JP3431098B2 - Flame-retardant reinforced mesh, manufacturing method and products using the same - Google Patents

Flame-retardant reinforced mesh, manufacturing method and products using the same

Info

Publication number
JP3431098B2
JP3431098B2 JP11119594A JP11119594A JP3431098B2 JP 3431098 B2 JP3431098 B2 JP 3431098B2 JP 11119594 A JP11119594 A JP 11119594A JP 11119594 A JP11119594 A JP 11119594A JP 3431098 B2 JP3431098 B2 JP 3431098B2
Authority
JP
Japan
Prior art keywords
flame
elastic resin
thermoplastic
ppm
retardant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11119594A
Other languages
Japanese (ja)
Other versions
JPH07324272A (en
Inventor
英夫 磯田
靖司 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP11119594A priority Critical patent/JP3431098B2/en
Publication of JPH07324272A publication Critical patent/JPH07324272A/en
Application granted granted Critical
Publication of JP3431098B2 publication Critical patent/JP3431098B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Artificial Filaments (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Nonwoven Fabrics (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、優れたクッション性と
耐熱耐久性及び振動吸収性とを有し、難燃性でリサイク
ルが可能な不織布で補強された難燃性補強網状体と製法
および難燃性補強網状体を用いた布団、家具、ベッド、
車両用クッション材等の製品と製法に関する。
BACKGROUND OF THE INVENTION The present invention relates to a flame-retardant reinforced mesh body having excellent cushioning properties, heat resistance durability and vibration absorption properties, reinforced with a flame-retardant and recyclable non-woven fabric, and a method for producing the same. Futon, furniture, bed using flame retardant reinforced mesh,
The present invention relates to products such as vehicle cushioning materials and manufacturing methods.

【0002】[0002]

【従来の技術】現在、家具、ベッド、電車、自動車等の
クッション材に、発泡ウレタン、非弾性捲縮繊維詰綿、
及び非弾性捲縮繊維を接着した樹脂綿や硬綿などが使用
されている。
2. Description of the Related Art At present, as a cushion material for furniture, beds, trains, automobiles, etc., urethane foam, non-elastic crimped fiber wadding,
In addition, resin cotton or hard cotton to which non-elastic crimped fibers are adhered is used.

【0003】しかしながら、発泡−架橋型ウレタンはワ
ディング層やクッション材としての耐久性は極めて良好
だが、透湿透水性に劣り蓄熱性があるため蒸れやすく、
かつ、熱可塑性では無いためリサイクルが困難となり焼
却される場合、焼却炉の損傷が大きく、かつ、有毒ガス
除去に経費が掛かる。このため埋め立てされることが多
くなったが、地盤の安定化が困難なため埋め立て場所が
限定され経費も高くなっていく問題がある。また、加工
性は優れるが製造中に使用される薬品の公害問題なども
ある。また、熱可塑性ポリエステル繊維詰綿では繊維間
が固定されていないため、使用時形態が崩れたり、繊維
が移動して、かつ、捲縮のへたりで嵩高性の低下や弾力
性の低下が問題になる。
However, although the foamed-crosslinked urethane has very good durability as a wadding layer or a cushioning material, it has poor moisture permeability and heat storage property and is apt to be stuffy.
Moreover, since it is not thermoplastic, it becomes difficult to recycle, and when it is incinerated, the damage to the incinerator is large and the cost for removing the toxic gas is high. For this reason, landfilling has become more frequent, but it is difficult to stabilize the ground, and there is a problem that landfilling sites are limited and costs increase. Further, although it has excellent processability, it also has a problem of pollution of chemicals used during manufacturing. In addition, since the fibers are not fixed in the thermoplastic polyester fiber wadding, the form may collapse during use, the fibers may move, and the crimp may cause a decrease in bulkiness and elasticity. become.

【0004】ポリエステル繊維を接着剤で接着した樹脂
綿、例えば接着剤にゴム系を用いたものとして特開昭6
0−11352号公報、特開昭61−141388号公
報、特開昭61−141391号公報等がある。又、架
橋性ウレタンを用いたものとして特開昭61−1377
32号公報等がある。これらのクッション材は耐久性に
劣り、且つ、熱可塑性でなく、単一組成でもないためリ
サイクルも出来ない等の問題、及び加工性の煩雑さや製
造中に使用される薬品の公害問題などもある。
As a resin cotton in which polyester fibers are adhered with an adhesive, for example, a rubber-based adhesive is used, Japanese Patent Application Laid-Open No.
0-11352, JP-A 61-141388, JP-A 61-141391 and the like. Further, as a method using a cross-linkable urethane, JP-A-61-1377
No. 32 publication and the like. These cushion materials have inferior durability, and also have problems such as not being recyclable because they are neither thermoplastic nor single composition, and there are problems such as complexity of processability and pollution of chemicals used during manufacturing. .

