JPH08138446A - Glass plate with transparent conductive film and transparent touch panel using it - Google Patents

Glass plate with transparent conductive film and transparent touch panel using it

Info

Publication number
JPH08138446A
JPH08138446A JP27510194A JP27510194A JPH08138446A JP H08138446 A JPH08138446 A JP H08138446A JP 27510194 A JP27510194 A JP 27510194A JP 27510194 A JP27510194 A JP 27510194A JP H08138446 A JPH08138446 A JP H08138446A
Authority
JP
Grant status
Application
Patent type
Prior art keywords
layer
glass plate
thickness
conductive film
transparent conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27510194A
Other languages
Japanese (ja)
Inventor
Taichi Fukuhara
Masahiro Hirata
昌宏 平田
太一 福原
Original Assignee
Nippon Ita Glass Fine Kk
Nippon Sheet Glass Co Ltd
日本板硝子フアイン株式会社
日本板硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Abstract

PURPOSE: To provide a glass plate with a transparent conductive film and a transparent touch panel using it by forming thin films, which respectively contain SiO2, SnO2, TiO2, SiO2, SiO2 as principal constituents and are provided with specific thickness individually, on a glass plate.
CONSTITUTION: In a glass plate with a transparent conductive film, the first layer 3, which comprises a thin film containing SiO2 as a principal constituent and serves as an under coating layer, the second layer 4 comprising a thin film which contains SnO2 as a principal constituent, the third layer 5 comprising a thin film which contains TiO2 as a principal constituent, and the fourth layer 6 comprising a thin film which contains SiO2 as a principal constituent are sequently formed on a glass plate 2 in order. Thickness from the glass plate 2 to the second layer 4 is set to 30-120nm, thickness of the third layer 5 is set to 10-110nm, thickness of the fourth layer 6 is set to 30-120nm, and thickness of the fifth layer 7 is set to 20-30nm. In this way, the glass plate provided with a transparent conductive film, in which visible radiation transmittance is high while wavelength dependency of the transmittance is low, is formed.
COPYRIGHT: (C)1996,JPO

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION 【産業上の利用分野】 BACKGROUND OF THE INVENTION

【0001】本発明は各種の入力機器に用いられる透明導電膜付きガラス板及び透明タッチパネルに関する。 [0001] The present invention relates to a transparent conductive film-coated glass plate and the transparent touch panel is used for various input devices.

【従来の技術】 BACKGROUND OF THE INVENTION

【0002】透明タッチパネルは、電卓、リモコン、電話機、コピー機、電子手帳、制御機器、携帯端末機、ゲーム機器、教育機器等の各種機器の入力手段として用いられる。 [0002] Transparent touch panel, calculators, remote control, telephone, copying machine, electronic notebooks, control equipment, mobile terminal, a game machine, is used as an input means of various devices, such as educational equipment. 従来、このような用途に用いられる透明導電膜付きガラス板及び透明タッチパネルとしては、ガラス板上に、SiO2を主成分とする薄膜からなる第1層、S Conventionally, as a transparent conductive film-coated glass plate and the transparent touch panel is used in such applications, on a glass plate, a first layer of a thin film composed mainly of SiO2, S
nO2を主成分とする透明導電膜からなる第2層を順次積層形成した透明導電膜付きガラス板、及びこの透明導電膜付きガラス板を第1電極板とし、透明導電性膜が設けられた可撓性を有する透明板を第2電極板として、第1電極板と第2電極板とを、所定の空隙を設けて対向配置してなる透明タッチパネルが知られている。 nO2 transparent conductive film-coated glass plate of the second layer of transparent conductive film mainly were sequentially laminated form, and the transparent conductive film-coated glass plate and the first electrode plate, allowed a transparent electroconductive film is provided a transparent plate having FLEXIBLE as the second electrode plate, and the first electrode plate and second electrode plate, disposed opposite to the transparent touch panel comprising is known with a predetermined gap.

【0003】ところで、透明導電膜には、可視光透過率が高いことと、抵抗値のリニアリティが要求される。 Meanwhile, the transparent conductive film, and it is high visible light transmittance, the linearity of the resistance value is required. ここで、抵抗値のリニアリティとは、ある起点に対して任意の点を選択したときの二点間の抵抗値と距離の比例関係の度合いを示すもので、通常、直線に沿って被膜のシート抵抗を測定し、標準偏差を平均値で除した百分率で評価されるものである。 Here, the linearity of the resistance value, indicates the degree of proportionality between the resistance value and the distance between two points when selecting the arbitrary point for a starting point, normally the film along a straight sheet the resistance is measured, it is assessed at the percentage obtained by dividing the standard deviation by the mean value.

【0004】そして、透明導電膜付きガラス板やこれを用いた透明タッチパネルには、使用される携帯端末器の性能向上に伴って、より高い可視光透過率、抵抗値のリニアリティが要求されるようになっており、例えば、可視光透過率については、波長550nmでの透過率93 [0004] Then, the transparent touch panel using the or this transparent conductive film-coated glass plate, with the improvement in performance of portable communication terminal to be used, so that a higher visible light transmittance, the linearity of the resistance value is required has become, for example, for the visible light transmittance, the transmittance at a wavelength of 550 nm 93
%以上、抵抗値のリニアリティについては5%以内というような性能が要求されている。 % Or more, the performance as that within 5% is required for linearity of the resistance value.

【0005】 [0005]

【発明が解決しようとする課題】しかしながら、上述した従来のガラス板上に、SiO2を主成分とする薄膜からなる第1層、SnO2を主成分とする透明導電膜からなる第2層を順次積層形成した透明導電膜付きガラス板にあっては、酸化錫(SnO2)の光学定数によって透過率が決まり、膜厚を選定しても、波長550nmの透過率(以下、T550と呼ぶ)として89〜90%が限界であって、高透過率T550=93%以上を得ることはできない。 [SUMMARY OF THE INVENTION However, in the conventional glass plate described above, the laminated first layer of film on the basis of SiO2, the second layer made of a transparent conductive film composed mainly of SnO2 sequentially in the formed transparent electroconductive film-attached glass plate 89 to determines the transmission by the optical constants of tin oxide (SnO2), also selected thickness, transmittance at a wavelength of 550nm as (hereinafter, referred to as T550) a limit of 90%, it is impossible to obtain a high transmittance T550 = 93% or more.

