JPH07238462A - Nonwoven fabric laminated structure, its production and product using the same - Google Patents

Nonwoven fabric laminated structure, its production and product using the same

Info

Publication number
JPH07238462A
JPH07238462A JP2978094A JP2978094A JPH07238462A JP H07238462 A JPH07238462 A JP H07238462A JP 2978094 A JP2978094 A JP 2978094A JP 2978094 A JP2978094 A JP 2978094A JP H07238462 A JPH07238462 A JP H07238462A
Authority
JP
Japan
Prior art keywords
elastic resin
nonwoven fabric
thermoplastic elastic
thermoplastic
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2978094A
Other languages
Japanese (ja)
Other versions
JP3454375B2 (en
Inventor
Hideo Isoda
英夫 磯田
Yasushi Yamada
靖司 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2978094A priority Critical patent/JP3454375B2/en
Publication of JPH07238462A publication Critical patent/JPH07238462A/en
Application granted granted Critical
Publication of JP3454375B2 publication Critical patent/JP3454375B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Nonwoven Fabrics (AREA)
  • Laminated Bodies (AREA)
  • Artificial Filaments (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Abstract

PURPOSE:To obtain a nonwoven fabric laminated elastic structure capable of blocking vibration, excellent in heat durability, shape-retaining property and cushioning property, hardly causing stuffiness and constituted of a network material obtained by laminating and joining a short fiber hard stock whose heat bonding component consists of a thermoplastic elastic resin and most suitable as a cushioning material and to provide a method for producing the nonwoven fabric laminated elastic structure and to obtain a product such as quilt or cushion for furniture, beds and vehicles using the nonwoven fabric laminated elastic structure. CONSTITUTION:In this laminated elastic structure, a nonwoven fabric, obtained by mixing a heat-bondable short fiber consisting of a thermoplastic elastic resin with a short fiber consisting of a thermoplastic nonelastic resin, opening the mixed short fiber and forming the opened short fiber in three-dimensional structure, in which most of the contact part of the yarns is fused by heat bonding and the face is flatted is joined and integrated on the one side of a network material obtained by meandering continuous yarn consisting of a thermoplastic elastic resin having <=100000 denier fineness and mutually contacting the yarn to form a three-dimensional structure and substantially flatting both faces of the structure. The laminated elastic structure has 0.01-0.2g/cm<2> density. Furthermore, this method for producing the laminated elastic structure and this product, using the laminated elastic structure are provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、優れたクッション性と
耐熱耐久性及び振動吸収性とを有し、リサイクルが可能
な短繊維硬綿層を積層接合した熱可塑性弾性樹脂からな
る網状体との不織布積層構造体と製法および不織布積層
構造体を用いた布団、家具、ベッド、車両用クッション
材等の製品に関する。
FIELD OF THE INVENTION The present invention relates to a reticulated body made of a thermoplastic elastic resin having excellent cushioning properties, heat resistance durability and vibration absorption properties, and a recyclable short fiber hard cotton layer laminated and joined. Non-woven fabric laminated structure and manufacturing method, and products such as futons, furniture, beds, and cushioning materials for vehicles using the non-woven fabric laminated structure.

【0002】[0002]

【従来の技術】現在、家具、ベッド、電車、自動車等の
クッション材に、発泡ウレタン、非弾性捲縮繊維詰綿、
及び非弾性捲縮繊維を接着した樹脂綿や硬綿などが使用
されている。
2. Description of the Related Art At present, as a cushion material for furniture, beds, trains, automobiles, etc., urethane foam, non-elastic crimped fiber wadding,
In addition, resin cotton or hard cotton to which non-elastic crimped fibers are adhered is used.

【0003】しかしながら、発泡−架橋型ウレタンはク
ッション材としての耐久性は極めて良好だが、透湿透水
性に劣り蓄熱性があるため蒸れやすく、かつ、熱可塑性
では無いためリサイクルが困難となり焼却される場合、
焼却炉の損傷が大きく、かつ、有毒ガス除去に経費が掛
かる。このため埋め立てされることが多くなったが、地
盤の安定化が困難なため埋め立て場所が限定され経費も
高くなっていく問題がある。また、加工性は優れるが製
造中に使用される薬品の公害問題などもある。また、熱
可塑性ポリエステル繊維詰綿では繊維間が固定されてい
ないため、使用時形態が崩れたり、繊維が移動して、か
つ、捲縮のへたりで嵩高性の低下や弾力性の低下が問題
になる。
However, although the foamed-crosslinked urethane has very good durability as a cushioning material, it is inferior in moisture permeability and water permeability and has a heat storage property, so that it easily steams, and since it is not thermoplastic, it is difficult to recycle and incinerated. If
The incinerator is heavily damaged and the cost of removing toxic gas is high. For this reason, landfilling has become more frequent, but it is difficult to stabilize the ground, and there is a problem that landfilling sites are limited and costs increase. Further, although it has excellent processability, it also has a problem of pollution of chemicals used during manufacturing. In addition, since the fibers are not fixed in the thermoplastic polyester fiber wadding, the form may collapse during use, the fibers may move, and the crimp may cause a decrease in bulkiness and elasticity. become.

【0004】ポリエステル繊維を接着剤で接着した樹脂
綿、例えば接着剤にゴム系を用いたものとして特開昭6
0−11352号公報、特開昭61−141388号公
報、特開昭61−141391号公報等がある。又、架
橋性ウレタンを用いたものとして特開昭61−1377
32号公報等がある。これらのクッション材は耐久性に
劣り、且つ、熱可塑性でなく、単一組成でもないためリ
サイクルも出来ない等の問題、及び加工性の煩雑さや製
造中に使用される薬品の公害問題などもある。
As a resin cotton in which polyester fibers are adhered with an adhesive, for example, a rubber-based adhesive is used, Japanese Patent Application Laid-Open No.
0-11352, JP-A 61-141388, JP-A 61-141391 and the like. Further, as a method using a cross-linkable urethane, JP-A-61-1377
No. 32 publication and the like. These cushion materials have inferior durability, and also have problems such as not being recyclable because they are neither thermoplastic nor single composition, and there are problems such as complexity of processability and pollution of chemicals used during manufacturing. .

【0005】ポリエステル硬綿、例えば特開昭58−3
1150号公報、特開平2−154050号公報、特開
平3−220354号公報等があるが、用いている熱接
着繊維の接着成分が脆い非晶性のポリマ−を用いるため
(例えば特開昭58−136828号公報、特開平3−
249213号公報等)接着部分が脆く、使用中に接着
部分が簡単に破壊されて形態や弾力性が低下するなどの
耐久性に劣る問題がある。改良法として、交絡処理する
方法が特開平4−245965号公報等で提案されてい
るが、接着部分の脆さは解決されず弾力性の低下が大き
い問題がある。また、加工時の煩雑さもある。更には接
着部分が変形しにくくソフトなクッション性を付与しに
くい問題もある。このため、接着部分を柔らかい、且つ
ある程度変形しても回復するポリエステルエラストマ−
を用い、芯成分に非弾性ポリエステルを用いた熱接着繊
維が特開平4−240219号公報で、同繊維を用いた
クッション材がWO−91/19032号公報、特開平
5−156561号公報、特開平5−163654号公
報等で提案されている。この繊維構造物に使われる接着
成分がポリエステルエラストマ−のソフトセグメントと
してはポリアルキレングリコ−ルの含有量が30〜50
重量%、ハ−ドセグメントの酸成分にテレフタル酸を5
0〜80モル%含有し、他の酸成分組成として特公昭6
0−1404号公報に記載された繊維と同様にイソフタ
ル酸を含有して非晶性が増すことになり、融点も180
℃以下となり低溶融粘度として熱接着部分の形成を良く
してアメーバー状の接着部を形成しているが塑性変形し
やいため、及び芯成分が非弾性ポリエステルのため、特
に加熱下での塑性変形が著しくなり、耐熱抗圧縮性が低
下する問題点がある。これらの改良法として、特開平5
−163654号公報にシ−ス成分にイソフタル酸を含
有するポリエステルエラストマ−、コア成分に非弾性ポ
リエステルを用いた熱接着複合繊維のみからなる構造体
が提案されているが上述の理由で加熱下での塑性変形が
著しくなり、耐熱抗圧縮性が低下し、クッション材に使
用するには問題がある。他方、硬綿の母材にシリコ−ン
油剤を付与して繊維の摩擦係数を下げて耐久性を向上
し、風合いを良くする方法が特開昭63−158094
号公報で提案されている。が、熱接着繊維の接着性に問
題があり、耐久性が劣るのでクッション材に使用するに
は好ましくない。
Polyester hard cotton, for example, JP-A-58-3
1150, JP-A-2-154050, JP-A-3-220354, etc., but since an amorphous polymer having a brittle adhesive component of the heat-bonding fiber used is used (for example, JP-A-58). -136828, Japanese Patent Application Laid-Open No. 3-
However, there is a problem in that durability is poor such that the bonded portion is brittle and the bonded portion is easily broken during use and the form and elasticity are reduced. As an improved method, a method of entanglement treatment has been proposed in Japanese Patent Laid-Open No. 4-245965, but there is a problem that the brittleness of the bonded portion is not solved and the elasticity is largely reduced. In addition, there is complexity during processing. Further, there is a problem that the bonded portion is hard to be deformed and soft cushioning is hard to be imparted. For this reason, the polyester elastomer that is soft even at the bonded portion and recovers even if it is deformed to some extent
A heat-bonding fiber using a non-elastic polyester as a core component is disclosed in JP-A-4-240219, and a cushion material using the fiber is disclosed in WO-91 / 19032, JP-A-5-155651. It is proposed in Japanese Patent Laid-Open No. 5-163654. The adhesive component used in this fiber structure has a polyalkylene glycol content of 30 to 50 as a soft segment of polyester elastomer.
Wt%, 5% terephthalic acid as the acid component of the hard segment
It contains 0 to 80 mol% and is used as another acid component composition
As in the fiber described in Japanese Patent Publication No. 0-1404, isophthalic acid is contained to increase the amorphous property, and the melting point is 180.
The temperature is below ℃, and the heat-bonded part is well formed with a low melt viscosity to form an ameber-shaped bonded part, but it is easy to plastically deform, and because the core component is an inelastic polyester, plastic deformation especially under heating Becomes remarkable, and there is a problem that the heat resistance and compression resistance are lowered. As an improved method for these, Japanese Patent Laid-Open No.
No. 163654 proposes a structure consisting only of a polyester elastomer containing isophthalic acid as a sheath component and a heat-bonding composite fiber using an inelastic polyester as a core component. Plastic deformation becomes remarkable, the heat resistance and compression resistance deteriorate, and there is a problem in using it as a cushion material. On the other hand, there is a method in which a silicone oil is added to a base material of hard cotton to lower the friction coefficient of fibers to improve durability and improve the texture.
It has been proposed in the publication. However, there is a problem with the adhesiveness of the heat-adhesive fiber and the durability is poor, so it is not preferable for use as a cushioning material.

【0006】土木工事用に使用する熱可塑性のオレフィ
ン網状体が特開昭47−44839号公報に開示されて
いる。が、細い繊維から構成したクッションとは異なり
表面が凸凹でタッチが悪く、素材がオレフィンのため耐
熱耐久性が著しく劣りワディング層やクッション材には
使用ができないものである。また、特公平3−1766
6号公報には繊度の異なる吐出線条を互いに融着してモ
−ル状物を作る方法があるがクッション材には適さない
網状構造体である。特公平3−55583号公報には、
ごく表面のみ冷却前に回転体等の細化装置で細くする方
法が記載されている。この方法では表面をフラット化で
きず、厚みのある細い線条層を作ることできない。した
がって座り心地の良好なクッション材にはならない。特
開平1−207462号公報では、塩化ビニ−ル製のフ
ロアマットの開示があるが、室温での圧縮回復性が悪
く、耐熱性は著しく悪いので、クッション材としては好
ましくないものである。なお、上述構造体は振動減衰に
関する配慮が全くなされていない。
A thermoplastic olefin network used for civil engineering work is disclosed in JP-A-47-44839. However, unlike a cushion made of fine fibers, the surface is uneven and the touch is poor, and since the material is olefin, the heat resistance durability is extremely poor and it cannot be used as a wadding layer or cushion material. In addition, Japanese Patent Publication No. 3-1766
No. 6 discloses a method in which ejection filaments having different fineness are fused to each other to form a mold, but the mesh structure is not suitable as a cushion material. Japanese Examined Patent Publication No. 3-55583 discloses that
A method of thinning only a very surface with a thinning device such as a rotating body before cooling is described. With this method, the surface cannot be flattened and a thick thin linear layer cannot be formed. Therefore, it does not provide a comfortable cushioning material. JP-A-1-207462 discloses a floor mat made of vinyl chloride, but it is not preferable as a cushioning material because it has poor compression recovery at room temperature and remarkably poor heat resistance. Note that no consideration is given to vibration damping in the above-mentioned structure.

【0007】[0007]

【発明が解決しようとする課題】上記問題点を解決し、
振動を遮断し、耐熱耐久性、形態保持性、クッション性
の優れた蒸れ難い、熱接着成分が熱可塑性弾性樹脂から
なる短繊維硬綿を積層接合した熱可塑性弾性樹脂からな
る網状体で構成したクッション材に最適な不織布積層構
造体と製法及び不織布積層構造体を用いた布団、家具、
ベッド、車両用クッション等の製品と製法を提供するこ
とを目的とする。
To solve the above problems,
Vibration-isolated, heat-resistant durability, shape-retaining property, and cushioning properties that prevent stuffiness and are composed of a reticulated body made of thermoplastic elastic resin in which short fiber hard cotton whose thermo-adhesive component is made of thermoplastic elastic resin is laminated and joined. Non-woven laminated structure optimal for cushioning material and manufacturing method, futon, furniture using the non-woven laminated structure,
It aims to provide products such as beds and vehicle cushions and manufacturing methods.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するため
の手段、即ち本発明は、繊度が100〜100000デ
ニ−ルの熱可塑性弾性樹脂からなる連続した線条を曲が
りくねらせ互いに接触させて該接触部の大部分が融着し
た3次元立体構造体を形成し、両面が実質的にフラット
化された網状体の片面に熱可塑性弾性樹脂からなる熱接
着性短繊維と熱可塑性非弾性樹脂からなる短繊維が混合
開繊されて3次元構造化され、接触部の大部分が熱接着
成分により融着一体化した面が実質的にフラット化され
た不織布が接合一体化された密度が0.01g/cm3
ら0.2g/cm3 の不織布積層構造体、複数のオリフィ
スを持つ多列ノズルより熱可塑性弾性樹脂をその融点よ
り20〜80℃高い溶融温度で、該ノズルより下方に向
けて吐出させ、溶融状態で互いに接触させて融着させ3
次元構造を形成しつつ、引取り装置で挟み込み冷却槽で
冷却せしめた後、片面に接着成分が熱可塑性弾性樹脂か
らなる短繊維と非弾性樹脂からなる短繊維と混合開繊し
て3次元構造化させた開繊したウエッブを積層し、圧縮
熱成形により、接触部の大部分を熱接着成分により融着
一体化する不織布積層構造体の製法および前記不織布積
層構造体を用いた製品である。
Means for Solving the Problems The means for solving the above problems, that is, the present invention, is to make continuous filaments made of a thermoplastic elastic resin having a fineness of 100 to 100,000 denier meander and contact each other. A thermo-adhesive short fiber made of a thermoplastic elastic resin and a thermoplastic non-elastic resin are formed on one surface of a net-like body in which most of the contact portions are fused to form a three-dimensional three-dimensional structure, and both surfaces are substantially flattened. The non-woven fabric is made by mixing and opening three-dimensionally structured short fibers consisting of, and the surface of which most of the contact portion is fused and integrated by the heat-adhesive component is substantially flattened, resulting in a joined and integrated density of 0. 0.01 g / cm 3 to 0.2 g / cm 3 non-woven fabric laminated structure, thermoplastic elastic resin is melted at a melting temperature 20 to 80 ° C. higher than its melting point and directed downward from the nozzle To discharge and melt 3 fused in contact with each other in state
After forming a three-dimensional structure, it was sandwiched by a take-up device and cooled in a cooling tank, and then one side was mixed and opened with short fibers made of thermoplastic elastic resin and short fibers made of inelastic resin, and then three-dimensionally structured. A method of manufacturing a nonwoven fabric laminated structure in which a plurality of opened webs are laminated and compression heat molding is used to fuse and integrate most of the contact portion with a thermal adhesive component, and a product using the nonwoven fabric laminated structure.

