JPH07315880A - Glass plate coated with transparent conductive film and touch panel using the same - Google Patents

Glass plate coated with transparent conductive film and touch panel using the same

Info

Publication number
JPH07315880A
JPH07315880A JP11827794A JP11827794A JPH07315880A JP H07315880 A JPH07315880 A JP H07315880A JP 11827794 A JP11827794 A JP 11827794A JP 11827794 A JP11827794 A JP 11827794A JP H07315880 A JPH07315880 A JP H07315880A
Authority
JP
Japan
Prior art keywords
transparent conductive
conductive film
film
substrate
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11827794A
Other languages
Japanese (ja)
Other versions
JP2874556B2 (en
Inventor
Taichi Fukuhara
Masahiro Hirata
昌宏 平田
太一 福原
Original Assignee
Nippon Sheet Glass Co Ltd
日本板硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd, 日本板硝子株式会社 filed Critical Nippon Sheet Glass Co Ltd
Priority to JP11827794A priority Critical patent/JP2874556B2/en
Publication of JPH07315880A publication Critical patent/JPH07315880A/en
Application granted granted Critical
Publication of JP2874556B2 publication Critical patent/JP2874556B2/en
Anticipated expiration legal-status Critical
Application status is Expired - Fee Related legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES, OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3411Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
    • C03C17/3417Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials all coatings being oxide coatings

Abstract

PURPOSE: To improve transmittance of visible rays and visibility of the glass base plate by coating the surface with a thin film mainly comprising SiO2, a TiO2 thin film in specified thicknesses and a transparent conductive film mainly consisting of SnO2 in order.
CONSTITUTION: A base plate (1) made of float glass having 92% transmission at 550nm wavelength is cleaned and dried, then subjected to the normal-pressure CVD(chemical vapor deposition) process using SiH4 and O2 at 400-600°C to form a thin film 10-40nm thick (2), mainly composed of SiO2 on one surface as an undercoat, then the normal pressure CVD process is conducted using a titanium compound such as a titanium alkoxide, β-diketone chelate or titanium tetrachloride and an oxidizing agent such as O2 to laminate a thin film 100-120nm thick (3), mainly composed of TiO,z on the undercoat (2), further the normal pressure CVD process is repeated again using a tin compound containing chlorine and oxygen to laminate a transparent conductive film (4) 20-80nm thick, mainly composed of SnO2 so that the transmittance of the laminate thus formed is increased higher than that of the glass plate only.
COPYRIGHT: (C)1995,JPO

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION 【産業上の利用分野】 BACKGROUND OF THE INVENTION

【0001】本発明は透明導電性ガラス板およびそれを用いたタッチパネルに関し、さらに詳述すると可視光の透過率が高く視認性に優れたタッチパネルを得るのに適した透明導電膜付きガラス板およびそれを用いたタッチパネルに関する。 [0001] The present invention relates to a touch panel using the same and a transparent conductive glass plate, further elaborating the transparent conductive film-attached glass plate suitable for obtaining good touch panel to high visibility transmittance of visible light and it on the touch panel that was used.

【従来の技術】 BACKGROUND OF THE INVENTION

【0002】近年、各種情報処理機器の小型化に伴い、 [0002] In recent years, with the miniaturization of various kinds of information processing equipment,
個人用デジタル情報機器と呼ばれる携帯端末が注目を集めている。 Mobile terminal has attracted the attention called personal digital information equipment. このような携帯端末では、液晶表示体と一体化して用いられる信号入力のためのタッチパネルの重要性も増大しており、様々な開発がなされている。 In such mobile terminals, the importance of the touch panel for the signal used in integrated with the liquid crystal display element input has also increased, there have been various development. タッチパネルは表示画面を見ながら、指やペン先等で駆動回路へ信号を入力するために用いられる。 Touch panel while looking at the display screen used for inputting a signal to the drive circuit with a finger or pen or the like. この場合、表示素子の裏面側の基体に一方の電極が形成されており、これに対向するガラスなどの透明基体の表面に形成された透明導電膜が他方の電極となる。 In this case, the back surface side of the substrate to which is one electrode is formed, a transparent conductive film formed on the surface of the transparent substrate such as glass facing the display element is the other electrode.

【0003】かかる透明導電膜には可視光透過率ができるだけ高いことと抵抗のリニアリティが要求される。 [0003] Such a transparent conductive film visible light transmittance is required as high as possible that the resistor linearity. ここで抵抗のリニアリティとは、ある起点に対して任意の点を選んだときの二点間の抵抗値と距離の比例関係の度合いを表すものである。 The here resistor linearity is representative of the degree of proportionality between the resistance value and the distance between two points when you select any point for a starting point. 通常、抵抗値のリニアリティは、直線に沿って被膜のシート抵抗を測定し、標準偏差を平均値で除した百分率で評価される。 Normally, the linearity of the resistance, along a straight line to measure the sheet resistance of the coating is evaluated by dividing the percentage of the standard deviation by the mean value. 透明導電膜材料としては酸化インジウムや酸化錫を主成分とする薄膜が利用できる。 The transparent conductive film material can be used a thin film composed mainly of indium oxide and tin oxide.

【0004】携帯端末の性能向上に伴ってタッチパネル用透明導電膜付きガラスの性能も更に向上させる必要が生じている。 [0004] Performance of the transparent conductive film-coated glass for a touch panel with the improved performance of mobile terminals need to further improve has occurred. すなわち可視光透過率が高いことは視認性向上のために必要であり、波長550nmでの透過率が91% That is high visible light transmittance is required to improve visibility, the transmittance at a wavelength of 550nm is 91%
以上であることが望まれている。 It would be desirable or more.