【0006】そこで、本出願人は、先にガラス板上に、 [0006] Therefore, the present applicant has, on a glass plate in the first,
SiO2を主成分とする薄膜からなる第1層、TiO2 A first layer of a thin film composed mainly of SiO2, TiO2
を主成分とする第2層、SnO2を主成分とする透明導電膜からなる第3層を順次積層形成した透明導電膜付きガラス板を提案している。 A second layer composed mainly proposes a transparent conductive film-attached glass plate a third layer made of a transparent conductive film mainly were sequentially laminated form SnO2. これによれば、T550=9 According to this, T550 = 9
2%が得られるものの、分光透過率曲線に山谷が生じ、 Although 2% is obtained, peaks and troughs occurs in the spectral transmittance curve,
可視光領域でフラットな透過率を得るという点では不十分であった。 In terms of obtaining a flat transmittance in the visible light region is insufficient.

【0007】 [0007]

【課題を解決するための手段】上記課題を解決するため請求項1の透明導電膜付きガラス板は、ガラス板上に、 Transparent glass sheet with a conductive film according to claim 1 for solving the above object, according to an aspect of the on a glass plate,
SiO2を主成分とする薄膜からなる第1層、SnO2 A first layer of a thin film composed mainly of SiO2, SnO2
を主成分とする薄膜からなる第2層、TiO2を主成分とする薄膜からなる第3層、SiO2を主成分とする薄膜からなる第4層、SnO2を主成分とする薄膜からなる第5層を順次積層形成し、前記第2層の厚みを30〜 Second layer of film on the basis of a third layer of film on the basis of TiO2, a fourth layer of a thin film composed mainly of SiO2, fifth layer of a thin film composed mainly of SnO2 sequentially laminated form, 30 to the thickness of the second layer
120nm、第3層の厚みを10〜110nm、第4層の厚みを30〜80nm、第5層の厚みを20〜30n 120 nm, 10~110Nm the thickness of the third layer, 30 to 80 nm the thickness of the fourth layer, the thickness of the fifth layer 20~30n
mとした。 It was m.

【0008】請求項2の透明タッチパネルは、請求項1 [0008] The transparent touch panel as claimed in claim 2, claim 1,
に記載の透明導電膜付きガラス板を第1電極板とし、透明導電性膜が設けられた可撓性を有する透明板を第2電極板として、前記第1電極板の透明導電膜と第2電極板の透明導電膜とを所定の空隙を設けて対向配置した。 And a transparent conductive film-coated glass plate according to the first electrode plate, a transparent plate having a transparent conductive film is provided flexibility as a second electrode plate, a transparent conductive film of the first electrode plate and the second placed opposite the transparent conductive film of the electrode plates with a predetermined gap. ここで2枚の電極板はそれぞれの板に被覆された透明導電膜が内側になるように対向配置される。 Wherein two electrode plates is a transparent conductive film coated on each of the plate are opposed so as inwardly.

【0009】以下に本発明を添付図面に基づいて説明する。 [0009] The present invention is described accompanying drawings. 図1は本発明に係る透明導電膜付きガラス板の模式的構成図である。 Figure 1 is a schematic structural view of a transparent conductive film-attached glass plate according to the present invention.

【0010】この透明導電膜付きガラス板1は、ガラス板2上に、SiO2を主成分とする薄膜からなるアンダーコート層としての第1層3を、この第1層3上にSn [0010] The transparent conductive film-coated glass plate 1, on the glass plate 2, a first layer 3 of the undercoat layer formed of a thin film composed mainly of SiO2, Sn on the first layer 3
O2を主成分とする薄膜からなる第2層4を、この第2 The second layer 4 of a thin film composed mainly of O2, the second
層4上にTiO2を主成分とする薄膜からなる第3層5 Third layer 5 consisting of a thin film composed mainly of TiO2 on the layer 4
を、この第3層5上にSiO2を主成分とする薄膜からなる第4層6を、この第4層6上にSnO2を主成分とする薄膜からなる第5層7を順次積層形成してなる。 And the fourth layer 6 made of a film on the basis of the third layer 5 on the SiO2, a fifth layer 7 formed of a thin film composed mainly of SnO2 on the fourth layer 6 are sequentially laminated Become.

【0011】ここで、ガラス板2としては、フロートガラスなど、従来より透明導電膜付きガラス板に用いられているものであれば良く、また透明ガラスに限定されるものではない。 [0011] Here, as the glass plate 2, such as float glass, as long as conventionally employed in the transparent conductive film-attached glass plate well, also is not limited to a transparent glass.

【0012】SiO2を主成分とする薄膜からなる第1 [0012] The first consisting of a thin film composed mainly of SiO2
層3は、基体に含まれるナトリウム等がSnO2を主成分とする第2層4及び第5層7に拡散してその電気特性に影響を及ぼすことを防止するためのものである。 Layer 3 is intended to prevent affecting its electrical properties diffuse into the second layer 4 and the fifth layer 7 sodium contained in the substrate or the like as a main component SnO2. この第1層3は、光学特性には影響を及ぼさないので、その膜厚はアンダーコート層として機能するに充分な厚みであれば良く、10〜50nmの厚みとするのが好ましく、より好ましくは、20〜30nmである。 The first layer 3, does not affect the optical properties, the film thickness may be any thickness sufficient to function as an undercoat layer may preferably be the thickness of 10 to 50 nm, more preferably , it is a 20~30nm. SiO2 SiO2
を主成分とする薄膜を形成する方法としては、生産性の点からSiH4(モノシラン)とO2(酸素)を400 As a method for forming a film on the basis of, from the viewpoint of productivity SiH4 and (monosilane) O2 (oxygen) 400
〜600℃で反応させる常圧CVD法を適用することが好ましい。 It is preferred to apply the atmospheric pressure CVD method to react at to 600 ° C.. また、原料中にP(燐)やB(ほう素)の化合物を混合し、これらの元素を含むSiO2を主成分とする薄膜を用いることもできる。 Further, the compound of P (phosphorus) or B (boron) were mixed in the raw material, it is also possible to use a thin film composed mainly of SiO2 containing these elements.

【0013】なお、ガラス板2として、ほう珪酸ガラスを主体とする無アルカリガラスを用いる場合には、Si [0013] In the case where the glass plate 2, an alkali-free glass mainly comprising borosilicate glass, Si
O2を主成分とする薄膜からなる第1層3を省略することができる。 O2 it is possible to omit the first layer 3 made of thin film mainly.