【0009】本発明における熱可塑性弾性樹脂とは、ソ
フトセグメントとして分子量300〜5000のポリエ
−テル系グリコ−ル、ポリエステル系グリコ−ル、ポリ
カ−ボネ−ト系グリコ−ルまたは長鎖の炭化水素末端を
カルボン酸または水酸基にしたオレフィン系化合物等を
ブロック共重合したポリエステル系エラストマ−、ポリ
アミド系エラストマ−、ポリウレタン系エラストマ−、
ポリオレフィン系エラストマ−などが挙げられる。熱可
塑性弾性樹脂とすることで、再溶融により再生が可能と
なるため、リサイクルが容易となる。例えば、ポリエス
テル系エラストマ−としては、熱可塑性ポリエステルを
ハ−ドセグメントとし、ポリアルキレンジオ−ルをソフ
トセグメントとするポリエステルエ−テルブロック共重
合体、または、脂肪族ポリエステルをソフトセグメント
とするポリエステルエステルブロック共重合体が例示で
きる。ポリエステルエ−テルブロック共重合体のより具
体的な事例としては、テレフタル酸、イソフタル酸、ナ
フタレン2・6ジカルボン酸、ナフタレン2・7ジカル
ボン酸、ジフェニル4・4’ジカルボン酸等の芳香族ジ
カルボン酸、1・4シクロヘキサンジカルボン酸等の脂
環族ジカルボン酸、琥珀酸、アジピン酸、セバチン酸ダ
イマ−酸等の脂肪族ジカルボン酸または、これらのエス
テル形成性誘導体などから選ばれたジカルボン酸の少な
くとも1種と、1・4ブタンジオ−ル、エチレングリコ
−ル、トリメチレングリコ−ル、テトレメチレングリコ
−ル、ペンタメチレングリコ−ル、ヘキサメチレングリ
コ−ル等の脂肪族ジオ−ル、1・1シクロヘキサンジメ
タノ−ル、1・4シクロヘキサンジメタノ−ル等の脂環
族ジオ−ル、またはこれらのエステル形成性誘導体など
から選ばれたジオ−ル成分の少なくとも1種、および平
均分子量が約300〜5000のポリエチレングリコ−
ル、ポリプロピレングリコ−ル、ポリテトラメチレング
リコ−ル、エチレンオキシド−プロピレンオキシド共重
合体からなるグリコ−ル等のポリアルキレンジオ−ルの
うち少なくとも1種から構成される三元ブロック共重合
体である。ポリエステルエステルブロック共重合体とし
ては、上記ジカルボン酸とジオ−ル及び平均分子量が約
300〜5000のポリラクトン等のポリエステルジオ
−ルのうち少なくとも各1種から構成される三元ブロッ
ク共重合体である。熱接着性、耐加水分解性、伸縮性、
耐熱性等を考慮すると、ジカルボン酸としてはテレフタ
ル酸、または、及びナフタレン2・6ジカルボン酸、ジ
オ−ル成分としては1・4ブタンジオ−ル、ポリアルキ
レンジオ−ルとしてはポリテトラメチレングリコ−ルの
3元ブロック共重合体または、ポリエステルジオ−ルと
してポリラクトンの3元ブロック共重合体が特に好まし
い。特殊な例では、ポリシロキサン系のソフトセグメン
トを導入したものも使うこたができる。また、上記エラ
ストマ−に非エラストマ−成分をブレンドされたもの、
共重合したもの、ポリオレフィン系成分をソフトセグメ
ントにしたもの等も本発明の熱可塑性弾性樹脂に包含さ
れる。ポリアミド系エラストマ−としては、ハ−ドセグ
メントにナイロン6、ナイロン66、ナイロン610、
ナイロン612、ナイロン11、ナイロン12等及びそ
れらの共重合ナイロンを骨格とし、ソフトセグメントに
は、平均分子量が約300〜5000のポリエチレング
リコ−ル、ポリプロピレングリコ−ル、ポリテトラメチ
レングリコ−ル、エチレンオキシド−プロピレンオキシ
ド共重合体からなるグリコ−ル等のポリアルキレンジオ
−ルのうち少なくとも1種から構成されるブロック共重
合体を単独または2種類以上混合して用いてもよい。更
には、非エラストマ−成分をブレンドされたもの、共重
合したもの等も本発明に使用できる。ポリウレタン系エ
ラストマ−としては、通常の溶媒(ジメチルホルムアミ
ド、ジメチルアセトアミド等)の存在または不存在下
に、(A)数平均分子量1000〜6000の末端に水
酸基を有するポリエ−テル及び又はポリエステルと
(B)有機ジイソシアネ−トを主成分とするポリイソシ
アネ−トを反応させた両末端がイソシアネ−ト基である
プレポリマ−に、(C)ジアミンを主成分とするポリア
ミンにより鎖延長したポリウレタンエラストマ−を代表
例として例示できる。(A)のポリエステル、ポリエ−
テル類としては、平均分子量が約1000〜6000、
好ましくは1300〜5000のポリブチレンアジペ−
ト共重合ポリエステルやポリエチレングリコ−ル、ポリ
プロピレングリコ−ル、ポリテトラメチレングリコ−
ル、エチレンオキシド−プロピレンオキシド共重合体か
らなるグリコ−ル等のポリアルキレンジオ−ルが好まし
く、(B)のポリイソシアネ−トとしては、従来公知の
ポリイソシアネ−トを用いることができるが、ジフェニ
ルメタン4・4’ジイソシアネ−トを主体としたイソシ
アネ−トを用い、必要に応じ従来公知のトリイソシアネ
−ト等を微量添加使用してもよい。(C)のポリアミン
としては、エチレンジアミン、1・2プロピレンジアミ
ン等公知のジアミンを主体とし、必要に応じて微量のト
リアミン、テトラアミンを併用してもよい。これらのポ
リウレタン系エラストマ−は単独又は2種類以上混合し
て用いてもよい。なお、本発明の熱可塑性弾性樹脂の融
点は耐熱耐久性が保持できる140℃以上が好ましく、
160℃以上のものを用いると耐熱耐久性が向上するの
でより好ましい。なお、必要に応じ、抗酸化剤や耐光剤
等を添加して耐久性を向上させることができる。本発明
の目的である振動や応力の吸収機能をもたせる成分を構
成する熱可塑性弾性樹脂のソフトセグメント含有量は好
ましくは15重量%以上、より好ましくは30重量%以
上であり、耐熱耐へたり性からは80重量%以下が好ま
しく、より好ましくは70重量%以下である。即ち、本
発明の不織布積層構造体の振動や応力の吸収機能をもた
せる成分のソフトセグメント含有量は好ましくは15重
量%以上80重量%以下であり、より好ましくは30重
量%以上70重量%以下である。
The thermoplastic elastic resin in the present invention means, as the soft segment, an ether type glycol, a polyester type glycol, a polycarbonate type glycol or a long chain hydrocarbon having a molecular weight of 300 to 5,000. Polyester elastomer obtained by block-copolymerizing an olefinic compound having a carboxylic acid or a hydroxyl group at the terminal, a polyamide elastomer, a polyurethane elastomer,
Examples include polyolefin elastomers. By using a thermoplastic elastic resin, it becomes possible to regenerate by remelting, and thus recycling becomes easy. For example, as the polyester elastomer, a polyester ether block copolymer having a thermoplastic polyester as a hard segment and a polyalkylenediol as a soft segment, or a polyester ester having an aliphatic polyester as a soft segment A block copolymer can be illustrated. More specific examples of the polyester ether block copolymer include aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid, naphthalene 2.6 dicarboxylic acid, naphthalene 2.7 dicarboxylic acid, and diphenyl 4.4'dicarboxylic acid. At least one of alicyclic dicarboxylic acids such as 1,4-cyclohexanedicarboxylic acid, aliphatic dicarboxylic acids such as succinic acid, adipic acid, sebacic acid dimer acid, and dicarboxylic acids selected from ester-forming derivatives thereof Seeds and aliphatic diols such as 1.4 butanediol, ethylene glycol, trimethylene glycol, tetremethylene glycol, pentamethylene glycol and hexamethylene glycol, 1.1 cyclohexane Alicyclic diols such as dimethanol and 1,4-cyclohexane dimethanol, or these Of at least one diole component selected from the ester-forming derivatives thereof and polyethylene glycol having an average molecular weight of about 300 to 5,000.
Is a ternary block copolymer composed of at least one kind of polyalkylenediol such as glycol, polypropylene glycol, polytetramethylene glycol, and glycol made of ethylene oxide-propylene oxide copolymer. . The polyester ester block copolymer is a ternary block copolymer composed of at least one of the above dicarboxylic acids, diol, and polyester diol such as polylactone having an average molecular weight of about 300 to 5,000. . Thermal adhesion, hydrolysis resistance, stretchability,
Considering heat resistance and the like, terephthalic acid is used as the dicarboxylic acid, or naphthalene 2.6 dicarboxylic acid, 1.4 butanediol is used as the diole component, and polytetramethylene glycol is used as the polyalkylenediol. The terpolymer block copolymer or the terpolymer block copolymer of polylactone as the polyester diol is particularly preferable. In a special case, it is possible to use the one in which a polysiloxane-based soft segment is introduced. In addition, the above elastomer is blended with a non-elastomer component,
Those obtained by copolymerization and those obtained by softening the polyolefin component are also included in the thermoplastic elastic resin of the present invention. As a polyamide elastomer, the hard segment is nylon 6, nylon 66, nylon 610,
Polyethylene glycol, polypropylene glycol, polytetramethylene glycol, ethylene oxide having an average molecular weight of about 300 to 5000 is used as the soft segment in the skeleton of nylon 612, nylon 11, nylon 12, etc. and their copolymerized nylon. -A block copolymer composed of at least one kind of polyalkylenediol such as glycol composed of propylene oxide copolymer may be used alone or in combination of two or more kinds. Furthermore, blends of non-elastomer components and copolymers thereof can be used in the present invention. Examples of the polyurethane elastomer include (A) a polyester and / or a polyester having a hydroxyl group at the terminal and having a number average molecular weight of 1,000 to 6000 in the presence or absence of a usual solvent (dimethylformamide, dimethylacetamide, etc.). ) A typical example is a polyurethane elastomer obtained by reacting a polyisocyanate containing an organic diisocyanate as a main component with a prepolymer having isocyanate groups at both ends and (C) extending the chain with a polyamine containing a diamine as a main component. Can be illustrated as (A) Polyester, Polyester
The tellers have an average molecular weight of about 1000 to 6000,
Preferably from 1300 to 5000 polybutylene adipates
Copolyester, polyethylene glycol, polypropylene glycol, polytetramethylene glycol
Polyalkylenediol such as glycol and ethylene oxide-propylene oxide copolymer glycol is preferable, and as the polyisocyanate of (B), a conventionally known polyisocyanate can be used. An isocyanate mainly composed of 4'diisocyanate may be used, and if necessary, a trace amount of conventionally known triisocyanate may be added and used. As the polyamine (C), known diamines such as ethylenediamine and 1.2-propylenediamine are mainly used, and if necessary, trace amounts of triamine and tetraamine may be used in combination. These polyurethane elastomers may be used alone or in combination of two or more. The melting point of the thermoplastic elastic resin of the present invention is preferably 140 ° C. or higher at which heat resistance and durability can be maintained,
It is more preferable to use a material having a temperature of 160 ° C. or higher because the heat resistance and durability are improved. If necessary, an antioxidant, a light-proofing agent or the like may be added to improve durability. The soft segment content of the thermoplastic elastic resin constituting the component having the function of absorbing vibration and stress, which is the object of the present invention, is preferably 15% by weight or more, more preferably 30% by weight or more, and heat resistance and sag resistance Therefore, it is preferably 80% by weight or less, and more preferably 70% by weight or less. That is, the soft segment content of the component having the vibration and stress absorbing function of the nonwoven fabric laminated structure of the present invention is preferably 15% by weight or more and 80% by weight or less, more preferably 30% by weight or more and 70% by weight or less. is there.

【0010】本発明の不織布積層構造体を構成する熱可
塑性弾性樹脂からなる成分は、示差走査型熱量計にて測
定した融解曲線において、融点以下に吸熱ピ−クを有す
るのが好ましい。融点以下に吸熱ピ−クを有するもの
は、耐熱耐へたり性が吸熱ピ−クを有しないものより著
しく向上する。例えば、本発明の好ましいポリエステル
系熱可塑性樹脂として、ハ−ドセグメントの酸成分に剛
直性のあるテレフタル酸やナフタレン2・6ジカルボン
酸などを90モル%以上含有するもの、より好ましくは
テレフタル酸やナフタレン2・6ジカルボン酸の含有量
は95モル%以上、特に好ましくは100モル%とグリ
コ−ル成分をエステル交換後、必要な重合度まで重合
し、次いで、ポリアルキレンジオ−ルとして、好ましく
は平均分子量が500以上5000以下、特に好ましく
は1000以上3000以下のポリテトラメチレングリ
コ−ルを15重量%以上70重量%以下、より好ましく
は30重量%以上60重量%以下共重合量させた場合、
ハ−ドセグメントの酸成分に剛直性のあるテレフタル酸
やナフタレン2・6ジカルボン酸の含有量が多いとハ−
ドセグメントの結晶性が向上し、塑性変形しにくく、か
つ、耐熱抗へたり性が向上するが、溶融熱接着後更に融
点より少なくとも10℃以上低い温度でアニ−リング処
理するとより耐熱抗へたり性が向上する。圧縮歪みを付
与してからアニ−リングすると更に耐熱抗へたり性が向
上する。このような処理をした不織布積層構造体を示差
走査型熱量計で測定した融解曲線に室温以上融点以下の
温度で吸熱ピークをより明確に発現する。なおアニ−リ
ングしない場合は融解曲線に室温以上融点以下に吸熱ピ
−クを発現しない。このことから類推するに、アニ−リ
ングにより、ハ−ドセグメントが再配列され、疑似結晶
化様の架橋点が形成され、耐熱抗へたり性が向上してい
るのではないかとも考えられる。(この処理を疑似結晶
化処理と定義する)この疑似結晶化処理効果は、ポリア
ミド系弾性樹脂やポリウレタン系弾性樹脂にも有効であ
る。
The component comprising the thermoplastic elastic resin constituting the nonwoven fabric laminated structure of the present invention preferably has an endothermic peak below the melting point in the melting curve measured by a differential scanning calorimeter. Those having an endothermic peak below the melting point have significantly improved heat resistance and sag resistance than those having no endothermic peak. For example, a preferable polyester-based thermoplastic resin of the present invention contains 90 mol% or more of terephthalic acid or naphthalene 2.6 dicarboxylic acid having rigidity in the acid component of the hard segment, more preferably terephthalic acid or The content of naphthalene 2.6 dicarboxylic acid is 95 mol% or more, particularly preferably 100 mol%, and after transesterification of the glycol component, polymerization is carried out to a required degree of polymerization, and then, as a polyalkylene diol, preferably When the average molecular weight of polytetramethylene glycol having an average molecular weight of 500 or more and 5000 or less, particularly preferably 1000 or more and 3000 or less, is copolymerized in an amount of 15% by weight or more and 70% by weight or less, more preferably 30% by weight or more and 60% by weight or less,
If the content of terephthalic acid or naphthalene 2.6 dicarboxylic acid, which has rigidity in the acid component of the hard segment, is high,
The crystallinity of the de-segment is improved, plastic deformation is less likely to occur, and the heat resistance and fatigue resistance are improved, but if heat treatment is performed at a temperature lower than the melting point by at least 10 ° C or more after annealing by heat, the heat resistance and fatigue resistance will be further improved. The property is improved. If annealing is performed after applying compressive strain, heat resistance and sag resistance are further improved. The endothermic peak is more clearly expressed in the melting curve measured by a differential scanning calorimeter of the nonwoven fabric laminated structure thus treated at a temperature of room temperature or higher and melting point or lower. If annealing is not performed, no endothermic peak appears in the melting curve above room temperature and below the melting point. By analogy with this, it is considered that the annealing causes rearrangement of the hard segments and formation of pseudo-crystallization-like cross-linking points to improve the heat resistance and sag resistance. (This treatment is defined as pseudo crystallization treatment.) This pseudo crystallization treatment effect is also effective for polyamide elastic resin and polyurethane elastic resin.

【0011】本発明における熱可塑性非弾性樹脂とは、
ポリエステル、ポリアミド、ポリオレフィン等が例示で
きる。なお、本発明ではガラス転移点温度が少なくとも
40℃以上のものを使用するのが好ましい。例えば、ポ
リエステルでは、ポリエチレンテレフタレ−ト(PE
T)、ポリエチレンナフタレ−ト(PEN)、ポリシク
ロヘキシレンジメチレンテレフタレ−ト(PCHD
T)、ポリシクロヘキシレンジメチレンナフタレ−ト
(PCHDN)、ポリブチレンテレフタレ−ト(PB
T)、ポリブチレンナフタレ−ト(PBN)、ポリアリ
レ−ト等、及びそれらの共重合ポリエステル等が例示で
きる。ポリアミドでは、ポリカプロラクタム(NY
6)、ポリヘキサメチレンアジパミド(NY66)、ポ
リヘキサメチレンセバカミド(NY6−10)等が例示
できる。ポリオレフィンとしては、ポリプロピレン(P
P)、ポリブテン・1(PB・1)等が例示できる。本
発明に用いる熱可塑性非弾性樹脂としては、クッション
材の側地にポリエステルを用いる場合が多いので、廃棄
する場合に分離せずにリサイクルが可能なクッション素
材として、耐熱性も良好なPET、PEN、PBN、P
CHDT等のポリエステルが特に好ましい。更には、P
ET、PEN、PBN、PCHDT等と重縮合して燐含
有エステル形成性化合物を共重合または燐含有難燃剤を
含有してなる難燃性ポリエステル(以下難燃性ポリエス
テルと略す)が好ましく、例えば、特開昭51−823
92号公報、特開昭55−7888号公報、特公昭55
−41610号公報等に例示されたものが挙げられる。
なお、塩化ビニ−ルは自己消火性を有するが燃焼すると
有毒ガスを多く発生するので本発明に用いるのは好まし
くない。
The thermoplastic non-elastic resin in the present invention means
Examples thereof include polyester, polyamide and polyolefin. In the present invention, it is preferable to use one having a glass transition temperature of 40 ° C. or higher. For example, for polyester, polyethylene terephthalate (PE
T), polyethylene naphthalate (PEN), polycyclohexylene dimethylene terephthalate (PCHD
T), polycyclohexylene dimethylene naphthalate (PCHDN), polybutylene terephthalate (PB)
Examples thereof include T), polybutylene naphthalate (PBN), polyarylate, and copolymerized polyesters thereof. For polyamide, polycaprolactam (NY
6), polyhexamethylene adipamide (NY66), polyhexamethylene sebacamide (NY6-10) and the like. As polyolefin, polypropylene (P
P), polybutene-1 (PB-1) and the like can be exemplified. As the thermoplastic non-elastic resin used in the present invention, polyester is often used for the side material of the cushion material, and therefore PET and PEN having good heat resistance can be used as a cushion material that can be recycled without being separated when discarded. , PBN, P
Polyesters such as CHDT are particularly preferred. Furthermore, P
A flame-retardant polyester (hereinafter abbreviated as flame-retardant polyester) formed by polycondensation with ET, PEN, PBN, PCHDT or the like to copolymerize a phosphorus-containing ester-forming compound or containing a phosphorus-containing flame retardant is preferable. JP-A-51-823
92, JP-A-55-7888, JP-B-55
-41610 and the like are exemplified.
Although vinyl chloride has a self-extinguishing property, it produces a large amount of toxic gas when it is burned, so that it is not preferable to use it in the present invention.

【0012】本発明は、繊度が100〜100000デ
ニ−ルの熱可塑性弾性樹脂からなる連続した線条を曲が
りくねらせ互いに接触させて該接触部の大部分が融着し
た3次元立体構造体を形成し、両面が実質的にフラット
化された網状体の片面に熱接着成分が熱可塑性弾性樹脂
からなる短繊維が熱可塑性非弾性樹脂からなる短繊維と
混合開繊されて3次元構造化され、接触部の大部分が熱
接着成分により融着一体化した面が実質的にフラット化
された不織布が接合一体化された密度が0.01g/cm
3 から0.2g/cm3 の不織布積層構造体である。クッ
ション材の機能は、クッション層は基本の繊度を太くし
て少し硬くして体型保持を受け持つ層と振動減衰性の良
い成分で密度を少し高くし振動を吸収して振動を遮断す
る層で構成し、表面層は繊度を細くし構成繊維本数を多
くした柔らかな層として適度の沈み込みにより快適な臀
部のタッチを与えて臀部の圧力分布を均一分散化させる
と共にクッション層で吸収できなかった振動を吸収して
人体の共振部分の振動を遮断する層が一体化されること
で、応力や振動を一体で変形し吸収させ座り心地を向上
させることができる。本発明では、クッション層の機能
を熱可塑性弾性樹脂からなる融着した3次元立体構造体
を形成した網状体に持たせ、表面層の機能を熱接着成分
が熱可塑性弾性樹脂からなる短繊維が熱可塑性非弾性樹
脂からなる短繊維と混合開繊されて3次元構造化され、
接触部の大部分が熱接着成分により融着一体化した面が
実質的にフラット化された不織布(短繊維不織布)に持
たせ、接合一体化して好ましいクッション材の機能を付
与できる不織布積層構造体である。本発明の不織布積層
構造体を構成する表面層機能を持つ短繊維不織布は柔ら
かな層として適度の沈み込みにより快適な臀部のタッチ
を与えるため、熱接着成分が熱可塑性弾性樹脂からなる
(好ましくは、振動吸収機能と変形応力吸収機能が充足
できる40重量%以上、70重量%を越えると短繊維の
形態保持性が低下し、沈み込みが大きくなるので70重
量%以下)繊度が20デニ−ル以下の短繊維(熱接着繊
維)と熱可塑性非弾性樹脂からなる繊度が20デニ−ル
以下の短繊維(母材繊維)と混合開繊されて3次元構造
化され、接触部の大部分が熱接着成分により融着一体化
した面が実質的にフラット化された不織布で構成する。
熱接着繊維及び母材繊維の繊度が20デニ−ルを越える
と短繊維不織布の見掛け密度を好ましい表面層機能を付
与できる0.01g/cm3 以上0.05g/cm3 以下に
する場合、構成本数が少なくなり、緻密な構造体として
の特徴が出ず快適なタッチを損なうので好ましくない。
また、熱接着繊維に非弾性樹脂を含む場合は繊度が太く
なるほど圧縮変形に対しての非弾性樹脂の機械的変形が
大きくなり、損傷が大きくなって耐へたり性が低下する
ので好ましくない。他方、繊度が細すぎると嵩高性が低
下して変形応答性が悪くなり表面層の機能が低下するの
で好ましくない。好ましい熱接着繊維の繊度は1デニ−
ル〜10デニ−ル、より好ましくは3デニ−ル〜6デニ
−ルである。母材繊維は適度の沈み込みを付与する弾発
性を保持する必要から好ましくは3デニ−ル〜15デニ
−ル、より好ましくは5デニ−ル〜13デニ−ルであ
る。熱接着繊維と母材繊維が混合開繊されて3次元構造
化され、接触部の大部分が熱接着により融着一体化した
(好ましくは接触点の全てが融着一体化した)面が実質
的にフラット化された不織布とすることで臀部の局部的
な圧力を面で受け止め、圧力分布を均一分散化させると
共に、短繊維不織布の3次元立体構造体を熱接着成分の
熱可塑性弾性樹脂が融着一体化しているので、熱接着点
が大変形をしながら構造体全体が変形してエネルギ−変
換により変形応力を吸収し、変形応力が解除されると熱
可塑性弾性樹脂のゴム弾性で容易に元の形態に回復する
機能があるので耐へたり性が良好である。更には、クッ
ション層へのダメ−ジを逓減でき、構造体全体の耐へた
り性も向上する。融着一体化されていない場合は形態が
保持できず、局部的な圧力を面で受け止め、圧力分布を
均一分散化できず、更に構造体全体が変形してエネルギ
−変換出来ないので耐久性が劣り好ましくない。熱接着
成分が振動吸収性の良好な熱可塑性弾性樹脂を含有した
繊維から構成されているので、クッション層で吸収でき
なかった振動も吸収して人体の共振部分の振動を遮断す
る層としての機能もはたす。熱接着成分が熱可塑性非弾
性樹脂からなる場合は、局部的な変形応力に追随出来な
いため、応力集中により構造が破壊されていき回復性が
劣るので好ましくない。また、熱可塑性非弾性樹脂は振
動吸収性が悪いので振動を遮断する層としての機能が劣
り好ましくない。短繊維不織布層の厚みは特には限定さ
れないが、表面層機能が発現できる3mm〜30mmが好ま
しく、5mm〜20mmが特に好ましい。他方、クッション
層機能を持つ網状体は熱可塑性弾性樹脂からなる連続し
た線条が接触部の大部分が融着した3次元立体構造体を
形成し融着一体化され、両面が実質的にフラット化され
ており、外部から与えられた振動を熱可塑性弾性樹脂の
振動吸収機能で大部分の振動を吸収減衰し、局部的に大
きい変形応力を与えられた場合でも網状体の表面が実質
的にフラット化され接触部の大部分が融着しており、表
面は短繊維不織布と面で接合されているので、網状体の
面で変形応力を受け止め変形応力を分散させ体型保持機
能を発現すると共に、熱可塑性弾性樹脂からなる線条が
3次元立体構造体を形成し融着一体化されているので、
構造体全体が変形してエネルギ−変換により変形応力を
吸収し、変形応力が解除されると熱可塑性弾性樹脂のゴ
ム弾性で容易に元の形態に回復する機能があるので耐へ
たり性が良好である。公知の非弾性樹脂のみからなる線
条で構成した網状体では、表面層で吸収できない大きい
変形を受けるとゴム弾性を持たないので圧縮変形により
塑性変形を生じて回復しなくなり耐久性が劣る。網状体
の表面が実質的にフラット化されてない場合、短繊維不
織布から伝達される局部的な外力は、表面の線条及び接
着点部分までに選択的に伝達され、応力集中が発生する
場合があり、このような外力に対しては応力集中による
疲労が発生して耐へたり性が低下する場合がある。な
お、該線条が熱可塑性弾性樹脂からなる場合は3次元構
造部分で構造全体が変形するので応力集中は緩和される
が、非弾性樹脂では、そのまま応力が接着点に集中して
構造破壊を生じ回復しなくなる。更には、表面が実質的
にフラット化されてなく凸凹があると座った時臀部に異
物感を与えるため座り心地が悪くなり好ましくない。な
お、線状が連続していない場合は、繊度が太い網状体で
は接着点が応力の伝達点となるため接着点に著しい応力
集中が起こり構造破壊を生じ耐熱耐久性が劣り好ましく
ない。融着していない場合は、形態保持が出来ず、構造
体が一体で変形しないため、応力集中による疲労現象が
起こり耐久性が劣ると同時に、形態が変形して体型保持
ができなくなるので好ましくない。本発明のより好まし
い融着の程度は、線条が接触している部分の大半が融着
した状態であり、もっとも好ましくは接触部分が全て融
着した状態である。かくして、振動吸収性と弾性回復性
の良い熱可塑性弾性樹脂からなる連続した線条が接触部
の大部分が融着した3次元立体構造体を形成し融着一体
化され表面が実質的にフラット化されたクッション層機
能を持つ網状体は、熱可塑性弾性樹脂からなる短繊維不
織布で構成する表面層から伝達される変形応力を面で受
け止め応力の分散を良くし、個々の線状に掛かる応力を
少なくして構造全体が変形して変形応力を吸収し、且つ
臀部を支えるクッション性も向上させ、応力が解除され
ると回復し、フレ−ムから伝わる振動も振動吸収性と弾
性回復性の良い熱可塑性弾性樹脂からなるクッション層
が吸収して人体の共振部分の振動を遮断するため座り心
地と耐久性を向上させることができる。この目的から、
本発明の網状体を形成する振動吸収性と弾性回復性の良
い熱可塑性弾性樹脂からなる線条の繊度は100〜10
0000デニ−ルである。見掛け密度を0.2g/cm3
以下にした場合、100000デニ−ルを越えると構成
本数が少なくなり、密度斑を生じて部分的に耐久性の悪
い構造ができ、応力集中による疲労が大きくなり耐久性
が低下するので好ましくない。本発明の熱可塑性弾性樹
脂からなる線条の繊度は、繊度が細すぎると抗圧縮性が
低くなり過ぎて変形による応力吸収性が低下するので1
00デニ−ル以上であり、構成本数の低下による構造面
の緻密性を損なわない50000デニ−ル以下である。
より好ましくは500デニ−ル以上、10000デニ−
ル以下である。本発明の網状体の見掛け密度は、0.0
05g/cm3 では反発力が失われ、振動吸収能力や変形
応力吸収能力が不充分となりクッション機能を発現させ
にくくなる場合があり、0.25g/cm3 以上では反発
力が高すぎて座り心地が悪くなる場合があるので、振動
吸収能力や変形応力吸収機能が生かせてクッション体と
しての機能が発現されやすい0.01g/cm3 以上0.
20g/cm3 以下が好ましく、より好ましくは0.03
g/cm3 以上0.08g/cm3 以下である。本発明にお
ける網状体は繊度の異なる線状を見掛け密度との組合せ
で最適な構成とする異繊度積層構造とする方法も好まし
い実施形態として選択できる。本発明の網状体の厚みは
特に限定されないが、厚みが5mm未満では応力吸収機能
と応力分散機能が低下するので、好ましい厚みは力の分
散をする面機能と振動や変形応力吸収機能が発現できる
厚みとして10mm以上であり、より好ましくは20mm以
上である。本発明の網状体と短繊維不織布が接合一体化
された積層構造体としての見掛け密度は0.01g/cm
3 から0.2g/cm3 である。0.01g/cm3 未満で
は体型保持や振動吸収などのクッション機能が低下する
ので好ましくない。0.2g/cm3 を越えると反発弾性
が大きくなり座り心地が悪くなるので好ましくない。好
ましい見掛け密度は0.02g/cm3 〜0.1g/cm3
であり、より好ましくは0.03g/cm3 〜0.06g
/cm3 である。
The present invention provides a three-dimensional three-dimensional structure in which continuous filaments made of a thermoplastic elastic resin having a fineness of 100 to 100,000 denier are bent and brought into contact with each other, and most of the contact portions are fused. Formed, and on one surface of the net-like body whose both sides are substantially flattened, the short fibers whose thermo-adhesive component is a thermoplastic elastic resin are mixed and opened with the short fibers made of a thermoplastic non-elastic resin to form a three-dimensional structure. The density of the bonded and integrated non-woven fabric, in which the surface where most of the contact part is fused and integrated by the thermal adhesive component is substantially flattened, is 0.01 g / cm
3 to 0.2 g / cm 3 of nonwoven fabric laminated structure. The function of the cushioning material is that the cushioning layer is composed of a layer that thickens the basic fineness and makes it a little harder to support the body shape, and a layer that slightly increases the density with a component with good vibration damping and absorbs vibrations and blocks vibrations. However, the surface layer is a soft layer with a fineness and a large number of constituent fibers, which gives a comfortable touch to the buttocks due to a proper subsidence to evenly disperse the buttocks pressure distribution and vibration that could not be absorbed by the cushion layer. By integrating the layer that absorbs and absorbs the vibration of the resonance part of the human body, the stress and the vibration can be integrally deformed and absorbed to improve the sitting comfort. In the present invention, the function of the cushion layer is given to the net-like body formed by the fused three-dimensional structure made of the thermoplastic elastic resin, and the function of the surface layer is the short fiber whose thermo-adhesive component is made of the thermoplastic elastic resin. Three-dimensionally structured by mixing and opening with short fibers made of thermoplastic non-elastic resin,
A non-woven fabric laminated structure which can be provided by bonding to a non-woven fabric (short-fiber non-woven fabric) whose surface where most of the contact portions are fused and integrated by a heat-adhesive component and which is substantially flattened to give a preferable cushioning material function. Is. The short fiber non-woven fabric having a surface layer function constituting the non-woven fabric laminated structure of the present invention provides a comfortable buttocks touch due to an appropriate depression as a soft layer, and therefore the heat-adhesive component is made of a thermoplastic elastic resin (preferably If the vibration absorption function and the deformation stress absorption function are satisfied by 40% by weight or more, and if it exceeds 70% by weight, the shape retention of the short fibers deteriorates and the subsidence increases, so 70% by weight or less) Fineness is 20 denier The following short fibers (heat-bonding fibers) and thermoplastic non-elastic resin having a fineness of 20 denier or less are mixed and opened to form a three-dimensional structure, and most of the contact portion is formed. It is composed of a non-woven fabric whose surface fused and integrated by a heat-adhesive component is substantially flattened.
The fineness of the thermal bonding fibers and the matrix fibers is 20 denier - To below 0.01 g / cm 3 or more 0.05 g / cm 3 can be imparted over the the preferred surface layer features apparent density of the short fiber nonwoven fabric Le, structure It is not preferable because the number of lines is reduced and the features as a dense structure do not appear and the comfortable touch is impaired.
In addition, when the heat-bonding fiber contains an inelastic resin, the thicker the fineness, the greater the mechanical deformation of the inelastic resin against the compressive deformation, resulting in large damage and reduced sag resistance, which is not preferable. On the other hand, if the fineness is too small, the bulkiness is lowered, the deformation response is deteriorated, and the function of the surface layer is lowered, which is not preferable. The preferred fineness of the heat-bonded fiber is 1 denier.
10 to 10 denier, more preferably 3 to 6 denier. The matrix fiber is preferably 3 denier to 15 denier, and more preferably 5 denier to 13 denier because it is necessary to maintain elasticity to give a proper subduction. The heat-bonded fibers and the base material fibers are mixed and opened to form a three-dimensional structure, and most of the contact portions are substantially fused and integrated by heat bonding (preferably all contact points are fused and integrated). By making the non-woven fabric flat, the local pressure of the buttocks is received on the surface, the pressure distribution is uniformly dispersed, and the three-dimensional three-dimensional structure of the short fiber non-woven fabric is made of the thermoplastic elastic resin of the heat adhesive component. Since the fusion bonding is integrated, the entire structure deforms while the thermal bonding point undergoes large deformation, and the deformation stress is absorbed by energy conversion. When the deformation stress is released, the rubber elasticity of the thermoplastic elastic resin makes it easy. Since it has a function to restore the original form, it has good sag resistance. Further, the damage to the cushion layer can be gradually reduced, and the sag resistance of the entire structure is improved. If they are not fused and integrated, the shape cannot be maintained, the local pressure is received by the surface, the pressure distribution cannot be evenly distributed, and the entire structure is deformed and energy conversion is not possible. Inferior and not preferable. Since the heat-adhesive component is composed of fibers containing a thermoplastic elastic resin with good vibration absorption, it also functions as a layer that cuts off the vibration of the resonance part of the human body by absorbing the vibration that could not be absorbed by the cushion layer. I will also help. When the heat-adhesive component is composed of a thermoplastic non-elastic resin, it cannot follow local deformation stress and the structure is destroyed due to stress concentration, resulting in poor recoverability. Further, since the thermoplastic non-elastic resin has a poor vibration absorbing property, it is not preferable because it has a poor function as a layer for blocking vibration. The thickness of the short fiber non-woven fabric layer is not particularly limited, but is preferably 3 mm to 30 mm and particularly preferably 5 mm to 20 mm so that the surface layer function can be exhibited. On the other hand, the mesh body having a cushion layer function is a three-dimensional three-dimensional structure in which continuous filaments made of a thermoplastic elastic resin are fused at most of the contact portions, and are fused and integrated, and both sides are substantially flat. Since the vibration absorption function of the thermoplastic elastic resin absorbs and attenuates most of the vibrations given from the outside, the surface of the reticulate body is substantially absorbed even when a large deformation stress is locally applied. Since most of the contact portion is flattened and fused, and the surface is joined with the short fiber non-woven fabric at the surface, it receives the deformation stress at the surface of the mesh body and disperses the deformation stress and develops the body shape holding function. Since the filaments made of thermoplastic elastic resin form a three-dimensional structure and are fused and integrated,
The entire structure is deformed and absorbs the deformation stress by energy conversion, and when the deformation stress is released, the rubber elasticity of the thermoplastic elastic resin easily restores the original shape, so it has good sag resistance. Is. A known net-like body composed of filaments made only of non-elastic resin does not have rubber elasticity when subjected to a large deformation that cannot be absorbed by the surface layer, and therefore plastic deformation due to compressive deformation does not occur and recovery is inferior. When the surface of the reticulate body is not substantially flattened, the local external force transmitted from the short fiber non-woven fabric is selectively transmitted to the filaments and bonding points of the surface, resulting in stress concentration. There is a possibility that fatigue due to stress concentration may occur due to such external force and the sag resistance may deteriorate. When the filaments are made of thermoplastic elastic resin, the entire structure is deformed in the three-dimensional structure portion, so stress concentration is relieved. However, in the non-elastic resin, stress is concentrated at the bonding point and structural damage is caused. It will not occur and will not recover. Furthermore, if the surface is not substantially flattened and has irregularities, the buttocks feel a foreign substance when sitting, which is unfavorable for sitting. When the linear shape is not continuous, the adhesive point becomes a stress transmission point in a net having a large fineness, so that remarkable stress concentration occurs at the adhesive point, resulting in structural destruction and poor heat resistance and durability. If they are not fused, the shape cannot be maintained and the structure does not deform integrally, resulting in a fatigue phenomenon due to stress concentration and poor durability, and at the same time deforming the shape and making it impossible to maintain the body shape, which is not preferable. . The more preferable degree of fusion in the present invention is that most of the portions where the filaments are in contact are fused, and most preferably all the contact portions are in fusion. Thus, continuous filaments made of a thermoplastic elastic resin having good vibration absorption and elastic recovery form a three-dimensional three-dimensional structure in which most of the contact portions are fused, and the fusion is integrated so that the surface is substantially flat. The reticulated body with the integrated cushioning layer function receives the deformation stress transmitted from the surface layer composed of the short-fiber non-woven fabric made of thermoplastic elastic resin on the surface to improve the dispersion of the stress and improve the stress applied to each linear shape. The entire structure is deformed to absorb the deformation stress by improving the cushioning property to support the buttocks and recovers when the stress is released, and the vibration transmitted from the frame also has the vibration absorption and elastic recovery properties. The cushion layer made of a good thermoplastic elastic resin absorbs and blocks vibrations of the resonance part of the human body, so that the sitting comfort and durability can be improved. From this purpose,
The fineness of the filament made of thermoplastic elastic resin having good vibration absorption and elastic recovery forming the reticulated body of the present invention is 100 to 10.
It is 0000 denier. Apparent density 0.2g / cm 3
In the case of the following, if the number exceeds 100,000 denier, the number of constituents decreases, density unevenness is generated, a structure with poor durability is partially formed, fatigue due to stress concentration increases, and durability deteriorates, which is not preferable. Regarding the fineness of the filament made of the thermoplastic elastic resin of the present invention, if the fineness is too thin, the anti-compression property becomes too low and the stress absorbability due to deformation is lowered.
It is not less than 00 denier and not more than 50,000 denier which does not impair the denseness of the structural surface due to the decrease in the number of constituents.
More preferably 500 denier or more, 10,000 denier
It is less than or equal to le. The apparent density of the reticulate body of the present invention is 0.0
05G / cm 3 in repulsive force is lost, there is a case where vibration absorption capacity and deformation stress absorption capacity is less likely to express insufficient and becomes cushioning function, comfort too high repulsive force at 0.25 g / cm 3 or more Since it may deteriorate, the vibration absorbing ability and the deformation stress absorbing function can be fully utilized to easily develop the function as a cushioning body 0.01 g / cm 3 or more.
20 g / cm 3 or less is preferable, more preferably 0.03
It is g / cm 3 or more and 0.08 g / cm 3 or less. As a preferred embodiment, a method in which the reticulate body in the present invention has a different fineness laminated structure in which a linear shape having a different fineness is combined with an apparent density to have an optimum configuration can be selected. The thickness of the reticulate body of the present invention is not particularly limited, however, if the thickness is less than 5 mm, the stress absorbing function and the stress dispersing function are deteriorated, so that the preferable thickness is capable of exhibiting a surface function for dispersing force and a vibration or deformation stress absorbing function. The thickness is 10 mm or more, more preferably 20 mm or more. The apparent density as a laminated structure in which the net body of the present invention and the short fiber non-woven fabric are integrally bonded is 0.01 g / cm.
3 to 0.2 g / cm 3 . If it is less than 0.01 g / cm 3 , the cushioning function such as body shape retention and vibration absorption is deteriorated, which is not preferable. If it exceeds 0.2 g / cm 3 , the impact resilience becomes large and the sitting comfort becomes poor, which is not preferable. Preferred apparent density is 0.02 g / cm 3 to 0.1 g / cm 3
And more preferably 0.03 g / cm 3 to 0.06 g
/ Cm 3 .

【0013】本発明の網状体の線条の断面形状は特には
限定されないが、中空断面や異形断面にすることで好ま
しい抗圧縮性(反発力)やタッチを付与することができ
るので特に好ましい。抗圧縮性は繊度や用いる素材のモ
ジュラスにより調整して、繊度を細くしたり、柔らかい
素材では中空率や異形度を高くし初期圧縮応力の勾配を
調整できるし、繊度をやや太くしたり、ややモジュラス
の高い素材では中空率や異形度を低くして座り心地が良
好な抗圧縮性を付与する。中空断面や異形断面の他の効
果として中空率や異形度を高くすることで、同一の抗圧
縮性を付与した場合、より軽量化が可能となり、自動車
等の座席に用いると省エネルギ−化ができ、布団などの
場合は、上げ下ろし時の取扱性が向上する。好ましい抗
圧縮性(反発力)やタッチを付与することができる他の
好ましい方法として、本発明の網状体の線条を複合構造
とする方法がある。複合構造としては、シ−スコア構造
またはサイドバイサイド構造及びそれらの組合せ構造な
どが挙げられる。が、特にはクッション層が大変形して
もエネルギ−変換できない振動や変形応力をエネルギ−
変換して回復できる立体3次元構造とするために線状の
表面の50%以上を柔らかい熱可塑性弾性樹脂が占める
シ−スコア構造またはサイドバイサイド構造及びそれら
の組合せ構造などが挙げられる。すなわち、シ−スコア
構造ではシ−ス成分は振動や変形応力をエネルギ−変換
が容易なソフトセグメント含有量が多い熱可塑性弾性樹
脂とし、コア成分は抗圧縮性を示すソフトセグメント含
有量が少ない熱可塑性弾性樹脂で構成し適度の沈み込み
による臀部への快適なタッチを与えることができる。サ
イドバイサイド構造では振動や変形応力をエネルギ−変
換が容易なソフトセグメント含有量が多い熱可塑性弾性
樹脂の溶融粘度をソフトセグメント含有量が少ない抗圧
縮性を示す熱可塑性弾性樹脂の溶融粘度より低くして線
状の表面を占めるソフトセグメント含有量が多い熱可塑
性弾性樹脂の割合を多くした構造(比喩的には偏芯シ−
ス・コア構造のシ−スに熱可塑性弾性樹脂を配した様な
構造)として線状の表面を占めるソフトセグメント含有
量が多い熱可塑性弾性樹脂の割合を80%以上としたも
のが特に好ましく、最も好ましくは線状の表面を占める
ソフトセグメント含有量が多い熱可塑性弾性樹脂の割合
を100%としたシ−スコアである。ソフトセグメント
含有量が多い熱可塑性弾性樹脂の線状の表面を占める割
合が多くなると、溶融して融着するときの流動性が高い
ので接着が強固になる効果があり、構造が一体で変形す
る場合、接着点の応力集中に対する耐疲労性が向上し、
耐熱性や耐久性がより向上する。
The cross-sectional shape of the filaments of the reticulate body of the present invention is not particularly limited, but a hollow cross-section or a deformed cross-section is particularly preferable because it can impart preferable anti-compression property (repulsive force) and touch. The anti-compression property can be adjusted by the fineness and the modulus of the material used to make the fineness fine, or in the soft material the hollowness and the irregularity can be increased to adjust the gradient of the initial compression stress, and the fineness can be made slightly thicker or slightly. A material with a high modulus lowers the hollow ratio and the degree of irregularity to provide anti-compression property with a comfortable sitting feeling. As another effect of the hollow cross section and the irregular cross section, by increasing the hollow ratio and the degree of irregularity, if the same anti-compression property is given, the weight can be further reduced, and the energy saving can be achieved when it is used for the seat of an automobile or the like. If it is a futon or the like, it will be easier to handle when raising and lowering. As another preferable method for imparting preferable anti-compression property (repulsive force) and touch, there is a method of forming the filament of the reticulated body of the present invention into a composite structure. Examples of the composite structure include a score core structure, a side-by-side structure, and a combination structure thereof. However, especially when the cushion layer is largely deformed, the energy and
In order to obtain a three-dimensional three-dimensional structure that can be converted and restored, a sheath-core structure or a side-by-side structure in which 50% or more of the linear surface is occupied by a soft thermoplastic elastic resin, and a combination thereof are mentioned. That is, in the sheath core structure, the sheath component is a thermoplastic elastic resin having a large content of soft segments that can easily convert energy into vibration and deformation stress, and the core component is a thermoelastic resin having a small content of soft segments exhibiting anti-compression properties. Composed of a plastic elastic resin, it can give a comfortable touch to the buttocks due to an appropriate depression. With the side-by-side structure, the melt viscosity of a thermoplastic elastic resin with a high soft segment content that facilitates energy conversion of vibration and deformation stress is lower than the melt viscosity of a thermoplastic elastic resin with a low soft segment content that exhibits anti-compression properties. A structure with a large proportion of thermoplastic elastic resin occupying a linear surface and having a high soft segment content (metamorphically, eccentric sheath
It is particularly preferable that the ratio of the thermoplastic elastic resin having a large soft segment content occupying the linear surface is 80% or more as a structure in which the thermoplastic elastic resin is arranged in the sheath / core structure). Most preferably, it is a sheath core in which the proportion of the thermoplastic elastic resin having a large soft segment content occupying the linear surface is 100%. When the proportion of the thermoplastic elastic resin with a large soft segment content that occupies the linear surface is large, the flowability when melting and fusing is high, so there is the effect of strengthening the adhesion, and the structure deforms as a unit. In this case, the fatigue resistance against stress concentration at the bonding point is improved,
Heat resistance and durability are further improved.

【0014】熱可塑性弾性樹脂からなる網状体と短繊維
不織布が接合一体化されて、実質的に両面がフラット化
された不織布積層構造体であるので、他の網状体、不織
布、編織物、硬綿、フイルム、発泡体、金属等の被熱接
着体とを接着するのに、他の熱接着成分(熱接着不織
布、熱接着繊維、熱接着フィルム、熱接着レジン等)や
接着剤等を用いて一体積層構造体化し、車両用座席、船
舶用座席、車両用、船舶用、病院用等の業務用及び家庭
用ベット、家具用椅子、事務用椅子、布団類等の製品を
得る場合、被接着体面との接触面積を広くできるので、
接着面積が広くなり強固に接着した接着耐久性も良好な
製品を得ることができる。なお、網状体及び積層構造体
形成段階から製品化される任意の段階で上述の疑似結晶
化処理を施すことにより、構造体中の熱可塑性弾性樹脂
からなる成分を示差走査型熱量計で測定した融解曲線に
室温以上融点以下の温度に吸熱ピークを持つようにする
と製品の耐熱耐久性が格段に向上するのでより好まし
い。本発明の不織布積層構造体を形成する網状体の線条
を複合構造とした場合、積層構造体の裏面に熱接着機能
も付与でき、補強材等を熱接着一体構造化ができる。例
えば、シ−スコア構造ではシ−ス成分の振動や変形応力
をエネルギ−変換が容易なソフトセグメント含有量が多
い熱可塑性弾性樹脂を熱接着成分とし、コア成分の抗圧
縮性を示すソフトセグメント含有量が少ない熱可塑性弾
性樹脂を網状形態の保持機能をもたせるための高融点成
分とする構成で、熱接着成分の融点を高融点樹脂の融点
より10℃以上低くしたものを用いることにより熱接着
層の機能も付与できる。また、本発明の不織布積層構造
体の表面層の短繊維不織布は熱接着繊維で接着されてお
り、その儘熱接着層として使用できるが、好ましくは熱
接着成分をソフトセグメント含有量が多い低融点の熱可
塑性弾性樹脂とすることで、振動や変形応力のエネルギ
−変換を良好とできると共に良好な熱接着機能も付与で
きる。熱接着機能を発現させるに好ましい積層構造体中
の線条または繊維を形成する熱接着成分の融点は高融点
成分の融点より15℃から80℃低い融点であり、より
好ましくは20℃から60℃低い融点である。熱接着機
能を持つ本発明の積層構造体は実質的に表面がフラット
化されて、接触部の大部分が融着していることで、網状
体、不織布、編織物、硬綿、フイルム、発泡体、金属等
の被熱接着体面との接触面積を広くできるので、熱接着
面積が広くなり、強固に熱接着した新たな成形体及び車
両用座席、船舶用座席、車両用、船舶用、病院用等の業
務用及び家庭用ベット、家具用椅子、事務用椅子、布団
類になった製品を得ることができる。なお、新たな成形
体及び製品が製品化されるまでの任意の段階で疑似結晶
化処理を施すことにより、構造体中の熱可塑性弾性樹脂
からなる線条を示差走査型熱量計で測定した融解曲線に
室温以上融点以下の温度に吸熱ピークを持つようにする
と製品の耐熱耐久性が格段に向上したものを提供できる
のでより好ましい。熱接着時に被接着体を伸張した状態
で接着すると、被接着体は接着層のゴム弾性で伸張され
た状態が緩和しないので張りのある、皺になりにくい成
形体とすることもできる。
Since a non-woven fabric laminated structure in which a net-like body made of a thermoplastic elastic resin and a short-fiber non-woven fabric are joined and integrated to substantially flatten both sides, other net-like bodies, non-woven fabrics, knitted fabrics, hard fabrics, Other heat-adhesive components (heat-bonded non-woven fabric, heat-bonded fiber, heat-bonded film, heat-bonded resin, etc.) and adhesives are used to bond cotton, film, foam, metal, etc. In order to obtain a product such as a vehicle seat, a ship seat, a vehicle seat, a ship seat, a commercial bed for home use, a home use bed, a furniture chair, an office chair, a futon, etc. Since the contact area with the adhesive body surface can be widened,
It is possible to obtain a product having a wide adhesion area and strong adhesion and good adhesion durability. In addition, by performing the above-mentioned pseudo-crystallization treatment at any stage from the stage of forming the net body and the laminated structure into a product, the component made of the thermoplastic elastic resin in the structure was measured by a differential scanning calorimeter. It is more preferable that the melting curve has an endothermic peak at a temperature of room temperature or higher and melting point or lower because the heat resistance and durability of the product is remarkably improved. When the filaments of the reticulate body forming the nonwoven fabric laminated structure of the present invention have a composite structure, the back surface of the laminated structure can also be provided with a heat-adhesive function, and a reinforcing material or the like can be integrated into a heat-adhesive structure. For example, in the sheath core structure, a thermoplastic elastic resin containing a large amount of soft segment that facilitates energy conversion of vibration and deformation stress of the sheath component is used as a heat-adhesive component, and a soft segment containing the compressive property of the core component is contained. A thermoplastic adhesive resin having a small amount is used as a high melting point component to have a function of holding a net-like shape, and the melting point of the thermal bonding component is lower than the melting point of the high melting point resin by 10 ° C. or more. The function of can be added. Further, the short fiber non-woven fabric of the surface layer of the non-woven fabric laminated structure of the present invention is adhered by a heat-adhesive fiber, and can be used as the heat-adhesive layer, but it is preferable that the heat-adhesive component has a soft segment content and a low melting point. By using the thermoplastic elastic resin of (1), it is possible to improve the energy conversion of vibration and deformation stress, and also to impart a good thermal adhesive function. The melting point of the heat-bonding component forming the filaments or fibers in the laminated structure, which is preferable for exhibiting the heat-bonding function, is 15 ° C to 80 ° C lower than the melting point of the high-melting component, more preferably 20 ° C to 60 ° C. It has a low melting point. The laminated structure of the present invention having a heat-bonding function has a substantially flat surface, and most of the contact portions are fused, thereby forming a mesh, nonwoven fabric, knitted fabric, hard cotton, film, foam. Since the contact area with the body to be heat-bonded, such as metal or metal, can be widened, the heat-bonded area becomes wider, and a new heat-bonded molded body and vehicle seat, ship seat, vehicle, ship, hospital. You can obtain products such as commercial and household beds, furniture chairs, office chairs, and futons. In addition, by performing pseudo crystallization at any stage until new molded products and products are commercialized, the filaments made of the thermoplastic elastic resin in the structure are melted by a differential scanning calorimeter. It is more preferable to make the curve have an endothermic peak at a temperature of room temperature or higher and melting point or lower because a product with significantly improved heat resistance and durability can be provided. When the adherend is adhered in a stretched state at the time of heat-bonding, the adhered body does not relax the stretched state due to the rubber elasticity of the adhesive layer, so that the adherend can be a molded body having tension and less likely to wrinkle.