【発明が解決しようとする課題】 [Problems that the Invention is to Solve

【0005】上記のように、安価でかつ高強度のタッチパネル用透明導電膜材料として従来から用いられている酸化錫ではこれらの要求を満足することができない。 [0005] As described above, it is impossible to satisfy these requirements in a tin oxide which has been conventionally used as a transparent conductive film material for inexpensive high strength touch panel. 透過率を向上させるためには膜の厚みを薄くすることが必要であるが、要求特性は理論限界を越えており、かつ、 In order to improve the transmittance, it is necessary to reduce the thickness of the film, required characteristics is beyond the theoretical limit, and,
膜の厚みを薄くすると抵抗値が高くなりすぎるといった問題が生じる。 Problem resistance and to reduce the thickness of the film is too high results.

【0006】本発明は、かかる従来技術の問題点に鑑みなされたものであって、高い可視光透過率、具体的には The present invention has been made in view of the problems in the prior art, high visible light transmittance, specifically
91%を越えるタッチパネル用透明導電膜付きガラスおよびそれを用いたタッチパネルを提供することを目的とする。 And to provide a touch panel using glass and it with a transparent conductive film for a touch panel exceeding 91%.

【課題を解決するための手段】 In order to solve the problems]

【0007】本発明は、ガラス板表面にSiO2を主成分とする薄膜、TiO2を主成分とする薄膜、SnO2を主成分とする透明導電膜を順次被覆させた透明導電膜付きガラス板であって、該SiO2を主成分とする薄膜の厚みを10〜50n [0007] The present invention relates to a thin film composed mainly of SiO2 on the surface of the glass plate, a thin film composed mainly of TiO2, a transparent conductive film-attached glass plate, a transparent conductive film composed mainly by successively coating a SnO2 , 10 to 50 N and the thickness of the thin film mainly the SiO2
m、該TiO2を主成分とする薄膜の厚みを100〜120nm、該透明導電膜の厚みを20〜80nmとしたタッチパネル用透明導電膜付きガラス板である。 m, the thickness of the thin film mainly the TiO2 100 to 120 nm, a transparent glass sheet with a conductive film for a touch panel where the thickness of the transparent conductive film and 20 to 80 nm.

【0008】そして、ガラス板表面に厚みが10〜50nmの [0008] Then, the thickness on a glass plate surface is 10~50nm
SiO2を主成分とする薄膜、厚みが100〜120nmおTiO2を主成分とする薄膜、厚みが20〜80nmのSnO2を主成分とする透明導電膜を順次被覆させた透明導電膜付きガラス板を第1の基体とし、透明導電性膜が被覆された透明樹脂板を第2の基体とし、第1の基体と第2の基体が、それぞれの基体に被覆された透明導電膜が対向し、かつ、第1 Film on the basis of SiO2, film thickness mainly composed of 100~120nm you TiO2, a transparent conductive film-attached glass plate sequentially coated with a transparent conductive film mainly containing SnO2 with a thickness of 20~80nm first a first substrate, a transparent resin plate having a transparent conductive film is coated with a second substrate, the first substrate and the second substrate is a transparent conductive film coated on each of the substrate opposite from and, first
の基体と第2の基体との間に空間が形成されるように接着されてなるタッチパネルは、表示部の視認性が高いという特徴を有する。 The substrate and adhered to become a touch panel such that a space is formed between the second substrate has the characteristics of high visibility of the display unit.

【0009】さらに、該透明導電膜付きガラスは、SiO2 [0009] In addition, the transparent conductive film-coated glass, SiO2
を主成分とする薄膜、TiO2を主成分とする薄膜、SnO2を主成分とする透明導電膜の厚みを上記範囲の中で調整して、波長550nmでの透過率が91%以上であり、波長400〜 Film on the basis of a thin film composed mainly of TiO2, the thickness of the transparent conductive film composed mainly of SnO2 was adjusted within the above range, the transmittance at a wavelength of 550nm is 91% or more, wavelength 400
800nmの領域において一つの極大を有する分光透過率を有し、かつ、その極大は550nmより短波長側にあるようにすることは、視認性の優れたタッチパネルを得る上で好ましい。 It has a spectral transmittance with a single maximum in the region of 800 nm, and that the maximum is to be in the shorter wavelength side than 550nm is preferable for obtaining a visibility superior touch.

【0010】本発明の透明導電膜付きガラスにおいては、前記SnO2を主成分とする透明導電膜はハロゲン元素として塩素のみを含有するものが、電気抵抗を0.5〜1.5 [0010] In the transparent conductive film-coated glass of the present invention, a transparent conductive film mainly containing SnO2 is those containing only chlorine as a halogen element, an electric resistance of 0.5 to 1.5
KΩ/□とし、かつ上記SiO2を主成分とする薄膜及びTiO And K.OMEGA. / □, and a thin film and TiO containing as a main component the above SiO2
2を主成分とする薄膜と積層して、得られる透明導電膜付きガラスの透過率を用いるガラス素板の透過率よりも高くすることができる。 2 by laminating the film on the basis of, it can be higher than the transmittance of the glass workpiece using the transmittance of the transparent conductive film-coated glass obtained.

【0011】以下、本発明の透明導電膜付きガラスを図面を参照しながら説明する。 [0011] Hereinafter, will be described with the transparent conductive film-coated glass of the present invention with reference to the drawings. 図1は、本発明の透明導電膜付きガラス板の積層構成を示す概念図である。 Figure 1 is a conceptual diagram showing a laminated structure of a transparent conductive film-coated glass plate of the present invention. 図1において、(1)は基板ガラス、(2)はSiO2を主成分とする薄膜、(3)はTiO2を主成分とする薄膜、(4)はSnO2を主成分とする透明導電膜である。 In Figure 1, it is (1) a substrate of glass, (2) a thin film composed mainly of SiO2, (3) a thin film composed mainly of TiO2, (4) a transparent conductive film composed mainly of SnO2 .

