JP2011049460A - Photoelectric converter and substrate with transparent electrode layer - Google Patents

Photoelectric converter and substrate with transparent electrode layer Download PDF

Info

Publication number
JP2011049460A
JP2011049460A JP2009198264A JP2009198264A JP2011049460A JP 2011049460 A JP2011049460 A JP 2011049460A JP 2009198264 A JP2009198264 A JP 2009198264A JP 2009198264 A JP2009198264 A JP 2009198264A JP 2011049460 A JP2011049460 A JP 2011049460A
Authority
JP
Japan
Prior art keywords
layer
substrate
electrode layer
film
transparent electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009198264A
Other languages
Japanese (ja)
Inventor
Tomotsugu Sakai
智嗣 坂井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2009198264A priority Critical patent/JP2011049460A/en
Publication of JP2011049460A publication Critical patent/JP2011049460A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

<P>PROBLEM TO BE SOLVED: To provide a photoelectric converter of high power generation efficiency by improving light transmittance to a photoelectric conversion layer by inserting a single layer of transparent thin film, having both of a reflection prevention function and an alkali-barrier function, between a translucent substrate and a transparent electrode layer. <P>SOLUTION: The photoelectric converter 90 is equipped with: the translucent substrate 1; and the transparent electrode layer 2 and the photoelectric conversion layer 3 provided on the translucent substrate 1. The transparent thin film 201 containing Y<SB>2</SB>O<SB>3</SB>as a main component is provided between the translucent substrate 1 and the transparent electrode layer 2, in the photoelectric converter 90. Thereby the photoelectric converter 90 is provided with the transparent thin film 201 which is single layer and has the reflection prevention function and the alkali-barrier function, and has high power generation efficiency. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、光電変換装置及び透明電極層付き基板に関し、特に発電層としてシリコンを用いる薄膜シリコン系太陽電池に関する。   The present invention relates to a photoelectric conversion device and a substrate with a transparent electrode layer, and more particularly to a thin film silicon solar cell using silicon as a power generation layer.

光を受光して電力に変換する光電変換装置として、例えば発電層(光電変換層)に薄膜シリコン系の層を積層させた薄膜系太陽電池が知られている。薄膜系太陽電池は、一般に、透光性基板上に、透明電極層、シリコン系半導体層(光電変換層)、金属電極膜を備える裏面電極層を順次積層して構成される。   As a photoelectric conversion device that receives light and converts it into electric power, for example, a thin film solar cell in which a thin film silicon layer is stacked on a power generation layer (photoelectric conversion layer) is known. A thin-film solar cell is generally configured by sequentially laminating a transparent electrode layer, a silicon-based semiconductor layer (photoelectric conversion layer), and a back electrode layer including a metal electrode film on a light-transmitting substrate.

太陽電池の発電効率向上には、透光性基板と透明電極層との界面での反射を低減して、光電変換層に到達する光量を増大させることが重要である。特許文献1は、透光性基板と透明電極層との間に屈折率の異なる2層の透明薄膜を挿入し、光透過性を向上させる光起電力デバイスについて開示している。   In order to improve the power generation efficiency of the solar cell, it is important to reduce the reflection at the interface between the translucent substrate and the transparent electrode layer and increase the amount of light reaching the photoelectric conversion layer. Patent Document 1 discloses a photovoltaic device in which a two-layer transparent thin film having different refractive indexes is inserted between a light-transmitting substrate and a transparent electrode layer to improve light transmittance.

再表00/13237号公報(請求項1)No. 00/13237 (Claim 1)

特許文献1に記載の光起電力デバイスの第1薄膜は、透光性基板よりも屈折率が高い。そのため、適正な膜厚で精度良く製膜しないと、透光性基板/透明電極層界面での光透過性が、逆に低下してしまうという問題が生じる。   The first thin film of the photovoltaic device described in Patent Document 1 has a refractive index higher than that of the translucent substrate. Therefore, if the film is not accurately formed with an appropriate film thickness, there arises a problem that the light transmittance at the translucent substrate / transparent electrode layer interface is decreased.

透光性基板に一般に用いられるガラスは、アルカリ成分(Na)を有する。該ガラスは、安価であるが、ガラスに含まれるNaが透明電極層に拡散すると、透明電極層の劣化やシリコン系半導体膜の極性準位の乱れを引き起こすことが知られている。このアルカリ成分が透明電極層に拡散しないように、透光性基板と透明電極層との間に酸化シリコン膜(SiO膜)などの下地膜が設けられる。SiO膜だけでは、透光性基板とSiO膜と透明電極層との界面で光反射が生じるため、更にTiO膜などの反射防止層を設けなくてはならない。このように、アルカリ成分を有する透光性基板を用いる場合には、アルカリバリア層として下地膜を設ける必要があり、透光性基板/透明電極層界面での光透過性との両立を図る上で複雑な層構成となっていた。 Glass generally used for a light-transmitting substrate has an alkali component (Na). The glass is inexpensive, but it is known that when Na + contained in the glass diffuses into the transparent electrode layer, the transparent electrode layer is deteriorated and the polarity level of the silicon-based semiconductor film is disturbed. A base film such as a silicon oxide film (SiO 2 film) is provided between the translucent substrate and the transparent electrode layer so that the alkali component does not diffuse into the transparent electrode layer. Since only the SiO 2 film causes light reflection at the interface between the translucent substrate, the SiO 2 film, and the transparent electrode layer, an antireflection layer such as a TiO 2 film must be further provided. As described above, when a translucent substrate having an alkali component is used, it is necessary to provide a base film as an alkali barrier layer, so as to achieve both light transmissivity at the translucent substrate / transparent electrode layer interface. It was a complicated layer structure.

本発明は、このような事情に鑑みてなされたものであって、光電変換層への透過光量を増大させ、比較的単純な層構成とされた発電効率の高い光電変換装置を提供することを目的とする。   The present invention has been made in view of such circumstances, and provides a photoelectric conversion device with high power generation efficiency that has a relatively simple layer configuration by increasing the amount of light transmitted to the photoelectric conversion layer. Objective.

上記課題を解決するために、本発明は、透光性基板と、該透光性基板上に設けられた透明電極層及び光電変換層とを備え、前記透光性基板と前記透明電極層との間に、Yを主成分とする透明薄膜が設けられた光電変換装置を提供する。 In order to solve the above-described problems, the present invention includes a translucent substrate, a transparent electrode layer and a photoelectric conversion layer provided on the translucent substrate, and the translucent substrate, the transparent electrode layer, A photoelectric conversion device provided with a transparent thin film mainly composed of Y 2 O 3 is provided.

本発明によれば、Yを主成分とする透明薄膜によって、透光性基板と透明電極層との間の光反射が低減され、透光性基板/透明電極層界面での透過特性を向上させることができる。Yは、透光性基板より高く、透明電極層より低い屈折率を有する。そのため、所定の膜厚で挿入すると、光透過特性向上効果が得られるとともに、所望の膜厚に精度良く製膜できなかった場合でも、反射率が高まるようなことはない。 According to the present invention, the light reflection between the translucent substrate and the transparent electrode layer is reduced by the transparent thin film mainly composed of Y 2 O 3 , and the transmission characteristics at the translucent substrate / transparent electrode layer interface are reduced. Can be improved. Y 2 O 3 has a refractive index higher than that of the translucent substrate and lower than that of the transparent electrode layer. Therefore, when the film is inserted with a predetermined film thickness, an effect of improving the light transmission characteristics can be obtained, and the reflectance does not increase even if the film cannot be accurately formed to a desired film thickness.

上記発明においては、前記光電変換層を少なくとも2つ以上備えることが好ましい。
複数の光電変換層を有する太陽電池では、基板に近い側に設けられた光電変換層は、短波長を吸収する。Yを主成分とする透明薄膜は、上述の光電変換層に対する入射光量を増加させる機能が特に高くなる。
In the said invention, it is preferable to provide at least 2 or more of the said photoelectric converting layers.
In a solar cell having a plurality of photoelectric conversion layers, the photoelectric conversion layer provided on the side close to the substrate absorbs short wavelengths. The transparent thin film mainly composed of Y 2 O 3 has a particularly high function of increasing the amount of incident light with respect to the above-described photoelectric conversion layer.