【0014】SnO2を主成分とする薄膜からなる第2 [0014] SnO2 consisting of thin film whose main component is the second
層4は、透明導電膜付きガラス板の透過率を大きくするために設けられるものである。 Layer 4 is provided in order to increase the transmittance of the transparent conductive film-attached glass plate. SnO2を主成分とする薄膜を形成する方法としては、生産性の点から塩素を含む錫化合物と酸素を400〜600℃で反応させる常圧CVD法が好適である。 As a method of forming a thin film composed mainly of SnO2, atmospheric pressure CVD method to react at 400 to 600 ° C. The tin compound and oxygen containing chlorine from the viewpoint of productivity is preferred. 塩素を含む錫化合物としては、 The tin compound containing chlorine,
モノブチル錫トリクロライドや四塩化錫(SnCl4) Monobutyltin trichloride and tin tetrachloride (SnCl4)
などが使用される。 Such as is used.

【0015】このSnO2を主成分とする薄膜からなる第2層4の厚みは、30〜120nmとするのが好ましく、より好ましくは60〜100nmである。 [0015] The thickness of the second layer 4 of a thin film composed mainly of the SnO2 may preferably be 30 to 120 nm, more preferably 60 to 100 nm. 膜厚が3 The film thickness is 3
0nmより薄い場合には長波長域の透過率が低下し、1 If thinner 0nm reduces the transmittance of the long wavelength region, 1
20nmより厚い場合には短波長域の透過率が低下する。 If thicker than 20nm transmittance in the short wavelength region is lowered. また、この第2層4はピンホール等の影響で第5層7と短絡された場合でも第5層7のシート抵抗に影響を及ぼすことがないよう、高いシート抵抗を有することが望ましく、例えば10kΩ/□以上が好ましい。 Further, the second layer 4 so as not to affect the sheet resistance of the fifth layer 7 even if it is short-circuited to the fifth layer 7 under the influence such as a pinhole, it is desirable to have a high sheet resistance, for example, 10kΩ / □ or more. SnO SnO
2を主成分とする薄膜の高抵抗化はアルミニウム(A Increase in the resistance of the thin film 2 as a main component aluminum (A
l)やインジウム(In)などの3価の金属元素をドープすることによっておこなう事ができる。 l) and indium (an In) 3 trivalent metal element such as can be performed by doping.

【0016】TiO2を主成分とする薄膜からなる第3 [0016] The third consisting of a thin film composed mainly of TiO2
層5は、透明導電膜付きガラス板の透過率を大きくするために設けられるものである。 Layer 5 is provided in order to increase the transmittance of the transparent conductive film-attached glass plate. TiO2を主成分とする薄膜を形成する方法としては、チタン化合物と酸素等の酸化剤を400〜600℃で反応させる常圧CVD法が好適である。 As a method for forming a film on the basis of TiO2, the atmospheric pressure CVD method of reacting an oxidizing agent of a titanium compound and oxygen or the like at 400 to 600 ° C. are preferred. チタン化合物としては、チタンテトライソプロポキシド(Ti(OCH(CH3)2)4)やチタンテトラ−n−ブトキシド(Ti(OCH2CH2CH As the titanium compound, titanium tetraisopropoxide (Ti (OCH (CH3) 2) 4) and titanium tetra -n- butoxide (Ti (OCH2CH2CH
2CH3)4)などのアルコキシド、ジ−i−プロポキシ・ビス(アセチルアセトナト)チタン(Ti(OCH 2 CH3) 4) alkoxides such as, di -i- propoxy bis (acetylacetonato) titanium (Ti (OCH
(CH3)2)2(OC(CH3)CHCOCH3) (CH3) 2) 2 (OC (CH3) CHCOCH3)
2)などのβ−ジケトンキレートや四塩化チタン(Ti 2) beta-diketone chelate and titanium tetrachloride, such as (Ti
Cl4)が使用できる。 Cl4) can be used.

【0017】このTiO2を主成分とする薄膜からなる第3層5の厚みは、10〜110nmとするのが好ましく、より好ましくは20〜90nmである。 [0017] The thickness of the third layer 5 consisting of a thin film composed mainly of the TiO2 may preferably be 10~110Nm, more preferably 20 to 90 nm. 膜厚が10 The film thickness is 10
nmより薄い場合には長波長域の透過率が低下し、11 If thinner than nm decreases transmittance in a long wavelength range, 11
0nmより厚い場合には短波長域の透過率が低下する。 If thicker than 0nm transmittance in the short wavelength region is lowered.

【0018】SiO2を主成分とする薄膜からなる第4 [0018] The fourth consisting of a thin film composed mainly of SiO2
層6は透明導電膜付きガラス板の透過率を大きくするために設けられるものであり、第1層3と同様にして形成される。 Layer 6 is provided in order to increase the transmittance of the transparent conductive film-attached glass plate, it is formed in the same manner as the first layer 3. この第4層6の厚みは、30〜80nmとするのが好ましく、より好ましくは40〜70nmである。 The thickness of the fourth layer 6 may preferably be 30 to 80 nm, more preferably 40 to 70 nm.
膜厚が30nmより薄い場合には長波長域の透過率が低下し、80nmより厚い場合には短波長域の透過率が低下する。 Thickness when thinner than 30nm reduced transmittance in a long wavelength region, when thicker than 80nm transmittance in the short wavelength region is lowered.

【0019】SnO2を主成分とする薄膜からなる第5 [0019] SnO2 consisting of thin film whose main component is the fifth
層7は本発明による透明導電膜付きガラスにおいて導電性を付与するために設けられるものである。 Layer 7 is provided in order to impart conductivity in the transparent conductive film-coated glass according to the present invention. 第5層7は第2層4と同様にして形成されるが、導電性を調整するために原料ガス中にHFやCF3Br、CH3CHF2 Fifth layer 7 is formed in the same manner as the second layer 4, HF and CF3 Br, in the feed gas in order to adjust the conductivity CH3CHF2
などのフッ素を含む化合物、あるいは五塩化アンチモンなどのアンチモンを含む化合物を混合し、被膜中にフッ素やアンチモンを添加してもよい。 Compounds containing fluorine such as, or five compounds containing antimony such as antimony chloride were mixed, fluorine or antimony may be added in the coating.

【0020】この第5層7の厚みは、20〜30nmとするのが好ましく、より好ましくは20〜25nmである。 [0020] The thickness of the fifth layer 7 may preferably be 20 to 30 nm, more preferably 20-25 nm. 膜厚が20nmより薄い場合には抵抗値のリニアリティが5%を越えてしまい、30nmより厚い場合には透過率が低下する。 Thickness will exceed the linearity of 5% of the resistance value when less than 20 nm, in the case thicker than 30nm is transmittance decreases.