【0012】基板ガラス(1)としては、フロートガラスなど、従来より透明導電膜付きガラスに用いられているものが用いられ透明であれば特に限定されない。 [0012] As the substrate glass (1), such as float glass, not particularly limited as long as it is transparent used those conventionally employed in the transparent conductive film-attached glass.

【0013】SiO2を主成分とする薄膜(2)は、アンダーコートとして設けられるものであり、基体に含まれるナトリウム等がSnO2を主成分とする透明導電膜(4)に拡散してその電気特性に影響を及ぼすことを防止するためのものである。 [0013] thin film composed mainly of SiO2 (2) are those provided as an undercoat, its electrical characteristics are diffused into the transparent conductive film (4) sodium contained in the substrate or the like as a main component SnO2 it is intended to prevent from affecting. かかるSiO2を主成分とする膜は、その厚みによって積層後の透過率が影響されないため、アンダーコートとしての機能が発現するのに十分な厚みがあればよく、10〜50nmの厚みとするのが好ましく、さらに20〜 Film composed mainly of such SiO2, since the transmittance after lamination is not affected by its thickness, may be any function of the undercoat is thick enough to express, that the thickness of 10~50nm preferably, further 20
30nmとするのが好ましい。 Preferably with 30 nm. SiO2を主成分とする膜を形成する方法としては、生産性の点からSiH4(シラン)とO2 As a method for forming a film mainly containing SiO2, from the viewpoint of productivity and SiH4 (silane) O2
(酸素)を400〜600℃で反応させる常圧CVD法を適用することが好ましい。 It is preferred to apply the atmospheric pressure CVD method of reacting (oxygen) at 400 to 600 ° C.. また、原料中にP(燐)やB(ほう素)の化合物を混合し、これらの元素を含むSiO2を主成分とした膜としてもよい。 Further, by mixing the compound of P (phosphorus) or B (boron) in the raw material, SiO2 may be film mainly containing containing these elements.

【0014】TiO2を主成分とする薄膜(3)は、透明導電膜付きガラス板の透過率を大きくするために設けられるものである。 [0014] thin film mainly composed of TiO2 (3) is provided in order to increase the transmittance of the transparent conductive film-attached glass plate. TiO2を主成分とする薄膜を形成する手段としては、生産性の点からチタン化合物と酸素等の酸化剤を400〜600℃で反応させる常圧CVD法が好適である。 As a means for forming a film on the basis of TiO2, atmospheric pressure CVD method to react at 400 to 600 ° C. The titanium compound and an oxidizing agent such as oxygen from the viewpoint of productivity is preferred. チタン化合物としては、チタンテトライソプロポキシド(Ti[OCH(CH3)2]4)やチタンテトラ-n-ブトキシド(Ti As the titanium compound, titanium tetraisopropoxide (Ti [OCH (CH3) 2] 4), titanium tetra -n- butoxide (Ti
(OCH2CH2CH2CH3)4)などのアルコキシド、ジ-i-プロポキシ・ビス(アセチルアセトナト)チタン(Ti[OCH(CH (OCH2CH2CH2CH3) 4) alkoxides such as, di -i- propoxy bis (acetylacetonato) titanium (Ti [OCH (CH
3)2]2[OC(CH3)CHCOCH3]2)などのβ-ジケトンキレートや四塩化チタン(TiCl4)が使用できる。 3) 2] 2 [OC (CH3) CHCOCH3] 2) β- diketone chelate and titanium tetrachloride, such as (TiCl4) can be used. このようにして得られるTiO2を主成分とする薄膜の厚みは100〜120nm The thickness of the thin film of TiO2 obtained in this way as the main component 100~120nm
とするのが好ましく、105〜115nmとするのが好ましい。 It is preferable to be, preferably in the 105~115Nm.
膜厚が100nmよりも薄いと透過率のピークが短波長側にシフトし波長550nmでの透過率が91%より小さくなる。 Thickness thinner than 100nm and the peak of the transmittance is shifted to the short wavelength side transmittance at a wavelength 550nm is smaller than 91%. 膜厚が120nmよりも厚いと、透過率のピークが長波長側にシフトし、短波長域での透過率が低下するため透過色が黄色みを帯びるため意匠性が損なわれるため好ましくない。 If the film thickness is thicker than 120 nm, the peak of the transmittance is shifted to the long wavelength side is not preferable because the transparent color for transmittance decreases in a short wavelength region is impaired designability for tinged with yellowish.