上記発明においては、前記透光性基板が、アルカリ成分を有するガラスであることが好ましい。
を主成分とする透明薄膜は、光透過特性向上機能だけでなく、アルカリバリア機能をも有する。そのため、透光性基板にアルカリ成分が含まれる場合であっても、透光性基板から透明電極層へのアルカリ成分の分散を防止することができる。従来用いられているSiO膜などのアルカリバリア膜は、透光性基板と透明電極層との界面の反射損を抑制する機能がないため、単層で挿入すると、光反射が生じる。従って、反射防止層と組み合わせて、2層構造とする必要がある。一方、Yを主成分とする透明薄膜は、1層でも光反射を低減することができる。
従って、Yを主成分とする透明薄膜は、単層で、反射防止効果とアルカリバリア効果の両方の効果を奏する。
In the said invention, it is preferable that the said translucent board | substrate is glass which has an alkali component.
The transparent thin film containing Y 2 O 3 as a main component has not only a light transmission property improving function but also an alkali barrier function. Therefore, even when an alkali component is contained in the light-transmitting substrate, dispersion of the alkali component from the light-transmitting substrate to the transparent electrode layer can be prevented. A conventionally used alkali barrier film such as a SiO 2 film does not have a function of suppressing reflection loss at the interface between the light-transmitting substrate and the transparent electrode layer, and therefore light reflection occurs when inserted as a single layer. Therefore, it is necessary to combine with the antireflection layer to form a two-layer structure. On the other hand, the transparent thin film containing Y 2 O 3 as a main component can reduce light reflection even with a single layer.
Therefore, the transparent thin film containing Y 2 O 3 as a main component is a single layer and exhibits both an antireflection effect and an alkali barrier effect.

上記発明においては、前記透光性基板の前記透明薄膜が設けられた面の反対側の面に、MgF又は多孔質シリカを主成分とする反射防止層が設けられることが好ましい。
MgF又は多孔質シリカは、透光性基板よりも低い屈折率を有する。そのため、反射防止層を挿入することによって、空気/透光性基板界面での光反射を抑制し、光電変換層への透過光量をさらに増大させることができる。
In the above invention, the surface opposite to the surface on which the transparent thin film is provided in the transparent substrate, it is preferable that the antireflection layer mainly composed of MgF 2 or the porous silica are provided.
MgF 2 or porous silica has a lower refractive index than the translucent substrate. Therefore, by inserting an antireflection layer, light reflection at the air / translucent substrate interface can be suppressed, and the amount of light transmitted to the photoelectric conversion layer can be further increased.

上記発明においては、透光性基板と、該透光性基板上に設けられた透明電極層とを備え、前記透光性基板と前記透明電極層との間に、Yを主成分とする透明薄膜が設けられた透明電極層付き基板を提供する。このような透明電極層付き基板を光電変換装置に用いると、発電効率の高い光電変換装置とすることができる。 In the above invention, a translucent substrate and a transparent electrode layer provided on the translucent substrate are provided, and Y 2 O 3 is a main component between the translucent substrate and the transparent electrode layer. A substrate with a transparent electrode layer provided with a transparent thin film is provided. When such a substrate with a transparent electrode layer is used for a photoelectric conversion device, a photoelectric conversion device with high power generation efficiency can be obtained.

本発明は、光透過特性向上機能とアルカリバリア機能を兼ね備えた単層の透明薄膜を、透光性基板と透明電極層との間に挿入することによって、光電変換層への光透過率を向上させ、発電効率の高い光電変換装置を提供する。   The present invention improves the light transmittance to the photoelectric conversion layer by inserting a single-layer transparent thin film having a light transmission property improving function and an alkali barrier function between the light-transmitting substrate and the transparent electrode layer. A photoelectric conversion device with high power generation efficiency.

本発明に係る光電変換装置の構成を模式的に示した断面図である。It is sectional drawing which showed typically the structure of the photoelectric conversion apparatus which concerns on this invention. 本発明に係る光電変換装置として、太陽電池パネルを製造する一実施形態を説明する概略図である。It is the schematic explaining one Embodiment which manufactures a solar cell panel as a photoelectric conversion apparatus which concerns on this invention. 本発明に係る光電変換装置として、太陽電池パネルを製造する一実施形態を説明する概略図である。It is the schematic explaining one Embodiment which manufactures a solar cell panel as a photoelectric conversion apparatus which concerns on this invention. 本発明に係る光電変換装置として、太陽電池パネルを製造する一実施形態を説明する概略図である。It is the schematic explaining one Embodiment which manufactures a solar cell panel as a photoelectric conversion apparatus which concerns on this invention. 本発明に係る光電変換装置として、太陽電池パネルを製造する一実施形態を説明する概略図である。It is the schematic explaining one Embodiment which manufactures a solar cell panel as a photoelectric conversion apparatus which concerns on this invention. 透明薄膜を挿入した場合の光透過率を示す。図6(a)は理想媒質A、図6(b)はAl、図6(c)はMgO、図6(d)はYを挿入した場合である。The light transmittance when a transparent thin film is inserted is shown. 6 (a) shows the ideal medium A, FIG. 6 (b) Al 2 O 3, FIG. 6 (c) MgO, FIG. 6 (d) is a case of inserting the Y 2 O 3. 両面反射防止基板の透過率及び反射率の測定結果を示す。The measurement result of the transmittance | permeability and reflectance of a double-sided antireflection board | substrate is shown. 両面反射防止基板の透過率の測定及び計算結果を示す。The measurement and calculation result of the transmittance | permeability of a double-sided antireflection board | substrate are shown.

図1は、本発明の光電変換装置の構成を示す概略図である。光電変換装置90は、タンデム型シリコン系太陽電池であり、透光性基板1、透明薄膜201、透明電極層2、太陽電池光電変換層3としての第1セル層91(非晶質シリコン系)及び第2セル層92(結晶質シリコン系)、中間コンタクト層93、及び裏面電極層4を備える。なお、ここで、シリコン系とはシリコン(Si)やシリコンカーバイト(SiC)やシリコンゲルマニウム(SiGe)を含む総称である。また、結晶質シリコン系とは、非晶質シリコン系以外のシリコン系を意味するものであり、微結晶シリコンや多結晶シリコンも含まれる。   FIG. 1 is a schematic diagram illustrating a configuration of a photoelectric conversion device of the present invention. The photoelectric conversion device 90 is a tandem type silicon solar cell, and the first cell layer 91 (amorphous silicon type) as the translucent substrate 1, the transparent thin film 201, the transparent electrode layer 2, and the solar cell photoelectric conversion layer 3. And a second cell layer 92 (crystalline silicon), an intermediate contact layer 93, and the back electrode layer 4. Here, the silicon-based is a generic name including silicon (Si), silicon carbide (SiC), and silicon germanium (SiGe). Further, the crystalline silicon system means a silicon system other than the amorphous silicon system, and includes microcrystalline silicon and polycrystalline silicon.

本実施形態に係る光電変換装置の製造方法を、太陽電池パネルを製造する工程を例に挙げて説明する。図2から図5は、本実施形態の太陽電池パネルの製造方法を示す概略図である。   A method for manufacturing a photoelectric conversion device according to this embodiment will be described by taking a process for manufacturing a solar cell panel as an example. 2 to 5 are schematic views showing a method for manufacturing the solar cell panel of the present embodiment.

(1)図2(a)
透光性基板1としてソーダフロートガラス基板(例えば1.4m×1.1m×板厚:3.5mm〜4.5mm)を使用する。基板端面は熱応力や衝撃などによる破損防止にコーナー面取りやR面取り加工されていることが望ましい。
(1) FIG. 2 (a)
A soda float glass substrate (for example, 1.4 m × 1.1 m × plate thickness: 3.5 mm to 4.5 mm) is used as the translucent substrate 1. The end face of the substrate is preferably subjected to corner chamfering or R chamfering to prevent damage due to thermal stress or impact.