【0005】ポリエステル硬綿、例えば特開昭58−3
1150号公報、特開平2−154050号公報、特開
平3−220354号公報等があるが、用いている熱接
着繊維の接着成分が脆い非晶性のポリマ−を用いるため
(例えば特開昭58−136828号公報、特開平3−
249213号公報等)接着部分が脆く、使用中に接着
部分が簡単に破壊されて形態や弾力性が低下するなどの
耐久性に劣る問題がある。改良法として、交絡処理する
方法が特開平4−245965号公報等で提案されてい
るが、接着部分の脆さは解決されず弾力性の低下が大き
い問題がある。また、加工時の煩雑さもある。更には接
着部分が変形しにくくソフトなクッション性を付与しに
くい問題もある。このため、接着部分を柔らかい、且つ
ある程度変形しても回復するポリエステルエラストマ−
を用い、芯成分に非弾性ポリエステルを用いた熱接着繊
維が特開平4−240219号公報で、同繊維を用いた
クッション材がWO−91/19032号公報、特開平
5−156561号公報、特開平5−163654号公
報等で提案されている。この繊維構造物に使われる接着
成分がポリエステルエラストマ−のソフトセグメントと
してはポリアルキレングリコ−ルの含有量が30〜50
重量%、ハ−ドセグメントの酸成分にテレフタル酸を5
0〜80モル%含有し、他の酸成分組成として特公昭6
0−1404号公報に記載された繊維と同様にイソフタ
ル酸を含有して非晶性が増すことになり、融点も180
℃以下となり低溶融粘度として熱接着部分の形成を良く
してアメーバー状の接着部を形成しているが塑性変形し
やいため、及び芯成分が非弾性ポリエステルのため、特
に加熱下での塑性変形が著しくなり、耐熱抗圧縮性が低
下する問題点がある。これらの改良法として、特開平5
−163654号公報にシ−ス成分にイソフタル酸を含
有するポリエステルエラストマ−、コア成分に非弾性ポ
リエステルを用いた熱接着複合繊維のみからなる構造体
が提案されているが上述の理由で加熱下での塑性変形が
著しくなり、耐熱抗圧縮性が低下し、ワディング層やク
ッション材に使用するには問題がある。他方、硬綿の母
材にシリコ−ン油剤を付与して繊維の摩擦係数を下げて
耐久性を向上し、風合いを良くする方法が特開昭63−
158094号公報で提案されている。が、熱接着繊維
の接着性に問題があり、耐久性が劣るのでワディング層
やクッション材に使用するには好ましくない。
Polyester hard cotton, for example, JP-A-58-3
1150, JP-A-2-154050, JP-A-3-220354, etc., but since an amorphous polymer having a brittle adhesive component of the heat-bonding fiber used is used (for example, JP-A-58). -136828, Japanese Patent Application Laid-Open No. 3-
However, there is a problem in that durability is poor such that the bonded portion is brittle and the bonded portion is easily broken during use and the form and elasticity are reduced. As an improved method, a method of entanglement treatment has been proposed in Japanese Patent Laid-Open No. 4-245965, but there is a problem that the brittleness of the bonded portion is not solved and the elasticity is largely reduced. In addition, there is complexity during processing. Further, there is a problem that the bonded portion is hard to be deformed and soft cushioning is hard to be imparted. For this reason, the polyester elastomer that is soft even at the bonded portion and recovers even if it is deformed to some extent
A heat-bonding fiber using a non-elastic polyester as a core component is disclosed in JP-A-4-240219, and a cushion material using the fiber is disclosed in WO-91 / 19032, JP-A-5-155651. It is proposed in Japanese Patent Laid-Open No. 5-163654. The adhesive component used in this fiber structure has a polyalkylene glycol content of 30 to 50 as a soft segment of polyester elastomer.
Wt%, 5% terephthalic acid as the acid component of the hard segment
It contains 0 to 80 mol% and is used as another acid component composition
As in the fiber described in Japanese Patent Publication No. 0-1404, isophthalic acid is contained to increase the amorphous property, and the melting point is 180.
The temperature is below ℃, and the heat-bonded part is well formed with a low melt viscosity to form an ameber-shaped bonded part, but it is easy to plastically deform, and because the core component is an inelastic polyester, plastic deformation especially under heating Becomes remarkable, and there is a problem that the heat resistance and compression resistance are lowered. As an improved method for these, Japanese Patent Laid-Open No.
No. 163654 proposes a structure consisting only of a polyester elastomer containing isophthalic acid as a sheath component and a heat-bonding composite fiber using an inelastic polyester as a core component. Plastic deformation becomes significant, the heat resistance and compression resistance deteriorate, and there is a problem in using it for a wadding layer or a cushion material. On the other hand, there is a method in which a silicone oil is added to a base material of hard cotton to lower the friction coefficient of fibers to improve the durability and improve the texture.
It is proposed in Japanese Patent No. 158094. However, there is a problem with the adhesiveness of the heat-adhesive fiber and the durability is poor, so it is not preferable for use in a wadding layer or cushioning material.

【0006】土木工事用に使用する熱可塑性のオレフィ
ン網状体が特開昭47−44839号公報に開示されて
いる。が、細い繊維から構成したクッションとは異なり
表面が凸凹でタッチが悪く、素材がオレフィンのため耐
熱耐久性が著しく劣りワディング層やクッション材には
使用ができないものである。また、特公平3−1766
6号公報には繊度の異なる吐出線条を互いに融着してモ
−ル状物を作る方法があるがクッション材には適さない
網状構造体である。特公平3−55583号公報には、
ごく表面のみ冷却前に回転体等の細化装置で細くする方
法が記載されている。この方法では表面をフラット化で
きず、厚みのある細い線条層を作ることできない。した
がって座り心地の良好なクッション材にはならない。特
開平1−207462号公報では、塩化ビニ−ル製のフ
ロアマットの開示があるが、室温での圧縮回復性が悪
く、耐熱性は著しく悪いので、ワディング材やクッショ
ン材としては好ましくないものである。なお、上述構造
体は難燃性や振動減衰に関する配慮が全くなされていな
い。
A thermoplastic olefin network used for civil engineering work is disclosed in JP-A-47-44839. However, unlike a cushion made of fine fibers, the surface is uneven and the touch is poor, and since the material is olefin, the heat resistance durability is extremely poor and it cannot be used as a wadding layer or cushion material. In addition, Japanese Patent Publication No. 3-1766
No. 6 discloses a method in which ejection filaments having different fineness are fused to each other to form a mold, but the mesh structure is not suitable as a cushion material. Japanese Examined Patent Publication No. 3-55583 discloses that
A method of thinning only a very surface with a thinning device such as a rotating body before cooling is described. With this method, the surface cannot be flattened and a thick thin linear layer cannot be formed. Therefore, it does not provide a comfortable cushioning material. Japanese Patent Application Laid-Open No. 1-207462 discloses a vinyl chloride floor mat, but it is not preferable as a wadding material or a cushioning material because it has poor compression recovery at room temperature and remarkably poor heat resistance. is there. In addition, the above-mentioned structure does not consider flame retardancy or vibration damping at all.

【0007】[0007]

【発明が解決しようとする課題】上記問題点を解決し、
振動を遮断し、耐熱耐久性、形態保持性、クッション性
の優れた蒸れ難い、難燃性を有し、燃焼ガスの毒性指数
が低く安全性の高い熱可塑性弾性樹脂網状体を不織布で
補強したクッション材に適した難燃性補強網状体と製法
及び該網状体を用いた布団、家具、ベッド、車両用クッ
ション等の製品と製法を提供することを目的とする。
To solve the above problems,
Vibration-isolating, heat-resistant durability, shape retention, cushioning, non-steaming, flame retardancy, low toxicity index of combustion gas and high safety are reinforced with a non-woven thermoplastic elastic resin mesh. An object of the present invention is to provide a flame-retardant reinforcing mesh body suitable for a cushioning material and a manufacturing method, and a product and a manufacturing method using the mesh body such as a futon, furniture, bed and cushion for vehicles.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するため
の手段、即ち本発明は、ソフトセグメント量(A重量
%)と燐含有量(Bppm)が60A+200≦B≦1
00000の関係を満足する熱可塑性弾性樹脂からなる
繊度が100000デニ−ル以下の連続した線条を曲が
りくねらせ互いに接触させて該接触部の大部分が融着
し、3次元立体構造体を形成した網状体の片面に燐含有
量が1000ppm以上20000ppm以下の熱可塑
性非弾性樹脂からなる連続繊維不織布が接合され、熱可
塑性弾性樹脂層表面がフラット化されており、見掛密度
が0.01〜0.2g/cm3 であることを特徴とする難
燃性補強網状体、複数のオリフィスを持つ多列ノズルよ
り燐含有量(Bppm)がソフトセグメント量(A重量
%)とが60A+200≦B≦100000を満足する
熱可塑性弾性樹脂を各ノズルオリフィスに分配し、該熱
可塑性樹脂の融点より20〜80℃高い溶融温度で、該
ノズルより下方に向けて吐出させ、溶融状態で互いに接
触させて融着させ3次元構造を形成しつつ、片面に燐含
有量が1000ppm以上20000ppm以下の熱可
塑性非弾性樹脂からなる連続繊維不織布を接合させて引
取り装置で挟み込み冷却槽で冷却せしめる難燃性補強網
状体の製法および前記難燃性補強網状体を用いた製品で
ある。
[Means for Solving the Problems] Means for solving the above problems, that is, the present invention, has a soft segment amount (A wt%) and a phosphorus content (Bppm) of 60 A + 200 ≦ B ≦ 1.
A continuous linear filament having a fineness of 100,000 denier or less made of a thermoplastic elastic resin satisfying the relationship of 00000 is bent and brought into contact with each other, and most of the contact portions are fused to form a three-dimensional three-dimensional structure. A continuous fiber nonwoven fabric made of a thermoplastic inelastic resin having a phosphorus content of 1000 ppm or more and 20000 ppm or less is joined to one surface of the reticulated body, the surface of the thermoplastic elastic resin layer is flattened, and the apparent density is 0.01 to 0.2 g / cm 3 flame-retardant reinforcing mesh body, multi-row nozzle with multiple orifices, phosphorus content (Bppm) is soft segment amount (A wt%) 60A + 200 ≦ B ≦ A thermoplastic elastic resin satisfying 100,000 is distributed to each nozzle orifice, and directed downward from the nozzle at a melting temperature 20 to 80 ° C. higher than the melting point of the thermoplastic resin. And a discharge device, and in a molten state, they are brought into contact with each other and fused to form a three-dimensional structure, and a continuous fiber nonwoven fabric made of a thermoplastic inelastic resin having a phosphorus content of 1000 ppm or more and 20000 ppm or less is bonded to one surface of the take-up device. It is a method for producing a flame-retardant reinforcing mesh body which is sandwiched between and cooled in a cooling tank, and a product using the flame-retardant reinforcing mesh body.