【0021】 [0021]

【作用】ガラス板表面に薄膜を形成して得られる透明導電膜付きガラス板において、ガラス板表面にSiO2を主成分とする薄膜からなるアンダーコート層としての第1層を形成し、この第1層上に厚みを30〜120nm [Action] In the transparent conductive film-attached glass plate obtained by forming a thin film on a surface of a glass plate to form a first layer of the undercoat layer formed of a thin film composed mainly of SiO2 on the surface of the glass plate, the first 30~120nm the thickness on the layer
としたSnO2を主成分とする薄膜からなる第2層を、 A second layer of a thin film composed mainly of SnO2 which was,
この第2層上に厚みを10〜110nmとしたTiO2 TiO2 which was 10~110nm thickness to the second layer on the
を主成分とする薄膜からなる第3層を、この第3層上に厚みを30〜80nmとしたSiO2を主成分とする薄膜からなる第4層を、この第4層上に厚みを20〜30 The third layer of film on the basis of, 20 the thickness of SiO2 which was 30~80nm the thickness of this third layer on the fourth layer of thin film mainly, to the fourth layer on the 30
nmとしたSnO2を主成分とする薄膜からなる第5層を順次積層形成することにより、波長550nmでの透過率が93%以上であり、かつ可視光領域の透過率が8 By the fifth layer are sequentially stacked comprising a SnO2 which was nm from thin film mainly is the transmittance at a wavelength of 550nm is 93% or more, and transmittance in the visible light region 8
7%以上となり、可視光の透過スペクトルがフラットに近くなる。 Becomes 7% or more, the transmission spectrum of visible light is close to flat.

【0022】そして、この透明導電膜付きガラス板を用いた本発明の透明タッチパネルによれば、視認性が向上し、カラー表示にも対応することが可能となる。 [0022] Then, according to the transparent touch panel of the present invention using the transparent conductive film-attached glass plate, improved visibility, it is possible to cope with color display.

【0023】 [0023]

【実施例】以下に、本発明の透明導電膜付きガラス板1 EXAMPLES Hereinafter, the transparent conductive film-coated glass plate 1 of the present invention
及び透明タッチパネルの具体的実施例について説明する。 And specific examples of the transparent touch panel is described. 実施例1 大きさが300*320mm、厚みが1.1mmの波長550nmにおける透過率が92%のフロートガラスを洗浄、乾燥してガラス板(基板)とした。 Example 1 magnitude 300 * 320 mm, thickness washed transmittance 92% of the float glass at a wavelength of 550nm of 1.1 mm, and a glass plate (substrate) and dried. この基板を4 The substrate 4
50℃に加熱し、基板表面にSiH4、N2、O2の調整されたガスを供給して、厚みが30nmのSiO2を主成分とする第1層を成膜した。 Was heated to 50 ° C., by supplying SiH4, N2, O2 adjusted gas on the substrate surface, the thickness was deposited a first layer composed mainly of SiO2 of 30 nm. その後、基板を500 Thereafter, the substrate 500
℃に加熱し、C4H9SnCl3の蒸気、N2、O2及び水蒸気の調整されたガスを供給して、第1層の膜表面に厚みが80nmのSnO2を主成分とする第2層を成膜した。 ℃ heated to steam of C4H9SnCl3, by supplying N2, O2 and adjusted gas steam, the thickness the membrane surface of the first layer was deposited a second layer composed mainly of SnO2 of 80 nm. ついで、Ti[OCH(CH3)2]4の蒸気、N2、O2の調整されたガスを供給して、厚みが2 Then, Ti [OCH (CH3) 2] 4 steam supplies the adjusted gas N2, O2, thickness 2
0nmのTiO2を主成分とする第3層を成膜した。 The TiO2 of 0nm was formed a third layer as a main component. そして、第3層上に、上記と同様にして、厚みが40nm Then, the third layer on, in the same manner as described above, the thickness 40nm
のSiO2を主成分とする第4層を成膜した。 Of SiO2 it was formed the fourth layer as a main component. 最後に、 Finally,
C4H9SnCl3の蒸気、CH3CHF2、N2、O Steam of C4H9SnCl3, CH3CHF2, N2, O
2及び水蒸気の調整されたガスを供給して、第4層の膜表面に厚みが30nmのSnO2を主成分とする第5層を成膜した。 By supplying 2 and adjusted gas steam, the thickness the membrane surface of the fourth layer was deposited a fifth layer composed mainly of SnO2 of 30 nm.

【0024】このようにして得られた積層構造の透明導電膜付きガラス板を徐冷し、試料とし、この試料の可視光透過率を分光光度計により測定した。 The gradually cooled transparent glass sheet with a conductive film of the thus obtained multilayer structure, as a sample, and the visible light transmittance of the sample was measured by a spectrophotometer. この測定結果を図2に実線で示している。 It is indicated by a solid line results of the measurement in FIG. 同図からわかるように、波長550nmでの透過率が94%で、可視光領域での透過率の最小値は90%であった。 As can be seen from the figure, in 94% transmittance at a wavelength of 550 nm, the minimum value of transmittance in the visible light region was 90%.

【0025】また、試料の中央を通り長辺に平行な直線を11等分した10点でのシート抵抗を測定してリニアリティを評価したところ、抵抗値のリニアリティは3% [0025] We have also measured the linearity by measuring the sheet resistance at 10 points was 11 aliquoted straight line parallel to the center of the sample as long side, the linearity of the resistance value of 3%
であった。 Met.

【0026】次に、上記の透明導電膜付きガラス板1を用いた透明タッチパネルについて図3を参照して説明する。 Next, it will be described with reference to FIG. 3 for a transparent touch panel using the transparent conductive film-coated glass plate 1 above. この透明タッチパネル11は同図(a)に示すように、透明導電膜付きガラス板を第1電極板12とし、透明導電膜18が設けられた可撓性を有する透明基体17 The transparent touch panel 11 as is shown in FIG. 6 (a), a transparent substrate having a transparent conductive film-coated glass plate and the first electrode plate 12, the transparent conductive film 18 is provided a flexible 17
を第2電極板13として、第1電極板12と第2電極板13とを間隙形成部材であるスペーサ14を介して所定の間隙、例えば約100μmをおいて対向配置させてなる。 As the second electrode plate 13, a predetermined gap between the first electrode plate 12 and the second electrode plate 13 via a spacer 14 which is the gap forming member, comprising by opposed for example at about 100 [mu] m.