透明薄膜201は、蒸着源としてYのバルクを用い、基板温度300℃で蒸着により製膜する。基板温度は、常温から300℃まで選択できる。蒸着雰囲気は真空でも良いし、酸化性ガス雰囲気での反応性蒸着法としても良い。ガス種と分圧は透明薄膜201の光学的特性、特に、透明性を高めるように適宜条件選定すれば良い。透明薄膜201の(平均)膜厚は、式(1)から算出し、70nmから90nmとする。中心波長は、光電変換装置の量子効率と太陽光スペクトルを掛け合わせて求めた波長特性関数の最高点近傍の波長とする。本実施形態での中心波長は500〜600nm程度とする。すなわち、量子効率が高く、太陽光強度が高い波長において、最も透過性を高めることができるようにする。
d=λ/4×1/n・・・(1)
(d:膜厚(nm)、λ:中心波長(nm)、n:当該薄膜の屈折率)
The transparent thin film 201 is formed by vapor deposition at a substrate temperature of 300 ° C. using a bulk of Y 2 O 3 as a vapor deposition source. The substrate temperature can be selected from room temperature to 300 ° C. The vapor deposition atmosphere may be a vacuum or a reactive vapor deposition method in an oxidizing gas atmosphere. The gas type and partial pressure may be selected as appropriate so as to enhance the optical characteristics of the transparent thin film 201, particularly the transparency. The (average) film thickness of the transparent thin film 201 is calculated from the equation (1) and is set to 70 nm to 90 nm. The center wavelength is a wavelength near the highest point of the wavelength characteristic function obtained by multiplying the quantum efficiency of the photoelectric conversion device and the sunlight spectrum. The center wavelength in this embodiment is about 500 to 600 nm. That is, the transmittance can be enhanced most at a wavelength with high quantum efficiency and high sunlight intensity.
d = λ / 4 × 1 / n (1)
(D: film thickness (nm), λ: center wavelength (nm), n: refractive index of the thin film)

透光性基板1の透明薄膜201を製膜した面と反対側の面に、反射防止層を設けても良い。反射防止層202は、蒸着源としてMgFのバルクを用い、基板温度300℃で蒸着により製膜する。基板温度は、常温から300℃まで選択できる。蒸着雰囲気は、真空である。反射防止層202の(平均)膜厚は、透明薄膜201と同様に式(1)から算出し、90nmから110nmとする。
なお、反射防止層202にはMgFを用いたが、多孔質シリカであっても良い。多孔質シリカは、空孔を設けて、屈折率を1.23に近づけたものを使用する。多孔質シリカの場合には、(平均)膜厚は、透明薄膜201と同様に式(1)から算出し、100nmから120nmとする。
また、透明薄膜201及び反射防止層202の製膜方法には蒸着を採用したが、スパッタ法であっても良い。
An antireflection layer may be provided on the surface opposite to the surface on which the transparent thin film 201 of the translucent substrate 1 is formed. The antireflection layer 202 is formed by vapor deposition at a substrate temperature of 300 ° C. using a bulk of MgF 2 as a vapor deposition source. The substrate temperature can be selected from room temperature to 300 ° C. The deposition atmosphere is a vacuum. The (average) film thickness of the antireflection layer 202 is calculated from the equation (1) in the same manner as the transparent thin film 201 and is set to 90 nm to 110 nm.
Although using a MgF 2 for antireflection layer 202 may be a porous silica. As the porous silica, those having pores and having a refractive index close to 1.23 are used. In the case of porous silica, the (average) film thickness is calculated from the formula (1) in the same manner as the transparent thin film 201, and is 100 nm to 120 nm.
Moreover, although vapor deposition was employ | adopted as the film-forming method of the transparent thin film 201 and the antireflection layer 202, a sputtering method may be used.

(2)図2(b)
透明電極層2として、GZO(GaドープZnO)を主成分とする膜厚約500nm以上3000nm以下の透明導電膜を、スパッタリング装置により約150℃で製膜する。製膜温度は常温から200℃まで選択できる。この際、透明導電膜の表面には、適当な凹凸のあるテクスチャーが形成される。テクスチャーの形状が不充分である場合には、製膜後に、湿式で、エッチング処理を実施して、所望のテクスチャー形状に調整すれば良い。エッチング液は、希塩酸を用いる。濃度と液温と処理時間は適宜調節すれば良い。
なお、透明電極層2の製造方法はスパッタ法を採用したが、MOCVD法や熱CVD法であっても良い。透明電極層2としてGZOを用いたが、AZO(AlドープZnO)、SnO:Fであっても良い。
(2) FIG. 2 (b)
As the transparent electrode layer 2, a transparent conductive film having a thickness of about 500 nm to 3000 nm mainly composed of GZO (Ga-doped ZnO) is formed at about 150 ° C. by a sputtering apparatus. The film forming temperature can be selected from room temperature to 200 ° C. At this time, a texture with appropriate irregularities is formed on the surface of the transparent conductive film. When the texture shape is insufficient, it may be adjusted to a desired texture shape by wet etching after film formation. As the etching solution, dilute hydrochloric acid is used. The concentration, liquid temperature, and treatment time may be adjusted as appropriate.
In addition, although the sputtering method was employ | adopted as the manufacturing method of the transparent electrode layer 2, MOCVD method and thermal CVD method may be sufficient. Although GZO is used as the transparent electrode layer 2, AZO (Al-doped ZnO) or SnO 2 : F may be used.

(3)図2(c)
その後、基板1をX−Yテーブルに設置して、YAGレーザーの第1高調波(1064nm)を、図の矢印に示すように、透明導電膜の膜面側から照射する。加工速度に適切となるようにレーザーパワーを調整して、透明導電膜を発電セルの直列接続方向に対して垂直な方向へ、基板1とレーザー光を相対移動して、溝10を形成するように幅約6mmから15mmの所定幅の短冊状にレーザーエッチングする。
(3) FIG. 2 (c)
Thereafter, the substrate 1 is placed on an XY table, and the first harmonic (1064 nm) of the YAG laser is irradiated from the film surface side of the transparent conductive film as indicated by the arrow in the figure. The laser power is adjusted to be suitable for the processing speed, and the transparent conductive film is moved relative to the direction perpendicular to the series connection direction of the power generation cells so that the substrate 1 and the laser beam are moved relative to each other to form the groove 10. And laser etching into a strip shape having a predetermined width of about 6 mm to 15 mm.

(4)図2(d)
第1セル層91として、非晶質シリコン薄膜からなるp層、i層及びn層を、プラズマCVD装置により製膜する。SiHガス及びHガスを主原料にして、減圧雰囲気:30Pa以上1000Pa以下、基板温度:約200℃にて、透明電極層2上に太陽光の入射する側から非晶質シリコンp層、非晶質シリコンi層、非晶質シリコンn層の順で製膜する。非晶質シリコンp層は非晶質のBドープシリコンを主とし、膜厚10nm以上30nm以下である。非晶質シリコンi層は、膜厚200nm以上350nm以下である。非晶質シリコンn層は、非晶質シリコンに微結晶シリコンを含有するPドープシリコンを主とし、膜厚30nm以上50nm以下である。非晶質シリコンp層と非晶質シリコンi層の間には、界面特性の向上のためにバッファー層を設けても良い。
(4) FIG. 2 (d)
As the first cell layer 91, a p layer, an i layer, and an n layer made of an amorphous silicon thin film are formed by a plasma CVD apparatus. Using SiH 4 gas and H 2 gas as main raw materials, a reduced pressure atmosphere: 30 Pa to 1000 Pa, a substrate temperature: about 200 ° C., an amorphous silicon p layer on the transparent electrode layer 2 from the side on which sunlight is incident, An amorphous silicon i layer and an amorphous silicon n layer are formed in this order. The amorphous silicon p layer is mainly composed of amorphous B-doped silicon and has a thickness of 10 nm to 30 nm. The amorphous silicon i layer has a thickness of 200 nm to 350 nm. The amorphous silicon n layer is mainly P-doped silicon containing microcrystalline silicon in amorphous silicon and has a thickness of 30 nm to 50 nm. A buffer layer may be provided between the amorphous silicon p layer and the amorphous silicon i layer in order to improve interface characteristics.

