JPH07257944A - Formation of transparent electrically conductive film - Google Patents

Formation of transparent electrically conductive film

Info

Publication number
JPH07257944A
JPH07257944A JP7390794A JP7390794A JPH07257944A JP H07257944 A JPH07257944 A JP H07257944A JP 7390794 A JP7390794 A JP 7390794A JP 7390794 A JP7390794 A JP 7390794A JP H07257944 A JPH07257944 A JP H07257944A
Authority
JP
Japan
Prior art keywords
film
conductive film
transparent
refractive index
transparent conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7390794A
Other languages
Japanese (ja)
Inventor
Kiyoshi Kawamura
潔 河村
Mamoru Aizawa
守 会沢
Kazunori Saito
一徳 斉藤
Yasuko Sakamoto
泰子 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Soda Co Ltd
Original Assignee
Nippon Soda Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soda Co Ltd filed Critical Nippon Soda Co Ltd
Priority to JP7390794A priority Critical patent/JPH07257944A/en
Publication of JPH07257944A publication Critical patent/JPH07257944A/en
Pending legal-status Critical Current

Links

Landscapes

  • Surface Treatment Of Glass (AREA)

Abstract

PURPOSE:To obtain a transparent electrically conductive film having high resistance, high uniformity and high transmissivity and being useful as a transparent electrode of a touch panel by forming a transparent film and a transparent electrically conductive film each having a specified refractive index in a specified thickness each on a transparent glass substrate. CONSTITUTION:A transparent film having a refractive index of 1.6-1.9 is formed in 0.1-0.18mum thickness on a transparent glass substrate and a transparent electrically conductive film having a refractive index of 1.9-2.1 is formed in 0.01-0.03mum thickness on the transparent film. The transparent film can be made of MgO, Al2O3, GeO2, SiO2-TiO2 multiple oxide or SiO2-ZrO2 multiple oxide. The transparent electrically conductive film can be made of ITO, FTO, ATO, Al doped ZnO or In doped ZnO. By this film forming method, a glass with the objective transparent electrically conductive film for a touch panel having high transmissivity of >=89% at 0.55mum is obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は透明導電膜の成膜方法に
関するものであり、特にタッチパネルの透明電極として
用いられる高抵抗で均一性に優れた、高透過率の透明導
電膜の成膜方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a transparent conductive film, and in particular, a method for forming a transparent conductive film having high resistance and excellent uniformity, which is used as a transparent electrode of a touch panel. Regarding

【0002】[0002]

【従来の技術】スズをドープした酸化インジウム膜(I
TOと称す)やフッ素をドープした酸化スズ膜(FTO
と称す)、アンチモンをドープした酸化スズ膜(ATO
と称す)、アルミニウムをドープした酸化亜鉛膜、イン
ジウムをドープした酸化亜鉛膜はその優れた透明性と導
電性を利用して、液晶ディスプレイ、エレクトロルミネ
ッセンスディスプレイ、面発熱体、タッチパネルの電
極、太陽電池の電極等に広く使用されている。この様に
広い分野で使用されると、使用目的によって抵抗値、透
明度は種々のものが要求される。すなわちフラットパネ
ルディスプレイ用の透明導電膜では低抵抗、高透過率の
ものが要求されるが、タッチパネル用の透明導電膜では
逆に高抵抗、高透過率の膜が要求される。特に最近開発
されて市場の伸びが期待されるペン入力タッチパネル用
の導電膜は、位置の認識精度が高くなくてはならないこ
とから、シート抵抗が200〜3000Ω/□といった
高抵抗でかつ抵抗値の均一性に優れた膜であり、また、
液晶ディスプレイの上に置くことから高透過率の膜であ
ることが要求される。特にタッチパネルの構造は、透明
導電膜付ガラスと透明導電膜付フィルムをスペーサーを
介して向かい合わせて周囲を張り合わせたもので、タッ
チパネルの透過率はガラスとフィルムの透過率を掛けた
値となる。タッチパネルとしての透過率を例えば80%
以上にしようとすると、ガラス、フィルムそれぞれ90
%以上の透過率にする必要があり、1%でも透過率が高
いものが要求される。通常、高透過率を達成する方法は
膜厚を薄くすることであった。
2. Description of the Related Art Tin-doped indium oxide film (I
Fluorine-doped tin oxide film (FTO)
, And a tin oxide film doped with antimony (ATO
The aluminum oxide-doped zinc oxide film and the indium-doped zinc oxide film make use of their excellent transparency and conductivity to make use of liquid crystal displays, electroluminescent displays, surface heating elements, touch panel electrodes, and solar cells. It is widely used for electrodes and the like. When used in such a wide field, various resistance values and transparency are required depending on the purpose of use. That is, a transparent conductive film for a flat panel display is required to have a low resistance and a high transmittance, whereas a transparent conductive film for a touch panel is required to have a high resistance and a high transmittance. In particular, the conductive film for a pen input touch panel, which has been recently developed and is expected to grow in the market, needs to have high position recognition accuracy, and thus has a high sheet resistance of 200 to 3000 Ω / □ and a high resistance value. A film with excellent uniformity, and
Since it is placed on a liquid crystal display, it is required to be a film with high transmittance. In particular, the structure of the touch panel is such that glass with a transparent conductive film and a film with a transparent conductive film are faced to each other via a spacer and the periphery thereof is bonded, and the transmittance of the touch panel is a value obtained by multiplying the transmittance of the glass and the film. 80% transmittance as a touch panel
If you try to do more than 90
It is necessary to have a transmittance of not less than%, and even a transmittance of 1% is required. Usually, the method of achieving high transmittance was to reduce the film thickness.