【0015】次に本発明の製法を述べる。複数のオリフ
ィスを持つ多列ノズルより熱可塑性弾性樹脂をその融点
より20℃以上高く、80℃未満高い溶融温度で、該ノ
ズルより下方に向けて吐出させ、溶融状態で互いに接触
させて融着させ3次元構造を形成しつつ、引取り装置で
挟み込み冷却槽で冷却せしめた後、片面に接着成分が熱
可塑性弾性樹脂からなる短繊維と非弾性樹脂からなる短
繊維と混合開繊して3次元構造化させた開繊したウエッ
ブを積層し、圧縮熱成形により、接触部の大部分を熱接
着成分により融着一体化する不織布積層構造体の製法で
ある。網状体は、熱可塑性弾性樹脂を一般的な溶融押出
機を用いて溶融し、複数のオリフィスを持つ多列ノズル
に供給し、オリフィスより下方へ吐出する。この時の溶
融温度は、熱可塑性弾性樹脂の融点より20℃〜80℃
高い温度である。熱可塑性弾性樹脂の融点より80℃を
越える高い溶融温度にすると熱分解が著しくなり熱可塑
性弾性樹脂のゴム弾性特性が低下するので好ましくな
い。他方、熱可塑性弾性樹脂の融点より10℃以上高く
しないとメルトフラクチャ−を発生し正常な線条形成が
出来なくなり、また、吐出後ル−プ形成しつつ接触させ
融着させる際、線条の温度が低下して線条同士が融着し
なくなり接着が不充分な網状体となる場合があり好まし
くない。好ましい溶融温度は融点より20℃から60℃
高い温度、より好ましくは融点より25℃から40℃高
い温度である。オリフィスの形状は特に限定されない
が、中空断面(例えば三角中空、丸型中空、突起つきの
中空等となるよう形状)及び、又は異形断面(例えば三
角形、Y型、星型等の断面二次モ−メントが高くなる形
状)とすることで前記効果以外に溶融状態の吐出線条が
形成する3次元構造が流動緩和し難くし、逆に接触点で
の流動時間を長く保持して接着点を強固にできるので特
に好ましい。特開平1−2075号公報に記載の接着の
ための加熱をする場合、3次元構造が緩和し易くなり平
面的構造化し、3次元立体構造化が困難となるので好ま
しくない。網状体の特性向上効果としては、見掛けの嵩
を高くでき軽量化になり、また抗圧縮性が向上し、弾発
性も改良できへたり難くなる。中空断面では中空率が8
0%を越えると断面が潰れ易くなるので、好ましくは軽
量化の効果が発現できる10%以上70%以下、より好
ましくは20%以上60%以下である。オリフィスの孔
間ピッチは線状が形成するル−プが充分接触できるピッ
チとする必要がある。緻密な構造にするには孔間ピッチ
を短くし、粗密な構造にするには孔間ピッチを長くす
る。本発明の孔間ピッチは好ましくは3mm〜20mm、よ
り好ましくは5mm〜10mmである。本発明では所望に応
じ異密度化や異繊度化もできる。列間のピッチ又は孔間
のピッチも変えた構成、及び列間と孔間の両方のピッチ
も変える方法などで異密度層を形成できる。また、オリ
フィスの断面積を変えて吐出時の圧力損失差を付与する
と、溶融した熱可塑性弾性樹脂を同一ノズルから一定の
圧力で押し出される吐出量が圧力損失の大きいオリフィ
スほど少なくなる原理を使って長手方向の区間でオリフ
ィスの断面積が異なる列を少なくとも複数有するノズル
を用い異繊度線条からなる網状構造体を製造することが
できる。次いで、該ノズルより下方に向けて吐出させ、
ル−プを形成させつつ溶融状態で互いに接触させて融着
させ3次元構造を形成しつつ、引取りネットで挟み込
み、網状体の表面の溶融状態の曲がりくねった吐出線条
を45°以上折り曲げて変形させて表面をフラット化す
ると同時に曲げられていない吐出線条との接触点を接着
して構造を形成後、連続して冷却媒体(通常は室温の水
を用いるのが冷却速度を早くでき、コスト面でも安くな
るので好ましい)で急冷して本発明の3次元立体網状構
造体化した網状体を得る。ノズル面と引取り点の距離は
少なくとも40cm以下にすることで吐出線条が冷却され
接触部が融着しなくなることを防ぐのが好ましい。吐出
線条の吐出量5g/分孔以上と多い場合は10cm〜40
cmが好ましく、吐出線条の吐出量5g/分孔未満と少な
い場合は5cm〜20cmが好ましい。網状体の厚みは溶融
状態の3次元立体構造体両面を挟み込む引取りネットの
開口幅(引取りネット間の間隔)で決まる。本発明では
上述の理由から引取りネットの開口幅は5mm以上とす
る。次いで水切り乾燥するが冷却媒体中に界面活性剤等
を添加すると、水切りや乾燥がしにくくなったり、熱可
塑性弾性樹脂が膨潤することもあり好ましくない。尚、
ノズル面と樹脂を固化させる冷却媒体上に設置した引取
りコンベアとの距離、樹脂の溶融粘度、オリフィスの孔
径と吐出量などにより所望のループ径や線径をきめられ
る。冷却媒体上に設置した間隔が調整可能な一対の引取
りコンベアで溶融状態の吐出線条を挟み込み停留させる
ことで互いに接触した部分を融着させつつ、連続して冷
却媒体中に引込み固化させ網状体を形成する時、上記コ
ンベアの間隔を調整することで、融着した網状体が溶融
状態でいる間で厚み調節が可能となり、所望の厚みのも
のが得られる。コンベア速度も速すぎると、接触点の形
成が不充分になったり、融着点が充分に形成されるまで
に冷却され、接触部の融着が不充分になる場合がある。
また、速度が遅過ぎると溶融物が滞留し過ぎ、密度が高
くなるので、所望の見掛け密度に適したコンベア速度を
設定する必要がある。次いで本発明では、表面層の機能
を持たせる短繊維不織布と接合一体化する。熱接着成分
が熱可塑性弾性樹脂からなる繊度が20デニ−ル以下の
熱接着繊維は、低融点の熱可塑性弾性樹脂と高融点の熱
可塑性非弾性樹脂とを個々に溶融し、公知の複合紡糸に
より紡糸し、延伸して完成糸を得られる。が、この方法
では、熱接着成分の融点が低いので、延伸時に高温で熱
セットできないため収縮率が30%から80%と高いも
のしか得られないので、ウエッブを熱成形する際ウエッ
ブ収縮による成形寸法不良を生じる。本発明ではこの問
題を解決するため、3000m/分以上の高速紡糸によ
り収縮率を10%以下に低収縮化して一気に完成糸にす
る方法で得るのが好ましい。次いで、巻縮を付与し、所
望のカット長に切断して熱接着繊維を得る。本発明に使
用する熱接着繊維の複合形態は特には限定されないが、
熱接着繊維としての機能が必要なのでサイドバイサイド
またはシ−スコアで、低融点成分が繊維の表面の50%
以上を占めるのが好ましく、低融点成分が繊維の表面の
100%以上を占めるのがより好ましい。母材繊維は公
知の方法で非弾性樹脂を非対象冷却法又は複合紡糸法に
より潜在捲縮能を付与し、延伸後熱処理により立体捲縮
を発現させて切断または、切断後熱処理して立体捲縮を
発現させて母材繊維を得る。母材繊維は耐へたり性と耐
熱性を要求されるので、初期引張り抵抗度が少なくとも
35g/デニ−ル以上で、70℃での初期引張り抵抗度
が少なくとも10g/デニ−ル以上にしたものが好まし
い。嵩高性と抗圧縮性からの立体捲縮の捲縮度は15%
以上、捲縮数は10〜25個/インチが好ましい。かく
して得られた熱接着繊維と母材繊維は混合開繊する。熱
接着繊維が少ないと振動吸収機能が低下して好ましくな
い。熱接着繊維が多すぎると嵩高性が低下する場合があ
り、好ましい熱接着繊維と母材繊維は混合比率が20/
80〜60/40重量比として、オ−プナ−等で予備開
繊混合した後カ−ド等で開繊し、3次元化構造とした開
繊ウエッブを、該網状体の表面に積層圧縮して熱成形に
より接合一体化するか、一旦単独で開繊ウエッブのみを
積層圧縮して熱成形により構造体化して短繊維不織布を
作成し、次いで該網状体と短繊維不織布を接合一体化す
ることもできる。この場合、熱接着層又は接着剤を別途
該網状体と短繊維不織布間に使用して接合一体化しても
よく、該網状体または該短繊維不織布の熱接着機能を使
って接合一体化してもよい。本発明の好ましい方法とし
ては、該網状体を一旦冷却後、又は一体成形して得られ
た不織布積層構造体を製品化に至る任意の工程で熱可塑
性弾性樹脂の融点より少なくとも10℃以下の温度でア
ニ−リングよる疑似結晶化処理を行い不織布積層構造体
又は製品を得るのがより好ましい製法である。疑似結晶
化処理温度は、少なくとも融点(Tm)より10℃以上
低く、Tanδのα分散立ち上がり温度(Tαcr)以
上で行う。この処理で、融点以下に吸熱ピ−クを持ち、
疑似結晶化処理しないもの(吸熱ピ−クを有しないも
の)より耐熱耐へたり性が著しく向上する。本発明の好
ましい疑似結晶化処理温度は(Tαcr+10℃)から
(Tm−20℃)である。単なる熱処理により疑似結晶
化させると耐熱耐へたり性が向上する。が更には、10
%以上の圧縮変形を付与してアニ−リングすることで耐
熱耐へたり性が著しく向上するのでより好ましい。ま
た、該網状体を一旦冷却後、乾燥工程を経する場合、乾
燥温度をアニ−リング温度とすることで同時に疑似結晶
化処理を行うができる。また、製品化する工程で別途疑
似結晶化処理を行うができる。次いで所望の長さまたは
形状に切断してクッション材に用いる。
Next, the manufacturing method of the present invention will be described. A thermoplastic elastic resin is discharged downward from the nozzle at a melting temperature higher than its melting point by 20 ° C. or more and less than 80 ° C. from a multi-row nozzle having a plurality of orifices, and they are brought into contact with each other in a molten state to be fused. While forming a three-dimensional structure, it is sandwiched by a take-up device and cooled in a cooling tank, and then one side is mixed and opened with short fibers made of a thermoplastic elastic resin and short fibers made of an inelastic resin, and three-dimensionally opened. This is a method for producing a nonwoven fabric laminated structure in which structured structured webs are laminated and compression thermoforming is used to fuse and integrate most of the contact portions with a thermal adhesive component. The reticulate body is obtained by melting a thermoplastic elastic resin by using a general melt extruder, supplying the multi-row nozzle having a plurality of orifices, and discharging the resin downward from the orifices. The melting temperature at this time is 20 ° C to 80 ° C from the melting point of the thermoplastic elastic resin.
It is a high temperature. If the melting temperature is higher than 80 ° C. higher than the melting point of the thermoplastic elastic resin, thermal decomposition becomes remarkable and the rubber elastic properties of the thermoplastic elastic resin deteriorate, which is not preferable. On the other hand, unless the temperature is higher than the melting point of the thermoplastic elastic resin by 10 ° C. or more, melt fracture occurs and normal filament formation cannot be performed. Further, when the filament is formed by looping after discharge and is brought into contact and fused. The temperature may be lowered and the filaments may not be fused to each other, resulting in a network having insufficient adhesion, which is not preferable. The preferred melting temperature is 20 ° C to 60 ° C above the melting point
Higher temperatures, more preferably 25 ° C to 40 ° C above the melting point. The shape of the orifice is not particularly limited, but may be a hollow cross section (for example, a triangular hollow, a round hollow, a shape with a projection, etc.) and / or an irregular cross section (for example, a triangular, Y-shaped, star-shaped cross-section secondary mode). In addition to the above effects, it is difficult for the three-dimensional structure formed by the discharge filaments in the molten state to relax the flow, and on the contrary, the flow time at the contact point is maintained for a long time to strengthen the adhesion point. It is particularly preferable because it can be When heating for adhesion as described in Japanese Patent Application Laid-Open No. 1-2075, the three-dimensional structure is easily relaxed, a planar structure is formed, and a three-dimensional three-dimensional structure becomes difficult, which is not preferable. As an effect of improving the properties of the reticulate body, the apparent bulk can be increased, the weight can be reduced, the anti-compression property can be improved, and the elasticity can be improved, which is difficult to obtain. The hollow section has a hollow ratio of 8
If it exceeds 0%, the cross section tends to be crushed, so that it is preferably 10% or more and 70% or less, more preferably 20% or more and 60% or less so that the effect of weight reduction can be exhibited. The pitch between the holes of the orifice needs to be a pitch with which the loop formed by the line can sufficiently contact. The pitch between holes is shortened for a dense structure, and the pitch between holes is lengthened for a coarse structure. The pitch between the holes of the present invention is preferably 3 mm to 20 mm, more preferably 5 mm to 10 mm. In the present invention, different densities and different fineness can be obtained as desired. The different density layer can be formed by a configuration in which the pitch between rows or the pitch between holes is also changed, or a method in which the pitch between both rows and holes is also changed. Also, if the pressure loss difference at the time of discharge is given by changing the cross-sectional area of the orifice, the principle that the discharged amount of molten thermoplastic elastic resin extruded from the same nozzle at a constant pressure becomes smaller for the orifice with larger pressure loss, is used. It is possible to manufacture a reticulated structure composed of filaments of different fineness by using a nozzle having at least a plurality of rows having different cross-sectional areas of orifices in a section in the longitudinal direction. Then, discharge downward from the nozzle,
While forming a loop, they are brought into contact with each other in a molten state to be fused to form a three-dimensional structure, sandwiched by a take-up net, and bent in the molten state on the surface of the mesh body by bending it by 45 ° or more. After deforming to flatten the surface and at the same time form a structure by adhering the contact points with the discharge line that is not bent, a cooling medium (usually using room temperature water can increase the cooling rate, It is preferable because it is cheap in terms of cost), and is rapidly cooled to obtain the three-dimensional three-dimensional net-structured net-like body of the present invention. The distance between the nozzle surface and the take-off point is preferably at least 40 cm or less to prevent the discharge filament from being cooled and the contact portion not being fused. If the discharge amount of the discharge line is 5g / hole or more, 10cm-40
cm is preferable, and 5 cm to 20 cm is preferable when the discharge amount of the discharge filament is less than 5 g / hole. The thickness of the net-like body is determined by the opening width (interval between the take-up nets) of the take-up net sandwiching both surfaces of the three-dimensional structure in the molten state. In the present invention, the opening width of the take-up net is set to 5 mm or more for the above reason. Next, it is drained and dried, but if a surfactant or the like is added to the cooling medium, draining and drying may be difficult, or the thermoplastic elastic resin may swell, which is not preferable. still,
The desired loop diameter and wire diameter can be determined by the distance between the nozzle surface and the take-up conveyor installed on the cooling medium that solidifies the resin, the melt viscosity of the resin, the hole diameter of the orifice and the discharge amount, and the like. A pair of take-up conveyors with adjustable spacing installed on the cooling medium sandwiches and holds the melted discharge filaments to fuse the portions that are in contact with each other and continuously draw in the cooling medium to solidify. By adjusting the distance between the conveyors when forming the body, the thickness can be adjusted while the fused net-like body is in a molten state, and a desired thickness can be obtained. If the conveyor speed is too high, the formation of contact points may be insufficient, or the contact point may be cooled until the fusion point is sufficiently formed, resulting in insufficient fusion of the contact portion.
Further, if the speed is too slow, the melt will stay too much and the density will increase, so it is necessary to set the conveyor speed suitable for the desired apparent density. Next, in the present invention, it is joined and integrated with a short fiber non-woven fabric having a surface layer function. The thermoadhesive fiber having a fineness of 20 denier or less, in which the thermoadhesive component is a thermoplastic elastic resin, is obtained by individually melting a low-melting thermoplastic elastic resin and a high-melting thermoplastic non-elastic resin to form a known composite spinning fiber. Thus, a spun yarn can be obtained by spinning and stretching. However, in this method, since the heat-adhesive component has a low melting point, heat setting at a high temperature cannot be performed at the time of stretching, so that only a high shrinkage rate of 30% to 80% can be obtained. Dimensional defects occur. In the present invention, in order to solve this problem, it is preferable to obtain the finished yarn at a stretch by reducing the shrinkage rate to 10% or less by high-speed spinning at 3000 m / min or more. Next, crimping is applied and cut into a desired cut length to obtain a heat-bonded fiber. The composite form of the heat-bonding fibers used in the present invention is not particularly limited,
Since it needs to function as a heat-bonding fiber, it is side-by-side or sheath-core, and the low melting point component is 50% of the fiber surface.
The low melting point component preferably occupies 100% or more of the surface of the fiber. The matrix fiber is a known method in which a non-elastic resin is given a latent crimping ability by an asymmetric cooling method or a composite spinning method, and after the stretching, heat treatment is performed to develop a three-dimensional crimp, and then cut, or after the cutting, a heat treatment is performed and the three-dimensional winding is performed. A matrix fiber is obtained by expressing shrinkage. Since the matrix fiber is required to have sag resistance and heat resistance, the initial tensile resistance is at least 35 g / denier and the initial tensile resistance at 70 ° C is at least 10 g / denier. Is preferred. The crimp degree of three-dimensional crimp is 15% due to its bulkiness and anti-compression property.
As described above, the number of crimps is preferably 10 to 25 crimps / inch. The heat-bonded fibers and the matrix fibers thus obtained are mixed and opened. When the amount of heat-bonding fibers is small, the vibration absorbing function is deteriorated, which is not preferable. If the amount of the heat-bonding fibers is too large, the bulkiness may decrease. Therefore, the preferable mixing ratio of the heat-bonding fibers and the base material fibers is 20 /.
A weight ratio of 80 to 60/40 is obtained by pre-opening and mixing with an opener or the like, and then opening with a card or the like to open and open a web having a three-dimensional structure on the surface of the reticulate body. To form a short fiber non-woven fabric by thermocompression and thermoforming to form a short fiber non-woven fabric, and then to integrally join the net and short fiber non-woven fabric. You can also In this case, a thermal adhesive layer or an adhesive may be separately used between the reticulate body and the short fiber non-woven fabric for bonding and integration, or the thermal rebonding function of the reticulate body or the short fiber non-woven fabric may be used for bonding and integration. Good. As a preferred method of the present invention, a temperature of at least 10 ° C. or lower than the melting point of the thermoplastic elastic resin is used in any step leading to commercialization of the nonwoven fabric laminated structure obtained by once cooling the reticulated body or integrally molding it. It is a more preferable production method to obtain a nonwoven fabric laminated structure or product by carrying out pseudo-crystallization treatment by annealing. The pseudo-crystallization treatment temperature is at least 10 ° C. lower than the melting point (Tm), and is higher than the α dispersion rising temperature (Tαcr) of Tan δ. This process has an endothermic peak below the melting point,
The heat and sag resistance is remarkably improved as compared with the case where the pseudo crystallization treatment is not carried out (the case where there is no endothermic peak). The preferred pseudo-crystallization treatment temperature of the present invention is (Tαcr + 10 ° C) to (Tm-20 ° C). If it is pseudo-crystallized by simple heat treatment, heat resistance and sag resistance are improved. But 10
It is more preferable to impart compressive deformation of not less than 100% and anneal to significantly improve heat resistance and sag resistance. Further, when the reticulate body is once cooled and then subjected to a drying step, the pseudo crystallization treatment can be simultaneously performed by setting the drying temperature to the annealing temperature. Also, a pseudo crystallization treatment can be separately performed in the process of commercialization. Then, it is cut into a desired length or shape and used as a cushion material.