次に、第1セル層91の上に、プラズマCVD装置により、減圧雰囲気:3000Pa以下、基板温度:約200℃、プラズマ発生周波数:40MHz以上100MHz以下にて、第2セル層92としての結晶質シリコンp層、結晶質シリコンi層、及び、結晶質シリコンn層を順次製膜する。結晶質シリコンp層はBドープした微結晶シリコンを主とし、膜厚10nm以上50nm以下である。結晶質シリコンi層は微結晶シリコンを主とし、膜厚は1.2μm以上3.0μm以下である。結晶質シリコンn層はPドープした微結晶シリコンを主とし、膜厚20nm以上50nm以下である。   Next, a crystalline material as the second cell layer 92 is formed on the first cell layer 91 by a plasma CVD apparatus at a reduced pressure atmosphere: 3000 Pa or less, a substrate temperature: about 200 ° C., and a plasma generation frequency: 40 MHz or more and 100 MHz or less. A silicon p layer, a crystalline silicon i layer, and a crystalline silicon n layer are sequentially formed. The crystalline silicon p layer is mainly composed of B-doped microcrystalline silicon and has a thickness of 10 nm to 50 nm. The crystalline silicon i layer is mainly microcrystalline silicon and has a film thickness of 1.2 μm or more and 3.0 μm or less. The crystalline silicon n layer is mainly P-doped microcrystalline silicon and has a film thickness of 20 nm to 50 nm.

微結晶シリコンを主とするi層膜をプラズマCVD法で形成するにあたり、プラズマ放電電極と基板1の表面との距離は、3mm以上10mm以下にすることが好ましい。3mmより小さい場合、大型基板に対応する製膜室内の各構成機器精度から距離を一定に保つことが難しくなるとともに、近過ぎて放電が不安定になる恐れがある。10mmより大きい場合、十分な製膜速度(1nm/s以上)を得難くなるとともに、プラズマの均一性が低下しイオン衝撃により膜質が低下する。   In forming the i-layer film mainly composed of microcrystalline silicon by the plasma CVD method, the distance between the plasma discharge electrode and the surface of the substrate 1 is preferably 3 mm or more and 10 mm or less. When it is smaller than 3 mm, it is difficult to keep the distance constant from the accuracy of each component device in the film forming chamber corresponding to the large substrate, and there is a possibility that the discharge becomes unstable because it is too close. When it is larger than 10 mm, it is difficult to obtain a sufficient film forming speed (1 nm / s or more), and the uniformity of the plasma is lowered and the film quality is lowered by ion bombardment.

第1セル層91と第2セル層92の間に、接触性を改善するとともに電流整合性を取るために半反射膜となる中間コンタクト層93を設ける。中間コンタクト層93として、膜厚:20nm以上100nm以下のGZO(GaドープZnO)膜を、ターゲット:GaドープZnO焼結体を用いてスパッタリング装置により製膜する。また、中間コンタクト層93を設けない場合もある。   An intermediate contact layer 93 serving as a semi-reflective film is provided between the first cell layer 91 and the second cell layer 92 in order to improve the contact property and achieve current matching. As the intermediate contact layer 93, a GZO (Ga-doped ZnO) film having a thickness of 20 nm to 100 nm is formed by sputtering using a target: Ga-doped ZnO sintered body. Further, the intermediate contact layer 93 may not be provided.

(5)図2(e)
基板1をX−Yテーブルに設置して、レーザーダイオード励起YAGレーザーの第2高調波(532nm)を、図の矢印に示すように、光電変換層3の膜面側から照射する。パルス発振:10kHzから20kHzとして、加工速度に適切となるようにレーザーパワーを調整して、透明電極層2のレーザーエッチングラインの約100μmから150μmの横側を、溝11を形成するようにレーザーエッチングする。またこのレーザーは基板1側から照射しても良く、この場合は光電変換層3の非晶質シリコン系の第1セル層で吸収されたエネルギーで発生する高い蒸気圧を利用して光電変換層3をエッチングできるので、更に安定したレーザーエッチング加工を行うことが可能となる。レーザーエッチングラインの位置は前工程でのエッチングラインと交差しないように位置決め公差を考慮して選定する。
(5) FIG. 2 (e)
The substrate 1 is placed on an XY table, and the second harmonic (532 nm) of the laser diode-pumped YAG laser is irradiated from the film surface side of the photoelectric conversion layer 3 as indicated by an arrow in the figure. Pulse oscillation: 10 kHz to 20 kHz, laser power is adjusted so as to be suitable for the processing speed, and laser etching is performed so that grooves 11 are formed on the lateral side of the laser etching line of the transparent electrode layer 2 from about 100 μm to 150 μm. To do. Further, this laser may be irradiated from the substrate 1 side. In this case, the photoelectric conversion layer is formed by utilizing a high vapor pressure generated by the energy absorbed in the amorphous silicon-based first cell layer of the photoelectric conversion layer 3. Since 3 can be etched, a more stable laser etching process can be performed. The position of the laser etching line is selected in consideration of positioning tolerances so as not to intersect with the etching line in the previous process.

(6)図3(a)
裏面電極層4としてAg膜/Ti膜を、スパッタリング装置により、減圧雰囲気、製膜温度:150℃から200℃にて製膜する。本実施形態では、Ag膜:150nm以上500nm以下、これを保護するものとして防食効果の高いTi膜:10nm以上20nm以下を、この順に積層する。あるいは、裏面電極層4を、25nmから100nmの膜厚を有するAg膜と、15nmから500nmの膜厚を有するAl膜との積層構造としても良い。結晶質シリコンn層と裏面電極層4との接触抵抗低減と光反射向上を目的に、光電変換層3と裏面電極層4との間に、スパッタリング装置により、膜厚:50nm以上100nm以下のGZO(GaドープZnO)膜を製膜して設けても良い。
(6) FIG. 3 (a)
An Ag film / Ti film is formed as the back electrode layer 4 by a sputtering apparatus at a reduced pressure atmosphere and at a film forming temperature of 150 ° C. to 200 ° C. In this embodiment, an Ag film: 150 nm to 500 nm and a Ti film having a high anticorrosion effect: 10 nm to 20 nm are stacked in this order as a protective film. Alternatively, the back electrode layer 4 may have a laminated structure of an Ag film having a thickness of 25 nm to 100 nm and an Al film having a thickness of 15 nm to 500 nm. For the purpose of reducing contact resistance between the crystalline silicon n layer and the back electrode layer 4 and improving light reflection, a GZO film having a thickness of 50 nm to 100 nm is formed between the photoelectric conversion layer 3 and the back electrode layer 4 by a sputtering apparatus. A (Ga-doped ZnO) film may be formed.

(7)図3(b)
基板1をX−Yテーブルに設置して、レーザーダイオード励起YAGレーザーの第2高調波(532nm)を、図の矢印に示すように、基板1側から照射する。レーザー光が光電変換層3で吸収され、このとき発生する高いガス蒸気圧を利用して裏面電極層4が爆裂して除去される。パルス発振:1kHz以上10kHz以下として加工速度に適切となるようにレーザーパワーを調整して、透明電極層2のレーザーエッチングラインの250μmから400μmの横側を、溝12を形成するようにレーザーエッチングする。
(7) FIG. 3 (b)
The substrate 1 is placed on an XY table, and the second harmonic (532 nm) of the laser diode-pumped YAG laser is irradiated from the substrate 1 side as indicated by the arrow in the figure. The laser light is absorbed by the photoelectric conversion layer 3, and the back electrode layer 4 is exploded and removed using the high gas vapor pressure generated at this time. Pulse oscillation: laser power is adjusted so as to be suitable for the processing speed from 1 kHz to 10 kHz, and laser etching is performed so that grooves 12 are formed on the lateral side of the laser etching line of the transparent electrode layer 2 from 250 μm to 400 μm. .