【0027】この透明タッチパネルは、通常、対向した2枚の透明導電膜付きガラス22、23の間隙に液晶2 The liquid crystal 2 The transparent touch panel is normally in a gap between opposed two transparent conductive film-attached glass 22 and 23
4を封入してなる液晶ディスプレイパネル21と組み合わせた入力機器として使用される。 4 is used as an input device in combination with a liquid crystal display panel 21 formed by sealing the. 図3(b)のように上記第2電極板12である透明導電膜付きガラス板と平行に液晶ディスプレイパネル21を配置した入力機器の場合、液晶ディスプレイパネルに対向する第2電極板1 For an input device arranged a liquid crystal display panel 21 in parallel to the transparent conductive film-attached glass plate is the second electrode plate 12 as shown in FIG. 3 (b), the second electrode plate faces the liquid crystal display panel 1
2の基板であるガラス2の表面に反射防止処理を施して、視認性の向上をはかることができる。 Anti-reflection treatment on the surface of the glass 2 is a second substrate, it is possible to improve the visibility. また、透明タッチパネル11と液晶ディスプレイパネル21との間隙に屈折率調整剤を挿入して視認性を向上させることも可能である。 It is also possible to improve visibility by inserting the refractive index control agent in the gap between the transparent touch panel 11 and the liquid crystal display panel 21. さらに、図3(c)のように、上記第2電極板12のガラス2表面に液晶ディスプレイパネルを駆動させる透明導電膜26を成膜し、タッチパネルと液晶ディスプレイパネルを一体とすることにより視認性の向上をはかることもできる。 Furthermore, as shown in FIG. 3 (c), the visibility by the glass 2 surface of the second electrode plate 12 to form a transparent conductive film 26 for driving the liquid crystal display panel, an integral touch panel and a liquid crystal display panel it is also possible to improve the.

【0028】実施例2 実施例1の第2層の厚みを90nmに、第3層の厚みを10nmにした以外は実施例1と同様にして試料を得た。 [0028] The thickness of the second layer of Example 1 to 90 nm, except that the thickness of the third layer to 10nm sample was obtained in the same manner as in Example 1. この試料の、波長550nmでの透過率は93%、 This sample, transmittance of 93% at a wavelength of 550 nm,
可視光領域での透過率の最小値は89%、抵抗値のリニアリティは3%であった。 Minimum value of transmittance in the visible light region of 89%, the linearity of the resistance value was 3%.

【0029】実施例3 実施例1の第2層の厚みを90nmに、第4層の厚みを50nmにした以外は実施例1と同様にして試料を得た。 [0029] The thickness of the second layer of Example 3 Example 1 90 nm, except that the thickness of the fourth layer to 50nm sample was obtained in the same manner as in Example 1. この試料の、波長550nmでの透過率は93%、 This sample, transmittance of 93% at a wavelength of 550 nm,
可視光領域での透過率の最小値は88%、抵抗値のリニアリティは3%であった。 Minimum value of transmittance in the visible light region of 88%, the linearity of the resistance value was 3%.

【0030】比較例1 大きさが300*320mm、厚みが1.1mmの波長550nmにおける透過率が92%のフロートガラスを洗浄、乾燥してガラス板(基板)とした。 [0030] Comparative Example 1 magnitude 300 * 320 mm, thickness washed transmittance 92% of the float glass at a wavelength of 550nm of 1.1 mm, and a glass plate (substrate) and dried. この基板を4 The substrate 4
50℃に加熱し、基板表面にSiH4、N2、O2の調整されたガスを供給して、厚みが25nmのSiO2を主成分とする第1層を成膜した。 Was heated to 50 ° C., the adjusted gas to SiH4, N2, O2 substrate surface by supplying, thickness was deposited a first layer composed mainly of SiO2 of 25 nm. その後、基板を500 Thereafter, the substrate 500
℃に加熱し、C4H9SnCl3の蒸気、N2、O2、 ℃ heated to steam of C4H9SnCl3, N2, O2,
HFの蒸気、及び水蒸気の調整されたガスを供給して、 HF vapor, and the adjusted gas steam is supplied,
第1層の膜表面に厚みが25nmのSnO2を主成分とする第2層を成膜した。 Thickness on the film surface of the first layer was deposited a second layer composed mainly of SnO2 of 25 nm.

【0031】このようにして得られた透明導電膜付きガラス板を徐冷し、試料とし、この試料の可視光透過率を分光光度計により測定した。 [0031] In this way gradually cooled transparent glass sheet with a conductive film obtained, as a sample, and the visible light transmittance of the sample was measured by a spectrophotometer. この測定結果を図2に破線で示している。 It is indicated by broken lines the measurement result in FIG. 同図からわかるように、波長550nm As it can be seen from the figure, a wavelength of 550nm
での透過率は90%で、抵抗値のリニアリティは4%であった。 Transmittance at the 90% linearity of the resistance value was 4%.

【0032】比較例2 大きさが300*320mm、厚みが1.1mmの波長550nmにおける透過率が92%のフロートガラスを洗浄、乾燥してガラス板(基板)とした。 [0032] Comparative Example 2 magnitude 300 * 320 mm, thickness washed transmittance 92% of the float glass at a wavelength of 550nm of 1.1 mm, and a glass plate (substrate) and dried. この基板を4 The substrate 4
50℃に加熱し、基板表面にSiH4、N2、O2の調整されたガスを供給して、厚みが30nmのSiO2を主成分とする第1層を成膜した。 Was heated to 50 ° C., by supplying SiH4, N2, O2 adjusted gas on the substrate surface, the thickness was deposited a first layer composed mainly of SiO2 of 30 nm. その後、基板を500 Thereafter, the substrate 500
℃に加熱し、Ti[OCH(CH3)2]4の蒸気、N ℃ heated to, Ti [OCH (CH3) 2] 4 steam, N
2、O2の調整されたガスを供給して、第1層の膜表面に厚みが110nmのTiO2を主成分とする第2層を成膜した。 By supplying 2, O2 adjusted gas, the thickness the membrane surface of the first layer was deposited a second layer mainly composed of TiO2 of 110 nm. ついで、基板を500℃に保ったまま、C4 Then, while maintaining the substrate at 500 ° C., C4
H9SnCl3の蒸気、N2、O2及び水蒸気の調整されたガスを供給して、第2層の膜表面に厚みが60nm Vapor H9SnCl3, by supplying N2, O2 and adjusted gas steam, 60 nm thickness on the film surface of the second layer
のSnO2を主成分とする第3層を成膜した。 Of SnO2 it was formed a third layer as a main component.