【0003】[0003]

【発明が解決しようとする課題】ITO、FTO、AT
O、酸化亜鉛膜等の透明導電膜材料はいずれも屈折率が
基板ガラスの屈折率(ソーダライムガラスでは1.5
2)より高く(1.9〜2.1)、透明導電膜表面と基
板ガラスとの界面での反射が大きくなり、可視光透過率
が低下する。
[Problems to be Solved by the Invention] ITO, FTO, AT
All of the transparent conductive film materials such as O and zinc oxide film have the refractive index of the substrate glass (1.5 for soda lime glass).
2) higher (1.9 to 2.1), the reflection at the interface between the transparent conductive film surface and the substrate glass increases, and the visible light transmittance decreases.

【0004】高透過率の膜を得ようとする場合は膜厚を
薄くする必要があるが、人間の目に感度良く感知される
0.55μm波長で85%の透過率を得ようとすると膜
厚は0.03μm以下の膜厚にする必要があり、89%
の透過率の場合には膜厚を0.02μm以下の膜厚にす
る必要がある。更に90%の透過率の場合には膜厚を
0.01μm程度まで薄くせねばならず、この場合は膜
厚を均一にコントロールするのは難しく、面内の抵抗値
の均一性は悪くなる傾向にある。また、膜厚を0.01
μm程度まで薄くすると抵抗値の安定性が悪くなり、温
度変化や湿度変化の影響を受けやすく面内の抵抗値の均
一性のみならず抵抗値が変動するため導電膜の膜厚コン
トロールによる高透過率化は望ましくない方法である。
In order to obtain a film having a high transmittance, it is necessary to reduce the film thickness. However, if an attempt is made to obtain a transmittance of 85% at a wavelength of 0.55 μm, which is sensitive to human eyes, the film will be thin. The thickness must be 0.03 μm or less, 89%
In the case of the above transmittance, the film thickness needs to be 0.02 μm or less. Further, when the transmittance is 90%, the film thickness must be reduced to about 0.01 μm. In this case, it is difficult to control the film thickness uniformly, and the uniformity of the in-plane resistance value tends to deteriorate. It is in. In addition, the film thickness is 0.01
When the thickness is reduced to about μm, the stability of the resistance value deteriorates, and the resistance value fluctuates not only because of the in-plane uniformity of the resistance value, but also because the resistance value is easily affected by temperature and humidity changes. Indexing is an undesirable method.

【0005】ペン入力タッチパネル用導電膜の抵抗値は
液晶ディスプレー用のものと違って高抵抗値が要求さ
れ、また高透過率かつ高安定性が要求されることからそ
の膜厚は0.01〜0.03μmになる。導電膜の膜厚
を更に厚くしてゆくと、膜表面での反射光と基板界面で
の反射光との干渉によって0.55μmでの透過率が9
0%程度に増加するが、この場合の膜厚は約0.15〜
0.2μmとなり、厚すぎるために200Ω/□以下の
抵抗値となり、タッチパネル用には低すぎる抵抗とな
る。従ってタッチパネル用導電膜の膜厚は0.01〜
0.03μmが実用的な範囲であるといえる。この場合
の0.55μmの透過率は90%〜85%となる。
The resistance value of the conductive film for a pen input touch panel is different from that for a liquid crystal display, and it is required to have a high resistance value, and a high transmittance and a high stability are required. It becomes 0.03 μm. When the film thickness of the conductive film is further increased, the transmittance at 0.55 μm becomes 9 due to the interference between the reflected light on the film surface and the reflected light on the substrate interface.
Although it increases to about 0%, the film thickness in this case is about 0.15 to
Since the thickness is 0.2 μm, which is too thick, the resistance value is 200Ω / □ or less, which is too low for a touch panel. Therefore, the thickness of the conductive film for a touch panel is 0.01 to
It can be said that 0.03 μm is a practical range. In this case, the transmittance of 0.55 μm is 90% to 85%.