【0015】SnO2を主成分とする薄膜(4)は、透明導電膜付きガラスに導電性を付与するために設けられる。 [0015] thin film composed mainly of SnO2 (4) is provided in order to impart conductivity to the transparent conductive film-attached glass. Sn Sn
O2を主成分とする透明導電性膜を形成する手段としては、生産性と膜の電気特性の点から塩素を含む錫化合物と酸素を400〜600℃で反応させる常圧CVD法が好適である。 As a means for forming a transparent conductive film composed mainly of O2, it is preferable atmospheric pressure CVD method of reacting a tin compound containing chlorine and oxygen at 400 to 600 ° C. From the viewpoint of the electrical characteristics of the productivity and film . 塩素を含む錫化合物としては、モノブチル錫トリクロライド(C4H9SnCl3)や四塩化錫(SnCl4)などが使用される。 The tin compound containing chlorine, such as monobutyltin trichloride (C4H9SnCl3) and tin tetrachloride (SnCl4) are used. また、錫原料中にHFの蒸気やCF3Brなどのフッ素を含む化合物、あるいは五塩化アンチモンを含む化合物の蒸気を混合し、被膜中に微量のフッ素やアンチモンを添加しても良い。 Further, compounds containing fluorine such as the vapor or CF3Br of HF in the tin raw material, or five vapors of compounds containing antimony chloride were mixed, a small amount of fluorine or antimony may be added in the coating. このようにして得られるSnO2を主成分とする透明導電膜は、20〜80nmに選定されより好ましくは40〜80nmに選定される。 The transparent conductive film of the SnO2 thus obtained as a main component, preferably from being selected in 20~80nm is selected to 40 to 80 nm. 膜厚が20nmより薄い場合には抵抗値のリニアリティが5%を越えてしまう。 Thickness exceeds 5% linearity of the resistance value in the case thinner than 20 nm. 膜厚が80nmよりも厚い場合には透過率のピークが長波長側にシフトし、短波長域での透過率が低下するため透明導電膜付きガラスの透過色が黄色みを帯びるため意匠性が損なわれ好ましくない。 Thickness is shifted to the peak of the transmittance is the long wavelength side if thicker than 80 nm, designability because the transparent color is tinged with yellowish transparent conductive film-coated glass for transmittance in the short wavelength region is lowered impaired undesirable.

【作用】 [Action]

【0016】本発明の透明導電膜付きガラス板は、ガラス板表面にSiO2を主成分とする薄膜、TiO2を主成分とする薄膜、SnO2を主成分とする透明導電膜を順次所定厚み範囲に被覆されており、可視光線透過率が高い。 The transparent conductive film-coated glass plate of the present invention, a thin film composed mainly of SiO2 on the surface of the glass plate, a thin film composed mainly of TiO2, coated sequentially predetermined thickness range of the transparent conductive film composed mainly of SnO2 It is, a high visible light transmittance. したがってこのガラス板を用いたタッチパネルは表示部の視認性に優れている。 Therefore touch panel using the glass plate is excellent in visibility of the display unit.

【実施例】 【Example】

【0017】実施例1 大きさが300x300mm、厚みが1.1mmの波長550nmにおける透過率が92%のフロートガラスを洗浄、乾燥し基板とした。 [0017] Example 1 magnitude 300X300mm, thickness washed transmittance 92% of the float glass at a wavelength of 550nm of 1.1 mm, was dried substrate. この基板を450℃に加熱し、基板表面にSiH4(シラン)、N2(窒素)、O2(酸素)の調整されたガスを供給して厚みが30nmのSiO2薄膜を形成した。 The substrate was heated to 450 ° C., the substrate surface SiH4 (silane), N2 (nitrogen), the thickness providing regulated gas of O2 (oxygen) to form a SiO2 film of 30 nm. しかる後に基板を500℃に加熱し、Ti[OCH(CH3)2]4の蒸気、N2、O2の調整されたガスを供給してSiO2膜表面に厚みが110nmのTiO Heating the substrate to 500 ° C. Thereafter, Ti [OCH (CH3) 2] 4 vapor, N2, O2 TiO thickness adjusted gas is supplied to the SiO2 film surface 110nm of
2薄膜を形成した。 To form a 2 thin film. 次に基板を500℃に保ったまま、C4H9 Then while keeping the substrate at 500 ° C., C4 H9
SnCl3の蒸気、N2、O2および水蒸気の調整されたガスを供給してTiO2膜表面に厚みが60nmの塩素含有SnO2膜を形成した。 Vapor SnCl3, thickness N2, O2 and adjusted gas is supplied to TiO2 film surface of the water vapor formed a chlorine-containing SnO2 film 60 nm. このようにして得られた積層構造を有する透明導電膜付きガラスを徐冷し、試料とした。 Thus gradual cooling a transparent conductive film-coated glass having obtained laminated structure to obtain a sample. この試料の可視光透過率を分光光度計により測定した結果を図2に示す。 The results of the measurements of the visible light transmittance of this sample with a spectrophotometer in FIG. 波長520nmにピークをもち波長550nmでの透過率が93 The transmittance at a wavelength of 550nm has a peak at a wavelength of 520nm is 93
%であった。 %Met. また、試料の中央を通り長辺に平行な直線を11等分した10点でをシート抵抗を測定しリニアリティを評価したところ、抵抗値のリニアリティは2%であった。 In addition, as a result of the in the center 10 points to 11 equally dividing the straight line parallel to the street long side of the sample was evaluated linearity measured sheet resistance, linearity of the resistance value was 2%.

【0018】実施例2 TiO2膜の厚みを120nm、塩素含有SnO2膜の厚みを40nmとした以外は実施例1と同様に試料を作製した。 [0018] 120nm thickness of Example 2 TiO2 film, except for using 40nm thick of chlorine-containing SnO2 film samples were prepared in the same manner as in Example 1. 試料の可視光透過率を分光光度計により測定したところ、波長54 The visible light transmittance of the sample was measured by a spectrophotometer, wavelength 54
0nmにピークをもち波長550nmでの透過率が92%であった。 The transmittance at a wavelength of 550nm has a peak was 92% to 0 nm. また、試料の抵抗値のリニアリティは実施例1と同じ測定方法で3%であった。 Further, the linearity of the resistance value of the sample was 3% in the same measuring method as in Example 1.