【0016】本発明の不織布積層構造体をクッション用
いる場合、その使用目的、使用部位により使用する樹
脂、繊度、ル−プ径、嵩密度を選択する必要がある。例
えば、ソフトなタッチと適度の沈み込みと張りのある膨
らみを付与するためには、やや高密度で細い繊度の緻密
な構造が好ましく、中層のクッション機能を発現させる
には、共振振動数を低くし、適度の硬さと圧縮時のヒス
テリシスを直線的に変化させて体型保持性を良くし、耐
久性を保持させるために、中密度で太い繊度、やや大き
いル−プ径の層と低密度で細い繊度、細かいル−プ径の
層を積層一体化した構造にするのが好ましい。本発明の
不織布積層構造体は表面層とクッション層の機能を同時
に有するので、3次元構造を損なわない程度に成形型等
を用いて使用目的にあった形状に成形して側地を被せる
のみで車両用座席、船舶用座席、ベット、椅子、家具等
に用いることができる。勿論、用途との関係で要求性能
に合うべき他の素材、例えば、異なる網状体、短繊維集
合体からなる硬綿クッション材、不織布等と組合せて用
いることも可能である。また、樹脂製造過程以外でも性
能を低下させない範囲で製造過程から成形体に加工し、
製品化する任意の段階で難燃化、防虫抗菌化、耐熱化、
撥水撥油化、着色、芳香等の機能付与を薬剤添加等の処
理加工ができる。
When the nonwoven fabric laminated structure of the present invention is used as a cushion, it is necessary to select a resin to be used, a fineness, a loop diameter and a bulk density depending on the purpose of use and the site of use. For example, in order to give a soft touch, moderate depression and bulging with tension, a dense structure with a slightly high density and fine fineness is preferable, and in order to exert the cushion function of the middle layer, the resonance frequency is low. However, in order to improve the body shape retention by linearly changing the appropriate hardness and hysteresis at the time of compression, in order to maintain durability, medium density, thick fineness, a layer with a slightly larger loop diameter and low density It is preferable to have a structure in which layers having a fine fineness and a fine loop diameter are laminated and integrated. Since the nonwoven fabric laminated structure of the present invention has the functions of the surface layer and the cushion layer at the same time, it can be formed into a shape suitable for the purpose of use by using a molding die or the like to the extent that the three-dimensional structure is not impaired, and only the side cloth is covered. It can be used for vehicle seats, boat seats, beds, chairs, furniture and the like. Of course, it is also possible to use it in combination with another material that should meet the required performance in relation to the application, for example, a different mesh body, a hard cotton cushion material composed of a short fiber aggregate, a non-woven fabric, or the like. In addition, other than the resin manufacturing process, it is processed into a molded product from the manufacturing process within a range that does not deteriorate the performance,
Flame retardant, insect repellent antibacterial, heat resistant, at any stage of commercialization
Water and oil repellency, coloring, aroma and other functions can be processed by adding chemicals.

【0017】[0017]

【実施例】以下に実施例で本発明を詳述する。EXAMPLES The present invention will be described in detail below with reference to examples.

【0018】なお、実施例中の評価は以下の方法で行っ
た。 融点(Tm)および融点以下の吸熱ピ−ク 島津製作所製TA50,DSC50型示差熱分析計を使
用し、昇温速度20℃/分で測定した吸発熱曲線から吸
熱ピ−ク(融解ピ−ク)温度を求めた。 Tαcr ポリマ−を融点+10℃に加熱して、厚み約300μm
のフイルムを作成して、オリエンテック社製バイブロン
DDVII型を用い、110Hz、昇温速度1℃/分で測
定したTanδ(虚数弾性率M”と弾性率の実数部分
M’との比M”/M’)のゴム弾性領域から融解領域へ
の転移点温度に相当するα分散の立ち上がり温度。 見掛け密度 試料を15cm×15cmの大きさに切断し、4か所の高さ
を測定し、体積を求め試料の重さを体積で徐した値で示
す。(n=4の平均値) 線条の繊度 試料を10箇所から各線条部分を切り出し、アクリル樹
脂で包埋して断面を削り出し切片を作成して断面写真を
得る。各部分の断面写真より各部の断面積(Si)を求
める。また、同様にして得た切片をアセトンでアクリル
樹脂を溶解し、真空脱泡して密度勾配管を用いて40℃
にて測定した比重(SGi)を求める。ついで次式より
線状の9000mの重さを求める。(単位cgs) 繊度=〔(1/n)ΣSi×SGi〕×900000 融着 試料を目視判断で融着しているか否かを接着している繊
維同士を手で引っ張って外れないか否かで外れないもの
を融着していると判断する。 耐熱耐久性(70℃残留歪) 試料を15cm×15cmの大きさに切断し、50%圧縮し
て70℃乾熱中22時間放置後冷却して圧縮歪みを除き
1日放置後の厚み(b)を求め、処理前の厚み(a)か
ら次式、即ち(a−b)/a×100より算出する。単
位%(n=3の平均値) 繰返し圧縮歪 試料を15cm×15cmの大きさに切断し、島津製作所製
サ−ボパルサ−にて、25℃65%RH室内にて50%
の厚みまで1Hzのサイクルで圧縮回復を繰り返し2万
回後の試料を1日放置後の厚みと処理前の厚み(b)を
求め、処理前の厚み(a)から次式、即ち(a−b)/
a×100より算出する。単位%(n=3の平均値) 座り心地 バケットシ−トの形状に切断成形した不織布積層弾性構
造体の表面層側に東洋紡績製ハイムからなるポリエステ
ルモケットの側地を被って、座席用フレ−ムにセットし
て座部は4か所、背部は6か所の側地止めを入れた座席
を作成し、30℃RH75%室内で作成した座席にパネ
ラ−を座らせ以下の評価をおこなった。(n=5) (1) 床つき感:座ったときの「どすん」と床に当たった
感じの程度を感覚的に定性評価した。感じない;◎、殆
ど感じない;○、やや感じる;△、感じる;× (2) 蒸れ感:2時間座っていて、臀部やふと股の内側の
座席と接する部分が蒸れた感じを感覚的に定性評価し
た。殆ど感じない:◎、僅かに蒸れを感じる;○、やや
蒸れを感じる;△、蒸れを著しく感じる;× (3) 8時間以内でどの程度我慢して座席に座っていられ
るか:1時間以内;×、2時間以内;△、4時間以内;
○、4時間以上;◎ (4) 4時間座席に座らせたときの腰の疲れ程度を感覚的
に定性評価した。無し;◎、殆ど疲れない;○、やや疲
れる;△、非常に疲れる;× (5) 総合評価: (1)から(4) までの評価の◎を4点、○
を3点、△を2点、×を1点として12点以上で△を含
まないもの;非常に良い(◎)、12点以上で△を含む
もの;良い(○)、10点以上で×を含まないもの;や
や悪い(△)、×を含むもの;悪い(×)として評価し
た。
The evaluations in the examples were carried out by the following methods. Endothermic peak (melting peak) from melting point (Tm) and endothermic peak below melting point TA50, DSC50 type differential thermal analyzer manufactured by Shimadzu ) The temperature was determined. Tαcr polymer is heated to the melting point + 10 ° C and the thickness is about 300 μm.
Film was prepared and measured using a Vibron DDVII type manufactured by Orientec Co., Ltd. at a rate of 110 Hz and a temperature rising rate of 1 ° C./min. Tan δ (ratio M ″ / imaginary elastic modulus M ″ to real part M ′ of elastic modulus) The rising temperature of α dispersion corresponding to the transition temperature from the rubber elastic region to the melting region of M ′). Apparent Density The sample is cut into a size of 15 cm × 15 cm, the heights at four locations are measured, the volume is determined, and the weight of the sample is divided by the volume. (Average value of n = 4) Fineness of filaments Each filament portion is cut out from 10 points of the sample, embedded in acrylic resin, the cross section is cut out, and a section is prepared to obtain a cross section photograph. The cross-sectional area (Si) of each part is obtained from the cross-sectional photograph of each part. In addition, a piece obtained in the same manner was dissolved in acrylic resin with acetone, degassed in vacuum, and a density gradient tube was used to 40 ° C.
Determine the specific gravity (SGi) measured in. Then, a linear weight of 9000 m is obtained from the following equation. (Unit: cgs) Fineness = [(1 / n) ΣSi × SGi] × 900000 Fusing Whether or not the sample is fused by visual judgment depends on whether or not the fibers adhering to each other cannot be pulled apart by hand It is determined that something that does not come off is fused. Heat resistance and durability (residual strain at 70 ° C) Cut a sample into a size of 15 cm x 15 cm, compress it by 50%, leave it in dry heat at 70 ° C for 22 hours, then cool to remove compression strain and leave it for 1 day (b) Is calculated, and is calculated from the thickness (a) before processing by the following equation, that is, (ab) / a × 100. Unit% (average value of n = 3) Cyclic compressive strain A sample was cut into a size of 15 cm x 15 cm, and a Shimazu Seisakusho pulsarcer was used at 25 ° C and 65% in an RH room at 50%.
The compression recovery was repeated at a cycle of 1 Hz up to the thickness of 20,000 times, and the thickness of the sample after 20,000 times was left for one day and the thickness before the treatment (b) were obtained, and from the thickness before the treatment (a), the following formula, that is, (a- b) /
Calculated from a × 100. Unit% (average value of n = 3) Sit comfort Covering the side of the nonwoven fabric laminated elastic structure cut into the shape of a bucket sheet with the side of polyester moquette made of Toyobo Co., Ltd. Heim, seat frame The seats with four side seats and six back parts with side landscaps were set, and a paneler was seated on the seats created at 30 ° C RH75% room for the following evaluations. . (N = 5) (1) Feeling on the floor: The degree of "dosun" when sitting and the feeling of hitting the floor were qualitatively and qualitatively evaluated. Not felt; ◎, hardly felt; ○, slightly felt; △, felt; × (2) Feeling of stuffiness: Feeling stuffy when sitting for 2 hours and the buttocks and the part of the crotch that contacts the seat inside the crotch Qualitatively evaluated. Almost no feeling: ◎, slightly stuffy; ○, slightly stuffy; △, significantly stuffy; × (3) How long you can sit in the seat within 8 hours: within 1 hour; × within 2 hours; △ within 4 hours;
○ 4 hours or more; ◎ (4) A qualitative qualitative evaluation was performed on the degree of waist fatigue when the user sat in the seat for 4 hours. None; ◎, hardly tired; ○, slightly tired; △, very tired; × (5) Overall evaluation: 4 points from ◎ of the evaluations from (1) to (4), ○
3 points, △ is 2 points, × is 1 point and does not include Δ with 12 points or more; very good (⊚), that with 12 points or more; Good (○), 10 points or more is x It was evaluated as those which did not contain; those which were somewhat bad (Δ) and those which contained x; bad (x).

【0019】実施例1 ポリエステル系エラストマ−として、ジメチルテレフタ
レ−ト(DMT)又は、ジメチルナフタレ−ト(DM
N)と1・4ブタンジオ−ル(1・4BD)を少量の触
媒と仕込み、常法によりエステル交換後、ポリテトラメ
チレングリコ−ル(PTMG)を添加して昇温減圧しつ
つ重縮合せしめポリエ−テルエステルブロック共重合エ
ラストマ−を生成させ、次いで抗酸化剤2%を添加混合
練込み後ペレット化し、50℃48時間真空乾燥して得
られた熱可塑性弾性樹脂原料の処方を表1に示す。
Example 1 As a polyester elastomer, dimethyl terephthalate (DMT) or dimethyl naphthalate (DM) was used.
N) and 1.4 butanediol (1.4 BD) were charged with a small amount of a catalyst, and after transesterification by a conventional method, polytetramethylene glycol (PTMG) was added and polycondensation was performed while heating and depressurizing. -Formation of terester block copolymer elastomer, then addition and mixing of 2% of antioxidant, kneading, pelletizing, and vacuum drying at 50 ° C for 48 hours are shown in Table 1. .