(8)図3(c)と図4(a)
発電領域を区分して、基板端周辺の膜端部をレーザーエッチングし、直列接続部分で短絡し易い影響を除去する。基板1をX−Yテーブルに設置して、レーザーダイオード励起YAGレーザーの第2高調波(532nm)を、基板1側から照射する。レーザー光が透明電極層2と光電変換層3で吸収され、このとき発生する高いガス蒸気圧を利用して裏面電極層4が爆裂して、裏面電極層4/光電変換層3/透明電極層2が除去される。パルス発振:1kHz以上10kHz以下として加工速度に適切となるようにレーザーパワーを調整して、基板1の端部から5mmから20mmの位置を、図3(c)に示すように、X方向絶縁溝15を形成するようにレーザーエッチングする。なお、図3(c)では、光電変換層3が直列に接続された方向に切断したX方向断面図となっているため、本来であれば絶縁溝15位置には裏面電極層4/光電変換層3/透明電極層2の膜研磨除去をした周囲膜除去領域14がある状態(図4(a)参照)が表れるべきであるが、基板1の端部への加工の説明の便宜上、この位置にY方向断面を表して形成された絶縁溝をX方向絶縁溝15として説明する。このとき、Y方向絶縁溝は後工程で基板1周囲膜除去領域の膜面研磨除去処理を行うので、設ける必要がない。
(8) FIG. 3 (c) and FIG. 4 (a)
The power generation region is divided, and the film edge around the substrate edge is laser-etched to eliminate the effect of short circuit at the serial connection portion. The substrate 1 is placed on an XY table, and the second harmonic (532 nm) of the laser diode pumped YAG laser is irradiated from the substrate 1 side. The laser light is absorbed by the transparent electrode layer 2 and the photoelectric conversion layer 3, and the back electrode layer 4 explodes using the high gas vapor pressure generated at this time, and the back electrode layer 4 / photoelectric conversion layer 3 / transparent electrode layer 2 is removed. Pulse oscillation: 1 kHz or more and 10 kHz or less, the laser power is adjusted so as to be suitable for the processing speed, and the position of 5 mm to 20 mm from the end of the substrate 1 is placed in the X-direction insulating groove as shown in FIG. Laser etching is performed to form 15. In addition, in FIG.3 (c), since it becomes X direction sectional drawing cut | disconnected in the direction in which the photoelectric converting layer 3 was connected in series, the back surface electrode layer 4 / photoelectric conversion is originally in the position of the insulating groove 15 A state (see FIG. 4A) where there is a peripheral film removal region 14 where the layer 3 / transparent electrode layer 2 is polished and removed should appear, but for convenience of explanation of processing to the end of the substrate 1, The insulating groove formed to represent the Y-direction cross section at the position will be described as the X-direction insulating groove 15. At this time, the Y-direction insulating groove does not need to be provided because the film surface polishing removal processing of the peripheral film removal region of the substrate 1 is performed in a later process.

絶縁溝15は基板1の端より5mmから15mmの位置にてエッチングを終了させることにより、太陽電池パネル端部からの太陽電池モジュール6内部への外部湿分浸入の抑制に、有効な効果を呈するので好ましい。   The insulating groove 15 exhibits an effective effect in suppressing external moisture intrusion into the solar cell module 6 from the end portion of the solar cell panel by terminating the etching at a position of 5 mm to 15 mm from the end of the substrate 1. Therefore, it is preferable.

尚、以上までの工程におけるレーザー光はYAGレーザーとしているが、YVO4レーザーやファイバーレーザーなどが同様に使用できるものがある。   In addition, although the laser beam in the above process is made into a YAG laser, there exists what can use a YVO4 laser, a fiber laser, etc. similarly.

(9)図4(a:太陽電池膜面側から見た図、b:受光面の基板側から見た図)
後工程のEVA等を介したバックシート24との健全な接着・シール面を確保するために、基板1周辺(周囲膜除去領域14)の積層膜は、段差があるとともに剥離し易いため、この膜を除去して周囲膜除去領域14を形成する。基板1の端から5〜20mmで基板1の全周囲にわたり膜を除去するにあたり、X方向は前述の図3(c)工程で設けた絶縁溝15よりも基板端側において、Y方向は基板端側部付近の溝10よりも基板端側において、裏面電極層4/光電変換層3/透明電極層2を、砥石研磨やブラスト研磨などを用いて除去を行う。
研磨屑や砥粒は基板1を洗浄処理して除去した。
(9) FIG. 4 (a: view from the solar cell film side, b: view from the substrate side of the light receiving surface)
Since the laminated film around the substrate 1 (peripheral film removal region 14) has a step and is easy to peel off in order to ensure a sound adhesion / seal surface with the back sheet 24 via EVA or the like in a later process, The film is removed to form a peripheral film removal region 14. In removing the film over the entire circumference of the substrate 1 at 5 to 20 mm from the end of the substrate 1, the X direction is closer to the substrate end than the insulating groove 15 provided in the step of FIG. The back electrode layer 4 / photoelectric conversion layer 3 / transparent electrode layer 2 are removed by using grinding stone polishing, blast polishing, or the like on the substrate end side with respect to the groove 10 near the side portion.
Polishing debris and abrasive grains were removed by cleaning the substrate 1.

(10)図5(a)(b)
端子箱23の取付け部分はバックシート24に開口貫通窓を設けて集電板を取出す。この開口貫通窓部分には絶縁材を複数層で設置して外部からの湿分などの浸入を抑制する。
直列に並んだ一方端の太陽電池発電セルと、他方端部の太陽電池発電セルとから銅箔を用いて集電して太陽電池パネル裏側の端子箱23の部分から電力が取出せるように処理する。銅箔は各部との短絡を防止するために銅箔幅より広い絶縁シートを配置する。
集電用銅箔などが所定位置に配置された後に、太陽電池モジュール6の全体を覆い、基板1からはみ出さないようにEVA(エチレン酢酸ビニル共重合体)等による接着充填材シートを配置する。
EVAの上に、防水効果の高いバックシート24を設置する。バックシート24は本実施形態では防水防湿効果が高いようにPETシート/Al箔/PETシートの3層構造よりなる。
バックシート24までを所定位置に配置したものを、ラミネータにより減圧雰囲気で内部の脱気を行い約150〜160℃でプレスしながら、EVAを架橋させて密着させる。
(10) FIGS. 5 (a) and 5 (b)
An attachment portion of the terminal box 23 is provided with an opening through window in the back sheet 24 to take out the current collector plate. Insulating materials are installed in a plurality of layers in the opening through window portion to suppress intrusion of moisture and the like from the outside.
Processing so that power can be taken out from the terminal box 23 on the back side of the solar battery panel by collecting copper foil from one end of the photovoltaic power generation cells arranged in series and the other end of the solar power generation cell. To do. In order to prevent a short circuit with each part, the copper foil arranges an insulating sheet wider than the copper foil width.
After the current collecting copper foil or the like is disposed at a predetermined position, an adhesive filler sheet made of EVA (ethylene vinyl acetate copolymer) or the like is disposed so as to cover the entire solar cell module 6 and not protrude from the substrate 1. .
A back sheet 24 having a high waterproof effect is installed on the EVA. In this embodiment, the back sheet 24 has a three-layer structure of PET sheet / Al foil / PET sheet so that the waterproof and moisture-proof effect is high.
The EVA sheet is placed in a predetermined position until the back sheet 24 is deaerated with a laminator in a reduced pressure atmosphere and pressed at about 150 to 160 ° C., and EVA is crosslinked and brought into close contact.