【0033】このようにして得られた積層構造の透明導電膜付きガラス板を徐冷し、試料とし、この試料の可視光透過率を分光光度計により測定した。 The gradually cooled transparent glass sheet with a conductive film of the thus obtained multilayer structure, as a sample, and the visible light transmittance of the sample was measured by a spectrophotometer. この測定結果を図2に鎖線で示している。 It is indicated by a chain line of the measurement result in FIG. 同図からわかるように、波長550nmでの透過率は91%、抵抗値のリニアリティは3%であったが、可視光領域での透過率の最小値は7 As can be seen from the figure, the transmittance at a wavelength of 550nm is 91%, the linearity of the resistance value was 3%, the minimum value of transmittance in the visible light region 7
0%であった。 It was 0%.

【0034】比較例3 実施例1の第5層の厚みを50nmとした以外は、実施例1と同様である。 [0034] except that the thickness of the fifth layer of Comparative Example 3 Example 1 was 50nm are the same as in Example 1. この試料の、波長550nmでの透過率は91%、可視光領域での透過率の最小値は87 The sample, the transmittance at a wavelength of 550nm is 91%, the minimum value of transmittance in the visible light region 87
%、抵抗値のリニアリティは2%であった。 %, Linearity of the resistance value was 2%.

【0035】比較例4 実施例1の第2層の厚みを60nmとし、第4層の厚みを20nmとした以外は、実施例1と同様である。 [0035] The thickness of the second layer of Comparative Example 4 Example 1 was 60 nm, except that the thickness of the fourth layer and 20 nm, the same as in Example 1. この試料の、波長550nmでの透過率は90%、可視光領域での透過率の最小値は85%、抵抗値のリニアリティは3%であった。 The samples, 90% transmittance at a wavelength of 550 nm, the minimum value of transmittance in the visible light region of 85%, the linearity of the resistance value was 3%.

【0036】このように、実施例1〜3においては、波長550nmでの透過率が93%以上で、かつ可視光領域での透過率の最小値が87%以上が得られ、抵抗値のリニアリティも5%以下が得られるが、比較例1〜4においては、波長550nmでの透過率が93%以上とならない(比較例1〜4)、あるいは可視光領域での透過率の最小値が87%未満となる(比較例2、4)。 [0036] Thus, in Examples 1 to 3, in transmittance at a wavelength of 550nm is 93% or more, and the minimum value of transmittance in the visible light region than 87% is obtained, the linearity of the resistance value Although even 5% or less is obtained, in comparative example 1-4, the transmittance at a wavelength of 550nm does not become 93% or more (Comparative examples 1 to 4), or the minimum value of transmittance in the visible light region is 87 become less% (Comparative examples 2 and 4).

【0037】 [0037]

【発明の効果】以上説明したように、本発明によれば可視光透過率が高く、かつ透過率の波長依存性が小さい透明導電膜付きガラス板を得ることができる。 As described above, according to the present invention can be visible light transmittance according to the present invention is high and the wavelength dependence of transmittance obtained a small transparent electrically conductive film-attached glass plate. そして、この透明導電膜付きガラス板を用いた本発明の透明タッチパネルによれば、視認性が良く、カラー表示にも対応できる。 Then, according to the transparent touch panel of the present invention using the transparent conductive film-attached glass plate, good visibility, it can cope with a color display. また、本発明の透明導電膜付きガラス板はその優れた光学特性を利用して面発熱体や帯電防止ガラスなどにも好適に使用し得る。 The transparent conductive film-coated glass plate of the present invention may be suitably used in such the superior surface heating element and antistatic glass by using the optical characteristics.

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

【図1】本発明に係る透明導電膜付きガラスの模式的構成図である。 1 is a schematic structural view of a transparent conductive film-coated glass according to the present invention.

【図2】本発明の一実施例及び比較例の可視光透過特性を示す線図である。 2 is a diagram showing the visible light transmission characteristics of an embodiment of the present invention and comparative examples.

【図3】本発明に係る透明タッチパネルの模式的構成図である。 Figure 3 is a schematic structural view of a transparent touch panel according to the present invention.

【符号の説明】 DESCRIPTION OF SYMBOLS

1…透明導電膜付きガラス板、2…ガラス板、3…第1 1 ... transparent conductive film-attached glass plate, 2 ... glass plate, 3 ... first
層、4…第2層、5…第3層、6…第4層、7…第5 Layer, 4 ... second layer, 5 ... third layer, 6 ... fourth layer, 7 ... 5
層、11…透明タッチパネル、12…第1電極板、13 Layer, 11 ... transparent touch panel, 12 ... first electrode plate, 13
…第2電極板、14…スペーサ、16…透明導電膜、1 ... second electrode plate, 14 ... spacer 16 ... transparent conductive film, 1
7…基体、18…透明導電膜、21…液晶ディスプレイパネル、22、23…電極板、24…液晶、25…基体、26、27…透明導電膜、28…基体 7 ... substrate, 18 ... transparent conductive film, 21 ... liquid crystal display panel, 22, 23 ... electrode plate, 24 ... liquid crystal, 25 ... base, 26, 27 ... transparent conductive film, 28 ... base

Claims (2)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】ガラス板上に、SiO2を主成分とする薄膜からなる第1層、SnO2を主成分とする薄膜からなる第2層、TiO2を主成分とする薄膜からなる第3 To 1. A on a glass plate, a first layer of a thin film composed mainly of SiO2, a second layer of a thin film composed mainly of SnO2, third of a thin film composed mainly of TiO2
    層、SiO2を主成分とする薄膜からなる第4層、Sn Layer, a fourth layer of a thin film composed mainly of SiO2, Sn
    O2を主成分とする薄膜からなる第5層を順次積層形成し、前記第2層の厚みを30〜120nm、第3層の厚みを10〜110nm、第4層の厚みを30〜120n The fifth layer of a thin film composed mainly of O2 are sequentially laminated, 30 to 120 nm the thickness of the second layer, 10~110Nm the thickness of the third layer, the thickness of the fourth layer 30~120n
    m、第5層の厚みを20〜30nmとしたことを特徴とする透明導電膜付きガラス板。 m, the transparent conductive film-coated glass plate, characterized in that the 20~30nm the thickness of the fifth layer.
  2. 【請求項2】請求項1に記載の透明導電膜付きガラス板を第1電極板とし、透明導電性膜が設けられた可撓性を有する透明板を第2電極板として、前記第1電極板の透明導電膜と第2電極板の透明導電膜とを所定の空隙を設けて対向配置してなることを特徴とする透明タッチパネル。 Wherein the transparent conductive film-coated glass plate according to claim 1 as a first electrode plate, a transparent plate having a transparent conductive film is provided flexibility as a second electrode plate, the first electrode transparent touch panel, wherein a transparent conductive film of the transparent conductive film and the second electrode plate of the plate with a predetermined gap formed by opposed.
JP27510194A 1994-11-09 1994-11-09 Glass plate with transparent conductive film and transparent touch panel using it Pending JPH08138446A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27510194A JPH08138446A (en) 1994-11-09 1994-11-09 Glass plate with transparent conductive film and transparent touch panel using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27510194A JPH08138446A (en) 1994-11-09 1994-11-09 Glass plate with transparent conductive film and transparent touch panel using it