【0019】実施例3 TiO2膜の厚みを100nm、塩素含有SnO2膜の厚みを80nmとした以外は実施例1と同様に試料を作製した。 [0019] 100nm thickness in Example 3 TiO2 film, except for using 80nm thick of chlorine-containing SnO2 film samples were prepared in the same manner as in Example 1. 試料の可視光透過率を分光光度計により測定したところ、波長50 The visible light transmittance of the sample was measured by a spectrophotometer, wavelength 50
0nmにピークをもち波長550nmでの透過率が91%であった。 The transmittance at a wavelength of 550nm has a peak was 91% to 0 nm. また、試料の抵抗値のリニアリティは実施例1と同じ測定方法で3%であった。 Further, the linearity of the resistance value of the sample was 3% in the same measuring method as in Example 1. $ 実施例4 実施例1で作成した透明導電膜付きガラス板の透明導電膜(5)をストライプ状にパターンニングし、このガラスとストライプ状にパターニングしたITO透明導電膜(8)が被覆されたPETフイルム(7)とを、透明導電膜が内側にかつストライプの方向が直行するように、 $ A transparent conductive film of the transparent conductive film-coated glass plate prepared in Example 4 Example 1 (5) patterned in a stripe shape, the glass and the patterned ITO transparent conductive film into stripes (8) is coated a PET film (7), as a transparent conductive film is perpendicular the direction of the stripes and the inside,
かつガラス板とPETフイルムの間隔が約100μmとなるようにスペーサー(6)を用いて貼り付けた。 And spacing of the glass plate and the PET film was adhered using a spacer (6) to be about 100 [mu] m. 透明導電膜の間に一定の電圧を印加できるようにリード線を取付け、図3a(リード線は図示してない)に示すような断面構造のタッチパネルとした。 Attaching a lead wire so as to apply a constant voltage between the transparent conductive film, and a touch panel of a sectional structure as shown in FIG. 3a (leads not shown). このタッチパネルは図3(b)に示すように指で押厚することにより電極間の抵抗が変化し、例えば液晶表示セルと重ね合わせて用いると指の押圧力で制御できる視認性のよい表示素子が得られた。 The touch panel 3 resistance between the electrodes is changed by 押厚 a finger (b), the example, a liquid crystal display overlaid with cells using the good display device visibility that can be controlled by the pressing force of the finger was gotten. 比較例1 TiO2膜の厚みを130nm、塩素含有SnO2の厚みを60nmとした以外は実施例1と同様に試料を作製した。 The thickness of Comparative Example 1 TiO2 film 130 nm, except that the 60nm thick chlorine-containing SnO2 was prepared samples in the same manner as in Example 1. 試料の可視光透過率を分光光度計により測定したところ、波長560n The visible light transmittance of the sample was measured by a spectrophotometer, wavelength 560n
mにピークをもち波長550nmでの透過率が90%であった。 The transmittance at a wavelength of 550nm has a peak was 90% to m.
この試料の抵抗値のリニアリティは2%であった。 Linearity of the resistance value of this sample was 2%.

【0020】比較例2 TiO2膜の厚みを90nm、塩素含有SnO2膜の厚みを80nmとした以外は実施例1と同様に試料を作製した。 [0020] The thickness of the Comparative Example 2 TiO2 film 90 nm, except for using 80nm thick of chlorine-containing SnO2 film samples were prepared in the same manner as in Example 1. 試料の可視光透過率を分光光度計により測定したところ、波長490n The visible light transmittance of the sample was measured by a spectrophotometer, wavelength 490n
mにピークをもち波長550nmでの透過率が88%であった。 The transmittance at a wavelength of 550nm has a peak was 88% to m.
また、試料の抵抗のリニアリティは1%であった。 Further, the linearity of the resistance of the sample was 1%.

【0021】比較例3 大きさが300x300mm、厚みが1.1mmのフロートガラスを洗浄、乾燥し基板とした。 [0021] Comparative Example 3 size is 300X300mm, thickness cleaned float glass 1.1 mm, and dried substrate. この基板を450℃に加熱し、基板表面にSiH4、N2、O2の調整されたガスを供給して厚みが30nmのSiO2薄膜を形成した。 The substrate was heated to 450 ° C., the thickness by supplying SiH4, N2, O2 adjusted gas has an SiO2 thin film of 30nm on the substrate surface. しかる後に基板を500℃ 500 ℃ of the substrate and thereafter
に加熱し、C4H9SnCl3の蒸気、N2、O2、HFの蒸気および水蒸気の調整されたガスを供給してSiO2膜表面に厚みが Heated to, vapor C4H9SnCl3, the thickness of SiO2 film surface to supply N2, O2, HF vapor and adjusted gas steam
25nmのフッ素を含むSnO2薄膜を形成した。 Forming a SnO2 film containing 25nm fluorine. このようにして得られた、透明導電膜付きガラスを徐冷し、試料とした。 Thus obtained, gradually cooled with a transparent conductive film glass to prepare a sample. 試料の可視光透過率を分光光度計により測定した結果を図2に示す。 The results of the visible light transmittance of the sample was measured by a spectrophotometer shown in Fig. 波長550nmでの透過率は90%であった。 The transmittance at a wavelength of 550nm was 90%. また、試料の抵抗値はリニアリティは4%であった。 The resistance of the samples linearity was 4%. 比較例4 Comparative Example 4

【発明の効果】 【Effect of the invention】

【0022】本発明によれば可視光透過率が高く視認性に優れたタッチパネル用の透明導電膜付きガラスを得ることができる。 [0022] can be visible light transmittance according to the present invention obtain excellent transparent conductive film-attached glass for touch panel high visibility.

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

【図1】本発明の透明導電膜付きガラスの一部断面図である。 1 is a partial cross-sectional view of a transparent conductive film-coated glass of the present invention.

【図2】本発明の一実施例の可視透過特性を示す図である。 2 is a diagram showing a visible transmission characteristics of an embodiment of the present invention.

【図3】本発明のタッチパネルの断面図である。 3 is a cross-sectional view of the touch panel of the present invention.