【0006】導電膜の膜厚を変えないで透過率を増加す
る方法として多層膜化が知られており、それは導電膜と
ガラス基板の間に低屈折率の膜を新たに設けることで達
成される。この方法は、基板と低屈折率膜の界面での反
射光と、低屈折率膜と導電膜の界面での反射光と、導電
膜表面での反射光の干渉作用によって反射率を低下さ
せ、透過率を増加する方法であり、低屈折率の下地膜
は、基板と導電膜の界面での反射を防止する働きをす
る。この場合、導電膜の屈折率と膜厚に応じて下地膜の
屈折率と膜厚をコントロールすることで反射率を小さく
することが可能で、その結果高透過率化が達成出来る。
例えば、裳華房 応用物理学選書3「薄膜」(金原、藤
原著)P.197〜200には薄膜の反射と透過につい
ての理論が述べられ、屈折率1.5の基板上の薄膜は屈
折率=2.0の場合エネルギー反射率は4〜20%の値
をとり膜厚が決まれば、ある波長での反射率は決められ
る。
A multilayer film is known as a method of increasing the transmittance without changing the film thickness of the conductive film, which is achieved by newly providing a film having a low refractive index between the conductive film and the glass substrate. It This method reduces the reflectance due to the interference effect of the reflected light at the interface between the substrate and the low refractive index film, the reflected light at the interface between the low refractive index film and the conductive film, and the reflected light at the conductive film surface, This is a method of increasing the transmittance, and the base film having a low refractive index serves to prevent reflection at the interface between the substrate and the conductive film. In this case, the reflectance can be reduced by controlling the refractive index and the film thickness of the base film according to the refractive index and the film thickness of the conductive film, and as a result, the high transmittance can be achieved.
For example, P. Kabo, Applied Physics Selection 3 "Thin Film" (Kanehara, Fujiwara) P. 197 to 200 describes the theory of reflection and transmission of a thin film, and a thin film on a substrate having a refractive index of 1.5 has an energy reflectance of 4 to 20% when the refractive index is 2.0. Is determined, the reflectance at a certain wavelength can be determined.

【0007】また、上掲書P.225〜229には二層
膜を反射防止の観点から実例をあげて示してあり、この
方法を応用することで透過率を増加させることが可能と
なる。この理論を実際に応用して反射率を減少させるに
は、基板の屈折率が約1.5、導電膜の屈折率が約2.
0であることから類推すると、下地膜は1.5以下の材
料で成膜するのが望ましいことになる。
In addition, the above-mentioned P. Nos. 225 to 229 show a two-layer film as an example from the viewpoint of antireflection, and by applying this method, the transmittance can be increased. To actually apply this theory to reduce the reflectance, the refractive index of the substrate is about 1.5 and the refractive index of the conductive film is about 2.
By analogy with 0, it is desirable to form the base film with a material of 1.5 or less.

【0008】しかしながら、実際にこの理論を応用する
場合は、導電膜の屈折率と膜厚に応じて、下地の低屈折
率膜の屈折率と膜厚をどのようにするかを決定する必要
があり、因子の変数が多いために非常に多数の組合せが
考えられることから、最適な組合せを見出すのは困難な
ことであった。また、屈折率を決めても実際に成膜した
膜がそのような値になるかどうかは材料の選択や組成、
成膜条件とも関連するため、光学設計した通りの透過率
にするのは非常に困難なことであった。
However, when this theory is actually applied, it is necessary to determine how to set the refractive index and the film thickness of the underlying low refractive index film according to the refractive index and the film thickness of the conductive film. However, it is difficult to find an optimal combination because there are many variables and many combinations are possible. Moreover, even if the refractive index is decided, whether or not the film actually formed has such a value depends on the selection of material and composition,
Since it is also related to the film forming conditions, it was very difficult to obtain the transmittance as optically designed.

【0009】従来の技術として、液晶ディスプレー用透
明導電膜をソーダライムガラス基板に形成する場合、特
にITO膜やATO膜、FTO膜を形成する場合には基
板と導電膜の間にソーダライムガラス基板からのナトリ
ウムイオンの拡散を抑制する目的で主に二酸化珪素(S
iO2 )膜を設けることが行われており、この方法によ
って液晶ディスプレーの寿命が伸びることが知られてい
る。タッチパネル用基板にも主に安価なソーダライムガ
ラスが用いられ、導電膜をパターニングして使用する場
合には導電膜をエッチングした部分からのNaイオンの
拡散を防止する必要がある。このNaイオンの拡散を抑
制する目的としたSiO2 膜の膜厚は、厚いほど抑制効
果が大きくなるので、0.07μm以上の膜厚にするの
が一般的であった。
As a conventional technique, when a transparent conductive film for liquid crystal display is formed on a soda lime glass substrate, particularly when an ITO film, an ATO film or an FTO film is formed, a soda lime glass substrate is provided between the substrate and the conductive film. Mainly for the purpose of suppressing the diffusion of sodium ions from silicon dioxide (S
It is known that an iO 2 ) film is provided, and this method is known to extend the life of the liquid crystal display. Inexpensive soda lime glass is mainly used also for the touch panel substrate, and when the conductive film is patterned and used, it is necessary to prevent Na ions from diffusing from the etched part of the conductive film. The thickness of the SiO 2 film for the purpose of suppressing the diffusion of Na ions increases as the thickness increases, so the thickness is generally 0.07 μm or more.