Publications (1)

Publication Number Publication Date
JPH08138446A true true JPH08138446A (en) 1996-05-31

Family

ID=17550781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27510194A Pending JPH08138446A (en) 1994-11-09 1994-11-09 Glass plate with transparent conductive film and transparent touch panel using it

Country Status (1)

Country Link
JP (1) JPH08138446A (en)

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004014814A1 (en) * 2002-08-09 2004-02-19 3M Innovative Properties Company Multifunctional multilayer optical film
JP2006268085A (en) * 2005-03-22 2006-10-05 Nippon Sheet Glass Co Ltd Touch panel
US8264466B2 (en) 2006-03-31 2012-09-11 3M Innovative Properties Company Touch screen having reduced visibility transparent conductor pattern
CN102837467A (en) * 2011-06-22 2012-12-26 信义光伏产业(安徽)控股有限公司 Transparent conductive film glass and preparation method thereof
US8454181B2 (en) 2010-08-25 2013-06-04 Ford Global Technologies, Llc Light bar proximity switch
US8878438B2 (en) 2011-11-04 2014-11-04 Ford Global Technologies, Llc Lamp and proximity switch assembly and method
US8922340B2 (en) 2012-09-11 2014-12-30 Ford Global Technologies, Llc Proximity switch based door latch release
US8928336B2 (en) 2011-06-09 2015-01-06 Ford Global Technologies, Llc Proximity switch having sensitivity control and method therefor
US8933708B2 (en) 2012-04-11 2015-01-13 Ford Global Technologies, Llc Proximity switch assembly and activation method with exploration mode
US8975903B2 (en) 2011-06-09 2015-03-10 Ford Global Technologies, Llc Proximity switch having learned sensitivity and method therefor
US8981602B2 (en) 2012-05-29 2015-03-17 Ford Global Technologies, Llc Proximity switch assembly having non-switch contact and method
US8994228B2 (en) 2011-11-03 2015-03-31 Ford Global Technologies, Llc Proximity switch having wrong touch feedback
US9065447B2 (en) 2012-04-11 2015-06-23 Ford Global Technologies, Llc Proximity switch assembly and method having adaptive time delay
US9136840B2 (en) 2012-05-17 2015-09-15 Ford Global Technologies, Llc Proximity switch assembly having dynamic tuned threshold
US9143126B2 (en) 2011-09-22 2015-09-22 Ford Global Technologies, Llc Proximity switch having lockout control for controlling movable panel
US9184745B2 (en) 2012-04-11 2015-11-10 Ford Global Technologies, Llc Proximity switch assembly and method of sensing user input based on signal rate of change
US9197206B2 (en) 2012-04-11 2015-11-24 Ford Global Technologies, Llc Proximity switch having differential contact surface
US9219472B2 (en) 2012-04-11 2015-12-22 Ford Global Technologies, Llc Proximity switch assembly and activation method using rate monitoring
US9287864B2 (en) 2012-04-11 2016-03-15 Ford Global Technologies, Llc Proximity switch assembly and calibration method therefor
US9311204B2 (en) 2013-03-13 2016-04-12 Ford Global Technologies, Llc Proximity interface development system having replicator and method
US9337832B2 (en) 2012-06-06 2016-05-10 Ford Global Technologies, Llc Proximity switch and method of adjusting sensitivity therefor
US9520875B2 (en) 2012-04-11 2016-12-13 Ford Global Technologies, Llc Pliable proximity switch assembly and activation method
US9531379B2 (en) 2012-04-11 2016-12-27 Ford Global Technologies, Llc Proximity switch assembly having groove between adjacent proximity sensors
US9548733B2 (en) 2015-05-20 2017-01-17 Ford Global Technologies, Llc Proximity sensor assembly having interleaved electrode configuration
US9559688B2 (en) 2012-04-11 2017-01-31 Ford Global Technologies, Llc Proximity switch assembly having pliable surface and depression
US9568527B2 (en) 2012-04-11 2017-02-14 Ford Global Technologies, Llc Proximity switch assembly and activation method having virtual button mode
US9641172B2 (en) 2012-06-27 2017-05-02 Ford Global Technologies, Llc Proximity switch assembly having varying size electrode fingers
US9654103B2 (en) 2015-03-18 2017-05-16 Ford Global Technologies, Llc Proximity switch assembly having haptic feedback and method
US9660644B2 (en) 2012-04-11 2017-05-23 Ford Global Technologies, Llc Proximity switch assembly and activation method
US9831870B2 (en) 2012-04-11 2017-11-28 Ford Global Technologies, Llc Proximity switch assembly and method of tuning same
US9944237B2 (en) 2012-04-11 2018-04-17 Ford Global Technologies, Llc Proximity switch assembly with signal drift rejection and method
US10004286B2 (en) 2011-08-08 2018-06-26 Ford Global Technologies, Llc Glove having conductive ink and method of interacting with proximity sensor
US10038443B2 (en) 2014-10-20 2018-07-31 Ford Global Technologies, Llc Directional proximity switch assembly