【0009】本発明における熱可塑性弾性樹脂とは、ソ
フトセグメントとして分子量300〜5000のポリエ
−テル系グリコ−ル、ポリエステル系グリコ−ル、ポリ
カ−ボネ−ト系グリコ−ルまたは長鎖の炭化水素末端を
カルボン酸または水酸基にしたオレフィン系化合物等を
ブロック共重合したポリエステル系エラストマ−、ポリ
アミド系エラストマ−、ポリウレタン系エラストマ−、
ポリオレフィン系エラストマ−などが挙げられる。熱可
塑性弾性樹脂とすることで、再溶融により再生が可能と
なるため、リサイクルが容易となる。例えば、ポリエス
テル系エラストマ−としては、熱可塑性ポリエステルを
ハ−ドセグメントとし、ポリアルキレンジオ−ルをソフ
トセグメントとするポリエステルエ−テルブロック共重
合体、または、脂肪族ポリエステルをソフトセグメント
とするポリエステルエステルブロック共重合体が例示で
きる。ポリエステルエ−テルブロック共重合体のより具
体的な事例としては、テレフタル酸、イソフタル酸、ナ
フタレン2・6ジカルボン酸、ナフタレン2・7ジカル
ボン酸、ジフェニル4・4’ジカルボン酸等の芳香族ジ
カルボン酸、1・4シクロヘキサンジカルボン酸等の脂
環族ジカルボン酸、琥珀酸、アジピン酸、セバチン酸ダ
イマ−酸等の脂肪族ジカルボン酸または、これらのエス
テル形成性誘導体などから選ばれたジカルボン酸の少な
くとも1種と、1・4ブタンジオ−ル、エチレングリコ
−ル、トリメチレングリコ−ル、テトレメチレングリコ
−ル、ペンタメチレングリコ−ル、ヘキサメチレングリ
コ−ル等の脂肪族ジオ−ル、1・1シクロヘキサンジメ
タノ−ル、1・4シクロヘキサンジメタノ−ル等の脂環
族ジオ−ル、またはこれらのエステル形成性誘導体など
から選ばれたジオ−ル成分の少なくとも1種、および平
均分子量が約300〜5000のポリエチレングリコ−
ル、ポリプロピレングリコ−ル、ポリテトラメチレング
リコ−ル、エチレンオキシド−プロピレンオキシド共重
合体等のポリアルキレンジオ−ルのうち少なくとも1種
から構成される三元ブロック共重合体である。ポリエス
テルエステルブロック共重合体としては、上記ジカルボ
ン酸とジオ−ル及び平均分子量が約300〜5000の
ポリラクトン等のポリエステルジオ−ルのうち少なくと
も各1種から構成される三元ブロック共重合体である。
熱接着性、耐加水分解性、伸縮性、耐熱性等を考慮する
と、ジカルボン酸としてはテレフタル酸、または、及び
ナフタレン2・6ジカルボン酸、ジオ−ル成分としては
1・4ブタンジオ−ル、ポリアルキレンジオ−ルとして
はポリテトラメチレングリコ−ルの3元ブロック共重合
体または、ポリエステルジオ−ルとしてポリラクトンの
3元ブロック共重合体が特に好ましい。特殊な例では、
ポリシロキサン系のソフトセグメントを導入したものも
使うこたができる。また、上記エラストマ−に非エラス
トマ−成分をブレンドされたもの、共重合したもの、ポ
リオレフィン系成分をソフトセグメントにしたもの等も
本発明の熱可塑性弾性樹脂に包含される。ポリアミド系
エラストマ−としては、ハ−ドセグメントにナイロン
6、ナイロン66、ナイロン610、ナイロン612、
ナイロン11、ナイロン12等及びそれらの共重合ナイ
ロンを骨格とし、ソフトセグメントには、平均分子量が
約300〜5000のポリエチレングリコ−ル、ポリプ
ロピレングリコ−ル、ポリテトラメチレングリコ−ル、
エチレンオキシド−プロピレンオキシド共重合体等のポ
リアルキレンジオ−ルのうち少なくとも1種から構成さ
れるブロック共重合体を単独または2種類以上混合して
用いてもよい。更には、非エラストマ−成分をブレンド
されたもの、共重合したもの等も本発明に使用できる。
ポリウレタン系エラストマ−としては、通常の溶媒(ジ
メチルホルムアミド、ジメチルアセトアミド等)の存在
または不存在下に、(A)数平均分子量1000〜60
00の末端に水酸基を有するポリエ−テル及び又はポリ
エステルと(B)有機ジイソシアネ−トを主成分とする
ポリイソシアネ−トを反応させた両末端がイソシアネ−
ト基であるプレポリマ−に、(C)ジアミンを主成分と
するポリアミンにより鎖延長したポリウレタンエラスト
マ−を代表例として例示できる。(A)のポリエステ
ル、ポリエ−テル類としては、平均分子量が約1000
〜6000、好ましくは1300〜5000のポリブチ
レンアジペ−ト共重合ポリエステルやポリエチレングリ
コ−ル、ポリプロピレングリコ−ル、ポリテトラメチレ
ングリコ−ル、エチレンオキシド−プロピレンオキシド
共重合体からなるグリコ−ル等のポリアルキレンジオ−
ルが好ましく、(B)のポリイソシアネ−トとしては、
従来公知のポリイソシアネ−トを用いることができる
が、ジフェニルメタン4・4’ジイソシアネ−トを主体
としたイソシアネ−トを用い、必要に応じ従来公知のト
リイソシアネ−ト等を微量添加使用してもよい。(C)
のポリアミンとしては、エチレンジアミン、1・2プロ
ピレンジアミン等公知のジアミンを主体とし、必要に応
じて微量のトリアミン、テトラアミンを併用してもよ
い。これらのポリウレタン系エラストマ−は単独又は2
種類以上混合して用いてもよい。なお、本発明の熱可塑
性弾性樹脂の融点は耐熱耐久性が保持できる140℃以
上が好ましく、160℃以上のものを用いると耐熱耐久
性が向上するのでより好ましい。なお、本発明の網状体
は難燃性を付与するため燐系化合物を含有させるため、
熱安定性が難燃剤を含有しないものよりやや劣るので必
要に応じ、抗酸化剤等を添加して耐熱性や耐久性を向上
させるのが特に好ましい。抗酸化剤は、好ましくはヒン
ダ−ド系抗酸化剤としては、ヒンダ−ドフェノ−ル系と
ヒンダ−ドアミン系があり、窒素を含有しないヒンダ−
ドフェノ−ル系抗酸化剤を1%〜5%添加して熱分解を
抑制すると燃焼時の致死量が少ない有毒ガスの発生を抑
えられるので特に好ましい。本発明の目的である振動や
応力の吸収機能をもたせる成分を構成する熱可塑性弾性
樹脂のソフトセグメント含有量は好ましくは15重量%
以上、より好ましくは30重量%以上であり、耐熱耐へ
たり性からは80重量%以下が好ましく、より好ましく
は70重量%以下である。即ち、本発明の弾性網状体の
振動や応力の吸収機能をもたせる成分のソフトセグメン
ト含有量は好ましくは15重量%以上80重量%以下で
あり、より好ましくは30重量%以上70重量%以下で
ある。
The thermoplastic elastic resin in the present invention means, as the soft segment, an ether type glycol, a polyester type glycol, a polycarbonate type glycol or a long chain hydrocarbon having a molecular weight of 300 to 5,000. Polyester elastomer obtained by block-copolymerizing an olefinic compound having a carboxylic acid or a hydroxyl group at the terminal, a polyamide elastomer, a polyurethane elastomer,
Examples include polyolefin elastomers. By using a thermoplastic elastic resin, it becomes possible to regenerate by remelting, and thus recycling becomes easy. For example, as the polyester elastomer, a polyester ether block copolymer having a thermoplastic polyester as a hard segment and a polyalkylenediol as a soft segment, or a polyester ester having an aliphatic polyester as a soft segment A block copolymer can be illustrated. More specific examples of the polyester ether block copolymer include aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid, naphthalene 2.6 dicarboxylic acid, naphthalene 2.7 dicarboxylic acid, and diphenyl 4.4'dicarboxylic acid. At least one of alicyclic dicarboxylic acids such as 1,4-cyclohexanedicarboxylic acid, aliphatic dicarboxylic acids such as succinic acid, adipic acid, sebacic acid dimer acid, and dicarboxylic acids selected from ester-forming derivatives thereof Seeds and aliphatic diols such as 1.4 butanediol, ethylene glycol, trimethylene glycol, tetremethylene glycol, pentamethylene glycol and hexamethylene glycol, 1.1 cyclohexane Alicyclic diols such as dimethanol and 1,4-cyclohexane dimethanol, or these Of at least one diole component selected from the ester-forming derivatives thereof and polyethylene glycol having an average molecular weight of about 300 to 5,000.
