JP2011040796A - Photoelectric conversion device, and production method therefor - Google Patents

Photoelectric conversion device, and production method therefor Download PDF

Info

Publication number
JP2011040796A
JP2011040796A JP2010262425A JP2010262425A JP2011040796A JP 2011040796 A JP2011040796 A JP 2011040796A JP 2010262425 A JP2010262425 A JP 2010262425A JP 2010262425 A JP2010262425 A JP 2010262425A JP 2011040796 A JP2011040796 A JP 2011040796A
Authority
JP
Japan
Prior art keywords
electrode layer
back electrode
substrate
layer
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010262425A
Other languages
Japanese (ja)
Inventor
Yasuyuki Kobayashi
靖之 小林
Tomotsugu Sakai
智嗣 坂井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2010262425A priority Critical patent/JP2011040796A/en
Publication of JP2011040796A publication Critical patent/JP2011040796A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a photoelectric conversion device and a production method therefor which can improve the optical absorption characteristics of a power-generating layer by controlling and optimizing the three-dimensional structure of a rear-face electrode layer. <P>SOLUTION: The photoelectric conversion device includes a transparent electrode layer 2, at least two power generating layers 91 and 92, and a rear-surface electrode layer 4 on a substrate 1. In the photoelectric conversion device, the rear-surface electrode layer 4 has a silver film, and the surface of the rear-surface electrode layer 4 on the side of the substrate 1 has a concavo-convex shape. When the sum of the amount of the light reflected on the surface of the rear-surface electrode layer 4 and the amount of the light absorbed by the rear-surface electrode layer 4 is 96% or lower of the sum of the amount of the light reflected on the surface of the rear-surface electrode layer 4 and the amount of the light absorbed by the rear-surface electrode layer 4 when the rear-surface electrode layer 4 is smooth. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、光電変換装置及びその製造方法に関し、特に発電層としてシリコンを用いる太陽電池に関する。   The present invention relates to a photoelectric conversion device and a manufacturing method thereof, and more particularly to a solar cell using silicon as a power generation layer.

光を受光して電力に変換する光電変換装置として、太陽電池が知られている。太陽電池の中でも、例えば発電層(光電変換層)に薄膜シリコン系の層を積層させた薄膜系太陽電池は、大面積化が容易であること、膜厚が結晶系太陽電池の1/100程度と薄く、材料が少なくて済むこと、などの利点がある。このため、薄膜シリコン系太陽電池は、結晶系太陽電池と比較して低コストでの製造が可能となる。しかしながら、薄膜シリコン系太陽電池の短所としては、変換効率が結晶系に比べて低いことが挙げられる。   A solar cell is known as a photoelectric conversion device that receives light and converts it into electric power. Among solar cells, for example, a thin-film solar cell in which a thin-film silicon layer is stacked on a power generation layer (photoelectric conversion layer) is easy to increase in area and has a thickness of about 1/100 that of a crystalline solar cell. It has the advantages of being thin and requiring less material. For this reason, the thin film silicon solar cell can be manufactured at a lower cost than the crystalline solar cell. However, a disadvantage of the thin-film silicon solar cell is that the conversion efficiency is lower than that of the crystal system.

薄膜系太陽電池において、変換効率、すなわち、出力電力を増加させるために、種々の工夫がなされてきた。例えば、吸収波長帯域が異なる光電変換セルを2段重ねることによって、入射光を効率良く吸収させて高い発電効率を得るタンデム型太陽電池が提案されている。この場合、光電変換セルの結晶質シリコンにおいて波長500nmから1000nmの長波長光が吸収されるが、同波長域での結晶質シリコンの吸収係数が小さいために、太陽電池内で入射光を反射させて光路長を長くし、結晶質シリコンでの光吸収量を増大させる必要がある。このため、透明基板側から太陽光が入射するスーパーストレート型においては、発電層に対して光入射側と反対側の裏面電極構造の改良が検討されてきた。   In a thin film solar cell, various devices have been made to increase conversion efficiency, that is, output power. For example, a tandem solar cell has been proposed that obtains high power generation efficiency by efficiently absorbing incident light by stacking two photoelectric conversion cells having different absorption wavelength bands. In this case, long wavelength light having a wavelength of 500 nm to 1000 nm is absorbed in the crystalline silicon of the photoelectric conversion cell. However, since the absorption coefficient of crystalline silicon in the same wavelength region is small, the incident light is reflected in the solar cell. Therefore, it is necessary to increase the optical path length and increase the amount of light absorption in crystalline silicon. For this reason, in the super straight type in which sunlight enters from the transparent substrate side, improvement of the back electrode structure on the side opposite to the light incident side with respect to the power generation layer has been studied.

特許文献1には、裏面電極構造として、太陽光の放射スペクトルの波長域の光に対して高い反射率を示す金属で背面電極を形成し、背面電極とシリコン半導体層間に透明導電層を形成することが開示されている。透明導電層を形成することによって、背面電極材料とシリコン薄膜とが合金化するのを防止して背面電極の高反射率を維持し、変換効率の低下を防止することができる。   In Patent Document 1, as a back electrode structure, a back electrode is formed of a metal exhibiting a high reflectance with respect to light in the wavelength range of sunlight radiation spectrum, and a transparent conductive layer is formed between the back electrode and the silicon semiconductor layer. It is disclosed. By forming the transparent conductive layer, it is possible to prevent the back electrode material and the silicon thin film from being alloyed, maintain the high reflectivity of the back electrode, and prevent the conversion efficiency from being lowered.

また、特許文献2には、FDTD(Finite Difference Time Domain)法による電磁波解析を行い、裏面電極の最適構造として、裏面電極層と透明導電層との間に、透明導電層よりも低屈折率の屈折率調整層を挿入した構造が開示されている。屈折率調整層を挿入することによって、裏面電極構造における反射光強度を向上させることができる。この結果、発電層における光吸収量を増大させて短絡電流を大きくすることができる。   In Patent Document 2, electromagnetic analysis by FDTD (Finite Difference Time Domain) method is performed, and the optimal structure of the back electrode is a lower refractive index than the transparent conductive layer between the back electrode layer and the transparent conductive layer. A structure in which a refractive index adjusting layer is inserted is disclosed. By inserting the refractive index adjusting layer, the reflected light intensity in the back electrode structure can be improved. As a result, the amount of light absorption in the power generation layer can be increased to increase the short-circuit current.

特公昭60−41878号公報Japanese Patent Publication No. 60-41878 特開2006−120737号公報JP 2006-120737 A

薄膜系太陽電池において、通常、裏面電極層の表面は、基板上に形成された透明電極層の表面形状に倣った形状となる。すなわち、製膜された透明電極層の表面は凹凸形状を有するため、透明電極層上に積層される層構造も透明電極層表面の凹凸形状の影響を受けて、裏面電極層の基板側の表面も凹凸形状となる。裏面電極の基板側の表面が凹凸形状であると、裏面電極層の基板側の表面で基板側からの入射光が散乱し、散乱光が発電層で吸収される。従って、裏面電極層表面での反射率を高めて発電層での光吸収量を向上させるには、特許文献1及び特許文献2のように、裏面電極層の材料や層構造の最適化だけでは不十分であり、裏面電極表面の形状も考慮する必要があった。   In a thin film solar cell, the surface of the back electrode layer usually has a shape that follows the surface shape of the transparent electrode layer formed on the substrate. That is, since the surface of the formed transparent electrode layer has a concavo-convex shape, the layer structure laminated on the transparent electrode layer is also affected by the concavo-convex shape on the surface of the transparent electrode layer, and the surface of the back electrode layer on the substrate side Is also uneven. When the surface of the back electrode on the substrate side is uneven, incident light from the substrate side is scattered on the surface of the back electrode layer on the substrate side, and the scattered light is absorbed by the power generation layer. Therefore, in order to increase the reflectance on the surface of the back electrode layer and improve the light absorption amount in the power generation layer, just by optimizing the material and layer structure of the back electrode layer, as in Patent Document 1 and Patent Document 2. Insufficient, it was necessary to consider the shape of the back electrode surface.

上記のように、裏面電極層表面は透明電極層の表面形状に倣った形状となるため、従来は透明電極層の立体構造を制御して電池性能の評価が行われていた。しかし、裏面電極層を端点とした発電層内の干渉効果をより増大させるためには、裏面電極層自体の表面形状を制御する必要が生じていた。   As described above, since the surface of the back electrode layer has a shape that follows the surface shape of the transparent electrode layer, conventionally, the battery performance has been evaluated by controlling the three-dimensional structure of the transparent electrode layer. However, in order to further increase the interference effect in the power generation layer with the back electrode layer as an end point, it is necessary to control the surface shape of the back electrode layer itself.

本発明は、裏面電極層の表面形状を制御して最適化することによって、発電層の光吸収特性を向上させた光電変換装置及びその製造方法を提供する。   The present invention provides a photoelectric conversion device in which the light absorption characteristics of the power generation layer are improved by controlling and optimizing the surface shape of the back electrode layer, and a method for manufacturing the photoelectric conversion device.

裏面電極層を端点とした発電層内の干渉効果を増大させるためには、裏面電極層の基板側の表面に凹凸形状を付与し、その凹部と凸部の高低差を大きくすれば良い。一般に、裏面電極層としては、入射光波長域での光の反射性に優れる銀薄膜が使用されるが、裏面電極層として銀薄膜を形成した場合は、凹凸形状に起因する表面プラズモンによる光吸収が発生する。表面プラズモンによる光吸収は凹部と凸部の高低差が大きい程増大する。本発明者らは、干渉効果と表面プラズモンによる光吸収とを考慮して、発電層での光吸収特性が最適となる裏面構造を見出した。本発明においては、「裏面電極層」とは、金属からなる層を指す。また「裏面構造」とは、発電層よりも基板と反対側にある構造全体を指し、裏面電極層を含む複数の層全体、層構成、及び表面形状を包含する。   In order to increase the interference effect in the power generation layer with the back electrode layer as an end point, an uneven shape is provided on the surface of the back electrode layer on the substrate side, and the height difference between the concave portion and the convex portion is increased. Generally, a silver thin film with excellent light reflectivity in the incident light wavelength region is used as the back electrode layer. However, when a silver thin film is formed as the back electrode layer, light absorption by the surface plasmon caused by the uneven shape Will occur. Light absorption by the surface plasmon increases as the height difference between the concave and convex portions increases. The present inventors have found a back surface structure in which the light absorption characteristics in the power generation layer are optimum in consideration of the interference effect and the light absorption by the surface plasmon. In the present invention, the “back electrode layer” refers to a layer made of metal. The “back surface structure” refers to the entire structure on the opposite side of the power generation layer from the substrate, and includes the entire plurality of layers including the back electrode layer, the layer configuration, and the surface shape.

すなわち、本発明の参考例としての光電変換装置は、基板上に透明電極層と、少なくとも2つの発電層と、裏面電極層とを備える光電変換装置であって、前記裏面電極層が銀薄膜を備え、前記裏面電極層の前記基板側の表面が凹凸形状を有し、前記凹凸形状の凹部と凸部との高低差が60nm以上210nm以下であることを特徴とする。   That is, a photoelectric conversion device as a reference example of the present invention is a photoelectric conversion device including a transparent electrode layer, at least two power generation layers, and a back electrode layer on a substrate, and the back electrode layer is a silver thin film. And the substrate-side surface of the back electrode layer has a concavo-convex shape, and a height difference between the concave and convex portions of the concavo-convex shape is 60 nm or more and 210 nm or less.