【符号の説明】 DESCRIPTION OF SYMBOLS

(1):透明基体 (2):SiO2を主成分とする薄膜 (3):TiO2を主成分とする薄膜 (4):SnO2を主成分とする透明導電膜 (5):(2)、(3)、(4)が順次積層された透明電極 (6):スペーサー (7):PETフイルム (8):透明導電膜 (1): a transparent substrate (2): a thin film composed mainly of SiO2 (3): TiO2 thin film (4) composed mainly of: SnO2 transparent conductive film composed mainly of (5) :( 2), ( 3), (4) a transparent electrode are sequentially laminated (6): spacer (7): PET film (8): transparent conductive film

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl. 6識別記号 庁内整理番号 FI 技術表示箇所 B32B 17/06 27/06 8413−4F G02F 1/133 530 G06F 3/033 350 A 0832−5E ────────────────────────────────────────────────── ─── front page continued (51) Int.Cl. 6 identification symbol Agency in Docket No. FI art display portion B32B 17/06 27/06 8413-4F G02F 1/133 530 G06F 3/033 350 a 0832-5E

Claims (3)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】ガラス板表面にSiO2を主成分とする薄膜、 1. A thin film composed mainly of SiO2 on the surface of the glass plate,
    TiO2を主成分とする薄膜、SnO2を主成分とする透明導電膜を順次被覆させた透明導電膜付きガラス板であって、 Film on the basis of TiO2, a transparent conductive film-attached glass plate is sequentially coated with a transparent conductive film composed mainly of SnO2,
    該SiO2を主成分とする薄膜の厚みを10〜50nm、該TiO2を主成分とする薄膜の厚みを100〜120nm、該透明導電膜の厚みを20〜80nmとしたタッチパネル用透明導電膜付きガラス板。 10~50nm the thickness of the film on the basis of the SiO2, the TiO2 100 to 120 nm the thickness of the thin film mainly composed of a transparent conductive film-attached glass plate for a touch panel and 20~80nm the thickness of the transparent conductive film .
  2. 【請求項2】波長550nmでの透過率が用いるガラス板単独の透過率よりも高く、波長400〜800nmの領域において一つの極大を有する分光透過率を有し、かつ、その極大を550nmより短波長側にあるようにしたことを特徴とする請求項1に記載のタッチパネル用透明導電膜付きガラス板。 2. A higher than the transmittance of the glass plate alone transmittance used at a wavelength of 550nm, has a spectral transmittance with a single maximum in a wavelength range of 400 to 800 nm, and shorter than 550nm and the maximum transparent glass sheet with a conductive film for a touch panel according to claim 1, characterized in that as a wavelength side.
  3. 【請求項3】請求項1乃至2のいずれかの項に記載の透明導電膜付きガラス板を第1の基体とし、透明導電性膜が被覆された透明樹脂板を第2の基体とし、第1の基体と第2の基体とが、それぞれの基体に被覆された透明導電膜が対向し、かつ、第1の基体と第2の基体との間に空間が形成されるように接着されてなるタッチパネル。 3. A transparent conductive film-coated glass plate according to any one of claims 1 to 2 as a first substrate, a transparent resin plate having a transparent conductive film is covered with a second substrate, the a first substrate and a second substrate, each of the transparent conductive film facing coated on the substrate, and the space between the first substrate and the second substrate is bonded so as to form touch panel made.
JP11827794A 1994-05-31 1994-05-31 A transparent conductive film-coated glass plate and a touch panel using the same Expired - Fee Related JP2874556B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11827794A JP2874556B2 (en) 1994-05-31 1994-05-31 A transparent conductive film-coated glass plate and a touch panel using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11827794A JP2874556B2 (en) 1994-05-31 1994-05-31 A transparent conductive film-coated glass plate and a touch panel using the same

Publications (2)

Publication Number Publication Date
JPH07315880A true JPH07315880A (en) 1995-12-05
JP2874556B2 JP2874556B2 (en) 1999-03-24

Family

ID=14732677

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11827794A Expired - Fee Related JP2874556B2 (en) 1994-05-31 1994-05-31 A transparent conductive film-coated glass plate and a touch panel using the same

Country Status (1)

Country Link
JP (1) JP2874556B2 (en)