(11)図5(a)
太陽電池モジュール6の裏側に端子箱23を接着剤で取付ける。
(12)図5(b)
銅箔と端子箱23の出力ケーブルとをハンダ等で接続し、端子箱23の内部を封止剤(ポッティング剤)で充填して密閉する。これで太陽電池パネル50が完成する。
(13)図5(c)
図5(b)までの工程で形成された太陽電池パネル50について発電検査ならびに、所定の性能試験を行う。発電検査は、AM1.5、全天日射基準太陽光(1000W/m)のソーラシミュレータを用いて行う。
(14)図5(d)
発電検査(図5(c))に前後して、外観検査をはじめ所定の性能検査を行う。
(11) FIG. 5 (a)
The terminal box 23 is attached to the back side of the solar cell module 6 with an adhesive.
(12) FIG. 5 (b)
The copper foil and the output cable of the terminal box 23 are connected by solder or the like, and the inside of the terminal box 23 is filled with a sealing agent (potting agent) and sealed. Thus, the solar cell panel 50 is completed.
(13) FIG. 5 (c)
A power generation inspection and a predetermined performance test are performed on the solar cell panel 50 formed in the steps up to FIG. The power generation inspection is performed using a solar simulator of AM1.5 and solar radiation standard sunlight (1000 W / m 2 ).
(14) FIG. 5 (d)
Before and after the power generation inspection (FIG. 5C), a predetermined performance inspection is performed including an appearance inspection.

以下に、透明薄膜材料の決定根拠について説明する。
(理想媒質Aの条件)
透光性基板1と透明電極層2との間に挿入する透明薄膜201に用いる理想媒質Aの条件(屈折率、膜厚)を推定した。
透光性基板1はバリウムホウケイ酸ガラス(コーニング社製、#7059)、透明電極層2はGZO膜とした。理想媒質Aの屈折率は、式(2)から算出した。
=√n×√n・・・(2)
(n:理想媒質Aの屈折率、n:透光性基板の屈折率、n:透明電極層の屈折率)
The basis for determining the transparent thin film material will be described below.
(Conditions for ideal medium A)
The conditions (refractive index, film thickness) of the ideal medium A used for the transparent thin film 201 inserted between the translucent substrate 1 and the transparent electrode layer 2 were estimated.
The translucent substrate 1 was barium borosilicate glass (Corning Corp., # 7059), and the transparent electrode layer 2 was a GZO film. The refractive index of the ideal medium A was calculated from equation (2).
n A = √n g × √n t (2)
(N A : refractive index of ideal medium A, n g : refractive index of translucent substrate, n t : refractive index of transparent electrode layer)

上記結果を表1に示す。表1より、320nmから900nmの間で、屈折率が1.85から1.63である材料が、理想媒質Aになり得ることを確認した。

Figure 2011049460
The results are shown in Table 1. From Table 1, it was confirmed that a material having a refractive index of 1.85 to 1.63 between 320 nm and 900 nm can be the ideal medium A.
Figure 2011049460

(実在材料の選定)
320nmから900nmの間で、屈折率が1.85から1.63付近であり、広帯域(350から1000nm)で透明性が高い材料として、Al、MgO、Yを選定した。波長550nmにおける各材料の屈折率は、それぞれ、1.77、1.74、1.78であった。
(Selection of actual materials)
Al 2 O 3 , MgO, and Y 2 O 3 were selected as materials having a high refractive index between 320 nm and 900 nm and a refractive index of 1.85 to 1.63 and a wide band (350 to 1000 nm). The refractive indexes of the materials at the wavelength of 550 nm were 1.77, 1.74, and 1.78, respectively.

透明薄膜201として理想媒質A、Al、MgO、Yを用いた場合の#7059/GZO界面での光透過率を、光学薄膜計算ソフト(サイバネット社 OPTAS−FILM)を用いて算出した。透明薄膜201の膜厚は、式(3)から算出した値(理想媒質A:70nm、Al:80nm、MgO:80nm、Y:77nm)とした。
d=λ/4×1/n・・・(3)
(d:膜厚(nm)、λ:中心波長(nm)、n:屈折率)
比較例1として、理想媒質A:0nmを用いた場合の光透過率も算出した。
When the ideal medium A, Al 2 O 3 , MgO, and Y 2 O 3 are used as the transparent thin film 201, the light transmittance at the # 7059 / GZO interface is calculated using optical thin film calculation software (Cybernet OPTAS-FILM). Calculated. The film thickness of the transparent thin film 201 was a value calculated from the formula (3) (ideal medium A: 70 nm, Al 2 O 3 : 80 nm, MgO: 80 nm, Y 2 O 3 : 77 nm).
d = λ / 4 × 1 / n (3)
(D: film thickness (nm), λ: center wavelength (nm), n: refractive index)
As Comparative Example 1, the light transmittance when the ideal medium A: 0 nm was used was also calculated.

図6(a)は、透明薄膜201として理想媒質Aを挿入した場合のGZO膜への光透過率を示す。光の入射側から、透光性基板/理想媒質A/透明電極層の層構成としており、各層は無限に平行に配置されている。透光性基板から透明電極層への光の透過率を計算で求めた結果である。同図において、横軸は波長、縦軸はGZO膜への光透過率である。中心波長450nmにおいて、比較例1と比べて、透過率が約2.0%向上した。
図6(b)は、透明薄膜201としてAlを挿入した場合のGZO膜への光透過率を示す。同図において、横軸は波長、縦軸はGZO膜への光透過率である。中心波長550nmにおいて、比較例1と比べて、透過率が約1.5%向上した。
図6(c)は、透明薄膜201としてMgOを挿入した場合のGZO膜への光透過率を示す。同図において、横軸は波長、縦軸はGZO膜への光透過率である。中心波長550nmにおいて、比較例1と比べて、透過率が約1.5%向上した。
図6(d)は、透明薄膜201としてYを挿入した場合のGZO膜への光透過率を示す。同図において、横軸は波長、縦軸はGZO膜への光透過率である。中心波長550nmにおいて、比較例1と比べて、透過率が約1.5%向上した。
上記結果によれば、透明薄膜201としてAl、MgO、Yのいずれの材料を用いた場合でも、透過率は向上することが明らかとなった。また、短波長側で光透過率が極大となっていることから、上記材料を使用した場合、短波長を吸収する第1セル層に対する入射光量増加機能が高くなる。なお、データは示さないが、実在材料として、屈折率を1.79に調整したTiOとSiOとの混合膜(50%TiO−50%SiO)でも、同様に透過率は向上した。
FIG. 6A shows the light transmittance to the GZO film when the ideal medium A is inserted as the transparent thin film 201. From the light incident side, a layer structure of translucent substrate / ideal medium A / transparent electrode layer is formed, and each layer is arranged infinitely in parallel. It is the result of calculating | requiring the transmittance | permeability of the light from a translucent board | substrate to a transparent electrode layer by calculation. In the figure, the horizontal axis represents the wavelength, and the vertical axis represents the light transmittance to the GZO film. Compared with Comparative Example 1, the transmittance was improved by about 2.0% at the center wavelength of 450 nm.
FIG. 6B shows the light transmittance to the GZO film when Al 2 O 3 is inserted as the transparent thin film 201. In the figure, the horizontal axis represents the wavelength, and the vertical axis represents the light transmittance to the GZO film. Compared to Comparative Example 1, the transmittance was improved by about 1.5% at the center wavelength of 550 nm.
FIG. 6C shows the light transmittance to the GZO film when MgO is inserted as the transparent thin film 201. In the figure, the horizontal axis represents the wavelength, and the vertical axis represents the light transmittance to the GZO film. Compared to Comparative Example 1, the transmittance was improved by about 1.5% at the center wavelength of 550 nm.
FIG. 6D shows the light transmittance to the GZO film when Y 2 O 3 is inserted as the transparent thin film 201. In the figure, the horizontal axis represents the wavelength, and the vertical axis represents the light transmittance to the GZO film. Compared to Comparative Example 1, the transmittance was improved by about 1.5% at the center wavelength of 550 nm.
From the above results, it was found that the transmittance was improved when any material of Al 2 O 3 , MgO, and Y 2 O 3 was used as the transparent thin film 201. Further, since the light transmittance is maximized on the short wavelength side, when the above material is used, the function of increasing the amount of incident light with respect to the first cell layer that absorbs the short wavelength is enhanced. Although data not shown, as a real material, the improved mixed film (50% TiO 2 -50% SiO 2) But likewise transmittance of TiO 2 and SiO 2 with an adjusted refractive index 1.79 .