このように、銀薄膜を備える裏面電極層の基板側の表面が、凹部と凸部との高低差が60nm以上210nm以下の凹凸形状を有する裏面構造とすることにより、干渉効果が得られるとともに裏面電極層での表面プラズモンによる光損失の影響が抑えられるため、裏面電極側の発電層での光吸収量を増加させることができる。この結果、光電変換装置の発電効率を向上させることが可能である。   As described above, the substrate-side surface of the back electrode layer including the silver thin film has a back surface structure in which the height difference between the concave portion and the convex portion is 60 nm or more and 210 nm or less, thereby providing an interference effect and the back surface. Since the influence of light loss due to surface plasmons in the electrode layer can be suppressed, the amount of light absorption in the power generation layer on the back electrode side can be increased. As a result, the power generation efficiency of the photoelectric conversion device can be improved.

本発明の光電変換装置は、基板上に透明電極層と、少なくとも2つの発電層と、裏面電極層とを備える光電変換装置であって、前記裏面電極層が銀薄膜を備え、前記裏面電極層の前記基板側の表面が凹凸形状を有し、前記裏面電極層の前記基板側の表面で反射されて前記基板から出射した反射光の光量と前記裏面電極層に吸収された光の光量との和が、前記裏面電極層が平滑である場合に前記裏面電極層の前記基板側の表面で反射されて前記基板から出射した反射光の光量と前記裏面電極層に吸収された光の光量との和の96%以下であることを特徴とする。   The photoelectric conversion device of the present invention is a photoelectric conversion device comprising a transparent electrode layer, at least two power generation layers, and a back electrode layer on a substrate, wherein the back electrode layer comprises a silver thin film, and the back electrode layer The surface of the substrate side of the substrate has a concavo-convex shape, the amount of reflected light reflected from the substrate side surface of the back electrode layer and emitted from the substrate, and the amount of light absorbed by the back electrode layer The sum of the amount of reflected light reflected from the substrate-side surface of the back electrode layer and emitted from the substrate and the amount of light absorbed by the back electrode layer when the back electrode layer is smooth It is 96% or less of the sum.

このように、干渉効果と表面プラズモンによる光吸収とを考慮した結果、銀薄膜を備える裏面電極層の基板側の表面が凹凸形状を有し、裏面電極層表面で反射されて基板から出射した反射光の光量と銀薄膜を備える裏面電極層に吸収された光の光量との和が、裏面電極層が平滑である場合の基板から出射した反射光の光量と裏面電極層に吸収された光の光量との和の96%以下である裏面構造とすることにより、裏面電極層側の発電層での光吸収量を増加させることができる。その結果、高い発電効率を示す光電変換装置とすることができる。より好ましくは、反射光の光量と裏面電極層に吸収された光の光量との和を、裏面電極が平滑である場合の反射光の光量と裏面電極層に吸収された光の光量との和の93%以下とすると、発電層での光吸収量を大幅に増加させることができる。   As described above, as a result of considering the interference effect and the light absorption by the surface plasmon, the surface on the substrate side of the back electrode layer including the silver thin film has an uneven shape, and is reflected from the surface of the back electrode layer and reflected from the substrate. The sum of the amount of light and the amount of light absorbed by the back electrode layer comprising the silver thin film is the sum of the amount of reflected light emitted from the substrate and the light absorbed by the back electrode layer when the back electrode layer is smooth. By using a back surface structure that is 96% or less of the sum of the light amount, the amount of light absorption in the power generation layer on the back electrode layer side can be increased. As a result, a photoelectric conversion device that exhibits high power generation efficiency can be obtained. More preferably, the sum of the amount of reflected light and the amount of light absorbed by the back electrode layer is the sum of the amount of reflected light when the back electrode is smooth and the amount of light absorbed by the back electrode layer. If it is 93% or less, the light absorption amount in the power generation layer can be greatly increased.

また、本発明の光電変換装置は、基板上に透明電極層と、少なくとも2つの発電層と、裏面電極層とを備える光電変換装置であって、前記裏面電極層が銀薄膜を備え、前記裏面電極層の前記基板側の表面が凹凸形状を有し、前記裏面電極層の前記基板側の表面で反射されて前記基板から出射した反射光の光量が、前記裏面電極層が平滑である場合に前記裏面電極層の前記基板側の表面で反射されて前記基板から出射した反射光の光量の93%以下であることを特徴とする。   The photoelectric conversion device of the present invention is a photoelectric conversion device comprising a transparent electrode layer, at least two power generation layers, and a back electrode layer on a substrate, wherein the back electrode layer comprises a silver thin film, and the back surface When the substrate side surface of the electrode layer has an uneven shape, and the amount of reflected light reflected from the substrate side surface of the back electrode layer and emitted from the substrate is smooth in the back electrode layer It is 93% or less of the amount of reflected light reflected from the substrate-side surface of the back electrode layer and emitted from the substrate.

このように、干渉効果と表面プラズモンによる光吸収とを考慮した結果、銀薄膜を備える裏面電極層の基板側の表面が凹凸形状を有し、裏面電極層表面で反射されて基板から出射した反射光の光量が、裏面電極層が平滑である場合の基板から出射した反射光の光量の93%以下となる裏面構造とすることにより、裏面電極層側の発電層での光吸収量を増加させることができる。その結果、高い発電効率を示す光電変換装置とすることができる。より好ましくは、反射光の光量を、裏面電極が平滑である場合の反射光の光量の90%以下とすると、発電層での光吸収量を大幅に増加させることができる。   As described above, as a result of considering the interference effect and the light absorption by the surface plasmon, the surface on the substrate side of the back electrode layer including the silver thin film has an uneven shape, and is reflected from the surface of the back electrode layer and reflected from the substrate. By using a back surface structure in which the amount of light is 93% or less of the amount of reflected light emitted from the substrate when the back electrode layer is smooth, the light absorption amount in the power generation layer on the back electrode layer side is increased. be able to. As a result, a photoelectric conversion device that exhibits high power generation efficiency can be obtained. More preferably, when the amount of reflected light is 90% or less of the amount of reflected light when the back electrode is smooth, the amount of light absorbed by the power generation layer can be significantly increased.

上記発明において、前記基板と前記透明電極層との積層体のヘイズ率が、20%以上30%以下であることが好ましい。   In the said invention, it is preferable that the haze rate of the laminated body of the said board | substrate and the said transparent electrode layer is 20% or more and 30% or less.

上記発明において、前記裏面電極層の側の前記発電層の膜厚が、1.45μm以上2.5μm以下であることが好ましい。裏面電極層側の発電層の膜厚を上記範囲内とすれば、十分な発電層での光吸収量が得られ、発電効率を向上させることができる。   In the above invention, the power generation layer on the back electrode layer side preferably has a thickness of 1.45 μm to 2.5 μm. When the film thickness of the power generation layer on the back electrode layer side is within the above range, a sufficient amount of light absorption in the power generation layer can be obtained, and the power generation efficiency can be improved.

上記発明において、前記裏面電極層の前記基板側の表面に、裏面透明電極層を更に備えることが好ましい。このように、裏面電極層と発電層との間に裏面透明電極層が形成されることにより、裏面電極層と発電層との接触抵抗を低減させるとともに、反射光の光量を増大させて、光電変換装置の発電効率を向上させることができる。   In the above invention, it is preferable that a back transparent electrode layer is further provided on a surface of the back electrode layer on the substrate side. In this way, by forming the transparent back electrode layer between the back electrode layer and the power generation layer, the contact resistance between the back electrode layer and the power generation layer is reduced, and the amount of reflected light is increased. The power generation efficiency of the converter can be improved.

本発明の参考例としての光電変換装置の製造方法は、基板上に透明電極層を形成する工程と、少なくとも2つの発電層を形成する工程と、裏面電極層を形成する工程とを含む光電変換装置の製造方法であって、前記裏面電極層が銀薄膜を備え、前記裏面電極層の前記基板側の表面に、凹部と凸部との高低差が60nm以上210nm以下の凹凸形状を設けることを特徴とする。   A method for manufacturing a photoelectric conversion device as a reference example of the present invention includes a step of forming a transparent electrode layer on a substrate, a step of forming at least two power generation layers, and a step of forming a back electrode layer. A method for manufacturing an apparatus, wherein the back electrode layer includes a silver thin film, and a concave-convex shape having a height difference between a concave portion and a convex portion of 60 nm to 210 nm is provided on a surface of the back electrode layer on the substrate side. Features.

このように、干渉効果と表面プラズモンによる光吸収とを考慮した結果、銀薄膜を備える裏面電極層を形成し、裏面電極層の基板側の表面に、凹部と凸部との高低差を60nm以上210nm以下の凹凸形状を設けることによって、発電層での光吸収量が大きく高い発電効率を示す光電変換装置を製造することができる。   As described above, as a result of considering the interference effect and the light absorption by the surface plasmon, a back electrode layer having a silver thin film is formed, and the height difference between the concave portion and the convex portion is 60 nm or more on the substrate side surface of the back electrode layer. By providing a concavo-convex shape of 210 nm or less, a photoelectric conversion device having a large light absorption amount in the power generation layer and high power generation efficiency can be manufactured.

本発明の光電変換装置の製造方法は、基板上に透明電極層を形成する工程と、少なくとも2つの発電層を形成する工程と、裏面電極層を形成する工程とを含む光電変換装置の製造方法であって、前記裏面電極層が銀薄膜を備え、前記裏面電極層の前記基板側の表面で反射されて前記基板から出射した反射光の光量と前記裏面電極層に吸収された光の光量との和が、前記裏面電極層が平滑である場合に前記裏面電極層の前記基板側の表面で反射されて前記基板から出射した反射光の光量と前記裏面電極層に吸収された光の光量との和の96%以下となるように、前記裏面電極層の前記基板側の表面に凹凸形状を設けることを特徴とする。   The method for producing a photoelectric conversion device of the present invention includes a step of forming a transparent electrode layer on a substrate, a step of forming at least two power generation layers, and a step of forming a back electrode layer. The back electrode layer comprises a silver thin film, the amount of reflected light reflected from the substrate side surface of the back electrode layer and emitted from the substrate, and the amount of light absorbed by the back electrode layer; When the back electrode layer is smooth, the amount of reflected light reflected from the substrate-side surface of the back electrode layer and emitted from the substrate and the amount of light absorbed by the back electrode layer An uneven shape is provided on the surface of the back electrode layer on the substrate side so as to be 96% or less of the sum of the above.

このように、干渉効果と表面プラズモンによる光吸収とを考慮した結果、裏面電極層の基板側の表面で反射されて基板から出射した反射光の光量と前記裏面電極層に吸収された光の光量との和が、裏面電極層が平滑である場合の基板から出射した反射光の光量と裏面電極層に吸収された光の光量との和の96%以下、より好ましくは93%以下となるように、銀薄膜を備える裏面電極層の基板側の表面に凹凸形状を設ければ、発電層の光吸収量が大きく高い発電効率を示す光電変換装置を製造することができる。   As described above, as a result of considering the interference effect and light absorption by the surface plasmon, the amount of reflected light reflected from the substrate-side surface of the back electrode layer and emitted from the substrate and the amount of light absorbed by the back electrode layer Is 96% or less, more preferably 93% or less of the sum of the amount of reflected light emitted from the substrate and the amount of light absorbed by the back electrode layer when the back electrode layer is smooth. In addition, if a concave-convex shape is provided on the substrate-side surface of the back electrode layer including the silver thin film, a photoelectric conversion device having a large light absorption amount of the power generation layer and high power generation efficiency can be manufactured.

また、本発明の光電変換装置の製造方法は、基板上に透明電極層を形成する工程と、少なくとも2つの発電層を形成する工程と、裏面電極層を形成する工程とを含む光電変換装置の製造方法であって、前記裏面電極層が銀薄膜を備え、前記裏面電極層の前記基板側の表面で反射されて前記基板から出射した反射光の光量が、前記裏面電極層が平滑である場合に前記裏面電極層の前記基板側の表面で反射されて前記基板から出射した反射光の光量の93%以下となるように、前記裏面電極層の前記基板側の表面に凹凸形状を設けることを特徴とする。   Moreover, the manufacturing method of the photoelectric conversion device of the present invention includes a step of forming a transparent electrode layer on a substrate, a step of forming at least two power generation layers, and a step of forming a back electrode layer. In the manufacturing method, the back electrode layer includes a silver thin film, and the amount of reflected light that is reflected from the substrate-side surface of the back electrode layer and emitted from the substrate is smooth. Providing a concave-convex shape on the substrate-side surface of the back electrode layer so that it is 93% or less of the amount of reflected light reflected from the substrate-side surface of the back electrode layer and emitted from the substrate. Features.