It is a ternary block copolymer composed of at least one of polyalkylenediol such as propylene, polypropylene glycol, polytetramethylene glycol, and ethylene oxide-propylene oxide copolymer. The polyester ester block copolymer is a ternary block copolymer composed of at least one of the above dicarboxylic acids, diol, and polyester diol such as polylactone having an average molecular weight of about 300 to 5,000. .
Considering heat adhesion, hydrolysis resistance, stretchability, heat resistance, etc., terephthalic acid as dicarboxylic acid, or naphthalene 2.6 dicarboxylic acid, 1.4 butanediol as diole component, and poly The alkylene diol is particularly preferably a terpolymer block copolymer of polytetramethylene glycol or the terpolymer block copolymer of polylactone as the polyester diol. In a special case,
You can also use a kotatsu that has a polysiloxane-based soft segment introduced. Also, the thermoplastic elastomer resin of the present invention includes those obtained by blending the above elastomer with a non-elastomer component, those obtained by copolymerization, those obtained by softening the polyolefin component, and the like. As a polyamide elastomer, the hard segment includes nylon 6, nylon 66, nylon 610, nylon 612,
Polyethylene glycol, polypropylene glycol, polytetramethylene glycol having an average molecular weight of about 300 to 5000 is used as the soft segment in the skeleton of nylon 11, nylon 12, etc. and their copolymerized nylon.
A block copolymer composed of at least one kind of polyalkylenediol such as ethylene oxide-propylene oxide copolymer may be used alone or in combination of two or more kinds. Furthermore, blends of non-elastomer components and copolymers thereof can be used in the present invention.
The polyurethane-based elastomer is (A) number average molecular weight of 1000 to 60 in the presence or absence of a usual solvent (dimethylformamide, dimethylacetamide, etc.).
00 has a hydroxyl group-terminated polyether and / or polyester, and (B) an organic diisocyanate-based polyisocyanate as a main component.
As a typical example, a polyurethane elastomer in which a chain-extended polyamine having a diamine (C) as a main component is added to a prepolymer which is a group having a hydroxyl group can be exemplified. The polyester or polyether of (A) has an average molecular weight of about 1,000.
To 6000, preferably 1300 to 5000, polybutylene adipate copolyester, polyethylene glycol, polypropylene glycol, polytetramethylene glycol, glycol composed of ethylene oxide-propylene oxide copolymer, etc. Polyalkylenedio-
Are preferred, and as the polyisocyanate of (B),
Although a conventionally known polyisocyanate can be used, an isocyanate mainly composed of diphenylmethane 4,4 ′ diisocyanate may be used, and if necessary, a conventionally known triisocyanate and the like may be added in a small amount. (C)
As the polyamine, a known diamine such as ethylenediamine or 1.2-propylenediamine is mainly used, and if necessary, a trace amount of triamine or tetraamine may be used in combination. These polyurethane elastomers are used alone or
You may use it in mixture of 2 or more types. The melting point of the thermoplastic elastic resin of the present invention is preferably 140 ° C. or higher at which heat resistance and durability can be maintained, and it is more preferable to use a resin having a melting point of 160 ° C. or higher because heat resistance and durability are improved. Since the reticulated body of the present invention contains a phosphorus compound in order to impart flame retardancy,
Since the thermal stability is slightly inferior to that containing no flame retardant, it is particularly preferable to add an antioxidant or the like to improve heat resistance and durability, if necessary. The antioxidant is preferably a hindered antioxidant, which includes a hindered phenol type and a hindered amine type, and does not contain nitrogen.
It is particularly preferable to add 1% to 5% of a dophenol-based antioxidant to suppress thermal decomposition, since the generation of toxic gas with a small lethal amount during combustion can be suppressed. The soft segment content of the thermoplastic elastic resin constituting the component having the function of absorbing vibration and stress which is the object of the present invention is preferably 15% by weight.
As described above, it is more preferably 30% by weight or more, preferably 80% by weight or less, and more preferably 70% by weight or less in view of heat resistance and sag resistance. That is, the soft segment content of the component having the function of absorbing vibrations and stress of the elastic network of the present invention is preferably 15% by weight or more and 80% by weight or less, more preferably 30% by weight or more and 70% by weight or less. .

【0010】本発明の難燃性を有する網状体は熱可塑性
弾性樹脂中に燐含有量(Bppm)がソフトセグメント
含有量(A重量%)に対し、60A+200≦B≦10
0000の関係を満足する必要がある。満足しない場合
は難燃性が劣るので好ましくない。100000ppm
を越えると可塑化効果による塑性変形が大きくなり熱可
塑性弾性樹脂の耐熱性が劣るので好ましくない。好まし
い燐含有量(Bppm)はソフトセグメント含有量(A
重量%)に対し、30A+1800≦B≦100000
であり、より好ましい燐含有量(Bppm)はソフトセ
グメント含有量(A重量%)に対し、16A+2600
≦B≦50000である。難燃性は多量のハロゲン化物
と無機物を添加して高度の難燃性を付与する方法がある
が、燃焼時に致死量の少ない有毒なハロゲンガスを多量
に発生し、火災時の中毒の問題があり、焼却時には、焼
却炉の損傷が大きく好ましくない。本発明では、ハロゲ
ン化物の含有量は少なくとも1重量%以下、好ましく
は、ハロゲン化物の含有量は0.5重量%以下、より好
ましくはハロゲン化物を含有しないものである。本発明
の燐系難燃剤としては、例えば、ポリエステル系熱可塑
性弾性樹脂の場合、樹脂重合時に、ハ−ドセグメント部
分に難燃剤として、例えば特開昭51−82392号公
報等に記載された10〔2・3・ジ(2・ヒドロキシエ
トキシ)−カルボニルプロピル〕9・10・ジヒドロ・
9・オキサ・10ホスファフェナレンス・10オキシロ
等のカルボン酸をハ−ドセグメントの酸成分の一部とし
て共重合したポリエステル系熱可塑性弾性樹脂とする方
法や、熱可塑性弾性樹脂に後工程で、例えば、既存化学
物質番号(3)−3735等の燐系化合物を添加して難
燃性を付与することができる。その他、難燃性を付与で
きる難燃剤としては、各種燐酸エステル、亜燐酸エステ
ル、ホスホン酸エステル(必要に応じハロゲン元素を含
有する上記燐酸エステル類)、もしくはこれら燐化合物
から誘導される重合物が例示できる。本発明は、熱可塑
性弾性樹脂中に各種改質剤、添加剤、着色剤等を必要に
応じて添加できる。本発明の難燃性網状体は、難燃性を
付与するために燐を含有させており、この理由は、上記
している如く、安全性の観点から、火災時に発生するシ
アンガス、ハロゲンガス等の致死量の少ない有毒ガスを
できるだけ少なくすることにある。このため、本発明の
難燃性網状体の燃焼ガスの毒性指数は好ましくは6以
下、より好ましくは5.5以下である。また、側地やワ
ディング層にポリエステル繊維を使用される場合が多い
ので、好ましくはポリエステル系熱可塑性弾性樹脂とす
ることで分別せずに再生リサイクルができる。
In the flame-retardant reticulate material of the present invention, the phosphorus content (Bppm) in the thermoplastic elastic resin is 60A + 200≤B≤10 with respect to the soft segment content (A% by weight).
It is necessary to satisfy the relationship of 0000. If it is not satisfied, the flame retardance is poor, which is not preferable. 100000ppm
If it exceeds the range, the plastic deformation due to the plasticizing effect becomes large and the heat resistance of the thermoplastic elastic resin is deteriorated, which is not preferable. The preferred phosphorus content (Bppm) is the soft segment content (A
Weight%), 30A + 1800 ≦ B ≦ 100,000
And the more preferable phosphorus content (Bppm) is 16A + 2600 with respect to the soft segment content (A weight%).
≦ B ≦ 50000. For flame retardancy, there is a method to add a high level of flame retardancy by adding a large amount of halides and inorganic substances, but when burning, a large amount of toxic halogen gas with a small lethal amount is generated, and there is a problem of poisoning during fire. There is a large damage to the incinerator during incineration, which is not preferable. In the present invention, the halide content is at least 1% by weight or less, preferably the halide content is 0.5% by weight or less, more preferably the halide-free content. As the phosphorus-based flame retardant of the present invention, for example, in the case of a polyester-based thermoplastic elastic resin, a flame-retardant in the hard segment portion during resin polymerization is described, for example, in JP-A-51-82392. [2.3-di (2-hydroxyethoxy) -carbonylpropyl] 9-10-dihydro-
A method of preparing a polyester-based thermoplastic elastic resin in which a carboxylic acid such as 9-oxa-10-phosphaphenalene-10-oxylo is copolymerized as a part of the acid component of the hard segment, or a thermoplastic elastic resin is used in a subsequent step. For example, the flame retardancy can be imparted by adding a phosphorus compound such as the existing chemical substance number (3) -3735. Other flame retardants capable of imparting flame retardancy include various phosphoric acid esters, phosphorous acid esters, phosphonic acid esters (the above phosphoric acid esters containing a halogen element as necessary), or polymers derived from these phosphorus compounds. It can be illustrated. In the present invention, various modifiers, additives, colorants and the like can be added to the thermoplastic elastic resin as needed. The flame-retardant reticulate material of the present invention contains phosphorus in order to impart flame retardancy. The reason is, as described above, from the viewpoint of safety, cyan gas, halogen gas, etc. generated in a fire. The goal is to minimize the lethal dose of toxic gases. Therefore, the combustion gas toxicity index of the flame-retardant reticulate material of the present invention is preferably 6 or less, more preferably 5.5 or less. In addition, since polyester fibers are often used for the side material and the wadding layer, it is preferable to use a polyester-based thermoplastic elastic resin for recycling without separation.

【0011】本発明の複合網状体を構成する熱可塑性弾
性樹脂からなる線条は、示差走査型熱量計にて測定した
融解曲線において、融点以下に吸熱ピ−クを有するのが
好ましい。融点以下に吸熱ピ−クを有するものは、耐熱
耐へたり性が吸熱ピ−クを有しないものより著しく向上
する。例えば、本発明の好ましいポリエステル系熱可塑
性樹脂として、ハ−ドセグメントの酸成分に剛直性のあ
るテレフタル酸やナフタレン2・6ジカルボン酸などを
90モル%以上含有するもの、より好ましくはテレフタ
ル酸やナフタレン2・6ジカルボン酸の含有量は95モ
ル%以上、特に好ましくは100モル%とグリコ−ル成
分をエステル交換後、必要な重合度まで重合し、次い
で、ポリアルキレンジオ−ルとして、好ましくは平均分
子量が500以上5000以下、特に好ましくは100
0以上3000以下のポリテトラメチレングリコ−ルを
15重量%以上70重量%以下、より好ましくは30重
量%以上60重量%以下共重合量させた場合、ハ−ドセ
グメントの酸成分に剛直性のあるテレフタル酸やナフタ
レン2・6ジカルボン酸の含有量が多いとハ−ドセグメ
ントの結晶性が向上し、塑性変形しにくく、かつ、耐熱
抗へたり性が向上するが、溶融熱接着後更に融点より少
なくとも10℃以上低い温度でアニ−リング処理すると
より耐熱抗へたり性が向上する。圧縮歪みを付与してか
らアニ−リングすると更に耐熱抗へたり性が向上する。
このような処理をした網状構造体の線条を示差走査型熱
量計で測定した融解曲線に室温以上融点以下の温度で吸
熱ピークをより明確に発現する。なおアニ−リングしな
い場合は融解曲線に室温以上融点以下に吸熱ピ−クを発
現しない。このことから類推するに、アニ−リングによ
り、ハ−ドセグメントが再配列され、疑似結晶化様の架
橋点が形成され、耐熱抗へたり性が向上しているのでは
ないかとも考えられる。(この処理を疑似結晶化処理と
定義する)この疑似結晶化処理効果は、ポリアミド系弾
性樹脂やポリウレタン系弾性樹脂にも有効である。
The filament made of thermoplastic elastic resin constituting the composite network of the present invention preferably has an endothermic peak below the melting point in the melting curve measured by a differential scanning calorimeter. Those having an endothermic peak below the melting point have significantly improved heat resistance and sag resistance than those having no endothermic peak. For example, a preferable polyester-based thermoplastic resin of the present invention contains 90 mol% or more of terephthalic acid or naphthalene 2.6 dicarboxylic acid having rigidity in the acid component of the hard segment, more preferably terephthalic acid or The content of naphthalene 2.6 dicarboxylic acid is 95 mol% or more, particularly preferably 100 mol%, and after transesterification of the glycol component, polymerization is carried out to a required degree of polymerization, and then, as a polyalkylene diol, preferably The average molecular weight is 500 or more and 5000 or less, particularly preferably 100.
When 0 to 3000 polytetramethylene glycol is copolymerized in an amount of 15 to 70% by weight, more preferably 30 to 60% by weight, the acid component of the hard segment is rigid. When the content of a certain terephthalic acid or naphthalene 2.6 dicarboxylic acid is high, the crystallinity of the hard segment is improved, the plastic deformation is less likely to occur, and the heat resistance and sag resistance are improved, but the melting point is further increased after the melt heat bonding. When the annealing treatment is performed at a temperature lower by at least 10 ° C. or more, the heat resistance and sag resistance is further improved. If annealing is performed after applying compressive strain, heat resistance and sag resistance are further improved.
The endothermic peak is more clearly expressed in the melting curve measured by a differential scanning calorimeter of the linear structure of the network structure treated as described above at a temperature of room temperature or higher and melting point or lower. If annealing is not performed, no endothermic peak appears in the melting curve above room temperature and below the melting point. By analogy with this, it is considered that the annealing causes rearrangement of the hard segments and formation of pseudo-crystallization-like cross-linking points to improve the heat resistance and sag resistance. (This treatment is defined as pseudo crystallization treatment.) This pseudo crystallization treatment effect is also effective for polyamide elastic resin and polyurethane elastic resin.

【0012】本発明における熱可塑性非弾性樹脂とは、
ポリエステル、ポリアミド、ポリオレフィン等が例示で
きる。なお、本発明ではガラス転移点温度が少なくとも
40℃以上のものを使用するのが好ましい。例えば、ポ
リエステルでは、ポリエチレンテレフタレ−ト(PE
T)、ポリエチレンナフタレ−ト(PEN)、ポリシク
ロヘキシレンジメチレンテレフタレ−ト(PCHD
T)、ポリシクロヘキシレンジメチレンナフタレ−ト
(PCHDN)、ポリブチレンテレフタレ−ト(PB
T)、ポリブチレンナフタレ−ト(PBN)、ポリアリ
レ−ト等、及びそれらの共重合ポリエステル等が例示で
きる。ポリアミドでは、ポリカプロラクタム(NY
6)、ポリヘキサメチレンアジパミド(NY66)、ポ
リヘキサメチレンセバカミド(NY6−10)等が例示
できる。ポリオレフィンとしては、ポリプロピレン(P
P)、ポリブテン・1(PB・1)等が例示できる。本
発明に用いる熱可塑性非弾性樹脂としては、クッション
材の側地にポリエステルを用いる場合が多いので、廃棄
する場合に分離せずにリサイクルが可能なクッション素
材として、耐熱性も良好なPET、PEN、PBN、P
CHDT等のポリエステルが特に好ましい。本発明の難
燃性を有する網状体は熱可塑性非弾性樹脂中に燐含有量
1000ppm以上20000ppm以下含有する。1
000ppm未満では、難燃性が不充分であり、200
000ppmを越えると可塑化効果による塑性変形が大
きくなり熱可塑性非弾性樹脂の耐熱性が劣るので好まし
くない。好ましい燐含有量は2000ppm以上100
00ppm以下、より好ましくは3000ppm以上8
000ppmである。難燃性は多量のハロゲン化物と無
機物を添加して高度の難燃性を付与する方法があるが、
燃焼時に致死量の少ない有毒なハロゲンガスを多量に発
生し、火災時の中毒の問題があり、焼却時には、焼却炉
の損傷が大きく好ましくない。特に塩化ビニ−ルは自己
消火性を有するが燃焼すると有毒ガスを多く発生するの
で本発明に用いるのは好ましくない。本発明では、ハロ
ゲン化物の含有量は少なくとも1重量%以下、好ましく
は、ハロゲン化物の含有量は0.5重量%以下、より好
ましくはハロゲン化物を含有しないものである。本発明
の燐系難燃剤としては、例えば、ポリエステル系熱可塑
性非弾性樹脂の場合、樹脂重合時に、難燃剤として、例
えば特開昭51−82392号公報等に記載された10
〔2・3・ジ(2・ヒドロキシエトキシ)−カルボニル
プロピル〕9・10・ジヒドロ・9・オキサ・10ホス
ファフェナレンス・10オキシロ等のカルボン酸を酸成
分の一部として共重合したポリエステル系熱可塑性非弾
性樹脂とする方法や、熱可塑性非弾性樹脂に後工程で、
例えば、既存化学物質番号(3)−3735等の燐系化
合物を添加して難燃性を付与することができる。その
他、難燃性を付与できる難燃剤としては、各種燐酸エス
テル、亜燐酸エステル、ホスホン酸エステル(必要に応
じハロゲン元素を含有する上記燐酸エステル類)、もし
くはこれら燐化合物から誘導される重合物が例示でき
る。本発明は、熱可塑性弾性樹脂中に各種改質剤、添加
剤、着色剤等を必要に応じて添加できる。本発明の難燃
性網状体は、難燃性を付与するために燐を含有させてお
り、この理由は、上記している如く、安全性の観点か
ら、火災時に発生するシアンガス、ハロゲンガス等の致
死量の少ない有毒ガスをできるだけ少なくすることにあ
る。このため、本発明の難燃性網状体の燃焼ガスの毒性
指数は好ましくは6以下、より好ましくは5.5以下で
ある。また、側地やワディング層にポリエステル繊維を
使用される場合が多いので、好ましくはポリエステル系
熱可塑性弾性樹脂とすることで分別せずに再生リサイク
ルができる。
The thermoplastic non-elastic resin in the present invention means
Examples thereof include polyester, polyamide and polyolefin. In the present invention, it is preferable to use one having a glass transition temperature of 40 ° C. or higher. For example, for polyester, polyethylene terephthalate (PE
T), polyethylene naphthalate (PEN), polycyclohexylene dimethylene terephthalate (PCHD
T), polycyclohexylene dimethylene naphthalate (PCHDN), polybutylene terephthalate (PB)
Examples thereof include T), polybutylene naphthalate (PBN), polyarylate, and copolymerized polyesters thereof. For polyamide, polycaprolactam (NY
6), polyhexamethylene adipamide (NY66), polyhexamethylene sebacamide (NY6-10) and the like. As polyolefin, polypropylene (P
P), polybutene-1 (PB-1) and the like can be exemplified. As the thermoplastic non-elastic resin used in the present invention, polyester is often used for the side material of the cushion material, and therefore PET and PEN having good heat resistance can be used as a cushion material that can be recycled without being separated when discarded. , PBN, P
Polyesters such as CHDT are particularly preferred. The flame-retardant network of the present invention contains a phosphorus content of 1000 ppm or more and 20000 ppm or less in the thermoplastic non-elastic resin. 1
If it is less than 000 ppm, the flame retardance is insufficient, and
If it exceeds 000 ppm, the plastic deformation due to the plasticizing effect becomes large and the heat resistance of the thermoplastic non-elastic resin is deteriorated, which is not preferable. Preferable phosphorus content is 2000 ppm or more 100
00ppm or less, more preferably 3000ppm or more 8
It is 000 ppm. Flame retardance is a method of adding a large amount of halides and inorganic substances to impart a high degree of flame retardance,
When burned, a large amount of toxic halogen gas with a small lethal amount is generated, and there is a problem of poisoning at the time of fire, and when incinerated, the incinerator is greatly damaged, which is not preferable. Particularly, vinyl chloride has a self-extinguishing property, but when burned, a large amount of toxic gas is generated, so that it is not preferable to use it in the present invention. In the present invention, the halide content is at least 1% by weight or less, preferably the halide content is 0.5% by weight or less, more preferably the halide-free content. As the phosphorus-based flame retardant of the present invention, for example, in the case of a polyester-based thermoplastic non-elastic resin, as a flame retardant at the time of resin polymerization, it is described in, for example, JP-A-51-82392.
Polyester system in which carboxylic acid such as [2.3-di (2-hydroxyethoxy) -carbonylpropyl] 9,10-dihydro-9, oxa, 10 phosphaphenalene, 10 oxylo is copolymerized as a part of acid component A method of using a thermoplastic non-elastic resin or a thermoplastic non-elastic resin in a later step,
For example, it is possible to impart flame retardancy by adding a phosphorus compound such as existing chemical substance number (3) -3735. Other flame retardants capable of imparting flame retardancy include various phosphoric acid esters, phosphorous acid esters, phosphonic acid esters (the above phosphoric acid esters containing a halogen element as necessary), or polymers derived from these phosphorus compounds. It can be illustrated. In the present invention, various modifiers, additives, colorants and the like can be added to the thermoplastic elastic resin as needed. The flame-retardant reticulate material of the present invention contains phosphorus in order to impart flame retardancy. The reason is, as described above, from the viewpoint of safety, cyan gas, halogen gas, etc. generated in a fire. The goal is to minimize the lethal dose of toxic gases. Therefore, the combustion gas toxicity index of the flame-retardant reticulate material of the present invention is preferably 6 or less, more preferably 5.5 or less. In addition, since polyester fibers are often used for the side material and the wadding layer, it is preferable to use a polyester-based thermoplastic elastic resin for recycling without separation.