(両面反射防止基板の吸収の確認)
透光性基板1の光入射側に反射防止層202を設け、これと反対面に透明薄膜201を設け、両面反射防止基板を作製した。
透光性基板1には、アルミノホウケイ酸ガラス(コーニング社製、#1737、50mm×50mm×板厚:1.1mm)を用いた。透光性基板1の光入射側に、MgFを主成分とする反射防止層202を製膜した。透光性基板1の反射防止層202を製膜した面と反対面に、Yを主成分とする透明薄膜201を製膜した。反射防止層202及び透明薄膜201の(平均)膜厚は、それぞれ100nm、77nmとした。該膜厚は、中心波長550nmでのMgF及びYの屈折率をそれぞれ1.38、1.78とし、上述の式(4)から算出した。
(Confirmation of absorption of double-sided antireflection substrate)
An antireflection layer 202 was provided on the light incident side of the translucent substrate 1, and a transparent thin film 201 was provided on the opposite surface to produce a double-sided antireflection substrate.
As the translucent substrate 1, aluminoborosilicate glass (manufactured by Corning, # 1737, 50 mm × 50 mm × plate thickness: 1.1 mm) was used. An antireflection layer 202 mainly composed of MgF 2 was formed on the light incident side of the translucent substrate 1. A transparent thin film 201 containing Y 2 O 3 as a main component was formed on the surface opposite to the surface on which the antireflection layer 202 of the translucent substrate 1 was formed. The (average) film thicknesses of the antireflection layer 202 and the transparent thin film 201 were 100 nm and 77 nm, respectively. The film thickness was calculated from the above formula (4) with the refractive indexes of MgF 2 and Y 2 O 3 at the center wavelength of 550 nm being 1.38 and 1.78, respectively.

#1737及び上記で作製した両面反射防止基板の透過率及び反射率を、分光光度計(
HITACHI U−3500 積分球(φ60)付属)を用いて測定した。図7に、上記測定結果を示す。同図において、横軸は波長、縦軸は光透過率と光反射率の和である。
400nm以上の波長において、両面反射防止基板の光透過率と光反射率の和は、#1737と同様にほぼ100%であった。これによって、上記方法で作製したMgF及びYからなる膜には、吸収がないことが確認できた。
The transmittance and reflectance of # 1737 and the double-sided antireflection substrate produced above were measured using a spectrophotometer (
It was measured using a HITACHI U-3500 integrating sphere (φ60). FIG. 7 shows the measurement results. In the figure, the horizontal axis represents wavelength, and the vertical axis represents the sum of light transmittance and light reflectance.
At a wavelength of 400 nm or more, the sum of the light transmittance and the light reflectance of the double-sided antireflection substrate was almost 100% as in # 1737. Accordingly, it was confirmed that the film made of MgF 2 and Y 2 O 3 produced by the above method had no absorption.

(両面反射防止基板の光透過率)
図8に、上記で測定した両面反射防止基板の光透過率を示す。図8において、横軸は波長、縦軸は光透過率である。比較例2は、反射防止層202にMgF、透明薄膜201にYを用いた場合の予想される光透過率(計算値)である。この計算は、光の入射側から、空気/MgF/ガラス基板/Y/空気の層構成で、光学薄膜計算ソフト(サイバネット社、OPTAS−FILM)を用いて実施した。両面反射防止基板の光透過率(実測値)は、予想される光透過率とほぼ同様に推移した。実測値は、計算の層構成と同じく、MgF面に光を入射させて、Yからの出射光を計測した。両面反射防止基板の周囲の媒質は空気であり、計算の層構成と同じである。これによって、本実施形態によれば、計算結果とほぼ等しく、光透過特性向上効果が得られることが示された。
(Light transmittance of double-sided anti-reflection substrate)
FIG. 8 shows the light transmittance of the double-sided antireflection substrate measured above. In FIG. 8, the horizontal axis represents wavelength, and the vertical axis represents light transmittance. Comparative Example 2 is an expected light transmittance (calculated value) when MgF 2 is used for the antireflection layer 202 and Y 2 O 3 is used for the transparent thin film 201. This calculation was performed using optical thin film calculation software (Cybernet, OPTAS-FILM) with a layer configuration of air / MgF 2 / glass substrate / Y 2 O 3 / air from the light incident side. The light transmittance (actually measured value) of the double-sided antireflection substrate was changed in substantially the same manner as the expected light transmittance. The actual measurement value was measured by measuring the light emitted from Y 2 O 3 by making light incident on the MgF 2 surface in the same manner as in the calculation layer configuration. The medium around the double-sided antireflection substrate is air, which is the same as the calculated layer structure. Thus, according to the present embodiment, it was shown that the light transmission characteristic improvement effect can be obtained almost equal to the calculation result.

MgFからなる反射防止層202のみを透光性基板1の光入射側に設けた場合、空気/透光性基板界面での光反射損失低減効果は、2.5%であった。透明薄膜201の光透過率向上効果が1.5%であったことから、透光性基板1の両面に反射防止層202を挿入することで、約4%の光反射損失低減効果を得ることができる。 When only the antireflection layer 202 made of MgF 2 was provided on the light incident side of the translucent substrate 1, the light reflection loss reduction effect at the air / translucent substrate interface was 2.5%. Since the light transmittance improvement effect of the transparent thin film 201 was 1.5%, the light reflection loss reduction effect of about 4% can be obtained by inserting the antireflection layer 202 on both surfaces of the translucent substrate 1. Can do.

を主成分とする透明薄膜のアルカリバリア特性を確認した。検討に用いた透明薄膜の膜厚は、30nmから100nmとした。データは示さないが、Yを主成分とする透明薄膜は、30nm以上100nm以下の膜厚で、アルカリバリア効果を発揮することが確認された。 The Y 2 O 3 was confirmed alkali barrier properties of the transparent thin film mainly. The film thickness of the transparent thin film used for the study was 30 nm to 100 nm. Data is not shown, transparent thin film composed mainly of Y 2 O 3 is at 100nm following thickness above 30 nm, was confirmed to exert an alkali barrier effect.

上記実施形態によれば、屈折率が理想媒質Aに近い値の材料(Al、MgO、TiO−SiO混合膜等)であれば、透光性基板/透明電極層界面での光反射を低減することは可能である。しかし、そのような材料の中でも、Yを所定の膜厚で挿入することで、反射防止機能だけでなく、アルカリバリア機能も兼ね備えた透明薄膜201とすることができる。 According to the above embodiment, if the material has a refractive index close to that of the ideal medium A (Al 2 O 3 , MgO, TiO 2 —SiO 2 mixed film, etc.), the translucent substrate / transparent electrode layer interface is used. It is possible to reduce light reflection. However, among such materials, by inserting Y 2 O 3 with a predetermined thickness, the transparent thin film 201 having not only an antireflection function but also an alkali barrier function can be obtained.

上記実施形態では太陽電池として、タンデム型太陽電池について説明したが、本発明は、この例に限定されるものではない。例えば、アモルファスシリコン太陽電池、微結晶シリコンをはじめとする結晶質シリコン太陽電池、シリコンゲルマニウム太陽電池、また、トリプル型太陽電池などの他の種類の薄膜太陽電池にも同様に適用可能である。   Although the tandem solar cell has been described as the solar cell in the above embodiment, the present invention is not limited to this example. For example, the present invention can be similarly applied to other types of thin film solar cells such as amorphous silicon solar cells, crystalline silicon solar cells including microcrystalline silicon, silicon germanium solar cells, and triple solar cells.

1 透光性基板
2 透明電極層
3 光電変換層
4 裏面電極層
6 太陽電池モジュール
90 光電変換装置
91 第1セル層
92 第2セル層
93 中間コンタクト層
201 透明薄膜
202 反射防止層
DESCRIPTION OF SYMBOLS 1 Translucent board | substrate 2 Transparent electrode layer 3 Photoelectric conversion layer 4 Back surface electrode layer 6 Solar cell module 90 Photoelectric conversion apparatus 91 1st cell layer 92 2nd cell layer 93 Intermediate contact layer 201 Transparent thin film 202 Antireflection layer

Claims (5)

透光性基板と、
該透光性基板上に設けられた透明電極層及び光電変換層とを備え、
前記透光性基板と前記透明電極層との間に、Yを主成分とする透明薄膜が設けられた光電変換装置。
A translucent substrate;
A transparent electrode layer and a photoelectric conversion layer provided on the translucent substrate;
A photoelectric conversion device in which a transparent thin film mainly composed of Y 2 O 3 is provided between the translucent substrate and the transparent electrode layer.
前記光電変換層を少なくとも2つ以上備えた請求項1に記載の光電変換装置。   The photoelectric conversion device according to claim 1, comprising at least two photoelectric conversion layers. 前記透光性基板が、アルカリ成分を有するガラスである請求項1に記載の光電変換装置。   The photoelectric conversion device according to claim 1, wherein the translucent substrate is glass having an alkali component. 前記透光性基板の前記透明薄膜が設けられた面の反対側の面に、MgF又は多孔質シリカを主成分とする反射防止層が設けられた請求項1に記載の光電変換装置。 The photoelectric conversion device according to claim 1, wherein an antireflection layer containing MgF 2 or porous silica as a main component is provided on a surface opposite to the surface on which the transparent thin film is provided on the translucent substrate. 透光性基板と、
該透光性基板上に設けられた透明電極層とを備え、
前記透光性基板と前記透明電極層との間に、Yを主成分とする透明薄膜が設けられた透明電極層付き基板。
A translucent substrate;
A transparent electrode layer provided on the translucent substrate,
Wherein between the transparent substrate and the transparent electrode layer, a transparent thin film is a transparent electrode layer-substrate provided mainly composed of Y 2 O 3.
JP2009198264A 2009-08-28 2009-08-28 Photoelectric converter and substrate with transparent electrode layer Pending JP2011049460A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009198264A JP2011049460A (en) 2009-08-28 2009-08-28 Photoelectric converter and substrate with transparent electrode layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009198264A JP2011049460A (en) 2009-08-28 2009-08-28 Photoelectric converter and substrate with transparent electrode layer

Publications (1)

Publication Number Publication Date
JP2011049460A true JP2011049460A (en) 2011-03-10

Family

ID=43835484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009198264A Pending JP2011049460A (en) 2009-08-28 2009-08-28 Photoelectric converter and substrate with transparent electrode layer

Country Status (1)

Country Link
JP (1) JP2011049460A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013018287A1 (en) * 2011-07-29 2013-02-07 三洋電機株式会社 Photovoltaic device
JP2013175690A (en) * 2012-02-27 2013-09-05 Yamagata Univ Method of assisting manufacturing multilayer substrate, method of manufacturing multilayer substrate, method of identifying failure cause, manufacture assisting program for multilayer substrate, and multilayer substrate
JP2016127179A (en) * 2015-01-06 2016-07-11 三菱電機株式会社 Thin film solar cell and manufacturing method thereof
CN116828671A (en) * 2023-08-30 2023-09-29 深圳市洛丁光电有限公司 Intelligent street lamp control method, system and storage medium based on edge computing gateway

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07242442A (en) * 1994-03-01 1995-09-19 Nippon Soda Co Ltd Glass with transparent conductive film and production of transparent conductive film
JP2004288693A (en) * 2003-03-19 2004-10-14 Dainippon Printing Co Ltd Transparent substrate film
JP2006005021A (en) * 2004-06-15 2006-01-05 Nippon Sheet Glass Co Ltd Substrate with rough thin-film and its manufacturing method
JP2006245073A (en) * 2005-02-28 2006-09-14 Dainippon Printing Co Ltd Organic thin-film solar cell
JP2009193911A (en) * 2008-02-18 2009-08-27 Sony Corp Dye-sensitized photoelectric conversion element and its manufacturing method, dye-sensitized photoelectric conversion element module and its manufacturing method, electronic device, and method for manufacturing porous silica film

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07242442A (en) * 1994-03-01 1995-09-19 Nippon Soda Co Ltd Glass with transparent conductive film and production of transparent conductive film
JP2004288693A (en) * 2003-03-19 2004-10-14 Dainippon Printing Co Ltd Transparent substrate film
JP2006005021A (en) * 2004-06-15 2006-01-05 Nippon Sheet Glass Co Ltd Substrate with rough thin-film and its manufacturing method
JP2006245073A (en) * 2005-02-28 2006-09-14 Dainippon Printing Co Ltd Organic thin-film solar cell
JP2009193911A (en) * 2008-02-18 2009-08-27 Sony Corp Dye-sensitized photoelectric conversion element and its manufacturing method, dye-sensitized photoelectric conversion element module and its manufacturing method, electronic device, and method for manufacturing porous silica film

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013018287A1 (en) * 2011-07-29 2013-02-07 三洋電機株式会社 Photovoltaic device
JP2013175690A (en) * 2012-02-27 2013-09-05 Yamagata Univ Method of assisting manufacturing multilayer substrate, method of manufacturing multilayer substrate, method of identifying failure cause, manufacture assisting program for multilayer substrate, and multilayer substrate
JP2016127179A (en) * 2015-01-06 2016-07-11 三菱電機株式会社 Thin film solar cell and manufacturing method thereof
CN116828671A (en) * 2023-08-30 2023-09-29 深圳市洛丁光电有限公司 Intelligent street lamp control method, system and storage medium based on edge computing gateway
CN116828671B (en) * 2023-08-30 2023-11-07 深圳市洛丁光电有限公司 Intelligent street lamp control method, system and storage medium based on edge computing gateway

Similar Documents

Publication Publication Date Title
WO2010097975A1 (en) Photoelectric conversion device
JPWO2008120498A1 (en) Photoelectric conversion device and manufacturing method thereof
JP5022341B2 (en) Photoelectric conversion device
JP2011049460A (en) Photoelectric converter and substrate with transparent electrode layer
WO2009119125A1 (en) Photoelectric converter
JP5254917B2 (en) Method for manufacturing photoelectric conversion device
WO2011040078A1 (en) Photoelectric conversion device
WO2011030598A1 (en) Production method for photovoltaic device
WO2011061956A1 (en) Photoelectric conversion device
WO2011070805A1 (en) Process for production of photoelectric conversion device
WO2012036074A1 (en) Method for producing photovoltaic devices
WO2010064455A1 (en) Photoelectric conversion device
WO2012014550A1 (en) Method for production of photoelectric conversion device
JP5123871B2 (en) Method for manufacturing photoelectric conversion device
JP2010141198A (en) Photoelectric conversion device
JP2010135637A (en) Photoelectric conversion device
WO2011004631A1 (en) Manufacturing method for photoelectric conversion device
WO2011062130A1 (en) Thin-film photoelectric conversion device, and process for production of thin-film photoelectric conversion device
JP2013179188A (en) Thin-film photoelectric conversion device and manufacturing method of the same
WO2011033885A1 (en) Photoelectric conversion device
JP2009231616A (en) Photoelectric conversion device and production method therefor
JP2012038956A (en) Thin film solar cell module
JP2011040796A (en) Photoelectric conversion device, and production method therefor
JP2010251424A (en) Photoelectric conversion apparatus
JP2011077380A (en) Photoelectric conversion device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120417

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120918