【0020】[0020]

【表1】 [Table 1]

【0021】幅50cm、長さ5cmのノズル有効面に幅方
向の孔間ピッチ5mm、長さ方向の孔間ピッチ10mmの千
鳥配列としたオリフィス形状は外径2mm、内径1.6mm
でトリプルブリッジの中空形成性断面としたノズルに、
得られた熱可塑性弾性樹脂原料を別々の押出機にて溶融
し、A−1をシ−ス成分に、A−2をコア成分となるよ
うにオリフィス直前で分配し、溶融温度245℃にて単
孔当たりの吐出量2.0g/分(A−1:1g/分、A
−2:1g/分)にてノズル下方に吐出させ、ノズル面
12cm下に冷却水を配し、幅60cmのステンレス製エン
ドレスネットを平行に5cm間隔で一対の引取りコンベア
を水面上に一部出るように配して、該溶融状態の吐出線
状を曲がりくねらせル−プを形成して接触部分を融着さ
せつつ3次元網状構造を形成し、該溶融状態の網状体の
両面を引取りコンベア−で挟み込みつつ毎分1mの速度
で25℃の冷却水中へ引込み固化させ両面をフラット化
した後、所定の大きさに切断して得た網状体は断面形状
がシ−スコア構造の三角おむすび型の中空断面で中空率
が40%、繊度が9000デニ−ルの線条で形成してお
り、平均の見掛け密度が0.046g/cm3 であった。
別途に、常法により公知の複合紡糸機にて、熱可塑性弾
性樹脂A−3をシ−ス成分、相対粘度1.0のPBTを
コア成分となるように個々に溶融してオリフィス直前で
分配し、各吐出量を50/50重量比で、単孔当たり
1.6g/分孔(0.8g/分:0.8g/分)として
紡糸温度285℃にてC型オリフィスより吐出し、紡糸
速度3500m/分にて得た繊度が4.1デニ−ル、乾
熱160℃での収縮率4%の糸を収束してトウ状でクリ
ンパ−にて機械巻縮を付与し、64mmに切断してシ−ス
コア断面の熱可塑性弾性樹脂からなる熱接着繊維を得
た。母材繊維は、常法により、極限粘度0.63と0.
56のPETを重量比50/50に分配して単孔当たり
3.0g/分孔(1g/分:1g/分)として紡糸温度
265℃にて紡糸速度1300m/分で複合紡糸し、次
いで、70℃及び180℃にて2段延伸して得た延伸糸
を64mmに切断し170℃にてフリ−熱処理して立体捲
縮を発現させ、中空断面で中空率32%のシ−スコア構
造の繊度6デニ−ル、初期引張り抵抗度38g/デニ−
ル、捲縮度20%、捲縮数18個/インチの母材繊維を
得た。得られた熱接着繊維と母材繊維を40/60重量
比で混合し、オ−プナ−にて予備開繊した後カ−ドで開
繊して得たウエッブを目付け1000g/m2 に積層
し、該網状体に積層し、見掛け密度が0.05g/cm3
となるように圧縮し、180℃の熱風にて5分間熱処理
後冷却して両面がフラットな不織布積層構造体を得た。
次いで厚みの10%圧縮して、100℃の熱風にて20
分疑似結晶化処理して得た本発明の不織布積層構造体の
特性を表2に示す。表2で明らかなごとく、実施例1は
柔らかい弾性樹脂の特性が生かせた不織布積層構造体の
ため耐熱性、常温での耐久性に優れ、座り心地ともに優
れたクッション材であった。評価用に作成した座席も性
能が優れていることが判る。
Orifice shapes having a staggered arrangement with a hole-to-hole pitch of 5 mm in the width direction and a hole-to-hole pitch of 10 mm in the length direction on an effective surface of a nozzle having a width of 50 cm and a length of 5 cm have an outer diameter of 2 mm and an inner diameter of 1.6 mm.
With a nozzle with a triple bridge hollow forming cross section,
The obtained thermoplastic elastic resin raw materials are melted by separate extruders, A-1 is distributed as a sheath component and A-2 is distributed as a core component immediately before the orifice, and the melt temperature is 245 ° C. Discharge rate per single hole 2.0 g / min (A-1: 1 g / min, A
-2: 1 g / min) is discharged below the nozzle, cooling water is placed 12 cm below the nozzle surface, and stainless steel endless nets with a width of 60 cm are arranged in parallel at 5 cm intervals with a pair of take-up conveyors partially above the water surface. The melted discharge line is bent to form a loop to fuse the contact portions to form a three-dimensional net structure, and both sides of the melted net are drawn. While being sandwiched by a take-up conveyor, it was drawn into cooling water at 25 ° C. at a speed of 1 m / min to be solidified and flattened on both sides, and then the net-like body obtained by cutting to a predetermined size had a triangular cross section. It had a hollow cross section of a rice ball shape and had a hollowness of 40% and a fineness of 9000 denier, and the average apparent density was 0.046 g / cm 3 .
Separately, the thermoplastic elastic resin A-3 is individually melted so as to become a sheath component and PBT having a relative viscosity of 1.0 as a core component by a conventional composite spinning machine by a conventional method, and distributed immediately before the orifice. Then, each discharge amount was 50/50 weight ratio, 1.6 g / min per hole (0.8 g / min: 0.8 g / min) was discharged from the C-type orifice at the spinning temperature of 285 ° C., and spun. A yarn having a fineness of 4.1 denier at a speed of 3500 m / min and a shrinkage of 4% at a dry heat of 160 ° C is converged, and a tow-like crimp is applied to give mechanical crimp and cut into 64 mm. Then, a heat-bonding fiber made of a thermoplastic elastic resin having a sheath core cross section was obtained. The matrix fiber has an intrinsic viscosity of 0.63 and 0.
56 PET was distributed in a weight ratio of 50/50 to make a composite spinning at 3.0 g / min per hole (1 g / min: 1 g / min) at a spinning temperature of 265 ° C. and a spinning speed of 1300 m / min, and then The drawn yarn obtained by two-stage drawing at 70 ° C. and 180 ° C. was cut into 64 mm and subjected to free heat treatment at 170 ° C. to develop a three-dimensional crimp, and a hollow core having a hollow core with a hollow ratio of 32% Fineness 6 denier, initial tensile resistance 38 g / denier
A base material fiber having a crimp degree of 20% and a crimp number of 18 / inch was obtained. The heat-bonded fibers thus obtained and the base material fibers were mixed at a weight ratio of 40/60, pre-opened with an opener and then opened with a card, and the web obtained was laminated to have a basis weight of 1000 g / m 2 . and, laminated net-like body, an apparent density of 0.05 g / cm 3
It was compressed so that it was heated to 180 ° C. for 5 minutes and then cooled to obtain a nonwoven fabric laminated structure having flat both sides.
Then, compress it by 10% of its thickness, and heat it with hot air at 100 ° C
Table 2 shows the characteristics of the nonwoven fabric laminated structure of the present invention obtained by the pseudo-crystallization treatment. As is apparent from Table 2, Example 1 was a cushion material excellent in heat resistance and durability at room temperature because it was a non-woven fabric laminated structure in which the characteristics of the soft elastic resin were utilized. It can be seen that the seat created for evaluation also has excellent performance.

【0022】[0022]

【表2】 [Table 2]

【0023】実施例2 ジメチルイソフタレ−ト(DMI)20モル%とDMT
80モル%及び1・4ブタンジオ−ル(1・4BD)を
少量の触媒と仕込み、実施例1の方法と同様にして得た
ポリエステル系熱可塑性弾性樹脂の処方を表1に示す。
オリフィスの孔形状を孔径φ1mmの丸断面としたノズル
を用い、A−3のみを単成分で用いた以外実施例1と同
様にして得た網状体は中実丸断面で繊度9000デニ−
ルの線条から形成されており、平均の見掛け密度が0.
046g/cm3 であった。次いで実施例1と同様にして
得た不織布積層構造体の特性を表2に示す。表2で明ら
かなごとく、実施例2は耐熱性と常温での耐久性は実用
上使用可能で、座り心地の優れたクッション材であり、
評価用に作成した座席も優れていることが判る。
Example 2 20 mol% of dimethyl isophthalate (DMI) and DMT
Table 1 shows the formulation of the polyester-based thermoplastic elastic resin obtained in the same manner as in Example 1 by charging 80 mol% and 1.4-butanediol (1.4-BD) with a small amount of a catalyst.
A reticulate body obtained in the same manner as in Example 1 except that the orifice had a round cross section with a diameter of 1 mm and only A-3 was used as a single component had a solid round cross section and a fineness of 9000 deniers.
The average apparent density is 0.
It was 046 g / cm 3 . Next, Table 2 shows the characteristics of the nonwoven fabric laminated structure obtained in the same manner as in Example 1. As is clear from Table 2, Example 2 is a cushioning material that is practically usable in terms of heat resistance and durability at room temperature, and has excellent sitting comfort.
It can be seen that the seat created for evaluation is also excellent.

【0024】実施例3 ポリウレタン系エラストマ−として、4・4’ジフェニ
ルメタンジイソシアネ−ト(MDI)とPTMG及び鎖
延長剤として1・4BDを添加して重合し次いで抗酸化
剤2%を添加混合練込み後ペレット化し真空乾燥してポ
リエ−テル系ウレタンポリマ−の処方を表3に示す。
Example 3 As a polyurethane elastomer, 4,4'-diphenylmethane diisocyanate (MDI), PTMG and 1.4BD as a chain extender were added and polymerized, and then 2% of an antioxidant was added and mixed. Table 3 shows the formulation of the polyether urethane polymer after kneading, pelletizing and vacuum drying.

【0025】[0025]

【表3】 [Table 3]

【0026】得られた熱可塑性弾性樹脂(シ−ス成分:
B−1、コア成分:B−2)を溶融温度220℃とした
以外実施例1と同様にして得た網状体の線条のシ−スコ
ア構造の断面形状が三角おむすび型の中空断面で中空率
40%、繊度が9800デニ−ル、平均の見掛け密度が
0.047g/cm3 であった。他方、B−1をシ−ス成
分に、実施例2に使用したPBTをコア成分とし、紡糸
温度を260℃とした以外実施例1と同様にして得た熱
接着繊維の特性は、繊度が4.5デニ−ル、150℃で
の収縮率が3%であった。この熱接着繊維と実施例1で
得た母材をを実施例1と同様にして1000g/m2
積層ウエッブにし、該網状体と積層し、160℃の熱風
にて5分間熱処理後冷却して両面がフラットな不織布積
層構造体を得た。次いで厚みの10%圧縮して、100
℃の熱風にて20分疑似結晶化処理して得た本発明の不
織布積層構造体の特性を表2に示す。実施例3は柔らか
いウレタンの特性を生かした不織布積層構造体で耐熱
性、常温での耐久性、座り心地ともに優れたクッション
材であった。評価用に作成した座席も優れていることが
判る。
The thermoplastic elastic resin thus obtained (seed component:
B-1 and core component: B-2) except that the melting temperature was 220 ° C., and the cross-sectional shape of the cis-core structure of the filaments of the reticulate body obtained in the same manner as in Example 1 was hollow with a triangular diaper-shaped hollow cross section. The rate was 40%, the fineness was 9800 denier, and the average apparent density was 0.047 g / cm 3 . On the other hand, the properties of the heat-bonded fiber obtained in the same manner as in Example 1 except that B-1 was used as the sheath component, PBT used in Example 2 as the core component, and the spinning temperature was 260 ° C. The shrinkage ratio at 4.5 denier and 150 ° C. was 3%. This heat-bonded fiber and the base material obtained in Example 1 were made into a laminated web of 1000 g / m 2 in the same manner as in Example 1, laminated with the mesh, heat treated with hot air at 160 ° C. for 5 minutes, and then cooled. As a result, a non-woven fabric laminated structure having flat surfaces on both sides was obtained. Then compress 10% of the thickness to 100
Table 2 shows the characteristics of the nonwoven fabric laminated structure of the present invention obtained by the pseudo crystallization treatment for 20 minutes with hot air at ℃. Example 3 is a non-woven fabric laminated structure that takes advantage of the characteristics of soft urethane, and was a cushioning material excellent in heat resistance, durability at room temperature, and sitting comfort. It can be seen that the seat created for evaluation is also excellent.

【0027】比較例1〜2 固有粘度0.63のポリエチレンテレフタレ−ト(PE
T)単成分のみ及びメルトインデックス12のポリプロ
ピレン(PP)単成分のみを溶融温度を280℃及び2
50℃とした以外、実施例2と同様にして得た比較例1
に用いる網状体は、繊度が8800デニ−ル、見掛け密
度が0.047g/cm3 、比較例2に用いる網状体の繊
度は23000デニ−ルで、見掛け密度が0.047g
/cm3 であった。次いで、疑似結晶化処理しなかった以
外、実施例2と同様にして得た不織布積層構造体の特性
を表2に示す。比較例1は非弾性ポリエステルからなる
網状体のため耐熱耐久性が悪く、熱接着成分が熱可塑性
弾性樹脂からなる熱接着繊維を用いた短繊維不織布を表
面層に使用しているにも係わらず、硬くて座り心地も悪
いクッション材である。比較例2は繊度がやや太い非弾
性オレフィンからなる網状体のため、及び熱接着成分が
熱可塑性弾性樹脂からなる熱接着繊維を用いた短繊維不
織布がポリエステルのため、表面層と網状体が熱接着し
なかったのでウレタン系接着材で接着したが、耐熱耐久
性が悪く、座り心地の悪いクッション材であった。
Comparative Examples 1-2 Polyethylene terephthalate (PE) having an intrinsic viscosity of 0.63
T) Only the single component and only the polypropylene (PP) having a melt index of 12 are melted at a melting temperature of 280 ° C. and 2
Comparative Example 1 obtained in the same manner as in Example 2 except that the temperature was 50 ° C.
The fineness of the reticulate body used in Example 2 was 8800 denier and the apparent density was 0.047 g / cm 3 , and the fineness of the reticulate body used in Comparative Example 2 was 23,000 denier and the apparent density was 0.047 g.
It was / cm 3 . Next, Table 2 shows the characteristics of the nonwoven fabric laminated structure obtained in the same manner as in Example 2 except that the pseudo crystallization treatment was not performed. Comparative Example 1 has a poor heat resistance and durability because it is a reticulated body made of non-elastic polyester, and despite the fact that a short fiber non-woven fabric using a heat-bonding fiber whose thermo-bonding component is a thermoplastic elastic resin is used for the surface layer. , A cushion material that is hard and uncomfortable to sit on. In Comparative Example 2, the surface layer and the reticulate body are heat-resistant because the fine fiber is a reticulate body made of non-elastic olefin, and the heat-bonding component is a short fiber non-woven fabric made of a thermoplastic adhesive resin and made of polyester. Since it did not adhere, it was adhered with a urethane adhesive, but it was a cushioning material that had poor heat resistance and durability and was uncomfortable to sit on.

【0028】比較例3 ノズル面60cm下に引取りコンベアネットを配して引き
取ったあと疑似結晶化処理をしなかった以外、実施例2
と同様の方法で得た網状体の特性の一部を表2に示す。
なお、接着状態が不良で形態保持が悪いため、不織布積
層構造体にはできなかったので、50%圧縮時反発力、
見掛け密度、補強効果、70℃残留歪、繰返圧縮歪み、
及び座り心地の評価はしていない。比較例3は形態が固
定されていないのでクッション材に適さない例である。
Comparative Example 3 Example 2 was repeated except that a take-up conveyor net was placed 60 cm below the nozzle surface and no pseudo crystallization treatment was performed after the take-up conveyor net was taken out.
Table 2 shows a part of the properties of the reticulate body obtained by the same method as described above.
Since the non-woven fabric laminated structure could not be formed due to poor adhesion and poor shape retention, repulsive force at 50% compression,
Apparent density, reinforcement effect, residual strain at 70 ℃, repeated compression strain,
Also, the sitting comfort is not evaluated. Comparative Example 3 is an example that is not suitable for a cushioning material because its shape is not fixed.

【0029】比較例4 疑似結晶化処理しない以外、実施例2と同様にして得た
線条は繊度9100デニ−ル、平均の見掛け密度は0.
045g/cm3 の網状体と、熱接着繊維に熱可塑性非弾
性樹脂を熱接着成分とした東洋紡績社製4−44−EE
7を用いて疑似結晶化処理しない以外、実施例1と同様
にして作成した短繊維不織布を表面層に積層し、接合一
体化した不織布積層構造体の特性を表−2に示す。比較
例4はクッション層が熱可塑性弾性樹脂で構成されてい
るので座り心地は良いが、耐熱性と耐久性がやや不良な
クッション材であった。
Comparative Example 4 A filament obtained in the same manner as in Example 2 except that the pseudo crystallization treatment was not performed had a fineness of 9100 denier and an average apparent density of 0.
4-45-EE manufactured by Toyobo Co., Ltd., which uses 045 g / cm 3 of reticulate body and thermoplastic non-elastic resin as a thermal bonding component in thermal bonding fiber
Table 2 shows the characteristics of the nonwoven fabric laminated structure in which the short fiber nonwoven fabric prepared in the same manner as in Example 1 was laminated on the surface layer and was joined and integrated, except that no pseudo crystallization treatment was performed using No. 7. In Comparative Example 4, since the cushion layer was made of the thermoplastic elastic resin, the cushioning material was comfortable to sit on, but was slightly poor in heat resistance and durability.

【0030】比較例5 幅50cm、長さ5cmのノズル有効面に幅方向の孔間ピッ
チ10mm、長さ方向の孔間ピッチ20mmの千鳥配列とし
たオリフィス径φ2mmとしたノズルを用いて、単孔当た
りの吐出量25g/分にて吐出させて、ノズル面30cm
下に引取りコンベアネットを配して1m/分にて引き取
った以外、実施例2と同様にして得た線条の繊度は11
3000デニ−ルで、平均の見掛け密度は0.154g
/cm3 の網状体を用い、疑似結晶化処理しない以外実施
例2と同様にして作成した不織布積層構造体の特性を表
2に示す。比較例5は繊度が著しく太く密度斑のある不
織布積層構造体のため、耐熱耐久性が悪くなり、座り心
地もやや悪くなるクッション材であった。
Comparative Example 5 A nozzle having a width of 50 cm and a length of 5 cm and having a staggered arrangement of holes with a pitch of 10 mm in the width direction and a pitch of 20 mm between the holes in the length direction was used as a nozzle having a diameter of 2 mm to form a single hole. Discharge at a rate of 25 g / min per nozzle, nozzle surface 30 cm
The fineness of the filament obtained in the same manner as in Example 2 was 11 except that a take-up conveyor net was arranged below and the take-up was carried out at 1 m / min.
At 3000 denier, the average apparent density is 0.154 g.
Table 2 shows the characteristics of the non-woven fabric laminated structure produced in the same manner as in Example 2 except that the net-like body of 1 cm 3 / cm 3 was used and the pseudo-crystallization treatment was not performed. Comparative Example 5 was a cushioning material having a remarkably fineness and a non-woven fabric laminated structure with uneven density, and thus the heat resistance and durability were poor and the sitting comfort was slightly poor.