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6071623A (en) * 1998-02-13 2000-06-06 Central Glass Company, Limited Hydrophilic article and method for producing same
WO2004014814A1 (en) * 2002-08-09 2004-02-19 3M Innovative Properties Company Multifunctional multilayer optical film
JP2009249220A (en) * 2008-04-04 2009-10-29 Asahi Glass Co Ltd Film formation method for transparent substrate
JP4516657B2 (en) * 1999-06-18 2010-08-04 日本板硝子株式会社 And manufacturing method thereof for a photoelectric conversion device substrate, and a photoelectric conversion device using the same
US8264466B2 (en) 2006-03-31 2012-09-11 3M Innovative Properties Company Touch screen having reduced visibility transparent conductor pattern
CN102837467A (en) * 2011-06-22 2012-12-26 信义光伏产业(安徽)控股有限公司 Transparent conductive film glass and preparation method thereof
US8454181B2 (en) 2010-08-25 2013-06-04 Ford Global Technologies, Llc Light bar proximity switch
US8575949B2 (en) 2010-08-25 2013-11-05 Ford Global Technologies, Llc Proximity sensor with enhanced activation
KR101456560B1 (en) * 2007-01-15 2014-10-31 쌩-고벵 글래스 프랑스 Glass substrate coated with layers having an improved mechanical strength
US8878438B2 (en) 2011-11-04 2014-11-04 Ford Global Technologies, Llc Lamp and proximity switch assembly and method
US8922340B2 (en) 2012-09-11 2014-12-30 Ford Global Technologies, Llc Proximity switch based door latch release
US8928336B2 (en) 2011-06-09 2015-01-06 Ford Global Technologies, Llc Proximity switch having sensitivity control and method therefor
US8933708B2 (en) 2012-04-11 2015-01-13 Ford Global Technologies, Llc Proximity switch assembly and activation method with exploration mode
US8975903B2 (en) 2011-06-09 2015-03-10 Ford Global Technologies, Llc Proximity switch having learned sensitivity and method therefor
US8981602B2 (en) 2012-05-29 2015-03-17 Ford Global Technologies, Llc Proximity switch assembly having non-switch contact and method
US8994228B2 (en) 2011-11-03 2015-03-31 Ford Global Technologies, Llc Proximity switch having wrong touch feedback
US9065447B2 (en) 2012-04-11 2015-06-23 Ford Global Technologies, Llc Proximity switch assembly and method having adaptive time delay
US9136840B2 (en) 2012-05-17 2015-09-15 Ford Global Technologies, Llc Proximity switch assembly having dynamic tuned threshold
US9143126B2 (en) 2011-09-22 2015-09-22 Ford Global Technologies, Llc Proximity switch having lockout control for controlling movable panel
US9184745B2 (en) 2012-04-11 2015-11-10 Ford Global Technologies, Llc Proximity switch assembly and method of sensing user input based on signal rate of change
US9197206B2 (en) 2012-04-11 2015-11-24 Ford Global Technologies, Llc Proximity switch having differential contact surface
US9219472B2 (en) 2012-04-11 2015-12-22 Ford Global Technologies, Llc Proximity switch assembly and activation method using rate monitoring
US9287864B2 (en) 2012-04-11 2016-03-15 Ford Global Technologies, Llc Proximity switch assembly and calibration method therefor
US9311204B2 (en) 2013-03-13 2016-04-12 Ford Global Technologies, Llc Proximity interface development system having replicator and method
US9337832B2 (en) 2012-06-06 2016-05-10 Ford Global Technologies, Llc Proximity switch and method of adjusting sensitivity therefor
US9520875B2 (en) 2012-04-11 2016-12-13 Ford Global Technologies, Llc Pliable proximity switch assembly and activation method
US9531379B2 (en) 2012-04-11 2016-12-27 Ford Global Technologies, Llc Proximity switch assembly having groove between adjacent proximity sensors
US9548733B2 (en) 2015-05-20 2017-01-17 Ford Global Technologies, Llc Proximity sensor assembly having interleaved electrode configuration
US9559688B2 (en) 2012-04-11 2017-01-31 Ford Global Technologies, Llc Proximity switch assembly having pliable surface and depression
US9568527B2 (en) 2012-04-11 2017-02-14 Ford Global Technologies, Llc Proximity switch assembly and activation method having virtual button mode
US9641172B2 (en) 2012-06-27 2017-05-02 Ford Global Technologies, Llc Proximity switch assembly having varying size electrode fingers
US9654103B2 (en) 2015-03-18 2017-05-16 Ford Global Technologies, Llc Proximity switch assembly having haptic feedback and method
US9660644B2 (en) 2012-04-11 2017-05-23 Ford Global Technologies, Llc Proximity switch assembly and activation method
US9831870B2 (en) 2012-04-11 2017-11-28 Ford Global Technologies, Llc Proximity switch assembly and method of tuning same
US9944237B2 (en) 2012-04-11 2018-04-17 Ford Global Technologies, Llc Proximity switch assembly with signal drift rejection and method
US10004286B2 (en) 2011-08-08 2018-06-26 Ford Global Technologies, Llc Glove having conductive ink and method of interacting with proximity sensor
US10038443B2 (en) 2014-10-20 2018-07-31 Ford Global Technologies, Llc Directional proximity switch assembly
US10112556B2 (en) 2011-11-03 2018-10-30 Ford Global Technologies, Llc Proximity switch having wrong touch adaptive learning and method