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004014814A1 (en) * 2002-08-09 2004-02-19 3M Innovative Properties Company Multifunctional multilayer optical film
US7151532B2 (en) 2002-08-09 2006-12-19 3M Innovative Properties Company Multifunctional multilayer optical film
JP2006268085A (en) * 2005-03-22 2006-10-05 Nippon Sheet Glass Co Ltd Touch panel
JP4532316B2 (en) * 2005-03-22 2010-08-25 日本板硝子株式会社 Touch panel
US8264466B2 (en) 2006-03-31 2012-09-11 3M Innovative Properties Company Touch screen having reduced visibility transparent conductor pattern
US8454181B2 (en) 2010-08-25 2013-06-04 Ford Global Technologies, Llc Light bar proximity switch
US8975903B2 (en) 2011-06-09 2015-03-10 Ford Global Technologies, Llc Proximity switch having learned sensitivity and method therefor
US8928336B2 (en) 2011-06-09 2015-01-06 Ford Global Technologies, Llc Proximity switch having sensitivity control and method therefor
CN102837467A (en) * 2011-06-22 2012-12-26 信义光伏产业(安徽)控股有限公司 Transparent conductive film glass and preparation method thereof
US10004286B2 (en) 2011-08-08 2018-06-26 Ford Global Technologies, Llc Glove having conductive ink and method of interacting with proximity sensor
US9143126B2 (en) 2011-09-22 2015-09-22 Ford Global Technologies, Llc Proximity switch having lockout control for controlling movable panel
US8994228B2 (en) 2011-11-03 2015-03-31 Ford Global Technologies, Llc Proximity switch having wrong touch feedback
US8878438B2 (en) 2011-11-04 2014-11-04 Ford Global Technologies, Llc Lamp and proximity switch assembly and method
US9531379B2 (en) 2012-04-11 2016-12-27 Ford Global Technologies, Llc Proximity switch assembly having groove between adjacent proximity sensors
US9065447B2 (en) 2012-04-11 2015-06-23 Ford Global Technologies, Llc Proximity switch assembly and method having adaptive time delay
US9831870B2 (en) 2012-04-11 2017-11-28 Ford Global Technologies, Llc Proximity switch assembly and method of tuning same
US9944237B2 (en) 2012-04-11 2018-04-17 Ford Global Technologies, Llc Proximity switch assembly with signal drift rejection and method
US9184745B2 (en) 2012-04-11 2015-11-10 Ford Global Technologies, Llc Proximity switch assembly and method of sensing user input based on signal rate of change
US8933708B2 (en) 2012-04-11 2015-01-13 Ford Global Technologies, Llc Proximity switch assembly and activation method with exploration mode
US9219472B2 (en) 2012-04-11 2015-12-22 Ford Global Technologies, Llc Proximity switch assembly and activation method using rate monitoring
US9287864B2 (en) 2012-04-11 2016-03-15 Ford Global Technologies, Llc Proximity switch assembly and calibration method therefor
US9660644B2 (en) 2012-04-11 2017-05-23 Ford Global Technologies, Llc Proximity switch assembly and activation method
US9568527B2 (en) 2012-04-11 2017-02-14 Ford Global Technologies, Llc Proximity switch assembly and activation method having virtual button mode
US9559688B2 (en) 2012-04-11 2017-01-31 Ford Global Technologies, Llc Proximity switch assembly having pliable surface and depression
US9520875B2 (en) 2012-04-11 2016-12-13 Ford Global Technologies, Llc Pliable proximity switch assembly and activation method
US9197206B2 (en) 2012-04-11 2015-11-24 Ford Global Technologies, Llc Proximity switch having differential contact surface
US9136840B2 (en) 2012-05-17 2015-09-15 Ford Global Technologies, Llc Proximity switch assembly having dynamic tuned threshold
US8981602B2 (en) 2012-05-29 2015-03-17 Ford Global Technologies, Llc Proximity switch assembly having non-switch contact and method
US9337832B2 (en) 2012-06-06 2016-05-10 Ford Global Technologies, Llc Proximity switch and method of adjusting sensitivity therefor
US9641172B2 (en) 2012-06-27 2017-05-02 Ford Global Technologies, Llc Proximity switch assembly having varying size electrode fingers
US9447613B2 (en) 2012-09-11 2016-09-20 Ford Global Technologies, Llc Proximity switch based door latch release
US8922340B2 (en) 2012-09-11 2014-12-30 Ford Global Technologies, Llc Proximity switch based door latch release
US9311204B2 (en) 2013-03-13 2016-04-12 Ford Global Technologies, Llc Proximity interface development system having replicator and method
US10038443B2 (en) 2014-10-20 2018-07-31 Ford Global Technologies, Llc Directional proximity switch assembly
US9654103B2 (en) 2015-03-18 2017-05-16 Ford Global Technologies, Llc Proximity switch assembly having haptic feedback and method
US9548733B2 (en) 2015-05-20 2017-01-17 Ford Global Technologies, Llc Proximity sensor assembly having interleaved electrode configuration

Similar Documents

Publication Publication Date Title
Biswas et al. Effects of tin on IR reflectivity, thermal emissivity, Hall mobility and plasma wavelength of sol–gel indium tin oxide films on glass
US5011585A (en) Process for producing a transparent layer with low resistivity
US5319479A (en) Deposited multi-layer device with a plastic substrate having an inorganic thin film layer
US5521765A (en) Electrically-conductive, contrast-selectable, contrast-improving filter
US6362414B1 (en) Transparent layered product and glass article using the same
Fahland et al. Low resisitivity transparent electrodes for displays on polymer substrates
US5808715A (en) Liquid crystal display devices having undercoat and overcoat made of TiO2 --SiO2 composite material
US5942319A (en) Light absorptive antireflector
US5348805A (en) Formation of a layer of aluminum and tin or titanium oxides on a glass substrate
US6329044B1 (en) Transparent conductive film and method of making the film
US4970376A (en) Glass transparent heater
US4710433A (en) Transparent conductive windows, coatings, and method of manufacture
US6896981B2 (en) Transparent conductive film and touch panel
US20100164896A1 (en) Capacitive touch panel, manufacturing method therefor and liquid crystal display apparatus provided with the touch panel
US20010040733A1 (en) Touch panel substrate having transparent conductive film
Klöppel et al. Influence of substrate temperature and sputtering atmosphere on electrical and optical properties of double silver layer systems
Leftheriotis et al. Development of multilayer transparent conductive coatings
JP2011018623A (en) Transparent conducting film and manufacturing method therefor
JP2003136625A (en) Film for display, touch panel and method for manufacturing them
JPH07114841A (en) Transparent conductive film and its forming and working method
JP2004152727A (en) Transparent conductive film
US20050030629A1 (en) Optical layer system having antireflection properties
US20130140065A1 (en) Conductive structure body and method for manufacturing the same
JP2010061942A (en) Transparent conductive and touch panel
CN101963713A (en) plane switching liquid crystal display (IPSLCD) with touch control function