【0031】比較例6 引取りコンベアネットの間隔(開口幅)を5cmとした以
外、実施例2と同様にして得た線条繊度が9000デニ
−ルで、網状体の平均見掛け密度が0.043g/cm3
の表面が実質的にフラット化されていない網状体を用
い、疑似結晶化処理しない以外実施例2と同様にして作
成した不織布積層構造体の特性を表2に示す。比較例6
は網状体の表面が凹凸になっているため、見掛け密度が
低いのに耐久性が劣り、熱接着が不充分になり、少し異
物感を感じる座り心地のやや劣るクッション材であっ
た。
Comparative Example 6 The filament fineness obtained in the same manner as in Example 2 was 9000 denier, and the average apparent density of the reticulate body was 0. 0, except that the spacing (opening width) of the take-up conveyor net was 5 cm. 043 g / cm 3
Table 2 shows the characteristics of the non-woven fabric laminated structure prepared in the same manner as in Example 2 except that the net-like body whose surface was not substantially flattened was used and the pseudo-crystallization treatment was not performed. Comparative Example 6
Since the surface of the net-like body was uneven, the apparent density was low, but the durability was poor, the thermal adhesion was insufficient, and the cushioning material was a little inferior in sitting comfort with a feeling of foreign matter.

【0032】比較例7 単孔当たりの吐出量3g/分にて吐出させ、引取りコン
ベアネットの速度を0.3m/分とし、疑似結晶化処理
しなかった以外実施例2と同様して得た線条繊度が13
000デニ−ルで、網状体の平均見掛け密度が0.21
g/cm3 の網状体を用い、疑似結晶化処理しない以外実
施例2と同様にして作成した不織布積層構造体の特性を
表2に示す。比較例7は見掛け密度が高いため、タッチ
は良好だが座り心地がやや劣り、耐熱性、耐久性が不充
分なクッション材であった。
Comparative Example 7 Obtained in the same manner as in Example 2 except that the amount of discharge per single hole was 3 g / min, the speed of the take-up conveyor net was 0.3 m / min, and no pseudo-crystallization treatment was performed. Streak fineness of 13
000 denier, the average apparent density of the reticulate body is 0.21.
Table 2 shows the characteristics of the non-woven fabric laminated structure prepared in the same manner as in Example 2 except that the grit / cm 3 mesh was used and no pseudo-crystallization treatment was performed. Since Comparative Example 7 had a high apparent density, it was a cushioning material having a good touch but a little inferior sitting comfort, and insufficient heat resistance and durability.

【0033】比較例8 幅50cm、長さ5cmのノズル有効面に幅方向の孔間ピッ
チ4mm、長さ方向の孔間ピッチ3mmの千鳥配列としたオ
リフィス径φ1mmとしたノズルを用いて単孔当たりの吐
出量0.012g/分にて吐出させて、ノズル面5cm下
に引取りコンベアネットを配して1.5m/分にて引き
取った以外、実施例2と同様にして得た線条の繊度が4
0デニール、見掛け密度が0.008g/cm3 の網状体
を用いて、不織布積層構造体の見掛け密度を0.009
g/cm3 となるように圧縮した以外、比較例7と同様に
して作成した不織布積層構造体の特性を表2に示す。比
較例8は線状の繊度が細い緻密な網状体をクッション層
にした場合もで、見掛け密度が低すぎて沈み込みが大き
くなり床つき感が大きくなり座り心地のやや劣るクッシ
ョン材であった。
COMPARATIVE EXAMPLE 8 A nozzle having a width of 50 cm and a length of 5 cm and having a staggered arrangement of 4 mm pitch between holes in the width direction and 3 mm pitch between holes in the length direction and having an orifice diameter of 1 mm was used for each single hole. Of a filament obtained in the same manner as in Example 2 except that the discharge rate was 0.012 g / min, a take-up conveyor net was placed 5 cm below the nozzle surface, and the rate was 1.5 m / min. Fineness is 4
The net density of the non-woven fabric laminated structure is 0.009 by using the mesh body having 0 denier and the apparent density of 0.008 g / cm 3.
Table 2 shows the characteristics of the non-woven fabric laminated structure produced in the same manner as in Comparative Example 7 except that the nonwoven fabric laminated structure was compressed to have g / cm 3 . Comparative Example 8 is a cushion material having a fine mesh with a fine linear fineness as a cushion layer, and the apparent density is too low to cause a large sinking, a large floor feeling, and a slightly inferior sitting comfort. .

【0034】実施例5 実施例1で得た不織布積層弾性構造体を長さ120cmに
切断して、厚み5cm、幅120cm、長さ50cm毎にキル
ティングした幅120cm、長さ200cmの側地に入れマ
ットレスを作成した。このマットレスをベッドに設置
し、25℃RH65%室内にてパネラ−4人に7時間使
用させて寝心地を官能評価した。なお、ベットにはシ−
ツを掛け、掛け布団は1.8kgのダウン/フェザ−:9
0/10を中綿にしたもの、枕はパネラ−が毎日使用し
ているものを着用させた。評価結果は、床つき感がな
く、沈み込みが適度で、蒸れを感じない快適な寝心地の
ベットであった。比較のため、密度0.04g/cm3
厚み10cmの発泡ウレタン板状体で同様のマットレスを
作成し、ベットに設置して寝心地を評価した結果、床つ
き感は少ないが沈み込みが大きくやや蒸れを感じる寝心
地の悪いベットであった。
Example 5 The nonwoven fabric laminated elastic structure obtained in Example 1 was cut into a length of 120 cm and put into a side cloth having a width of 120 cm and a length of 200 cm which was quilted every 5 cm in thickness, 120 cm in width and 50 cm in length. Created a mattress. This mattress was placed on a bed, and a paneler-4 person used it for 7 hours in a room at 25 ° C. RH 65% to sensory-evaluate the sleeping comfort. In addition, the bet is
The quilt is hung and the comforter is 1.8kg down / feather: 9
0/10 batting was used, and the pillow was worn by the paneler every day. As a result of the evaluation, the bed was a bed which had no feeling of flooring, had a moderate depression, and did not feel stuffy and had a comfortable sleeping comfort. For comparison, a similar mattress was prepared from a urethane foam plate with a density of 0.04 g / cm 3 and a thickness of 10 cm, and the mattress was placed on a bed and the sleeping comfort was evaluated. It was a bed that made me feel stuffy and didn't feel comfortable to sleep.

【0035】実施例6 実施例1で得た不織布積層構造体を幅38cm、長さ40
cmでコ−ナ−をア−ル10cmとした形状に切断し、座り
心地評価用に用いたポリエステルモケットを側地にして
事務椅子フレ−ムに設置し、市販のポリウレタンをクッ
ションに使用した事務椅子と対比させて、座り心地を4
時間座らせ評価した結果、蒸れ感、床つき感、座ったま
ま我慢できる時間は、本発明の不織布積層構造体を用い
たものが著しく優れていた。
Example 6 The nonwoven fabric laminated structure obtained in Example 1 was used, with a width of 38 cm and a length of 40.
The corner was cut into a shape with 10 cm of the corner, and the polyester moquette used for sitting comfort evaluation was set on the side of the office chair frame, and the commercially available polyurethane was used for the cushion. Compared to a chair, it provides a comfortable sitting 4
As a result of evaluation by sitting for a while, the one using the nonwoven fabric laminated structure of the present invention was remarkably excellent in the feeling of dampness, the feeling of flooring, and the time to be able to stand while sitting.

【0036】[0036]

【発明の効果】振動や応力吸収性の良い熱可塑性弾性樹
脂から成る線条が3次元立体構造を形成し融着一体化し
た表面が実質的にフラット化された網状体をクッション
層とし、熱接着成分が振動や応力吸収性の良い熱可塑性
弾性樹脂から成る熱接着繊維で熱接着一体化した短繊維
不織布を表面層として接合一体化した本発明の不織布積
層構造体は、振動遮断性、耐熱耐久性、嵩高性、座り心
地のより改善された、蒸れにくいクッション材であり、
そのまま側地を被せて又は、他の素材との併用して、上
記の好ましい特性を付与した車両用座席、船舶用座席、
車両用、船舶用、病院やホテル等の業務用ベット、家具
用クッション、寝装用品等の製品を提供できる。更に
は、車両用や建築資材としての内装材や断熱材等にも有
用である。
EFFECTS OF THE INVENTION Striations made of thermoplastic elastic resin having good vibration and stress absorption form a three-dimensional structure and are fused and integrated to form a net-like body having a substantially flat surface as a cushion layer. The nonwoven fabric laminated structure of the present invention in which a short-fiber nonwoven fabric, which is integrally bonded by heat-bonding with a heat-bonding fiber made of a thermoplastic elastic resin whose adhesive component has good vibration and stress absorption properties, is bonded and integrated as a surface layer has a vibration isolation property and a heat resistance It is a cushioning material that has improved durability, bulkiness, and sitting comfort, and does not damp easily.
A vehicle seat, a marine seat, which is provided with the above-mentioned preferable characteristics by covering the side surface as it is or in combination with another material,
Products such as vehicles, ships, commercial beds for hospitals and hotels, furniture cushions, bedding products, etc. can be provided. Furthermore, it is also useful as an interior material and a heat insulating material for vehicles and building materials.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 // D01F 6/00 A 6/62 303 D 6/86 301 B ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location // D01F 6/00 A 6/62 303 303 D 6/86 301 B

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 繊度が100〜100000デニ−ルの
熱可塑性弾性樹脂からなる連続した線条を曲がりくねら
せ互いに接触させて該接触部の大部分が融着した3次元
立体構造体を形成し、両面が実質的にフラット化された
網状体の片面に熱可塑性弾性樹脂からなる熱接着性短繊
維と熱可塑性非弾性樹脂からなる短繊維が混合開繊され
て3次元構造化され、接触部の大部分が熱接着成分によ
り融着一体化した面が実質的にフラット化された不織布
が接合一体化された密度が0.01g/cm3 から0.2
g/cm3 の不織布積層構造体。
1. A three-dimensional three-dimensional structure in which continuous filaments made of a thermoplastic elastic resin having a fineness of 100 to 100,000 denier are bent and brought into contact with each other so that most of the contact portions are fused. , A thermo-adhesive short fiber made of a thermoplastic elastic resin and a short fiber made of a thermoplastic non-elastic resin are mixed and spread on one side of a net-like body whose both sides are substantially flattened to form a three-dimensional structure. Of the non-woven fabric, the surface of which is fused and integrated by a heat-adhesive component, and whose surface is substantially flattened, has a density of 0.01 g / cm 3 to 0.2.
Nonwoven fabric laminated structure of g / cm 3 .
【請求項2】 連続した線条の断面形状が中空断面又は
異形断面である請求項1記載の不織布積層構造体。
2. The nonwoven fabric laminated structure according to claim 1, wherein the cross-sectional shape of the continuous filaments is a hollow cross section or an irregular cross section.
【請求項3】 連続した線条を構成する熱可塑性弾性樹
脂が示差走査型熱量計で測定した融解曲線に室温以上融
点以下の温度に吸熱ピークを有する請求項1記載の不織
布積層構造体。
3. The nonwoven fabric laminated structure according to claim 1, wherein the thermoplastic elastic resin forming the continuous filament has an endothermic peak at a temperature of room temperature or higher and melting point or lower in a melting curve measured by a differential scanning calorimeter.
【請求項4】 複数のオリフィスを持つ多列ノズルより
熱可塑性弾性樹脂をその融点より20〜80℃高い溶融
温度で、該ノズルより下方に向けて吐出させ、溶融状態
で互いに接触させて融着させ3次元構造を形成しつつ、
引取り装置で挟み込み冷却槽で冷却せしめた後、片面に
接着成分が熱可塑性弾性樹脂からなる短繊維と非弾性樹
脂からなる短繊維と混合開繊して3次元構造化させた開
繊したウエッブを積層し、圧縮熱成形により、接触部の
大部分を熱接着成分により融着一体化する不織布積層構
造体の製法。
4. A thermoplastic elastic resin is discharged downward from the nozzle at a melting temperature higher by 20 to 80 ° C. than the melting point of the multi-row nozzle having a plurality of orifices, and the thermoplastic elastic resin is brought into contact with each other in a molten state to be fused. While forming a three-dimensional structure,
After being sandwiched by a take-up device and cooled in a cooling tank, a single-sided mixed fiber of short fibers made of thermoplastic elastic resin and short fibers made of inelastic resin is mixed and opened to form a three-dimensional structured web. A method for producing a non-woven fabric laminated structure in which a large part of the contact portion is melt-bonded and integrated with a thermo-adhesive component by laminating and compression thermoforming.
【請求項5】 一旦冷却後、熱可塑性弾性樹脂の融点よ
り少なくとも10℃以下の温度でアニ−リングを行なう
請求項4に記載の不織布積層構造体及び製品の製法。
5. The method for producing a nonwoven fabric laminated structure and a product according to claim 4, wherein after cooling once, annealing is performed at a temperature of at least 10 ° C. or lower than the melting point of the thermoplastic elastic resin.
【請求項6】 請求項1記載の不織布積層構造体を用い
た車両用座席、船舶用座席、車両用、船舶用、病院用等
の業務用及び家庭用ベット、家具用椅子、事務用椅子お
よび布団のいずれかに記載の製品。
6. A vehicular seat, a vehicular seat, a vehicular, a marine, a hospital, etc. commercial and household bed, furniture chair, office chair, and the like, which use the nonwoven fabric laminated structure according to claim 1. The product described on one of the futons.
JP2978094A 1994-02-28 1994-02-28 Nonwoven laminated structure, manufacturing method and product using the same Expired - Lifetime JP3454375B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2978094A JP3454375B2 (en) 1994-02-28 1994-02-28 Nonwoven laminated structure, manufacturing method and product using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2978094A JP3454375B2 (en) 1994-02-28 1994-02-28 Nonwoven laminated structure, manufacturing method and product using the same

Publications (2)

Publication Number Publication Date
JPH07238462A true JPH07238462A (en) 1995-09-12
JP3454375B2 JP3454375B2 (en) 2003-10-06

Family

ID=12285538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2978094A Expired - Lifetime JP3454375B2 (en) 1994-02-28 1994-02-28 Nonwoven laminated structure, manufacturing method and product using the same

Country Status (1)

Country Link
JP (1) JP3454375B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6537472B2 (en) 2000-02-29 2003-03-25 Asahi Kasei Kabushiki Kaisha Process for producing a cushioning article

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100960133B1 (en) * 2009-06-16 2010-05-27 리싸이클주식회사 A construction process of elastic sand layer for playground

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6537472B2 (en) 2000-02-29 2003-03-25 Asahi Kasei Kabushiki Kaisha Process for producing a cushioning article

Also Published As

Publication number Publication date
JP3454375B2 (en) 2003-10-06

Similar Documents

Publication Publication Date Title
JP3454373B2 (en) Elastic network, manufacturing method and products using the same
JP3473710B2 (en) Mixed fineness reticulated body, manufacturing method and products using it
JP3430443B2 (en) Netting structure for cushion, method for producing the same, and cushion product
JP3430444B2 (en) Netting structure for cushion, manufacturing method thereof and cushion product
JP3454375B2 (en) Nonwoven laminated structure, manufacturing method and product using the same
JP3444375B2 (en) Multilayer net, manufacturing method and products using the same
JP3444368B2 (en) Nonwoven laminated net, manufacturing method and product using the same
JP3444374B2 (en) Multilayer laminated net, manufacturing method and product using the same
JP3430445B2 (en) Composite net, its manufacturing method and products using it
JP3430449B2 (en) Nonwoven laminated net, manufacturing method and product using the same
JP3431097B2 (en) Multilayer laminated net, manufacturing method and product using the same
JP3431090B2 (en) Nonwoven laminated net, manufacturing method and product using the same
JP3430448B2 (en) Laminated structure, manufacturing method and products using the same
JP3430447B2 (en) Laminated elastic structure, manufacturing method and product using the same
JP3430446B2 (en) Composite elastic network, its production method and products using it
JP3431092B2 (en) Nonwoven laminated net, manufacturing method and product using the same
JP3431091B2 (en) Nonwoven laminated net, manufacturing method and product using the same
JP3431098B2 (en) Flame-retardant reinforced mesh, manufacturing method and products using the same
JP3444372B2 (en) Multilayer laminated net, manufacturing method and product using the same
JP3431096B2 (en) Nonwoven laminated net, manufacturing method and product using the same
JP3444369B2 (en) Laminated net, manufacturing method and product using the same
JP3444371B2 (en) Multilayer laminated net, manufacturing method and product using the same
JP3454374B2 (en) Laminated net, manufacturing method and product using the same
JP3444370B2 (en) Multilayer laminated net, manufacturing method and product using the same
JPH07300760A (en) Nonwoven fabric laminated network material, its production and product using the same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080725

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080725

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20090725

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20090725

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100725

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100725

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20110725

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120725

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20130725

EXPY Cancellation because of completion of term