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6071623A (en) * 1998-02-13 2000-06-06 Central Glass Company, Limited Hydrophilic article and method for producing same
JP4516657B2 (en) * 1999-06-18 2010-08-04 日本板硝子株式会社 And manufacturing method thereof for a photoelectric conversion device substrate, and a photoelectric conversion device using the same
WO2004014814A1 (en) * 2002-08-09 2004-02-19 3M Innovative Properties Company Multifunctional multilayer optical film
US7151532B2 (en) 2002-08-09 2006-12-19 3M Innovative Properties Company Multifunctional multilayer optical film
KR101014061B1 (en) * 2002-08-09 2011-02-14 쓰리엠 이노베이티브 프로퍼티즈 컴파니 Multifunctional Multilayer Optical Film
US8264466B2 (en) 2006-03-31 2012-09-11 3M Innovative Properties Company Touch screen having reduced visibility transparent conductor pattern
KR101456560B1 (en) * 2007-01-15 2014-10-31 쌩-고벵 글래스 프랑스 Glass substrate coated with layers having an improved mechanical strength
JP2009249220A (en) * 2008-04-04 2009-10-29 Asahi Glass Co Ltd Film formation method for transparent substrate
US8454181B2 (en) 2010-08-25 2013-06-04 Ford Global Technologies, Llc Light bar proximity switch
US8575949B2 (en) 2010-08-25 2013-11-05 Ford Global Technologies, Llc Proximity sensor with enhanced activation
US8928336B2 (en) 2011-06-09 2015-01-06 Ford Global Technologies, Llc Proximity switch having sensitivity control and method therefor
US8975903B2 (en) 2011-06-09 2015-03-10 Ford Global Technologies, Llc Proximity switch having learned sensitivity and method therefor
CN102837467A (en) * 2011-06-22 2012-12-26 信义光伏产业(安徽)控股有限公司 Transparent conductive film glass and preparation method thereof
US10004286B2 (en) 2011-08-08 2018-06-26 Ford Global Technologies, Llc Glove having conductive ink and method of interacting with proximity sensor
US9143126B2 (en) 2011-09-22 2015-09-22 Ford Global Technologies, Llc Proximity switch having lockout control for controlling movable panel
US10112556B2 (en) 2011-11-03 2018-10-30 Ford Global Technologies, Llc Proximity switch having wrong touch adaptive learning and method
US8994228B2 (en) 2011-11-03 2015-03-31 Ford Global Technologies, Llc Proximity switch having wrong touch feedback
US8878438B2 (en) 2011-11-04 2014-11-04 Ford Global Technologies, Llc Lamp and proximity switch assembly and method
US9531379B2 (en) 2012-04-11 2016-12-27 Ford Global Technologies, Llc Proximity switch assembly having groove between adjacent proximity sensors
US9944237B2 (en) 2012-04-11 2018-04-17 Ford Global Technologies, Llc Proximity switch assembly with signal drift rejection and method
US9831870B2 (en) 2012-04-11 2017-11-28 Ford Global Technologies, Llc Proximity switch assembly and method of tuning same
US9184745B2 (en) 2012-04-11 2015-11-10 Ford Global Technologies, Llc Proximity switch assembly and method of sensing user input based on signal rate of change
US9197206B2 (en) 2012-04-11 2015-11-24 Ford Global Technologies, Llc Proximity switch having differential contact surface
US9219472B2 (en) 2012-04-11 2015-12-22 Ford Global Technologies, Llc Proximity switch assembly and activation method using rate monitoring
US9287864B2 (en) 2012-04-11 2016-03-15 Ford Global Technologies, Llc Proximity switch assembly and calibration method therefor
US9065447B2 (en) 2012-04-11 2015-06-23 Ford Global Technologies, Llc Proximity switch assembly and method having adaptive time delay
US9568527B2 (en) 2012-04-11 2017-02-14 Ford Global Technologies, Llc Proximity switch assembly and activation method having virtual button mode
US9559688B2 (en) 2012-04-11 2017-01-31 Ford Global Technologies, Llc Proximity switch assembly having pliable surface and depression
US9520875B2 (en) 2012-04-11 2016-12-13 Ford Global Technologies, Llc Pliable proximity switch assembly and activation method
US8933708B2 (en) 2012-04-11 2015-01-13 Ford Global Technologies, Llc Proximity switch assembly and activation method with exploration mode
US9660644B2 (en) 2012-04-11 2017-05-23 Ford Global Technologies, Llc Proximity switch assembly and activation method
US9136840B2 (en) 2012-05-17 2015-09-15 Ford Global Technologies, Llc Proximity switch assembly having dynamic tuned threshold
US8981602B2 (en) 2012-05-29 2015-03-17 Ford Global Technologies, Llc Proximity switch assembly having non-switch contact and method
US9337832B2 (en) 2012-06-06 2016-05-10 Ford Global Technologies, Llc Proximity switch and method of adjusting sensitivity therefor
US9641172B2 (en) 2012-06-27 2017-05-02 Ford Global Technologies, Llc Proximity switch assembly having varying size electrode fingers
US8922340B2 (en) 2012-09-11 2014-12-30 Ford Global Technologies, Llc Proximity switch based door latch release
US9447613B2 (en) 2012-09-11 2016-09-20 Ford Global Technologies, Llc Proximity switch based door latch release
US9311204B2 (en) 2013-03-13 2016-04-12 Ford Global Technologies, Llc Proximity interface development system having replicator and method
US10038443B2 (en) 2014-10-20 2018-07-31 Ford Global Technologies, Llc Directional proximity switch assembly
US9654103B2 (en) 2015-03-18 2017-05-16 Ford Global Technologies, Llc Proximity switch assembly having haptic feedback and method
US9548733B2 (en) 2015-05-20 2017-01-17 Ford Global Technologies, Llc Proximity sensor assembly having interleaved electrode configuration

Also Published As

Publication number Publication date
JP2874556B2 (en) 1999-03-24

Similar Documents

Publication Publication Date Title
JP5135118B2 (en) Liquid crystal display
JP6106204B2 (en) Window panel integrated capacitive touch sensor and a manufacturing method
US8790865B2 (en) Method of fabricating capacitive touch panel
CN103370748B (en) Conductive structure and preparation method
US7151532B2 (en) Multifunctional multilayer optical film
US8283935B2 (en) Method of forming touch sensing circuit pattern
EP1031111B1 (en) Touch panel
US8269743B2 (en) Touch sensing display panel and touch sensing substrate
CN101488066B (en) Touch control display panel and touch control substrate
JP5380161B2 (en) A transparent conductive film and electronic devices using the same
KR101144537B1 (en) Electric conducting body and method for preparing the same
JP5991636B2 (en) Conductive structure and a method of manufacturing {conductivestructurebodyandmethodformanufacturingthesame}
US20110012842A1 (en) Touch panel using tempered glass
CN102023770B (en) Capacitive touch panel module and manufacturing method thereof
US20130194220A1 (en) Touch panel
KR101433448B1 (en) Conducting substrate and touch panel comprising the same
US20100328248A1 (en) Capacitive touch screen with reduced electrode trace resistance
KR20030056353A (en) Touch Panel Apparatus and Method of Fabricating the same
JP2004152727A (en) Transparent conductive film
JP2004503028A (en) Adhesive material for touch screen
JP2007310885A (en) Display panel
CN101685362A (en) Light transmission touch panel
CN104246913B (en) Conductive structure and preparation method
JP2013127792A (en) Electrode pattern of touch panel and method for manufacturing the same
JP5832896B2 (en) To produce a substrate which the laminate is provided with thermal properties, methods for particular to produce heated glazing

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees