之組成物2 基本組成物2 戊赤蘚醇三丙烯酸酯 引發劑 (Ciba Specialty Chemicals (股) 製,商品名稱:IRGACURE®907 ) # 甲苯Composition 1 for the anti-static layer 1 Basic composition 1 Initiator (Ciba Specialty Chemicals (trade name), product name: IRGACURE 907) Cyclohexanone MIBK 1 0.00 parts by mass with respect to the resin component 5 parts by mass 2 1 9 parts by mass 2 1 9 parts by mass-25 200538289 (22) 100 parts by mass 3.5 parts by mass 460 parts by mass with respect to the resin component 460 parts by mass of a composition for an antistatic layer 2 Basic composition 2 Erythritol triacrylate Agent (Ciba Specialty Chemicals (stock), trade name: IRGACURE®907) # toluene

硬膜層用之組成物 戊赤蘚醇三丙烯酸酯 (曰本化藥(股)製,商品名稱:PET30 ) 甲乙酮 均化劑 (大曰本INK化學工業(股),商品名稱: MCF-350-5 ) 聚合引發劑 (Ciba Specialty Chemicals (股)製, 商品名稱:IRGACURE®184) 100質量份 43質量份 2質量份 6質量份 薄膜層合物之製作 實施例1 準備透光性基材(厚度8 0 // m之三乙醯纖維素樹脂 薄膜(富士寫真FILM (股)製,TF80UL)),以捲線型 -26- 200538289 (23) 的塗佈棒(coating rod)將防帶電層用之組成物!,塗佈於 薄膜的一面上,在溫度70 °C之熱烘烤爐中保持30秒,使 塗膜中之溶劑蒸發。其後,照射紫外線使加總光量成爲 9 8 m j並使塗膜硬化,且形成〇 . 7 g / c ηι 2 (乾燥時)之透 明防帶電層’而製得防帶電層合物。其後,再塗佈硬膜層 用之駔成物’在溫度7 0 °C之熱烘烤爐中保持3 0秒,使塗 膜中之溶劑蒸發。然後,照射紫外線使加總光量成爲4 6 ® nij並使塗膜硬化’且形成15 g/ cm2 (乾燥時)之硬膜 層,而製得薄膜層合物。 比較例1 除使用防帶電層用之組成物2以外,其餘均與實施例 1相同,而製得薄膜層合物。 評價試驗 ® 針對實施例1及比較例1所製作之薄膜層合物,進行 下述之評價試驗,其結果如表1所記載者。 評價1 :干涉條紋有無之試驗 在與薄膜層合物之硬膜層相反的面上,爲防止內部反 射起見’貼上黑色膠布’並由硬g吴層的一面以目視觀察薄 膜層合物’並依據下述評價基準加以評價。 評價基準 -27- 200538289 (24) 評價◎:無干涉條紋發生。 g平價X :有干涉條紋發生。 評價2 :界面有無之試驗 以共軛焦雷射顯微鏡(LeicaTCS-NT : Leica公司 製:倍率「500〜1000倍」),由薄膜層合物之斷面穿透 觀察’判斷其有無界面後,以下述評價基準加以判斷。具 體而言’爲得到無暈光作用之鮮明影像起見,在共軛焦雷 φ 射顯微鏡上,使用濕式的物鏡,同時,在薄膜層合物上放 置折射率爲1 · 5 1 8、約2毫升的油,以進行觀察並判斷。 使用油之原因,係期待能使物鏡與薄膜層合物間之空氣層 消失。 評價基準 評價◎:無觀察到界面。(注1 ) 評價X :有觀察到界面。(注2 ) ♦ 注1及注2 注1 :如實施例1及圖1所示,油面/硬膜層之界 面,及防帶電層中所含之防帶電劑有被觀察到;惟硬膜層 與防帶電層與透光性基材之界面’則沒有被觀察到。 注2 :如比較例1及圖2所示’油面/硬膜層之界 面,及硬膜層、防帶電層/透光性基材之界面’有被觀察 到。 -28- 200538289 (25)Composition for dura mater erythritol triacrylate (manufactured by Benwa Pharmaceutical Co., Ltd., trade name: PET30) methyl ethyl ketone leveling agent (Da Yueben INK Chemical Industry Co., Ltd. trade name: MCF-350 -5) Preparation Example of Polymerization Initiator (Ciba Specialty Chemicals (Stock), Product Name: IRGACURE® 184) 100 parts by mass 43 parts by mass 2 parts by mass 6 parts by mass of a film laminate Preparation of a light-transmitting substrate ( A thickness of 8 0 // m of acetonitrile cellulose resin film (made by Fuji Photo FILM Co., Ltd., TF80UL)), a coating rod with a winding type of -26- 200538289 (23) is used for the antistatic layer. The composition! Apply on one side of the film and hold in a hot baking oven at 70 ° C for 30 seconds to evaporate the solvent in the coating film. Thereafter, ultraviolet rays were irradiated so that the total amount of light became 98 mj, and the coating film was hardened, and a transparent antistatic layer of 0.7 g / cm2 (dried) was formed to prepare an antistatic layer. After that, the formed product for coating the hard film layer was further held in a hot baking oven at a temperature of 70 ° C for 30 seconds to evaporate the solvent in the coating film. Then, ultraviolet rays were irradiated so that the total amount of light became 4 6 ® nij and the coating film was hardened ', and a hard film layer of 15 g / cm2 (when dried) was formed to prepare a thin film laminate. Comparative Example 1 A thin film laminate was prepared in the same manner as in Example 1 except that the composition 2 for an antistatic layer was used. Evaluation Test ® The following evaluation tests were performed on the thin film laminates prepared in Example 1 and Comparative Example 1. The results are shown in Table 1. Evaluation 1: Test for the presence or absence of interference fringes On the side opposite to the hard film layer of the thin film laminate, to prevent internal reflection, "stick black tape" and visually observe the thin film laminate from one side of the hard layer 'And evaluated based on the following evaluation criteria. Evaluation Criteria -27- 200538289 (24) Evaluation ◎: No interference fringes occurred. g parity X: interference fringes occur. Evaluation 2: Test for presence or absence of interface Using a conjugate focus laser microscope (LeicaTCS-NT: made by Leica Corporation: magnification "500 to 1000 times"), determine the presence or absence of the interface by penetrating through the section of the thin film laminate, and determine Use the evaluation criteria to judge. To be specific, in order to obtain a clear image without the halo effect, a wet objective lens was used on a conjugate focal ray φ-ray microscope, and at the same time, a refractive index of 1 · 5 1 8 was placed on the thin film laminate. 2 ml of oil for observation and judgment. The reason for using the oil is to eliminate the air layer between the objective lens and the film laminate. Evaluation Criteria Evaluation :: No interface was observed. (Note 1) Evaluation X: Interface was observed. (Note 2) ♦ Note 1 and Note 2 Note 1: As shown in Example 1 and Figure 1, the interface of the oil surface / hard film layer and the anti-static agent contained in the anti-static layer have been observed; The interface between the film layer and the antistatic layer and the translucent substrate was not observed. Note 2: As shown in Comparative Example 1 and Fig. 2, the "oil surface / hard film layer interface, and the hard film layer, antistatic layer / transparent substrate interface" were observed. -28- 200538289 (25)

_評價1_評價2 實施例1 ◎ ◎_Evaluation 1_Evaluation 2 Example 1 ◎ ◎

比較例2 X X 【圖式簡單說明】 圖1圖1爲本發明中,光學層合物的橫斷面之雷射顯 〇 微鏡照片槪略圖。 圖2圖2爲比較例中,光學層合物的橫斷面之雷射顯 微鏡照片槪略圖。Comparative Example 2 X X [Brief Description of the Drawings] Fig. 1 and Fig. 1 are laser displays of a cross section of an optical laminate in the present invention. Fig. 2 is a schematic view of a laser micrograph of a cross section of an optical laminate in a comparative example.

-29--29-

Claims (1)

200538289 (1) 十、申請專利範圍 1 · 一種薄膜層合物,其特徵爲其係依序具有透光性基 材、位於該透光性基材上之防帶電層及硬膜(Hard coat)層 的薄膜層合物,且 該透光性基材及該防帶電層係不存在界面,及/或 該防帶電層及該硬膜層係不存在界面。 2 ·如申請專利範圍第1項之薄膜層合物,其中該防帶 P 電層係使用防帶電層用組成物而形成者,且該防帶電層用 組成物對於該透光性基材並具有滲透性,從而使該透光性 基材及該防帶電層係不存在界面。 3 ·如申請專利範圍第1項之薄膜層合物,其中該硬膜 層係使用硬膜層用組成物而形成者,且該硬膜層用組成物 對於該防帶電層並具有滲透性,從而使該防帶電層及該硬 膜層係不存在界面。 4.如申請專利範圍第1項之薄膜層合物,其中該透光 Φ 性基材及該防帶電層之界面的折射率,係由該透光性基材 之折射率向該防帶電層之折射率,呈現階梯型變化者。 5 .如申請專利範圍第1項之薄膜層合物,其中該防帶 電層及該硬膜層之界面的折射率,係由該防帶電層之折射 率向該硬膜層之折射率,呈現階梯型變化者。 6. 如申請專利範圍第1項之薄膜層合物,其中係在該 透光性基材上,依序爲該硬膜層及該防帶電層所形成者。 7. 如申請專利範圍第1項之薄膜層合物,其中在該硬 膜層之表面上,係進一步形成低折射率層。 -30- 200538289 (2) 8 ·如申請專利範圍第1項之薄膜層合物,其中係作爲 防反射層合物而使用。 9 . 一種偏光板,其特徵爲其係具有偏光元件之偏光 板’且在該偏光元件之表面上,具有如申請專利範圍第8 項之防反射層合物。 10·—種影像顯示裝置,其特徵爲其係具有透過性顯 示體’及將該透過性顯示體由背面照射之光源裝置的影像 厂 顯示裝置;其並係在該透過性顯示體之表面,具有如申請 專利範圍第8項之防反射層合物、或如申請專利範圍第9項 之偏光板的影像顯示裝置。200538289 (1) X. Patent application scope 1 · A thin film laminate characterized by sequentially having a light-transmitting substrate, an antistatic layer and a hard coat on the light-transmitting substrate Thin film laminates of layers, and there is no interface between the translucent substrate and the antistatic layer, and / or there is no interface between the antistatic layer and the hard film layer. 2. The thin film laminate according to item 1 of the scope of patent application, wherein the anti-charge P layer is formed by using a composition for an anti-charge layer, and the composition for the anti-charge layer is formed on the transparent substrate. It has permeability, so that there is no interface between the translucent substrate and the antistatic layer. 3. If the thin film laminate according to item 1 of the patent application scope, wherein the hard film layer is formed using a composition for a hard film layer, and the composition for a hard film layer is permeable to the antistatic layer, Therefore, there is no interface between the antistatic layer and the hard coat layer. 4. The thin film laminate according to item 1 of the application, wherein the refractive index at the interface between the transparent substrate and the antistatic layer is from the refractive index of the transparent substrate to the antistatic layer. The refractive index exhibits a step change. 5. The thin film laminate according to item 1 of the scope of patent application, wherein the refractive index at the interface between the antistatic layer and the hard film layer is represented by the refractive index of the antistatic layer to the refractive index of the hard film layer. Ladder changer. 6. The thin film laminate according to item 1 of the patent application scope, wherein the thin film laminate is formed on the light-transmitting substrate, and is formed by the hard film layer and the anti-charge layer in this order. 7. The thin film laminate according to item 1 of the patent application scope, wherein a low refractive index layer is further formed on the surface of the hard film layer. -30- 200538289 (2) 8 · The thin film laminate according to item 1 of the patent application scope, which is used as an anti-reflection laminate. 9. A polarizing plate characterized in that it is a polarizing plate with a polarizing element ' and has an anti-reflection laminate as described in item 8 of the scope of patent application on the surface of the polarizing element. 10 · —An image display device characterized in that it is an image factory display device having a transmissive display body and a light source device that illuminates the transmissive display body from the back; and is also attached to the surface of the transmissive display body. An image display device having an anti-reflection laminate such as the item No. 8 of the patent application scope, or a polarizing plate such as the item No. 9 patent application scope. -31 --31-
TW94110331A 2004-03-31 2005-03-31 Thin film laminate TW200538289A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004106597 2004-03-31
JP2005092521A JP2005313620A (en) 2004-03-31 2005-03-28 Thin-film laminated body

Publications (2)

Publication Number Publication Date
TW200538289A true TW200538289A (en) 2005-12-01
TWI379770B TWI379770B (en) 2012-12-21

Family

ID=35063608

Family Applications (1)

Application Number Title Priority Date Filing Date
TW94110331A TW200538289A (en) 2004-03-31 2005-03-31 Thin film laminate

Country Status (5)

Country Link
US (1) US20080268215A1 (en)
JP (1) JP2005313620A (en)
KR (1) KR101166170B1 (en)
TW (1) TW200538289A (en)
WO (1) WO2005095098A1 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4895160B2 (en) * 2004-09-30 2012-03-14 大日本印刷株式会社 Optical laminate
JP2006126808A (en) * 2004-09-30 2006-05-18 Dainippon Printing Co Ltd Optical laminate
US8003206B2 (en) * 2004-09-30 2011-08-23 Dai Nippon Printing Co., Ltd. Optical laminate
JP2007264272A (en) * 2006-03-28 2007-10-11 Dainippon Printing Co Ltd High refractive index hard coat layer
CN101454151B (en) * 2006-03-28 2012-06-13 大日本印刷株式会社 Optical laminated body
US20090176077A1 (en) * 2006-03-31 2009-07-09 Dai Nippon Printing Co., Ltd. Optical layered body
TWI399566B (en) * 2006-03-31 2013-06-21 Dainippon Printing Co Ltd Optical laminated body and optical laminate
JP2007292883A (en) * 2006-04-21 2007-11-08 Dainippon Printing Co Ltd Optical laminate
CN101506693B (en) * 2006-08-18 2013-05-08 大日本印刷株式会社 Optical laminate, polarizing plate, and image display apparatus
KR101390526B1 (en) * 2006-12-22 2014-04-30 다이니폰 인사츠 가부시키가이샤 Optical laminated body, method for manufacturing the optical laminated body, and composition for antistatic layer
JP4866768B2 (en) * 2007-03-26 2012-02-01 リンテック株式会社 Antistatic hard coat film and method for producing the same
US20080284950A1 (en) * 2007-04-02 2008-11-20 Dai Nippon Printing Co., Ltd. Composition, single layer, member or laminate for realizing an antistatic (and hardcoat) features
WO2009081596A1 (en) * 2007-12-20 2009-07-02 Toppan Printing Co., Ltd. Antireflection film
WO2017092826A1 (en) * 2015-12-04 2017-06-08 Essilor International (Compagnie Générale d'Optique) Antistatic film and lamination thereof
US11214026B2 (en) * 2015-12-04 2022-01-04 Essilor International Structured film laminate with antistatic compositions embedded therein

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03115371A (en) * 1989-09-27 1991-05-16 Toyobo Co Ltd Transparent conductive resin composition and laminate thereof
DE69115363T2 (en) * 1990-06-27 1996-05-09 Texas Instruments Inc Infrared transparent protective window
TW266301B (en) * 1991-09-19 1995-12-21 Philips Nv
US5811191A (en) * 1994-12-27 1998-09-22 Ppg Industries, Inc. Multilayer antireflective coating with a graded base layer
US5990984A (en) * 1995-11-16 1999-11-23 Viratec Thin Films, Inc. Coated polymer substrate with matching refractive index and method of making the same
JP3619915B2 (en) * 1996-01-26 2005-02-16 コニカミノルタホールディングス株式会社 Protective film for polarizing plate and polarizing plate
US6686031B2 (en) * 2000-02-23 2004-02-03 Fuji Photo Film Co., Ltd. Hard coat film and display device having same
JP2002062405A (en) * 2000-08-22 2002-02-28 Fuji Photo Film Co Ltd Antireflection transparent electrically conductive laminate and image display with the same
JP2003075605A (en) * 2001-09-05 2003-03-12 Nitto Denko Corp Antireflective hard coat sheet, antireflective polarizing plate and image display device

Also Published As

Publication number Publication date
WO2005095098A1 (en) 2005-10-13
KR20060134131A (en) 2006-12-27
KR101166170B1 (en) 2012-07-18
JP2005313620A (en) 2005-11-10
TWI379770B (en) 2012-12-21
US20080268215A1 (en) 2008-10-30

Similar Documents

Publication Publication Date Title
TW200538289A (en) Thin film laminate
TWI515271B (en) Anti-reflection film, anti-reflection film manufacturing method, polarizing film and image display device
JP5359137B2 (en) OPTICAL LAMINATE, ITS MANUFACTURING METHOD, POLARIZING PLATE, AND IMAGE DISPLAY DEVICE
TWI416158B (en) Optical laminated body and optical laminate
KR20080008346A (en) Polarizing plate
JP2006058574A (en) Hard coat film
US7662483B2 (en) Optical laminate
JP4756336B2 (en) Optical laminate
JP2006126808A (en) Optical laminate
JP4895160B2 (en) Optical laminate
JP4275237B2 (en) Low reflection antistatic hard coat film
JP2007293229A (en) Optical laminate
KR101109172B1 (en) Optical laminate
JP2007293324A (en) Optical laminate
JP2004272198A (en) Antireflective stack
US7534491B2 (en) Optical laminate
JP6056144B2 (en) Optical laminate, polarizing plate, and image display device
JP4883387B2 (en) Optical laminate
JP2005096298A (en) Optical film and optical display device equipped with it
JP2008257160A (en) Optical laminate, polarizing plate and image display apparatus
JP4710269B2 (en) Antireflection laminated film and display medium using the same
TWI383894B (en) Optical laminate
JP2006293279A (en) Optical laminate
JP5096069B2 (en) Optical laminate, polarizing plate, and image display device
US20060134427A1 (en) Optical laminate