【0010】SiO2 膜の最適膜厚は、液晶パネルを組
み立てる際の配向膜の焼成温度に関連する。この工程
で、Naイオンの表面への拡散が最も多くなるために、
処理温度と時間に応じて必要膜厚が決められる。当然焼
成温度が低く、且つ焼成時間が短ければSiO2 膜厚は
薄くても構わない。
The optimum thickness of the SiO 2 film is related to the firing temperature of the alignment film when assembling the liquid crystal panel. In this step, since the diffusion of Na ions to the surface is the largest,
The required film thickness is determined according to the processing temperature and time. Of course, if the firing temperature is low and the firing time is short, the SiO 2 film thickness may be thin.

【0011】液晶パネルの信頼性を得るために、安全を
みてSiO2 膜の膜厚を0.07μm以上にすることが
一般的な方法であるが、SiO2 膜の膜厚が0.07μ
m以上あると透過率は膜厚が厚くなるにつれて低下する
傾向を示し、透過率増加の観点からは望ましくないもの
だった。
In order to obtain the reliability of the liquid crystal panel, it is a common method to make the film thickness of the SiO 2 film than 0.07μm and for safety, the film thickness of the SiO 2 film is 0.07μ
If it is more than m, the transmittance tends to decrease as the film thickness increases, which is not desirable from the viewpoint of increasing the transmittance.

【0012】本発明は、前述の実情からみてなされたも
ので、0.55μmにおいて89%以上の高透過率を有
するタッチパネル用透明導電膜付ガラス、及び該透明導
電膜の成膜方法を提供することを目的とする。
The present invention has been made in view of the above circumstances, and provides a glass with a transparent conductive film for a touch panel having a high transmittance of 89% or more at 0.55 μm, and a method for forming the transparent conductive film. The purpose is to

【0013】[0013]

【課題を解決する手段】本発明者らは、0.55μmに
おいて89%以上の高透過率の透明導電膜を成膜する方
法について鋭意検討した結果、透明ガラス基板上に屈折
率1.6〜1.9の透明膜を0.1〜0.18μm形成
し、その上に屈折率1.9〜2.1の透明導電膜を0.
01〜0.03μm形成した2層構造の膜とすることに
より、高透過率の導電膜付きガラスが得られることを見
出した。以下、本発明を詳細に説明する。
Means for Solving the Problems The inventors of the present invention have made earnest studies on a method of forming a transparent conductive film having a high transmittance of 89% or more at 0.55 μm, and as a result, have a refractive index of 1.6 to 10 on a transparent glass substrate. A transparent film having a refractive index of 1.9 to 2.1 is formed on the transparent film of 0.1 to 0.18 μm.
It was found that a glass with a conductive film having a high transmittance can be obtained by using a film having a two-layer structure formed with a thickness of 01 to 0.03 μm. Hereinafter, the present invention will be described in detail.

【0014】光学理論からは前述したように、基板の屈
折率が約1.5、導電膜の屈折率が約2.0であること
から下地膜の屈折率を1.5以下にすることで反射率の
減少を達成することが可能であることが類推される。
According to the optical theory, as described above, the refractive index of the substrate is about 1.5 and the refractive index of the conductive film is about 2.0. It is inferred that it is possible to achieve a reduction in reflectance.

【0015】本発明者らは、下地膜として屈折率が1.
6〜1.9の材料であっても、膜厚を規定することで
0.55μmでの反射率を減少することが可能であり、
その結果透過率を増加することが出来ることを見出し
た。
The present inventors have found that the underlying film has a refractive index of 1.
Even if the material is 6 to 1.9, the reflectance at 0.55 μm can be reduced by defining the film thickness.
As a result, they have found that the transmittance can be increased.

【0016】前述したように、シート抵抗が200〜3
000Ω/□の安定性の良い導電膜で実用的な膜厚は
0.01〜0.03μmであり、この膜厚での透過率は
85〜90%(0.55μm)となる。本発明は透明導
電膜とガラス基板の間に透明導電膜とガラス基板の中間
の屈折率膜を設けることにより光の干渉作用を利用して
基板ガラス界面での反射を減少させ、透過率を増加する
ものである。
As described above, the sheet resistance is 200 to 3
The conductive film having a good stability of 000Ω / □ has a practical film thickness of 0.01 to 0.03 μm, and the transmittance at this film thickness is 85 to 90% (0.55 μm). According to the present invention, by providing an intermediate refractive index film between the transparent conductive film and the glass substrate, the reflection effect at the substrate-glass interface is reduced and the transmittance is increased by utilizing the interference effect of light. To do.

【0017】本発明の基板上に形成される第1層膜n=
1.6〜1.9の透明膜としては、MgO、Al
2 3 、GeO2 、SiO2 とTiO2 の複合酸化物、
SiO2 とZrO2 の複合酸化物等の膜が使用可能であ
る。
First layer film n = formed on the substrate of the present invention
As the transparent film of 1.6 to 1.9, MgO, Al
2 O 3 , GeO 2 , a composite oxide of SiO 2 and TiO 2 ,
A film such as a composite oxide of SiO 2 and ZrO 2 can be used.

【0018】また従来の技術として、液晶ディスプレー
用透明導電膜をソーダーライムガラス基板に形成する場
合、特にITO膜やATO膜、FTO膜を形成する場合
には、基板と導電膜の間にソーダーライムガラス基板か
らのナトリウムイオンの拡散を抑制する目的で主にSi
2 膜を設けることが行われていることを述べたが、タ
ッチパネル用透明導電膜では、パターニングする必要の
ない場合は、基板からのNaイオンが膜表面まで拡散し
てきても特に問題が起きないため、下地膜として屈折率
が1.6〜1.9の透明膜ならば種類を問わないが、パ
ターニングする必要がある場合は基板からのNaイオン
の拡散を防止することが望ましく、その場合は導電膜の
下地膜としてSiO2 を含む複合組成の膜を用いること
で目的を達成することができる。タッチパネルの組立工
程では、液晶ディスプレーの組立工程と異なり200℃
以下の温度条件で処理するために、Naイオンの拡散量
は少なく、これを抑制するためには下地膜中のSiO2
含有量が30モル%以上であり、かつ膜厚が0.8μm
以上であれば充分であることを見出して本発明を完成し
た。
As a conventional technique, when a transparent conductive film for liquid crystal display is formed on a soda lime glass substrate, particularly when an ITO film, an ATO film or an FTO film is formed, soda lime is formed between the substrate and the conductive film. Si is mainly used to suppress the diffusion of sodium ions from the glass substrate.
Although it has been described that the O 2 film is provided, if the transparent conductive film for a touch panel does not require patterning, no particular problem occurs even if Na ions from the substrate diffuse to the film surface. Therefore, any type of transparent film having a refractive index of 1.6 to 1.9 can be used as the base film, but when patterning is required, it is desirable to prevent diffusion of Na ions from the substrate. The purpose can be achieved by using a film having a composite composition containing SiO 2 as a base film of the conductive film. The touch panel assembly process is different from the liquid crystal display assembly process at 200 ℃
For processing in the following temperature conditions, the diffusion of Na ions is low, SiO 2 underlying film is to suppress the
Content is 30 mol% or more, and film thickness is 0.8 μm
The present invention has been completed by finding that the above is sufficient.

【0019】本発明において、透明導電膜としては、I
TO、FTO、ATO、AlドープZnO、Inドープ
ZnO等が用いられるが、本発明の範囲はこれに限定さ
れるものではない。
In the present invention, the transparent conductive film is I
TO, FTO, ATO, Al-doped ZnO, In-doped ZnO and the like are used, but the scope of the present invention is not limited to this.

【0020】n=1.6〜1.9の屈折率膜を成膜する
方法としては、一般に知られている方法を採用できる。
即ち、スパッター法、電子ビーム蒸着法、イオンプレー
ティング法、化学気相成膜法(CVD法)、パイロゾル
法、スプレー法、ディップ法等で所定の材料を所定の厚
さで積層成膜することで達成される。
As a method for forming a refractive index film with n = 1.6 to 1.9, a generally known method can be adopted.
That is, a predetermined material having a predetermined thickness is laminated and formed by a sputtering method, an electron beam evaporation method, an ion plating method, a chemical vapor deposition method (CVD method), a pyrosol method, a spray method, a dip method, or the like. Is achieved in.

【0021】[0021]

【実施例】以下、実施例により本発明を更に具体的に説
明する。ただし、本発明はこれらに何ら限定されるもの
ではない。
The present invention will be described in more detail with reference to the following examples. However, the present invention is not limited to these.

【0022】(実施例1)厚さ1mmで10cm角のソ
ーダライムガラス(n=1.52)を超音波霧化による
常圧CVD法(パイロゾル成膜法)成膜装置にセット
し、450℃に加熱した。Si(C2 5 O)4 のC2
5 OH溶液(濃度は0.5mol/l)とTi(C4
9 O)4 のC4 9 OH 溶液(濃度は0.5mol
/l)を等モル混合した溶液を超音波により2.2ml
/min霧化させ基板に導入し、12分間成膜した。得
られた膜はn=1.65、膜厚0.13μmのSiO2
−TiO2 複合膜であった。
Example 1 Soda lime glass (n = 1.52) having a thickness of 1 mm and a size of 10 cm was set in an atmospheric pressure CVD (pyrosol film forming) film forming apparatus by ultrasonic atomization, and 450 ° C. Heated to. Si C 2 of (C 2 H 5 O) 4
H 5 OH solution (concentration 0.5 mol / l) and Ti (C 4
H 9 O) 4 in C 4 H 9 OH (concentration is 0.5 mol
/ L) was mixed in an equimolar amount to 2.2 ml by ultrasonication.
/ Min, atomized, introduced into the substrate, and deposited for 12 minutes. The obtained film is SiO 2 with n = 1.65 and a film thickness of 0.13 μm.
It was a TiO 2 composite film.

【0023】引き続きInCl3 のCH3 OH溶液(濃
度は0.25mol/l)にSnCl4 をInに対して
10原子%添加した溶液を超音波により2.5ml/m
in霧化させ基板に導入し、2分間成膜した。その後成
膜装置より取り出し、空気中で冷却した。得られた膜は
n=1.95、膜厚0.022μmのITO結晶膜であ
った。この膜のシート抵抗を9点測定したところ、平均
550Ω/□、比抵抗1.2×10-3Ωcmであった。シ
ート抵抗の均一性は±45Ω/□以内であった。透過率
は0.55μmで91.1%を示した。
Subsequently, a solution of InCl 3 in CH 3 OH (concentration: 0.25 mol / l) containing SnCl 4 in an amount of 10 atom% with respect to In was ultrasonically added to 2.5 ml / m 2.
It was atomized in, introduced into the substrate, and formed into a film for 2 minutes. Then, it was taken out from the film forming apparatus and cooled in air. The obtained film was an ITO crystal film with n = 1.95 and a film thickness of 0.022 μm. When the sheet resistance of this film was measured at 9 points, the average was 550 Ω / □ and the specific resistance was 1.2 × 10 −3 Ωcm. The sheet resistance uniformity was within ± 45 Ω / □. The transmittance was 0.55 μm, which was 91.1%.

【0024】(実施例2)実施例1において、Si(C
2 5 O)4 のC2 5 OH溶液とTi(C4 9 O)
4 のC4 9 OH 溶液の混合割合を変え、Si/Ti
=7/3のモル比の混合溶液を用い、成膜時間を10分
間に変えた以外は実施例1と同様の条件で成膜を行っ
た。得られたSiO2 −TiO2 複合膜はn=1.5
9、膜厚は0.11μmであった。ITO成膜後のシー
ト抵抗、比抵抗、均一性は実施例1の膜と全く同じ値を
示した。この膜の透過率は0.55μmで90.9%で
あった。
Example 2 In Example 1, Si (C
2 H 5 O) 4 in C 2 H 5 OH solution and Ti (C 4 H 9 O)
Changing the mixing ratio of the C 4 H 9 OH solution 4, Si / Ti
Film formation was performed under the same conditions as in Example 1 except that the mixed solution having a molar ratio of 7/3 was used and the film formation time was changed to 10 minutes. The obtained SiO 2 —TiO 2 composite film has n = 1.5.
9, the film thickness was 0.11 μm. The sheet resistance, specific resistance, and uniformity after forming the ITO film showed exactly the same values as those of the film of Example 1. The transmittance of this film was 90.9% at 0.55 μm.

【0025】(実施例3)下地膜の成膜をAl(C5
7 2 3 のC5 7 2 溶液(濃度は0.2mol/
l)を超音波により2.0ml/min霧化させ、基板
に導入して15分間成膜を行った以外は実施例1と同様
の条件で成膜を行った。得られた下地膜はn=1.7
5、膜厚=0.14μmの非晶質Al2 3 膜であっ
た。ITO成膜後のシート抵抗、比抵抗、均一性は実施
例1の膜と全く同じ値を示した。この膜の透過率は0.
55μmで90.8%であった。
(Embodiment 3) The underlying film is formed by Al (C 5 H
7 O 2 ) 3 C 5 H 7 O 2 solution (concentration 0.2 mol /
Film formation was carried out under the same conditions as in Example 1 except that l) was atomized by ultrasonic waves at 2.0 ml / min and introduced into the substrate and film formation was carried out for 15 minutes. The obtained base film has n = 1.7.
5, an amorphous Al 2 O 3 film having a film thickness of 0.14 μm. The sheet resistance, specific resistance, and uniformity after forming the ITO film showed exactly the same values as those of the film of Example 1. The transmittance of this membrane is 0.
It was 90.8% at 55 μm.

【0026】(比較例1)実施例1に示したパイロゾル
成膜装置を用いて、実施例1と同じ条件でITO成膜の
みを行った。得られた膜のシート抵抗、比抵抗、均一性
は実施例1の膜と全く同じ値を示した。この膜の透過率
は0.55μmで87.8%であった。
(Comparative Example 1) Using the pyrosol film forming apparatus shown in Example 1, only ITO film formation was performed under the same conditions as in Example 1. The sheet resistance, the specific resistance and the uniformity of the obtained film showed exactly the same values as those of the film of Example 1. The transmittance of this film was 87.8% at 0.55 μm.

【0027】(比較例2)実施例1において、Si(C
2 5 O)4 のC2 5 OH溶液で成膜を行い、成膜時
間を8分間に変えた以外は実施例1と同様の条件で成膜
を行った。得られたSiO2 はn=1.47、膜厚は
0.11μmであった。ITO成膜後のシート抵抗、比
抵抗、均一性は実施例1の膜と全く同じ値を示した。こ
の膜の透過率は0.55μmで88.6%であった。
Comparative Example 2 In Example 1, Si (C
Film formation was performed under the same conditions as in Example 1 except that the film formation was performed using a C 2 H 5 OH solution of 2 H 5 O) 4 and the film formation time was changed to 8 minutes. The obtained SiO 2 had n = 1.47 and a film thickness of 0.11 μm. The sheet resistance, specific resistance, and uniformity after forming the ITO film showed exactly the same values as those of the film of Example 1. The transmittance of this film was 88.6% at 0.55 μm.

【0026】ガラス基板に直接ITO成膜したもの(比
較例1)の試料の0.55μmでの透過率は87.8%
であるが、ガラスと導電膜の中間屈折率の下地膜を設け
ることによって(実施例1〜3)90%以上の透過率が
得られ、高透過率化の効果が大きいことが判る。この値
は下地膜として基板よりも低屈折率のSiO2 膜を0.
11μm成膜した場合(比較例2)よりも明らかに高透
過率となっている。
The sample of the ITO film directly formed on the glass substrate (Comparative Example 1) has a transmittance of 87.8% at 0.55 μm.
However, it can be seen that by providing a base film having an intermediate refractive index between glass and a conductive film (Examples 1 to 3), a transmittance of 90% or more is obtained, and the effect of increasing the transmittance is large. This value is less than that of a SiO 2 film having a lower refractive index than the substrate as an underlayer.
The transmittance is obviously higher than that in the case of forming a film of 11 μm (Comparative Example 2).

【0027】[0027]

【発明の効果】本発明は、透明ガラス基板上に屈折率
1.6〜1.9の透明膜を0.1〜0.18μm形成
し、その上に屈折率1.9〜2.1の透明導電膜を0.
01〜0.03μm形成した透明導電膜付ガラスであ
る。このような透明導電膜とすることにより、初期の目
的とする0.55μmでの透過率が89%以上の透明性
に優れた透明導電膜付ガラスを作製することが可能とな
る。
According to the present invention, a transparent film having a refractive index of 1.6 to 1.9 of 0.1 to 0.18 μm is formed on a transparent glass substrate, and a transparent film having a refractive index of 1.9 to 2.1 is formed thereon. The transparent conductive film is set to 0.
It is a glass with a transparent conductive film having a thickness of 01 to 0.03 μm. By using such a transparent conductive film, it becomes possible to manufacture a glass having a transparent conductive film, which has an initial desired transmittance of 89% or more at 0.55 μm.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 坂本 泰子 千葉県市原市五井南海岸12−54 日本曹達 株式会社機能製品研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yasuko Sakamoto 12-54 Goi Minamikaigan, Ichihara City, Chiba Pref.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】透明ガラス基板上に屈折率1.6〜1.9
の透明膜を0.1〜0.18μm形成し、その上に屈折
率1.9〜2.1の透明導電膜を0.01〜0.03μ
m形成したことを特徴とする透明導電膜付ガラス。
1. A refractive index of 1.6 to 1.9 on a transparent glass substrate.
Of 0.1 to 0.18 μm, and a transparent conductive film of refractive index of 1.9 to 2.1 of 0.01 to 0.03 μm.
Glass formed with a transparent conductive film.
【請求項2】透明導電膜のシート抵抗値が200〜30
00Ω/□であることを特徴とする請求項1記載の透明
導電膜付ガラス。
2. The sheet resistance value of the transparent conductive film is 200 to 30.
The glass with a transparent conductive film according to claim 1, which has a resistance of 00 Ω / □.
【請求項3】透明導電膜付ガラスの可視光波長0.55
μmにおける透過率が89%以上であることを特徴とす
る請求項1記載の透明導電膜付ガラス。
3. A visible light wavelength of glass with a transparent conductive film is 0.55.
The glass with a transparent conductive film according to claim 1, which has a transmittance of 89% or more in μm.
【請求項4】1層目の膜が、二酸化珪素と二酸化チタン
からなる複合膜又は二酸化珪素と二酸化ジルコニウムか
らなる複合膜であることを特徴とする請求項1〜3記載
の透明導電膜付ガラス。
4. The glass with a transparent conductive film according to claim 1, wherein the first layer film is a composite film made of silicon dioxide and titanium dioxide or a composite film made of silicon dioxide and zirconium dioxide. .
【請求項5】透明ガラス基板上に屈折率1.6〜1.9
の透明膜を0.1〜0.18μm形成し、その上に屈折
率1.9〜2.1の透明導電膜を0.01〜0.03μ
m形成することを特徴とする透明導電膜の成膜方法。
5. A refractive index of 1.6 to 1.9 on a transparent glass substrate.
Of 0.1 to 0.18 μm, and a transparent conductive film of refractive index of 1.9 to 2.1 of 0.01 to 0.03 μm.
A method for forming a transparent conductive film, which comprises forming a transparent conductive film.
【請求項6】請求項1〜3に記載の透明導電膜付ガラス
を使用することを特徴とするタッチパネル。
6. A touch panel using the glass with a transparent conductive film according to claim 1.
JP7390794A 1994-03-18 1994-03-18 Formation of transparent electrically conductive film Pending JPH07257944A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7390794A JPH07257944A (en) 1994-03-18 1994-03-18 Formation of transparent electrically conductive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7390794A JPH07257944A (en) 1994-03-18 1994-03-18 Formation of transparent electrically conductive film