このように、干渉効果と表面プラズモンによる光吸収とを考慮した結果、裏面電極層の基板側の表面で反射されて基板から出射した反射光の光量が、裏面電極層が平滑である場合の基板から出射した反射光の光量の93%以下、より好ましくは90%以下となるように、銀薄膜を備える裏面電極層の基板側の表面に凹凸形状を設ければ、発電層の光吸収量が大きく高い発電効率を示す光電変換装置を製造することができる。   Thus, as a result of considering the interference effect and the light absorption by the surface plasmon, the amount of the reflected light reflected from the substrate-side surface of the back electrode layer and emitted from the substrate is the substrate when the back electrode layer is smooth If the concave-convex shape is provided on the substrate side surface of the back electrode layer including the silver thin film so that the amount of reflected light emitted from the substrate is 93% or less, more preferably 90% or less, the light absorption amount of the power generation layer is increased. A photoelectric conversion device that exhibits large and high power generation efficiency can be manufactured.

上記発明において、前記凹凸形状を、前記裏面電極層の側の前記発電層の形成条件を制御して、該発電層の前記裏面電極層の側の表面に所定の凹凸形状を設けた後、前記裏面電極層を形成することによって設けることができる。   In the above invention, the uneven shape is controlled by controlling the formation conditions of the power generation layer on the back electrode layer side, and after providing a predetermined uneven shape on the surface of the power generation layer on the back electrode layer side, It can be provided by forming a back electrode layer.

このように、発電層の形成条件の制御によって発電層の裏面電極側の表面に所定の凹凸形状を設けた後に、裏面電極層を形成すれば、裏面電極層の基板側の表面の凹凸形状を容易に制御して設けることができる。   In this way, if the back electrode layer is formed after providing a predetermined uneven shape on the surface on the back electrode side of the power generation layer by controlling the formation conditions of the power generation layer, the uneven shape on the surface of the back electrode layer on the substrate side can be changed. It can be easily controlled.

また、前記凹凸形状を、前記裏面電極層の側の前記発電層を形成し、該発電層の表面をエッチングして該発電層の表面に所定の凹凸形状を設けた後、前記裏面電極を形成することによって設けることができる。   Further, the power generation layer on the back electrode layer side is formed with the uneven shape, the surface of the power generation layer is etched to form a predetermined uneven shape on the surface of the power generation layer, and then the back electrode is formed. Can be provided.

このように、裏面電極層側の発電層の表面を、所定の凹凸形状にエッチングした後に、裏面電極層を形成することによっても、裏面電極層の基板側の表面の凹凸形状を容易に制御して設けることができる。   In this way, the surface of the power generation layer on the back electrode layer side is etched into a predetermined uneven shape, and then the back electrode layer is formed to easily control the uneven shape on the substrate side surface of the back electrode layer. Can be provided.

上記発明において、前記基板と前記透明電極層との積層体のヘイズ率が、20%以上30%以下であることが好ましい。   In the said invention, it is preferable that the haze rate of the laminated body of the said board | substrate and the said transparent electrode layer is 20% or more and 30% or less.

上記発明において、前記裏面電極層の側の前記発電層の膜厚が、1.45μm以上2.5μm以下であることが好ましい。裏面電極層側の発電層を上記範囲内の膜厚で形成すれば、高い発電効率を示す光電変換装置が得られる。   In the above invention, the power generation layer on the back electrode layer side preferably has a thickness of 1.45 μm to 2.5 μm. If the power generation layer on the back electrode layer side is formed with a film thickness within the above range, a photoelectric conversion device exhibiting high power generation efficiency can be obtained.

上記発明において、前記裏面電極層の前記基板側の表面に、裏面透明電極層を更に設けること好ましい。裏面電極層と発電層との間に裏面透明電極層を設けることにより、裏面電極層と発電層との接触抵抗を低減させるとともに、反射光量を増大させることができる。   In the above invention, it is preferable to further provide a back transparent electrode layer on the surface of the back electrode layer on the substrate side. By providing the back transparent electrode layer between the back electrode layer and the power generation layer, the contact resistance between the back electrode layer and the power generation layer can be reduced and the amount of reflected light can be increased.

本発明の参考例によれば、銀薄膜を備える裏面電極層の基板側の表面に、凹部と凸部との高低差を60nm以上210nm以下の凹凸形状を設けることによって、裏面電極層側の発電層での光吸収量を増加させて、光電変換装置の発電効率を向上させることができる。   According to the reference example of the present invention, the power generation on the back electrode layer side is provided by providing the surface on the substrate side of the back electrode layer including the silver thin film with a concavo-convex shape having a height difference between the recesses and the protrusions of 60 nm to 210 nm. The power generation efficiency of the photoelectric conversion device can be improved by increasing the amount of light absorption in the layer.

本発明によれば、裏面電極層の基板側の表面で反射されて基板から出射した反射光の光量と裏面電極層に吸収された光の光量との和が、裏面電極層が平滑である場合の基板から出射した反射光の光量と裏面電極層に吸収された光の光量との和の96%以下となるように、銀薄膜からなる裏面電極層の基板側の表面に凹凸形状を設けることによって、発電層での光吸収量を増大させて、光電変換装置の発電効率を向上させることができる。   According to the present invention, when the back electrode layer is smooth, the sum of the amount of reflected light reflected from the substrate side surface of the back electrode layer and emitted from the substrate and the amount of light absorbed by the back electrode layer An uneven shape is provided on the substrate-side surface of the back electrode layer made of a silver thin film so that the sum of the amount of reflected light emitted from the substrate and the amount of light absorbed by the back electrode layer is 96% or less. Thus, the amount of light absorption in the power generation layer can be increased, and the power generation efficiency of the photoelectric conversion device can be improved.

また、裏面電極層の基板側の表面で反射されて基板から出射した反射光の光量が、裏面電極層が平滑である場合の基板から出射した反射光の光量の93%以下となるように、銀薄膜からなる裏面電極層の基板側の表面に凹凸形状を設けることによって、発電層での光吸収量を増大させ、光電変換装置の発電効率を向上させることができる。   Further, the amount of reflected light reflected from the substrate-side surface of the back electrode layer and emitted from the substrate is 93% or less of the amount of reflected light emitted from the substrate when the back electrode layer is smooth, By providing an uneven shape on the substrate-side surface of the back electrode layer made of a silver thin film, the amount of light absorption in the power generation layer can be increased, and the power generation efficiency of the photoelectric conversion device can be improved.

上記した裏面電極層の基板側の表面の凹凸形状は、裏面電極層側の発電層の形成条件を制御することによって、あるいは、裏面電極層側の発電層を形成した後に発電層表面をエッチングすることによって、設けることができる。このようにすれば、所望の表面の凹凸形状を有する裏面電極層を容易に形成することができる。   The uneven shape on the surface of the back electrode layer on the substrate side is obtained by etching the power generation layer surface by controlling the formation conditions of the power generation layer on the back electrode layer side or after forming the power generation layer on the back electrode layer side. Can be provided. If it does in this way, the back electrode layer which has the uneven | corrugated shape of a desired surface can be formed easily.

本発明の一実施形態に係る光電変換装置の構成を模式的に示した断面図である。It is sectional drawing which showed typically the structure of the photoelectric conversion apparatus which concerns on one Embodiment of this invention. 本発明に係る光電変換装置として、太陽電池パネルを製造する一実施形態を説明する概略図である。It is the schematic explaining one Embodiment which manufactures a solar cell panel as a photoelectric conversion apparatus which concerns on this invention. 本発明に係る光電変換装置として、太陽電池パネルを製造する一実施形態を説明する概略図である。It is the schematic explaining one Embodiment which manufactures a solar cell panel as a photoelectric conversion apparatus which concerns on this invention. 本発明に係る光電変換装置として、太陽電池パネルを製造する一実施形態を説明する概略図である。It is the schematic explaining one Embodiment which manufactures a solar cell panel as a photoelectric conversion apparatus which concerns on this invention. 本発明に係る光電変換装置として、太陽電池パネルを製造する一実施形態を説明する概略図である。It is the schematic explaining one Embodiment which manufactures a solar cell panel as a photoelectric conversion apparatus which concerns on this invention. FDTD法による計算に用いたタンデム型太陽電池の積層構造の断面概略図を示す。The cross-sectional schematic of the laminated structure of the tandem-type solar cell used for calculation by FDTD method is shown. 実施例1のタンデム型太陽電池における反射光の光量と銀吸収光量との和と、凹凸形状の高低差hとの関係を示すグラフである。It is a graph which shows the relationship between the sum of the light quantity of the reflected light in the tandem type solar cell of Example 1, and the silver absorbed light quantity, and the height difference h of uneven | corrugated shape. 実施例1のタンデム型太陽電池における反射光の光量と凹凸形状の高低差hとの関係を示すグラフである。4 is a graph showing the relationship between the amount of reflected light and the height difference h of the concavo-convex shape in the tandem solar cell of Example 1. 実施例1のタンデム型太陽電池における第2電池層での光吸収量と凹凸構造の高低差との関係を示すグラフである。4 is a graph showing the relationship between the amount of light absorption in the second battery layer and the height difference of the concavo-convex structure in the tandem solar cell of Example 1. 実施例2のタンデム型太陽電池における反射光の光量と銀吸収光量との和と、凹凸構造の高低差との関係を示すグラフである。It is a graph which shows the relationship between the sum of the light quantity of the reflected light in the tandem-type solar cell of Example 2, and the silver absorption light quantity, and the height difference of an uneven structure. 実施例2のタンデム型太陽電池における反射光の光量と凹凸形状の高低差hとの関係を示すグラフである。It is a graph which shows the relationship between the light quantity of the reflected light in the tandem-type solar cell of Example 2, and the height difference h of uneven | corrugated shape. 実施例2のタンデム型太陽電池における第2電池層での光吸収量と凹凸構造の高低差との関係を示すグラフである。6 is a graph showing the relationship between the amount of light absorption in the second battery layer and the height difference of the concavo-convex structure in the tandem solar cell of Example 2. 実施例3のタンデム型太陽電池における反射光の光量と銀吸収光量との和と、凹凸構造の高低差との関係を示すグラフである。It is a graph which shows the relationship between the sum of the light quantity of the reflected light in the tandem type solar cell of Example 3, and the silver absorbed light quantity, and the height difference of an uneven structure. 実施例3のタンデム型太陽電池における反射光の光量と凹凸形状の高低差hとの関係を示すグラフである。It is a graph which shows the relationship between the light quantity of the reflected light in the tandem type solar cell of Example 3, and the height difference h of uneven | corrugated shape. 実施例3のタンデム型太陽電池における第2電池層での光吸収量と凹凸構造の高低差との関係を示すグラフである。6 is a graph showing the relationship between the amount of light absorption in the second battery layer and the height difference of the concavo-convex structure in the tandem solar cell of Example 3. 実施例4のタンデム型太陽電池における反射光の光量と銀吸収光量との和と、凹凸構造の高低差との関係を示すグラフである。It is a graph which shows the relationship between the sum of the light quantity of the reflected light in the tandem type solar cell of Example 4, and the silver absorbed light quantity, and the height difference of an uneven structure. 実施例4のタンデム型太陽電池における反射光の光量と凹凸形状の高低差hとの関係を示すグラフである。It is a graph which shows the relationship between the light quantity of the reflected light in the tandem-type solar cell of Example 4, and the height difference h of uneven | corrugated shape. 実施例4のタンデム型太陽電池における第2電池層での光吸収量と凹凸構造の高低差との関係を示すグラフである。It is a graph which shows the relationship between the light absorption amount in the 2nd battery layer in the tandem-type solar cell of Example 4, and the height difference of an uneven structure.

本発明の光電変換装置の実施形態の構成について説明する。
図1は、本実施形態に係る光電変換装置の構成を示す概略図である。光電変換装置100は、シリコン系太陽電池であり、基板1、透明電極層2、発電層3としての第1電池層91(非晶質シリコン系)及び第2電池層92(結晶質シリコン系)、及び、裏面電極層4を備える。なお、ここで、シリコン系とはシリコン(Si)やシリコンカーバイト(SiC)やシリコンゲルマニウム(SiGe)を含む総称である。また、結晶質シリコン系とは、非晶質シリコン系以外のシリコン系を意味するものであり、微結晶シリコンや多結晶シリコン系も含まれる。
A configuration of an embodiment of the photoelectric conversion device of the present invention will be described.
FIG. 1 is a schematic diagram illustrating a configuration of a photoelectric conversion apparatus according to the present embodiment. The photoelectric conversion device 100 is a silicon-based solar cell, and includes a first battery layer 91 (amorphous silicon system) and a second battery layer 92 (crystalline silicon system) as a substrate 1, a transparent electrode layer 2, and a power generation layer 3. And a back electrode layer 4. Here, the silicon-based is a generic name including silicon (Si), silicon carbide (SiC), and silicon germanium (SiGe). The crystalline silicon system means a silicon system other than the amorphous silicon system, and includes a microcrystalline silicon and a polycrystalline silicon system.

次に、本実施形態の光電変換装置として、太陽電池パネルを製造する工程を図2から図5を用いて説明する。   Next, as a photoelectric conversion device of this embodiment, a process for manufacturing a solar cell panel will be described with reference to FIGS.

(1)図2(a)
基板1としてソーダフロートガラス基板(例えば、1.4m×1.1m×板厚:3〜6mmの一辺が1mを超える大面積基板)を使用する。基板端面は熱応力や衝撃などによる破損防止にコーナー面取りやR面取り加工されていることが望ましい。
(1) FIG. 2 (a)
As the substrate 1, a soda float glass substrate (for example, 1.4 m × 1.1 m × plate thickness: a large area substrate having a side of 3 to 6 mm exceeding 1 m) is used. The end face of the substrate is preferably subjected to corner chamfering or R chamfering to prevent damage due to thermal stress or impact.

(2)図2(b)
透明電極層2として酸化錫(SnO)を主成分とする膜厚約500nm以上800nm以下の透明電極膜を、熱CVD装置にて約500℃で製膜する。この際、透明電極膜の表面には、適当な凹凸のあるテクスチャが形成される。本実施形態において、基板と透明電極層との積層体のヘイズ率は、20%以上30%以下であることが好ましい。透明電極層2として、透明電極膜に加えて、基板1と透明電極膜との間にアルカリバリア膜(図示されず)を形成しても良い。アルカリバリア膜は、膜厚50nm以上150nm以下の酸化シリコン膜(SiO)を熱CVD装置にて約500℃で製膜する。
(2) FIG. 2 (b)
As the transparent electrode layer 2, a transparent electrode film having a thickness of about 500 nm to 800 nm and having tin oxide (SnO 2 ) as a main component is formed at about 500 ° C. with a thermal CVD apparatus. At this time, a texture with appropriate irregularities is formed on the surface of the transparent electrode film. In the present embodiment, the haze ratio of the laminate of the substrate and the transparent electrode layer is preferably 20% or more and 30% or less. As the transparent electrode layer 2, an alkali barrier film (not shown) may be formed between the substrate 1 and the transparent electrode film in addition to the transparent electrode film. As the alkali barrier film, a silicon oxide film (SiO 2 ) having a thickness of 50 nm or more and 150 nm or less is formed at about 500 ° C. using a thermal CVD apparatus.

(3)図2(c)
その後、基板1をX−Yテーブルに設置して、YAGレーザーの第1高調波(1064nm)を、図の矢印に示すように、透明電極層の層面側から入射する。加工速度が適切となるようにレーザーパワーを調整して、透明電極膜を発電セルの直列接続方向に対して垂直な方向へ、基板1とレーザー光を相対移動して、溝10を形成するように幅約6mmから15mmの所定幅の短冊状にレーザーエッチングする。
(3) FIG. 2 (c)
Thereafter, the substrate 1 is placed on an XY table, and the first harmonic (1064 nm) of the YAG laser is incident from the layer surface side of the transparent electrode layer as indicated by the arrow in the figure. The laser power is adjusted so that the processing speed is appropriate, and the substrate 10 and the laser beam are moved relative to each other in the direction perpendicular to the series connection direction of the power generation cells so that the groove 10 is formed. And laser etching into a strip shape having a predetermined width of about 6 mm to 15 mm.

(4)図2(d)
第1電池層91として、非晶質シリコン薄膜からなるp層、i層及びn層を、プラズマCVD装置により製膜する。SiHガス及びHガスを主原料にして、減圧雰囲気:30Pa以上1000Pa以下、基板温度:約200℃にて、透明電極層2上に太陽光の入射する側から非晶質シリコンp層31、非晶質シリコンi層32、非晶質シリコンn層33の順で製膜する。非晶質シリコンp層31は非晶質のBドープシリコン膜であり、膜厚10nm以上30nm以下である。非晶質シリコンi層32は、膜厚200nm以上350nm以下である。非晶質シリコンn層33はPドープ非晶質シリコン膜であり、膜厚30nm以上50nm以下である。非晶質シリコンp層31と非晶質シリコンi層32の間には、界面特性の向上のためにバッファー層を設けても良い。
(4) FIG. 2 (d)
As the first battery layer 91, a p layer, an i layer, and an n layer made of an amorphous silicon thin film are formed by a plasma CVD apparatus. Using SiH 4 gas and H 2 gas as main raw materials, the amorphous silicon p layer 31 from the side on which sunlight is incident on the transparent electrode layer 2 at a reduced pressure atmosphere: 30 Pa to 1000 Pa and a substrate temperature: about 200 ° C. Then, an amorphous silicon i layer 32 and an amorphous silicon n layer 33 are formed in this order. The amorphous silicon p layer 31 is an amorphous B-doped silicon film and has a thickness of 10 nm to 30 nm. The amorphous silicon i layer 32 has a thickness of 200 nm to 350 nm. The amorphous silicon n layer 33 is a P-doped amorphous silicon film and has a thickness of 30 nm to 50 nm. A buffer layer may be provided between the amorphous silicon p layer 31 and the amorphous silicon i layer 32 in order to improve interface characteristics.

第1電池層91上に、第2電池層92として結晶質シリコン薄膜からなるp層、i層及びn層を、プラズマCVD装置により製膜する。結晶質シリコンp層41はBドープした結晶質シリコン膜であり、膜厚10nm以上50nm以下である。結晶質シリコンi層42の膜厚は、1.2μm以上3.0μm以下である。結晶質シリコンn層43はPドープした結晶質シリコン膜であり、膜厚20nm以上50nm以下である。   On the 1st battery layer 91, the p layer, i layer, and n layer which consist of a crystalline silicon thin film as the 2nd battery layer 92 are formed into a film with a plasma CVD apparatus. The crystalline silicon p layer 41 is a B-doped crystalline silicon film having a thickness of 10 nm to 50 nm. The film thickness of the crystalline silicon i layer 42 is 1.2 μm or more and 3.0 μm or less. The crystalline silicon n layer 43 is a P-doped crystalline silicon film having a thickness of 20 nm to 50 nm.

本実施形態において、第2電池層92(p層41、i層42及びn層43)の形成条件を制御することによって、結晶質シリコンn層43の裏面電極層4側の表面に、所望の凹凸形状を設ける。第2電池層92の形成条件として、製膜時の基板温度、製膜圧力、水素希釈率、プラズマ励起パワー、プラズマ発生周波数などが挙げられる。例えば、SiHガス及びHガスを主原料にして、減圧雰囲気:3000Pa以下、基板温度:25℃以上250℃以下、プラズマ発生周波数:40MHz以上100MHz以下にて、結晶質シリコンp層41、結晶質シリコンi層42、結晶質シリコンn層43の順で製膜する。 In the present embodiment, by controlling the formation conditions of the second battery layer 92 (p layer 41, i layer 42, and n layer 43), a desired surface of the crystalline silicon n layer 43 on the back electrode layer 4 side is formed. An uneven shape is provided. Examples of conditions for forming the second battery layer 92 include a substrate temperature during film formation, a film formation pressure, a hydrogen dilution rate, plasma excitation power, and a plasma generation frequency. For example, using SiH 4 gas and H 2 gas as main raw materials, a reduced pressure atmosphere: 3000 Pa or less, a substrate temperature: 25 ° C. or more and 250 ° C. or less, a plasma generation frequency: 40 MHz or more and 100 MHz or less, a crystalline silicon p layer 41, a crystal The crystalline silicon i layer 42 and the crystalline silicon n layer 43 are formed in this order.

また、結晶質シリコンn層43の裏面電極層4側の表面の凹凸形状は、第2電池層92を形成した後に、結晶質シリコンn層43の表面をエッチングすることによって設けても良い。この場合、水素プラズマ、あるいは、メタンやフロン等を添加した水素プラズマを用いたエッチング処理が採用できる。   The uneven shape of the surface of the crystalline silicon n layer 43 on the back electrode layer 4 side may be provided by etching the surface of the crystalline silicon n layer 43 after forming the second battery layer 92. In this case, an etching process using hydrogen plasma or hydrogen plasma to which methane, chlorofluorocarbon, or the like is added can be employed.

本実施形態において、第1電池層91上に、第1電池層91と第2電池層92との接触性を改善するとともに電流整合性を取るために半反射膜となる中間コンタクト層5を形成しても良い。中間コンタクト層5として、DCスパッタリング装置により、ターゲット:GaドープZnO焼結体を用いて、膜厚20nm以上100nm以下のGZO(GaドープZnO)膜を形成する。   In the present embodiment, the intermediate contact layer 5 serving as a semi-reflective film is formed on the first battery layer 91 in order to improve the contact between the first battery layer 91 and the second battery layer 92 and to achieve current matching. You may do it. As the intermediate contact layer 5, a target: Ga-doped ZnO sintered body is used to form a GZO (Ga-doped ZnO) film having a film thickness of 20 nm or more and 100 nm or less using a DC sputtering apparatus.

(5)図2(e)
基板1をX−Yテーブルに設置して、レーザーダイオード励起YAGレーザーの第2高調波(532nm)を、図の矢印に示すように、光電変換層3の膜面側から入射する。パルス発振:10kHz以上20kHz以下として加工速度に適切となるようにレーザーパワーを調整して、透明電極層2のレーザーエッチングラインの約100μmから150μmの横側を、溝11を形成するようにレーザーエッチングする。またこのレーザーは基板1側から入射しても良い。この場合は光電変換層3の第1電池層91で吸収されたエネルギーで発生する高い蒸気圧を利用できるので、更に安定したレーザーエッチング加工を行うことが可能となる。レーザーエッチングラインの位置は前工程でのエッチングラインと交差しないように位置決め公差を考慮して選定する。
(5) FIG. 2 (e)
The substrate 1 is placed on an XY table, and the second harmonic (532 nm) of the laser diode-pumped YAG laser is incident from the film surface side of the photoelectric conversion layer 3 as indicated by an arrow in the figure. Pulse oscillation: Laser power is adjusted so as to be suitable for the processing speed from 10 kHz to 20 kHz, and laser etching is performed so that the groove 11 is formed on the lateral side of the laser etching line of the transparent electrode layer 2 from about 100 μm to 150 μm. To do. The laser may be incident from the substrate 1 side. In this case, since a high vapor pressure generated by the energy absorbed by the first battery layer 91 of the photoelectric conversion layer 3 can be used, further stable laser etching processing can be performed. The position of the laser etching line is selected in consideration of positioning tolerances so as not to intersect with the etching line in the previous process.

(6)図3(a)
裏面電極層4として、スパッタリング装置により、減圧雰囲気、製膜温度:約150℃にてAg膜を製膜する。または、裏面電極層4として、Ag膜:200〜500nm、これを保護するものとして防食効果の高いTi膜:10〜20nmを順に積層して、Ag膜/Ti膜の積層膜を形成しても良い。この場合は、基板側にAg膜が設置される層構成とする。
(6) FIG. 3 (a)
As the back electrode layer 4, an Ag film is formed by a sputtering apparatus at a reduced pressure atmosphere and a film forming temperature of about 150 ° C. Alternatively, as the back electrode layer 4, an Ag film: 200 to 500 nm and a Ti film having a high anticorrosion effect as a protective film: 10 to 20 nm may be laminated in order to form a laminated film of an Ag film / Ti film. good. In this case, the layer structure is such that an Ag film is provided on the substrate side.

本実施形態では、第2電池層92のn層と裏面電極層4との接触抵抗低減と光反射向上を目的に、光電変換層3と裏面電極層4との間に裏面透明電極層(図1では図示せず)を形成した裏面構造としても良い。裏面透明電極層として、例えば、スパッタリング装置により、GZO(GaドープZnO)膜を膜厚:50nm以上100nm以下で製膜する。   In the present embodiment, for the purpose of reducing the contact resistance between the n layer of the second battery layer 92 and the back electrode layer 4 and improving the light reflection, the back transparent electrode layer (see FIG. The back surface structure may be formed with a not shown in FIG. As the back transparent electrode layer, for example, a GZO (Ga-doped ZnO) film is formed with a film thickness of 50 nm to 100 nm by a sputtering apparatus.

裏面電極層は、結晶質シリコンn層に倣って形成される。また、裏面透明電極層を設けた場合、裏面透明電極層は薄いため、裏面透明電極層及び裏面電極層は、結晶質シリコンn層に倣って形成される。従って、裏面電極層の基板側の表面形状は、結晶質シリコンn層の表面形状と略同一である。   The back electrode layer is formed following the crystalline silicon n layer. Further, when the back transparent electrode layer is provided, the back transparent electrode layer is thin, and therefore the back transparent electrode layer and the back electrode layer are formed following the crystalline silicon n layer. Therefore, the surface shape of the back electrode layer on the substrate side is substantially the same as the surface shape of the crystalline silicon n layer.

本実施形態において、裏面電極層4の基板側表面の凹凸形状は、凹部と凸部との高低差が60nm以上210nm以下とされる。   In the present embodiment, the unevenness shape of the substrate-side surface of the back electrode layer 4 is such that the height difference between the recesses and the protrusions is 60 nm or more and 210 nm or less.

また、本実施形態において、基板1側から太陽光を入射した場合に、裏面電極層4の基板側表面で反射されて基板2から太陽電池の外に出射する反射光の光量と裏面電極層4に吸収された光の光量との和が、高低差が0nm(すなわち、裏面電極層4の基板2側表面が平滑である場合)を基準としたときの反射光の光量と裏面電極層4に吸収された光の光量との和の96%以下、より好ましくは93%以下となるように、裏面電極層4の基板側表面の凹凸形状が設けられる。   In the present embodiment, the amount of reflected light reflected from the substrate-side surface of the back electrode layer 4 and emitted from the substrate 2 to the outside of the solar cell and the back electrode layer 4 when sunlight is incident from the substrate 1 side. The sum of the amount of light absorbed by the light source and the back electrode layer 4 is the difference between the amount of reflected light and the back electrode layer 4 when the height difference is 0 nm (that is, when the surface of the back electrode layer 4 on the substrate 2 side is smooth). The concave-convex shape on the substrate-side surface of the back electrode layer 4 is provided so as to be 96% or less, more preferably 93% or less of the sum of the amount of absorbed light.

また、本実施形態において、基板1側から太陽光を入射した場合に、裏面電極層4の基板側表面で反射されて基板2から太陽電池の外に出射する反射光の光量が、高低差が0nm(裏面電極層4の基板2側表面が平滑である場合)を基準としたときの反射光の光量の93%以下、より好ましくは90%以下となるように、裏面電極層4の基板側表面の凹凸形状が設けられる。   Further, in the present embodiment, when sunlight is incident from the substrate 1 side, the amount of reflected light reflected from the substrate-side surface of the back electrode layer 4 and emitted from the substrate 2 to the outside of the solar cell has an elevation difference. The substrate side of the back electrode layer 4 is set to 93% or less, more preferably 90% or less of the amount of reflected light with 0 nm (when the surface of the back electrode layer 4 on the substrate 2 side is smooth) as a reference. An uneven shape on the surface is provided.

(7)図3(b)
基板1をX−Yテーブルに設置して、レーザーダイオード励起YAGレーザーの第2高調波(532nm)を、図の矢印に示すように、基板1側から入射する。レーザー光が光電変換層3で吸収され、このとき発生する高いガス蒸気圧を利用して裏面電極層4が爆裂して除去される。パルス発振:1kHz以上10kHz以下として加工速度に適切となるようにレーザーパワーを調整して、透明電極層2のレーザーエッチングラインの約250μmから400μmの横側を、溝12を形成するようにレーザーエッチングする。
(7) FIG. 3 (b)
The substrate 1 is placed on an XY table, and the second harmonic (532 nm) of the laser diode-pumped YAG laser is incident from the substrate 1 side as shown by the arrow in the figure. The laser light is absorbed by the photoelectric conversion layer 3, and the back electrode layer 4 is exploded and removed using the high gas vapor pressure generated at this time. Pulse oscillation: 1 kHz to 10 kHz Laser power is adjusted so as to be suitable for processing speed, and laser etching is performed so that grooves 12 are formed on the lateral side of the laser etching line of the transparent electrode layer 2 from about 250 μm to 400 μm. To do.

(8)図3(c)
発電領域を区分して、基板端周辺の膜端部においてレーザーエッチングによる直列接続部分が短絡し易い影響を除去する。基板1をX−Yテーブルに設置して、レーザーダイオード励起YAGレーザーの第2高調波(532nm)を、基板1側から入射する。レーザー光が透明電極層2と光電変換層3とで吸収され、このとき発生する高いガス蒸気圧を利用して裏面電極層4が爆裂して、裏面電極層4/光電変換層3/透明電極層2が除去される。パルス発振:1kHz以上10kHz以下として加工速度に適切となるようにレーザーパワーを調整して、基板1の端部から5mmから20mmの位置を、図3(c)に示すように、X方向絶縁溝15を形成するようにレーザーエッチングする。このとき、Y方向絶縁溝は後工程で基板1周囲領域の膜面研磨除去処理を行うので、設ける必要がない。
(8) FIG. 3 (c)
The power generation region is divided to eliminate the influence that the serial connection portion due to laser etching is likely to be short-circuited at the film edge around the substrate edge. The substrate 1 is placed on an XY table, and the second harmonic (532 nm) of the laser diode pumped YAG laser is incident from the substrate 1 side. Laser light is absorbed by the transparent electrode layer 2 and the photoelectric conversion layer 3, and the back electrode layer 4 explodes using the high gas vapor pressure generated at this time, and the back electrode layer 4 / photoelectric conversion layer 3 / transparent electrode Layer 2 is removed. Pulse oscillation: 1 kHz or more and 10 kHz or less, the laser power is adjusted so as to be suitable for the processing speed, and the position of 5 mm to 20 mm from the end of the substrate 1 is placed in the X-direction insulating groove as shown in FIG. Laser etching is performed to form 15. At this time, the Y-direction insulating groove does not need to be provided because the film surface polishing removal process in the peripheral region of the substrate 1 is performed in a later step.

絶縁溝15は基板1の端より5mmから10mmの位置にてエッチングを終了させることにより、太陽電池パネル端部からの太陽電池モジュール6内部への外部湿分浸入の抑制に、有効な効果を奏するので好ましい。   The insulating groove 15 has an effective effect in suppressing the intrusion of external moisture into the solar cell module 6 from the end of the solar cell panel by terminating the etching at a position of 5 mm to 10 mm from the end of the substrate 1. Therefore, it is preferable.

尚、以上までの工程におけるレーザー光はYAGレーザーとしているが、YVO4レーザーやファイバーレーザーなどが同様に使用できるものがある。   In addition, although the laser beam in the above process is made into a YAG laser, there exists what can use a YVO4 laser, a fiber laser, etc. similarly.

(9)図4(a)
後工程のEVA等を介したバックシート24との健全な接着・シール面を確保するために、基板1周辺(周囲領域14)の積層膜は、段差があるとともに剥離し易いため、積層膜を除去する。基板1の端から5mmから20mmで基板1の全周囲にわたり、X方向は前述の図3(c)工程で設けた絶縁溝15よりも基板端側において、Y方向は基板端側部付近の溝10よりも基板端側において、裏面電極層4/光電変換層3/透明電極層2を、砥石研磨やブラスト研磨などを用いて除去を行う。研磨屑や砥粒は基板1を洗浄処理して除去する。
(9) FIG. 4 (a)
In order to secure a sound adhesion / seal surface with the back sheet 24 via EVA or the like in a later process, the laminated film around the substrate 1 (peripheral region 14) has a step and is easy to peel off. Remove. 3 mm from the end of the substrate 1 over the entire circumference of the substrate 1, the X direction is closer to the substrate end than the insulating groove 15 provided in the above-described step of FIG. 3C, and the Y direction is a groove near the substrate end side. The back electrode layer 4 / photoelectric conversion layer 3 / transparent electrode layer 2 is removed using grinding stone polishing, blast polishing, or the like on the substrate end side with respect to 10. Polishing debris and abrasive grains are removed by cleaning the substrate 1.

(10)図4(b)
端子箱取付け部分はバックシート24に開口貫通窓を設けて集電板を取出す。この開口貫通窓部分には絶縁材を複数層設置して外部からの湿分などの浸入を抑制する。
(10) FIG. 4 (b)
At the terminal box mounting portion, an opening through window is provided in the back sheet 24 and the current collector plate is taken out. A plurality of layers of insulating materials are installed in the opening through window portion to suppress intrusion of moisture and the like from the outside.

直列に並んだ一方端の太陽電池発電セルと、他方端部の太陽電池発電セルとから銅箔を用いて集電して太陽電池パネル裏側の端子箱部分から電力が取出せるように処理する。銅箔は各部との短絡を防止するために銅箔幅より広い絶縁シートを配置する。   It processes so that electric power can be taken out from the terminal box part on the back side of a solar cell panel by collecting electricity using the copper foil from the solar cell power generation cell at one end and the solar cell generation cell at the other end arranged in series. In order to prevent a short circuit with each part, the copper foil arranges an insulating sheet wider than the copper foil width.

集電用銅箔などが所定位置に配置された後に、太陽電池モジュール6の全体を覆い、基板1からはみ出さないようにEVA(エチレン酢酸ビニル共重合体)等による接着充填材シートを配置する。   After the current collecting copper foil or the like is disposed at a predetermined position, an adhesive filler sheet made of EVA (ethylene vinyl acetate copolymer) or the like is disposed so as to cover the entire solar cell module 6 and not protrude from the substrate 1. .

EVAの上に、防水効果の高いバックシート24を設置する。バックシート24は本実施形態では防水防湿効果が高いようにPETシート/AL箔/PETシートの3層構造よりなる。   A back sheet 24 having a high waterproof effect is installed on the EVA. In this embodiment, the back sheet 24 has a three-layer structure of PET sheet / AL foil / PET sheet so that the waterproof and moisture proof effect is high.

バックシート24までを所定位置に配置したものを、ラミネータにより減圧雰囲気で内部の脱気を行い約150℃から160℃でプレスしながら、EVAを架橋させて密着させる。   The EVA sheet is placed in a predetermined position until the back sheet 24 is deaerated in a reduced pressure atmosphere by a laminator and pressed at about 150 ° C. to 160 ° C., and EVA is crosslinked and brought into close contact.

(11)図5(a)
太陽電池モジュール6の裏側に端子箱23を接着剤で取付ける。
(11) FIG. 5 (a)
The terminal box 23 is attached to the back side of the solar cell module 6 with an adhesive.

(12)図5(b)
銅箔と端子箱23の出力ケーブルとをハンダ等で接続し、端子箱内部を封止剤(ポッティング剤)で充填して密閉する。これで太陽電池パネル50が完成する。
(12) FIG. 5 (b)
The copper foil and the output cable of the terminal box 23 are connected with solder or the like, and the inside of the terminal box is filled with a sealing agent (potting agent) and sealed. Thus, the solar cell panel 50 is completed.

(13)図5(c)
図5(b)までの工程で形成された太陽電池パネル50について発電検査ならびに、所定の性能試験を行う。発電検査は、AM1.5、全天日射基準太陽光(1000W/m)のソーラシミュレータを用いて行う。
(13) FIG. 5 (c)
A power generation inspection and a predetermined performance test are performed on the solar cell panel 50 formed in the steps up to FIG. The power generation inspection is performed using a solar simulator of AM1.5 and solar radiation standard sunlight (1000 W / m 2 ).

(14)図5(d)
発電検査(図5(c))に前後して、外観検査をはじめ所定の性能検査を行う。
(14) FIG. 5 (d)
Before and after the power generation inspection (FIG. 5C), a predetermined performance inspection is performed including an appearance inspection.

(実施例1)
図6に、実施例1のタンデム型太陽電池の積層構造モデルの概略図を示す。図6の積層構造モデルでは、ガラス基板(図示せず)上に透明電極層2から順に積層される。なお、ガラス基板の厚さは半無限とした。
Example 1
In FIG. 6, the schematic of the laminated structure model of the tandem solar cell of Example 1 is shown. In the stacked structure model of FIG. 6, the transparent electrode layer 2 is sequentially stacked on a glass substrate (not shown). The thickness of the glass substrate was semi-infinite.

透明電極層2は、膜厚700nm、基板1と透明電極層2との積層体としたときのヘイズ率20%、テクスチャ構造の平均ピッチ(1周期分の幅)600nm、仰角(図6において不図示のガラス基板面からの角度)30°とした。   The transparent electrode layer 2 has a film thickness of 700 nm, a haze ratio of 20% when formed as a laminate of the substrate 1 and the transparent electrode layer 2, an average pitch (width for one cycle) of 600 nm, and an elevation angle (not shown in FIG. 6). The angle from the glass substrate surface shown in the figure was 30 °.

非晶質シリコンからなる第1電池層91は、透明電極層2側から順にp層、i層、n層を積層し、膜厚250nmとした。中間コンタクト層5は、膜厚70nmのGZO膜とした。結晶質シリコンからなる第2電池層92は、第1電池層91側から順にp層、i層、n層を積層し、膜厚2.0μmとした。第1電池層91及び第2電池層92は透明電極層2上に設けられるため、各層の境界は透明電極層2と同様に凹凸のあるテクスチャを有するが、一般に透明電極層のテクスチャと比較して鈍った凹凸形状となる。従って、図6の構造モデルでは、第1電池層91及び第2電池層92の凹凸形状を、正弦関数で表した。   In the first battery layer 91 made of amorphous silicon, a p-layer, an i-layer, and an n-layer were stacked in this order from the transparent electrode layer 2 side to have a film thickness of 250 nm. The intermediate contact layer 5 is a GZO film having a thickness of 70 nm. In the second battery layer 92 made of crystalline silicon, a p-layer, an i-layer, and an n-layer were stacked in this order from the first battery layer 91 side to a film thickness of 2.0 μm. Since the first battery layer 91 and the second battery layer 92 are provided on the transparent electrode layer 2, the boundary of each layer has an uneven texture similar to the transparent electrode layer 2, but generally compared with the texture of the transparent electrode layer 2. It becomes dull uneven shape. Therefore, in the structural model of FIG. 6, the uneven shape of the first battery layer 91 and the second battery layer 92 is expressed by a sine function.

裏面構造は、裏面透明電極層7及び裏面電極層4とした。裏面透明電極層7は、膜厚60nmのGZO膜とした。裏面電極層4は、膜厚250nm以上のAg膜とした。裏面透明電極層7及び裏面電極層4の基板側表面の凹凸形状を正弦関数で表し、凹凸形状の高低差hを0nmから400nmの範囲とした。   The back surface structure was the back surface transparent electrode layer 7 and the back surface electrode layer 4. The back transparent electrode layer 7 was a GZO film having a thickness of 60 nm. The back electrode layer 4 was an Ag film having a thickness of 250 nm or more. The uneven shape on the substrate side surface of the back transparent electrode layer 7 and the back electrode layer 4 is expressed by a sine function, and the height difference h of the uneven shape is in the range of 0 nm to 400 nm.

FDTD法を用い、図6の積層構造モデルの光学解析計算を行った。
非晶質シリコン及び結晶質シリコンの吸収波長帯域である300nmから1200nmの波長範囲について、図6の積層構造モデルの各層の光吸収率スペクトルと、反射率スペクトルとを計算により求めた。
結晶質シリコンの吸収波長帯域である500nmから1000nmにおける反射率スペクトルと基準太陽光スペクトルAM1.5Gとの積を積分した等価電流値を、裏面電極層4の透明電極層2側表面で反射されて透明電極層2から出射した反射光の光量と定義した。
波長300nmから1200nmにおける裏面電極層4の光吸収率スペクトルと基準太陽光スペクトルAM1.5Gとの積を積分した等価電流値を、裏面電極層4の透明電極層2側(基板側)表面で吸収された光の光量(銀吸収光量)と定義した。
波長300nmから1200nmにおける第2電池層92の光吸収率スペクトルと基準太陽光スペクトルAM1.5Gとの積を積分した等価電流値を、第2電池層の光吸収光量と定義した。
Using the FDTD method, optical analysis calculation of the laminated structure model of FIG. 6 was performed.
For the wavelength range of 300 nm to 1200 nm, which is the absorption wavelength band of amorphous silicon and crystalline silicon, the light absorptivity spectrum and the reflectance spectrum of each layer of the stacked structure model in FIG. 6 were obtained by calculation.
The equivalent current value obtained by integrating the product of the reflectance spectrum in the absorption wavelength band of crystalline silicon from 500 nm to 1000 nm and the reference solar spectrum AM1.5G is reflected on the surface of the back electrode layer 4 on the transparent electrode layer 2 side. The amount of reflected light emitted from the transparent electrode layer 2 was defined.
An equivalent current value obtained by integrating the product of the light absorptivity spectrum of the back electrode layer 4 and the reference sunlight spectrum AM1.5G at a wavelength of 300 nm to 1200 nm is absorbed by the transparent electrode layer 2 side (substrate side) surface of the back electrode layer 4. Defined as the amount of light (silver absorbed light amount).
The equivalent current value obtained by integrating the product of the light absorption coefficient spectrum of the second battery layer 92 and the reference sunlight spectrum AM1.5G at wavelengths of 300 nm to 1200 nm was defined as the light absorption amount of the second battery layer.

図7に、実施例1のタンデム型太陽電池における反射光の光量と銀吸収光量との和と、凹凸形状の高低差hとの関係を示す。同図において、横軸は高低差h、縦軸は高低差0nmを基準とした場合の反射光の光量と銀吸収光量との和である。図8に、実施例1のタンデム型太陽電池における反射光の光量と凹凸形状の高低差hとの関係を示す。同図において、横軸は高低差h、縦軸は高低差0nmを基準とした場合の反射光の光量である。図9に、実施例1のタンデム型太陽電池における第2電池層での光吸収量と凹凸形状の高低差hとの関係を示す。同図において、横軸は高低差h、縦軸は高低差0nmを基準とした場合の第2電池層での光吸収量である。   FIG. 7 shows the relationship between the sum of the reflected light amount and the silver absorbed light amount in the tandem solar cell of Example 1 and the height difference h of the concavo-convex shape. In the figure, the horizontal axis represents the height difference h, and the vertical axis represents the sum of the reflected light amount and the silver absorbed light amount when the height difference is 0 nm. FIG. 8 shows the relationship between the amount of reflected light and the unevenness height difference h in the tandem solar cell of Example 1. In the figure, the horizontal axis represents the height difference h, and the vertical axis represents the amount of reflected light when the height difference is 0 nm. In FIG. 9, the relationship between the light absorption amount in the 2nd battery layer and the height difference h of uneven | corrugated shape in the tandem solar cell of Example 1 is shown. In the figure, the horizontal axis represents the height difference h, and the vertical axis represents the light absorption amount in the second battery layer when the height difference is 0 nm.

図7に示すように、高低差60nmから210nmの範囲内で、反射光の光量と銀吸収光量との和が、高低差0nmの場合の96%以下となった。高低差120nmの場合に、反射光の光量が極小となった。図8に示すように、反射光の光量は、高低差60nm以上において、高低差0nmを基準とした場合の93%以下となった。第2電池層での光吸収量は、反射光の光量と銀吸収光量との和に対応して、高低差60nmから210nmの範囲で増大した。
このように、裏面電極層で反射されて出射する反射光の光量と銀吸収光量の和と、第2電池セルでの光吸収量とに強い相関が見られた。図8に示すように、実施例1の太陽電池では、高低差が60nm以上であれば反射光の光量が基準(高低差0nm)93%以下となる結果が得られた。しかし、高低差が大きくなると、凹凸形状を形成する際の制御性が悪化する、高低差の大きい凹凸形状を有する第2電池層上に裏面透明電極層及び裏面電極層を均一に形成しにくい、などの不都合が発生する。従って、凹凸形状形成時の制御性や裏面構造の膜厚均一性を考慮すると、高低差は210nm以下とすることが好ましい。
As shown in FIG. 7, the sum of the reflected light amount and the silver absorbed light amount was 96% or less in the case of the height difference of 0 nm within the range of the height difference of 60 nm to 210 nm. When the height difference was 120 nm, the amount of reflected light was minimal. As shown in FIG. 8, the amount of reflected light was 93% or less when the height difference was 60 nm or more and the height difference was 0 nm. The amount of light absorption in the second battery layer increased in the range from 60 nm to 210 nm in height difference corresponding to the sum of the amount of reflected light and the amount of absorbed silver.
Thus, a strong correlation was found between the sum of the amount of reflected light reflected and emitted from the back electrode layer and the amount of absorbed silver light, and the amount of light absorbed by the second battery cell. As shown in FIG. 8, in the solar cell of Example 1, when the height difference was 60 nm or more, the result was that the amount of reflected light was 93% or less of the reference (height difference 0 nm). However, when the height difference becomes large, the controllability when forming the uneven shape deteriorates, and it is difficult to uniformly form the back transparent electrode layer and the back electrode layer on the second battery layer having the uneven shape with a large height difference. Such inconvenience occurs. Therefore, considering the controllability when forming the uneven shape and the film thickness uniformity of the back surface structure, the height difference is preferably 210 nm or less.

(実施例2)
実施例1の積層構造モデルにおける第2電池層の膜厚を1.45μmに変更して、反射光の光量と銀吸収光量との和、反射光の光量及び第2電池層での光吸収量を計算した。
(Example 2)
The thickness of the second battery layer in the stacked structure model of Example 1 was changed to 1.45 μm, the sum of the reflected light amount and the silver absorbed light amount, the reflected light amount, and the light absorption amount in the second battery layer. Was calculated.

図10に、実施例2のタンデム型太陽電池における反射光の光量と銀吸収光量との和と、凹凸形状の高低差hとの関係を示す。同図において、横軸は高低差h、縦軸は高低差0nmを基準とした場合の反射光の光量と銀吸収光量との和である。図11に、実施例2のタンデム型太陽電池における反射光の光量と凹凸形状の高低差hとの関係を示す。同図において、横軸は高低差h、縦軸は高低差0nmを基準とした場合の反射光の光量である。図12に、実施例2のタンデム型太陽電池における第2電池層での光吸収量と凹凸形状の高低差hとの関係を示す。同図において、横軸は高低差h、縦軸は高低差0nmを基準とした場合の第2電池層での光吸収量である。   FIG. 10 shows the relationship between the sum of the amount of reflected light and the amount of absorbed silver in the tandem solar cell of Example 2 and the height difference h of the uneven shape. In the figure, the horizontal axis represents the height difference h, and the vertical axis represents the sum of the reflected light amount and the silver absorbed light amount when the height difference is 0 nm. FIG. 11 shows the relationship between the amount of reflected light and the height difference h of the concavo-convex shape in the tandem solar cell of Example 2. In the figure, the horizontal axis represents the height difference h, and the vertical axis represents the amount of reflected light when the height difference is 0 nm. In FIG. 12, the relationship between the light absorption amount in the 2nd battery layer and the height difference h of uneven | corrugated shape in the tandem-type solar cell of Example 2 is shown. In the figure, the horizontal axis represents the height difference h, and the vertical axis represents the light absorption amount in the second battery layer when the height difference is 0 nm.

図10に示すように、高低差130nmのときに、反射光の光量と銀吸収光量との和が極小となった。実施例2では、高低差90nmから150nmの範囲内で、反射光の光量と銀吸収光量との和が高低差0nmの場合の96%以下となった。実施例2においても、第2電池層での光吸収量は、反射光の光量と銀吸収光量との和に強い相関が見られ、高低差90nmから150nmの範囲内で増大した。図11に示すように、反射光の光量は、高低差110nmから200nmの範囲内で、高低差0nmを基準とした場合の93%以下となった。   As shown in FIG. 10, when the height difference is 130 nm, the sum of the reflected light amount and the silver absorbed light amount is minimized. In Example 2, within the range of the height difference of 90 nm to 150 nm, the sum of the amount of reflected light and the amount of absorbed silver was 96% or less when the height difference was 0 nm. Also in Example 2, the light absorption amount in the second battery layer showed a strong correlation with the sum of the reflected light amount and the silver absorbed light amount, and increased in the range of 90 nm to 150 nm in height difference. As shown in FIG. 11, the amount of reflected light was 93% or less when the height difference was within a range of 110 nm to 200 nm and the height difference was 0 nm as a reference.

(実施例3)
図6の積層構造において、基板1と透明電極層2との積層体としたときのヘイズ率を30%、テクスチャ構造の平均ピッチを1000nmに変更した。第2電池層の膜厚は2.0μmとした。FDTD法を用い、反射光の光量と銀吸収光量との和、反射光の光量及び第2電池層での光吸収量を計算した。
(Example 3)
In the laminated structure of FIG. 6, the haze ratio in the laminated body of the substrate 1 and the transparent electrode layer 2 was changed to 30%, and the average pitch of the texture structure was changed to 1000 nm. The film thickness of the second battery layer was 2.0 μm. Using the FDTD method, the sum of the amount of reflected light and the amount of absorbed silver light, the amount of reflected light, and the amount of light absorbed by the second battery layer were calculated.

図13に、実施例3のタンデム型太陽電池における反射光の光量と銀吸収光量との和と、凹凸形状の高低差hとの関係を示す。同図において、横軸は高低差h、縦軸は高低差0nmを基準とした場合の反射光の光量と銀吸収光量との和である。図14に、実施例3のタンデム型太陽電池における反射光の光量と凹凸形状の高低差hとの関係を示す。同図において、横軸は高低差h、縦軸は高低差0nmを基準とした場合の反射光の光量である。図15に、実施例3のタンデム型太陽電池における第2電池層での光吸収量と凹凸形状の高低差hとの関係を示す。同図において、横軸は高低差h、縦軸は高低差0nmを基準とした場合の第2電池層での光吸収量である。   FIG. 13 shows the relationship between the sum of the amount of reflected light and the amount of absorbed silver in the tandem solar cell of Example 3 and the height difference h of the concavo-convex shape. In the figure, the horizontal axis represents the height difference h, and the vertical axis represents the sum of the reflected light amount and the silver absorbed light amount when the height difference is 0 nm. FIG. 14 shows the relationship between the amount of reflected light and the height difference h of the concavo-convex shape in the tandem solar cell of Example 3. In the figure, the horizontal axis represents the height difference h, and the vertical axis represents the amount of reflected light when the height difference is 0 nm. In FIG. 15, the relationship between the light absorption amount in the 2nd battery layer and the height difference h of uneven | corrugated shape in the tandem-type solar cell of Example 3 is shown. In the figure, the horizontal axis represents the height difference h, and the vertical axis represents the light absorption amount in the second battery layer when the height difference is 0 nm.

図13に示すように、高低差が120nmの場合に、反射光の光量と銀吸収光量との和が極小となった。実施例3では、高低差100nm以上で反射光の光量と銀吸収光量との和が高低差0nmの場合の96%以下となった。第2電池層での光吸収量は、上記範囲で増大した。図14に示すように、反射光の光量は、高低差90nm以上で、高低差0nmを基準とした場合の93%以下となった。
実施例3の太陽電池では、図13に示すように、高低差が100nm以上であれば反射光の光量と銀吸収光量との和が基準(高低差0nm)の96%以下となる結果が得られた。また、図14に示すように、高低差が90nm以上で、反射光の光量が基準(高低差0nm)の93%以下が得られた。しかし、実施例1と同様に、凹凸形状形成時の制御性や裏面構造の膜厚均一性を考慮すると、高低差は210nm以下とすることが好ましい。
As shown in FIG. 13, when the height difference was 120 nm, the sum of the reflected light amount and the silver absorbed light amount was minimized. In Example 3, when the height difference was 100 nm or more, the sum of the reflected light amount and the silver absorbed light amount was 96% or less when the height difference was 0 nm. The amount of light absorption in the second battery layer increased in the above range. As shown in FIG. 14, the amount of reflected light was 90 nm or less with a height difference of 90 nm or more and 93% or less when the height difference was 0 nm as a reference.
In the solar cell of Example 3, as shown in FIG. 13, when the height difference is 100 nm or more, the sum of the reflected light amount and the silver absorbed light amount is 96% or less of the reference (the height difference 0 nm). It was. Further, as shown in FIG. 14, the height difference was 90 nm or more, and the amount of reflected light was 93% or less of the reference (the height difference 0 nm). However, in the same manner as in Example 1, considering the controllability when forming the uneven shape and the film thickness uniformity of the back surface structure, the height difference is preferably 210 nm or less.

(実施例4)
第2電池層の膜厚を2.5μmに変更した以外は実施例3と同様の積層構造として、反射光の光量と銀吸収光量との和、反射光の光量及び第2電池層での光吸収量を計算した。
図16に、実施例4のタンデム型太陽電池における反射光の光量と銀吸収光量との和と、凹凸形状の高低差hとの関係を示す。同図において、横軸は高低差h、縦軸は高低差0nmを基準とした場合の反射光の光量と銀吸収光量との和である。図17に、実施例4のタンデム型太陽電池における反射光の光量と凹凸形状の高低差hとの関係を示す。同図において、横軸は高低差h、縦軸は高低差0nmを基準とした場合の反射光の光量である。図18に、実施例4のタンデム型太陽電池における第2電池層での光吸収量と凹凸形状の高低差hとの関係を示す。同図において、横軸は高低差h、縦軸は高低差0nmを基準とした場合の第2電池層での光吸収量である。
Example 4
A laminated structure similar to that of Example 3 except that the thickness of the second battery layer was changed to 2.5 μm, the sum of the reflected light amount and the silver absorbed light amount, the reflected light amount, and the light in the second battery layer Absorption was calculated.
FIG. 16 shows the relationship between the sum of the amount of reflected light and the amount of absorbed silver in the tandem solar cell of Example 4 and the height difference h of the uneven shape. In the figure, the horizontal axis represents the height difference h, and the vertical axis represents the sum of the reflected light amount and the silver absorbed light amount when the height difference is 0 nm. FIG. 17 shows the relationship between the amount of reflected light and the height difference h of the concavo-convex shape in the tandem solar cell of Example 4. In the figure, the horizontal axis represents the height difference h, and the vertical axis represents the amount of reflected light when the height difference is 0 nm. In FIG. 18, the relationship between the light absorption amount in the 2nd battery layer and the height difference h of uneven | corrugated shape in the tandem-type solar cell of Example 4 is shown. In the figure, the horizontal axis represents the height difference h, and the vertical axis represents the light absorption amount in the second battery layer when the height difference is 0 nm.

図16に示すように、高低差が150nmの場合に、反射光の光量と銀吸収光量との和が極小となった。高低差90nm以上で反射光の光量と銀吸収光量との和が高低差0nmの場合の96%以下となった。第2電池層での光吸収量は、上記範囲で増大した。図17に示すように、反射光の光量は、高低差120nm以上で、高低差0nmを基準とした場合の93%以下となった。実施例4においても、実施例1及び実施例3と同様に、凹凸形状形成時の制御性や裏面構造の膜厚均一性を考慮すると、高低差は210nm以下とすることが好ましい。   As shown in FIG. 16, when the height difference was 150 nm, the sum of the reflected light amount and the silver absorbed light amount was minimized. When the height difference is 90 nm or more, the sum of the reflected light amount and the silver absorbed light amount is 96% or less when the height difference is 0 nm. The amount of light absorption in the second battery layer increased in the above range. As shown in FIG. 17, the amount of reflected light was at least 120 nm in height difference and 93% or less when the height difference was 0 nm as a reference. Also in Example 4, like Example 1 and Example 3, when the controllability at the time of uneven | corrugated shape formation and the film thickness uniformity of a back surface structure are considered, it is preferable that an elevation difference shall be 210 nm or less.

上記の実施例1乃至実施例4では、第2電池層と裏面電極層との間に裏面透明電極層を形成した積層構造モデルを用いた計算を行った。裏面透明電極層は薄いため、裏面透明電極層と裏面電極層の表面形状は、第2電池層の裏面電極層側表面に倣った形状となる。従って、裏面透明電極層を形成しない積層構造モデルを用いて計算を行った場合も、同様の結果が得られる。   In the above Examples 1 to 4, calculations were performed using a laminated structure model in which a back transparent electrode layer was formed between the second battery layer and the back electrode layer. Since the back transparent electrode layer is thin, the surface shape of the back transparent electrode layer and the back electrode layer is a shape following the back electrode layer side surface of the second battery layer. Therefore, the same result can be obtained even when calculation is performed using a layered structure model in which the back transparent electrode layer is not formed.

1 基板
2 透明電極層
3 光電変換層
4 裏面電極層
5 中間コンタクト層
6 太陽電池モジュール
31 非晶質シリコンp層
32 非晶質シリコンi層
33 非晶質シリコンn層
41 結晶質シリコンp層
42 結晶質シリコンi層
43 結晶質シリコンn層
91 第1電池層
92 第2電池層
100 光電変換装置
DESCRIPTION OF SYMBOLS 1 Substrate 2 Transparent electrode layer 3 Photoelectric conversion layer 4 Back electrode layer 5 Intermediate contact layer 6 Solar cell module 31 Amorphous silicon p layer 32 Amorphous silicon i layer 33 Amorphous silicon n layer 41 Crystalline silicon p layer 42 Crystalline silicon i layer 43 Crystalline silicon n layer 91 First battery layer 92 Second battery layer 100 Photoelectric conversion device

Claims (12)

基板上に透明電極層と、少なくとも2つの発電層と、裏面電極層とを備える光電変換装置であって、
前記裏面電極層が銀薄膜を備え、
前記裏面電極層の前記基板側の表面が凹凸形状を有し、
前記裏面電極層の前記基板側の表面で反射されて前記基板から出射した反射光の光量と前記裏面電極層に吸収された光の光量との和が、前記裏面電極層が平滑である場合に前記裏面電極層の前記基板側の表面で反射されて前記基板から出射した反射光の光量と前記裏面電極層に吸収された光の光量との和の96%以下であることを特徴とする光電変換装置。
A photoelectric conversion device comprising a transparent electrode layer, at least two power generation layers, and a back electrode layer on a substrate,
The back electrode layer comprises a silver thin film;
The substrate side surface of the back electrode layer has an uneven shape,
When the back electrode layer is smooth, the sum of the amount of reflected light reflected from the substrate-side surface of the back electrode layer and emitted from the substrate and the amount of light absorbed by the back electrode layer The photoelectric device is characterized in that it is 96% or less of the sum of the amount of reflected light reflected from the substrate-side surface of the back electrode layer and emitted from the substrate and the amount of light absorbed by the back electrode layer. Conversion device.
基板上に透明電極層と、少なくとも2つの発電層と、裏面電極層とを備える光電変換装置であって、
前記裏面電極層が銀薄膜を備え、
前記裏面電極層の前記基板側の表面が凹凸形状を有し、
前記裏面電極層の前記基板側の表面で反射されて前記基板から出射した反射光の光量が、前記裏面電極層が平滑である場合に前記裏面電極層の前記基板側の表面で反射されて前記基板から出射した反射光の光量の93%以下であることを特徴とする光電変換装置。
A photoelectric conversion device comprising a transparent electrode layer, at least two power generation layers, and a back electrode layer on a substrate,
The back electrode layer comprises a silver thin film;
The substrate side surface of the back electrode layer has an uneven shape,
The amount of reflected light reflected from the substrate-side surface of the back electrode layer and emitted from the substrate is reflected on the substrate-side surface of the back electrode layer when the back electrode layer is smooth. A photoelectric conversion device comprising 93% or less of the amount of reflected light emitted from a substrate.
前記基板と前記透明電極層との積層体のヘイズ率が、20%以上30%以下であることを特徴とする請求項1または請求項2に記載の光電変換装置。   3. The photoelectric conversion device according to claim 1, wherein a haze ratio of a laminate of the substrate and the transparent electrode layer is 20% or more and 30% or less. 前記裏面電極層の側の前記発電層の膜厚が、1.45μm以上2.5μm以下であることを特徴とする請求項1乃至請求項3のいずれか1項に記載の光電変換装置。   4. The photoelectric conversion device according to claim 1, wherein a thickness of the power generation layer on the side of the back electrode layer is 1.45 μm or more and 2.5 μm or less. 前記裏面電極層の前記基板側の表面に、裏面透明電極層を更に備えることを特徴とする請求項1乃至請求項4のいずれか1項に記載の光電変換装置。   5. The photoelectric conversion device according to claim 1, further comprising a back transparent electrode layer on a surface of the back electrode layer on the substrate side. 基板上に透明電極層を形成する工程と、少なくとも2つの発電層を形成する工程と、裏面電極層を形成する工程とを含む光電変換装置の製造方法であって、
前記裏面電極層が銀薄膜を備え、
前記裏面電極層の前記基板側の表面で反射されて前記基板から出射した反射光の光量と前記裏面電極層に吸収された光の光量との和が、前記裏面電極層が平滑である場合に前記裏面電極層の前記基板側の表面で反射されて前記基板から出射した反射光の光量と前記裏面電極層に吸収された光の光量との和の96%以下となるように、前記裏面電極層の前記基板側の表面に凹凸形状を設けることを特徴とする光電変換装置の製造方法。
A process for producing a photoelectric conversion device comprising a step of forming a transparent electrode layer on a substrate, a step of forming at least two power generation layers, and a step of forming a back electrode layer,
The back electrode layer comprises a silver thin film;
When the back electrode layer is smooth, the sum of the amount of reflected light reflected from the substrate-side surface of the back electrode layer and emitted from the substrate and the amount of light absorbed by the back electrode layer The back electrode so as to be 96% or less of the sum of the amount of reflected light reflected from the substrate side surface of the back electrode layer and emitted from the substrate and the amount of light absorbed by the back electrode layer A method for manufacturing a photoelectric conversion device, comprising providing an uneven shape on a surface of the layer on the substrate side.
基板上に透明電極層を形成する工程と、少なくとも2つの発電層を形成する工程と、裏面電極層を形成する工程とを含む光電変換装置の製造方法であって、
前記裏面電極層が銀薄膜を備え、
前記裏面電極層の前記基板側の表面で反射されて前記基板から出射した反射光の光量が、前記裏面電極層が平滑である場合に前記裏面電極層の前記基板側の表面で反射されて前記基板から出射した反射光の光量の93%以下となるように、前記裏面電極層の前記基板側の表面に凹凸形状を設けることを特徴とする光電変換装置の製造方法。
A process for producing a photoelectric conversion device comprising a step of forming a transparent electrode layer on a substrate, a step of forming at least two power generation layers, and a step of forming a back electrode layer,
The back electrode layer comprises a silver thin film;
The amount of reflected light reflected from the substrate-side surface of the back electrode layer and emitted from the substrate is reflected on the substrate-side surface of the back electrode layer when the back electrode layer is smooth. A method for manufacturing a photoelectric conversion device, comprising: providing a concave-convex shape on a surface of the back electrode layer on the substrate side so that the amount of reflected light emitted from the substrate is 93% or less.
前記凹凸形状を、前記裏面電極層の側の前記発電層の形成条件を制御して、該発電層の前記裏面電極層の側の表面に所定の凹凸形状を設けた後、前記裏面電極層を形成することによって設けることを特徴とする請求項6または請求項7に記載の光電変換装置の製造方法。   After controlling the formation conditions of the power generation layer on the back electrode layer side to provide the uneven shape on the surface of the power generation layer on the back electrode layer side, the back electrode layer The method for manufacturing a photoelectric conversion device according to claim 6, wherein the photoelectric conversion device is provided by forming the photoelectric conversion device. 前記凹凸形状を、前記裏面電極層の側の前記発電層を形成し、該発電層の表面をエッチングして該発電層の表面に所定の凹凸形状を設けた後、前記裏面電極を形成することによって設けることを特徴とする請求項6または請求項7に記載の光電変換装置の製造方法。   Forming the power generation layer on the back electrode layer side, etching the surface of the power generation layer to provide a predetermined uneven shape on the surface of the power generation layer, and then forming the back electrode The method for manufacturing a photoelectric conversion device according to claim 6, wherein the photoelectric conversion device is provided. 前記基板と前記透明電極層との積層体のヘイズ率が、20%以上30%以下であることを特徴とする請求項6乃至請求項9のいずれか1項に記載の光電変換装置の製造方法。   The method for manufacturing a photoelectric conversion device according to any one of claims 6 to 9, wherein a haze ratio of a laminate of the substrate and the transparent electrode layer is 20% or more and 30% or less. . 前記裏面電極層の側の前記発電層の膜厚が、1.45μm以上2.5μm以下であることを特徴とする請求項6乃至請求項10のいずれか1項に記載の光電変換装置の製造方法。   The film thickness of the said electric power generation layer by the side of the said back surface electrode layer is 1.45 micrometers or more and 2.5 micrometers or less, The manufacture of the photoelectric conversion apparatus of any one of Claim 6 thru | or 10 characterized by the above-mentioned. Method. 前記裏面電極層の前記基板側の表面に、裏面透明電極層を更に設けることを特徴とする請求項6乃至請求項11のいずれか1項に記載の光電変換装置の製造方法。   The method for manufacturing a photoelectric conversion device according to claim 6, further comprising a back transparent electrode layer provided on a surface of the back electrode layer on the substrate side.
JP2010262425A 2010-11-25 2010-11-25 Photoelectric conversion device, and production method therefor Pending JP2011040796A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010262425A JP2011040796A (en) 2010-11-25 2010-11-25 Photoelectric conversion device, and production method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010262425A JP2011040796A (en) 2010-11-25 2010-11-25 Photoelectric conversion device, and production method therefor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2008076549A Division JP2009231616A (en) 2008-03-24 2008-03-24 Photoelectric conversion device and production method therefor

Publications (1)

Publication Number Publication Date
JP2011040796A true JP2011040796A (en) 2011-02-24

Family

ID=43768160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010262425A Pending JP2011040796A (en) 2010-11-25 2010-11-25 Photoelectric conversion device, and production method therefor

Country Status (1)

Country Link
JP (1) JP2011040796A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003282902A (en) * 2002-03-20 2003-10-03 Kyocera Corp Thin film solar cell
JP2006120745A (en) * 2004-10-20 2006-05-11 Mitsubishi Heavy Ind Ltd Thin film silicon laminated solar cell
JP2006120737A (en) * 2004-10-19 2006-05-11 Mitsubishi Heavy Ind Ltd Photoelectric conversion element
JP2007266095A (en) * 2006-03-27 2007-10-11 Mitsubishi Heavy Ind Ltd Photoelectric conversion cell, photoelectric conversion module, photoelectric conversion panel and photoelectric conversion system
JP2007288043A (en) * 2006-04-19 2007-11-01 Kaneka Corp Transparent conductive film for photoelectric converter and manufacturing method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003282902A (en) * 2002-03-20 2003-10-03 Kyocera Corp Thin film solar cell
JP2006120737A (en) * 2004-10-19 2006-05-11 Mitsubishi Heavy Ind Ltd Photoelectric conversion element
JP2006120745A (en) * 2004-10-20 2006-05-11 Mitsubishi Heavy Ind Ltd Thin film silicon laminated solar cell
JP2007266095A (en) * 2006-03-27 2007-10-11 Mitsubishi Heavy Ind Ltd Photoelectric conversion cell, photoelectric conversion module, photoelectric conversion panel and photoelectric conversion system
JP2007288043A (en) * 2006-04-19 2007-11-01 Kaneka Corp Transparent conductive film for photoelectric converter and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP4418500B2 (en) Photoelectric conversion device and manufacturing method thereof
WO2010097975A1 (en) Photoelectric conversion device
JP5330723B2 (en) Photoelectric conversion device
WO2010050035A1 (en) Process for producing photoelectric conversion apparatus
WO2009119125A1 (en) Photoelectric converter
JP5254917B2 (en) Method for manufacturing photoelectric conversion device
JP2011049460A (en) Photoelectric converter and substrate with transparent electrode layer
WO2011040078A1 (en) Photoelectric conversion device
WO2011070805A1 (en) Process for production of photoelectric conversion device
WO2010064455A1 (en) Photoelectric conversion device
JP5030745B2 (en) Method for manufacturing photoelectric conversion device
JP4875566B2 (en) Method for manufacturing photoelectric conversion device
JP2011066213A (en) Photoelectric converter and method of manufacturing the same
JP5308225B2 (en) Photoelectric conversion device and manufacturing method thereof
WO2012036074A1 (en) Method for producing photovoltaic devices
WO2012014550A1 (en) Method for production of photoelectric conversion device
JP2011040796A (en) Photoelectric conversion device, and production method therefor
JP2009231616A (en) Photoelectric conversion device and production method therefor
WO2009081855A1 (en) Method for manufacturing photoelectric conversion device, and photoelectric conversion device
JP2010251424A (en) Photoelectric conversion apparatus
JP2010135637A (en) Photoelectric conversion device
JP2010141198A (en) Photoelectric conversion device
JP2011066212A (en) Photoelectric conversion device
JP2011018857A (en) Method of manufacturing photoelectric conversion device
JP2008251914A (en) Multijunction photoelectric converter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130416

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130806