Publications (1)

Publication Number Publication Date
JPH07257944A true JPH07257944A (en) 1995-10-09

Family

ID=13531734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7390794A Pending JPH07257944A (en) 1994-03-18 1994-03-18 Formation of transparent electrically conductive film

Country Status (1)

Country Link
JP (1) JPH07257944A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100338692C (en) * 2002-05-23 2007-09-19 日本油脂株式会社 Transparent conductive laminate film, touch panel having this transparent conductive laminate film, and production method for this transparent conductive laminate film
US8022939B2 (en) 2007-10-12 2011-09-20 Epson Imaging Devices Corporation Touch panel, electro optical device, and electronic apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100338692C (en) * 2002-05-23 2007-09-19 日本油脂株式会社 Transparent conductive laminate film, touch panel having this transparent conductive laminate film, and production method for this transparent conductive laminate film
US7521123B2 (en) 2002-05-23 2009-04-21 Nof Corporation Transparent conductive laminate film, touch panel having this transparent conductive laminate film, and production method for this transparent conductive laminate film
US8022939B2 (en) 2007-10-12 2011-09-20 Epson Imaging Devices Corporation Touch panel, electro optical device, and electronic apparatus

Similar Documents

Publication Publication Date Title
US20050030629A1 (en) Optical layer system having antireflection properties
KR100254151B1 (en) Transparent electrically conductive film attatched substrate
CN203658697U (en) Conducting support for vitrage with variable scattering characteristic of liquid crystal medium and vitrage
EP1423737B1 (en) Anti-reflection coatings and associated methods
CA2204011C (en) Antireflection coating for a temperature sensitive substrate
EP3825288B1 (en) Anti-reflective coated glass article
JPH08138446A (en) Glass plate with transparent conductive film and transparent touch panel using it
CA2396799A1 (en) Anti-static, anti-reflection coating
KR20110098706A (en) Ito-coated article for use with touch panel display assemblies, and/or method of making the same
JPH07315880A (en) Glass plate coated with transparent conductive film and touch panel using the same
CN101681069B (en) Transparent electrode
CN102194539A (en) Transparent electric-conducting laminate body and manufacturing method thereof
JP2001209038A (en) Substrate for liquid crystal display element
JP3957824B2 (en) Low reflection glass for touch panel substrates
JPH07242442A (en) Glass with transparent conductive film and production of transparent conductive film
JPH07257944A (en) Formation of transparent electrically conductive film
JPH09221340A (en) Substrate with transparent conductive film
JP4909559B2 (en) Transparent conductive substrate
JPH07257945A (en) Transparent electric conductive laminated body and pen input touch panel
JPH1185396A (en) Low reflection glass for substrate of touch panel
JP3630374B2 (en) Glass with transparent conductive film and method for forming transparent conductive film
CN101728008A (en) Method for forming transparent metal oxide film
JPS6082660A (en) Formation of oxide layer
JPH07267680A (en) Glass provided with transparent electrically-conductive film having high transmittance
JP3934742B2 (en) Anti-reflection coating