【0013】本発明は、繊度が100000デニ−ル以
下の連続線条を曲がりくねらせ互いに接触させて該接触
部の大部分が融着した3次元立体構造体を形成した燐含
有熱可塑性弾性樹脂層網状体の裏面に燐含有熱可塑性非
弾性樹脂からなる連続繊維不織布が接合され、熱可塑性
弾性樹脂層表面がフラット化された密度が0.01g/
cm3 から0.2g/cm3 の難燃性補強網状体である。本
発明の難燃性補強網状体は燐含有熱可塑性弾性樹脂から
なる連続した線条が接触部の大部分が融着した3次元立
体構造体を形成し融着一体化され、表面が引取り装置で
挟み込むなどしてフラット化(以下、実質的にフラット
化と表記することがある。)されており、裏面に燐含有
熱可塑性非弾性樹脂からなる連続繊維不織布が接合され
ているので、外部から与えられた振動を熱可塑性弾性樹
脂の振動吸収機能で大部分の振動を吸収減衰し、局部的
に大きい変形応力を与えられた場合でも補強網状体の表
面が実質的にフラット化され接触部の大部分が融着して
おり、裏面は裏面に連続繊維不織布が接合されているの
で、補強網状体の面で変形応力を受け止め変形応力を分
散させ、熱可塑性弾性樹脂からなる線条が3次元立体構
造体を形成し融着一体化されているので、容易に構造体
全体が変形してエネルギ−変換により変形応力を吸収
し、変形応力が解除されると熱可塑性弾性樹脂のゴム弾
性で容易に元の形態に回復する機能があるので耐へたり
性が良好である。公知の非弾性樹脂のみからなる線条で
構成した網状体では、ゴム弾性を持たないので圧縮変形
により塑性変形を生じて回復しなくなり耐久性が劣る。
補強網状体の表面が実質的にフラット化されてない場
合、表面に局部的な外力が掛かると、表面の線条及び接
着点部分までに選択的に応力集中が発生する場合があ
り、このような外力に対しては応力集中による疲労が発
生して耐へたり性が低下する場合がある。なお、該線条
が熱可塑性弾性樹脂からなる場合は3次元構造部分で構
造全体が変形するので応力集中は緩和されるが、非弾性
樹脂では、そのまま応力が接着点に集中して構造破壊を
生じ回復しなくなる。更には、表面が実質的にフラット
化されてなく凸凹があると座った時臀部に異物感を与え
るため座り心地が悪くなり好ましくない。なお、線状が
連続していない場合は、接着点が応力の伝達点となるた
め接着点に著しい応力集中が起こり構造破壊を生じ前記
従来技術にも例示した特開昭60−11352号公報、
特開昭61−137732号公報、WO91−1903
2号公報等に開示された構造体の如く耐熱耐久性が劣り
好ましくない。融着していない場合は、形態保持が出来
ず、構造体が一体で変形しないため、応力集中による疲
労現象が起こり耐久性が劣ると同時に、形態が変形して
体型保持ができなくなるので好ましくない。本発明のよ
り好ましい融着の程度は、線条が接触している部分の大
半が融着した状態であり、もっとも好ましくは接触部分
が全て融着した状態である。なお、クッション材の機能
は、クッション層は基本の繊度を太くして少し硬くして
体型保持を受け持つ層と振動減衰性の良い成分で密度を
少し高くした振動吸収して振動を遮断する層で構成し、
表面層はやや繊度を細くし構成線条本数を多くした少し
柔らかな層として適度の沈み込みにより快適な臀部のタ
ッチを与えて臀部の圧力分布を均一分散化させると共に
クッション層で吸収できなかった振動を吸収して人体の
共振部分の振動を遮断する層が一体化されることで、応
力や振動を一体で変形し吸収させ座り心地を向上させる
ことができる。さらに、フレ−ムと接する面を補強材で
補強してクッション層と一体化し、クッション材を支え
る面(補強層)とし、クッションの形態保持をはかるこ
とにより座り心地と耐久性の良い座席となる。しかし
て、本発明難燃性補強網状体は、上記クッション層と補
強層の機能を併せ持つクッション材を提供するのも目的
であり、クッション層の補強材として薄くても強く補強
効果の高い熱可塑性非弾性樹脂からなる連続繊維不織布
を接合一体化している。クッション層と接合されていな
いとクッション層の補強効果が無くなるので好ましくな
い。補強材が単繊維不織布の場合は不織布の厚み当たり
の補強効果が悪いので重量が重くなり好ましくない。本
発明の好ましい不織布はスパンボンド不織布であり、目
付けが20g/m2〜500g/m2 である。目付けが
20g/m2 未満では補強効果がわるくなり、500g
/m2 を越えると成形性が劣るので好ましくない。な
お、クッション層と補強層の素材は例えばポリエステル
に統一すると座席のリサイクル時に分別する必要がない
ので好ましい。かくして、振動吸収性と弾性回復性の良
い熱可塑性弾性樹脂からなる連続した線条が接触部の大
部分が融着した3次元立体構造体を形成し融着一体化さ
れ表面が実質的にフラット化されたクッション層とクッ
ション層の裏面に補強層が一体接合した補強網状体は、
表面層は面で変形応力を受け止め応力の分散を良くし、
個々の線状に掛かる応力を少なくして補強層で支えられ
た構造全体が変形して変形応力を吸収し、且つ臀部を支
えるクッション性も向上させ、応力が解除されると回復
し、フレ−ムから伝わる振動も振動吸収性と弾性回復性
の良い熱可塑性弾性樹脂からなるクッション層が吸収し
て人体の共振部分の振動を遮断するため座り心地と耐久
性を向上させることができる。この目的から、本発明の
補強網状体を形成する振動吸収性と弾性回復性の良い熱
可塑性弾性樹脂からなる線条の繊度は100000デニ
−ル以下である。見掛け密度を0.2g/cm3 以下にし
た場合、100000デニ−ルを越えると構成本数が少
なくなり、密度斑を生じて部分的に耐久性の悪い構造が
でき、応力集中による疲労が大きくなり耐久性が低下す
るので好ましくない。本発明の熱可塑性弾性樹脂からな
る線条の繊度は、繊度が細すぎると抗圧縮性が低くなり
過ぎて変形による応力吸収性が低下するので100デニ
−ル以上であり、構成本数の低下による構造面の緻密性
を損なわない50000デニ−ル以下である。より好ま
しくは500デニ−ル以上、10000デニ−ル以下で
ある。本発明の補強網状体の平均の見掛け密度は、0.
005g/cm3 では反発力が失われ、振動吸収能力や変
形応力吸収能力が不充分となりクッション機能を発現さ
せにくくなる場合があり、0.25g/cm3 以上では反
発力が高すぎて座り心地が悪くなる場合があるので、振
動吸収能力や変形応力吸収機能が生かせてクッション体
としての機能が発現されやすい0.01g/cm3 以上
0.20g/cm3 以下であり、好ましくは0.03g/
cm3 以上0.08g/cm3 以下である。本発明において
は繊度の異なる線状を見掛け密度との組合せで最適な構
成とする異繊度積層構造とする方法も好ましい実施形態
として選択できる。本発明の補強網状体の厚みは特に限
定されないが、厚みが5mm未満では応力吸収機能と応力
分散機能が低下するので、好ましい厚みは力の分散をす
る面機能と振動や変形応力吸収機能が発現できる厚みと
して10mm以上であり、より好ましくは20mm以上であ
る。
The present invention is a phosphorus-containing thermoplastic elastic resin in which continuous filaments having a fineness of 100,000 denier or less are meandered and brought into contact with each other to form a three-dimensional solid structure in which most of the contact portions are fused. A continuous fiber non-woven fabric made of a phosphorus-containing thermoplastic non-elastic resin is joined to the back surface of the layer network, and the surface of the thermoplastic elastic resin layer is flattened to a density of 0.01 g /
It is a flame-retardant reinforced reticulate body of cm 3 to 0.2 g / cm 3 . Flame retardant reinforcing mesh of the present invention is fused integrally to form a three-dimensional structure the majority of the continuous filament made of phosphorus-containing thermoplastic elastomeric resin contact portion is fused, the surface taking over In the device
Flattened by sandwiching (hereinafter, substantially flat
Sometimes referred to as Since a continuous fiber non-woven fabric made of phosphorus-containing thermoplastic non-elastic resin is bonded to the back surface, most vibrations are absorbed and damped by the vibration absorption function of the thermoplastic elastic resin. , Even when a large deformation stress is locally applied, the surface of the reinforcing mesh is substantially flattened and most of the contact portion is fused, and the back surface is a continuous fiber non-woven fabric bonded to the back surface. , Reinforcing mesh is received on the surface of the reinforcing mesh to disperse the deforming stress, and the filament made of thermoplastic elastic resin forms a three-dimensional three-dimensional structure and is fused and integrated so that the entire structure is easily deformed. Then, the deformation stress is absorbed by energy conversion, and when the deformation stress is released, the rubber elasticity of the thermoplastic elastic resin has a function of easily recovering the original shape, so that the fatigue resistance is good. Since the known mesh-like body composed of filaments made only of non-elastic resin does not have rubber elasticity, it is plastically deformed by compressive deformation and does not recover, resulting in poor durability.
When the surface of the reinforced mesh is not substantially flattened, when a local external force is applied to the surface, stress concentration may occur selectively up to the filaments and bonding points of the surface. With respect to such external force, fatigue due to stress concentration may occur and sag resistance may decrease. When the filaments are made of thermoplastic elastic resin, the entire structure is deformed in the three-dimensional structure portion, so stress concentration is relieved. However, in the non-elastic resin, stress is concentrated at the bonding point and structural damage is caused. It will not occur and will not recover. Furthermore, if the surface is not substantially flattened and has irregularities, the buttocks feel a foreign substance when sitting, which is unfavorable for sitting. When the linear shape is not continuous, the adhesion point serves as a stress transmission point, so that significant stress concentration occurs at the adhesion point and structural destruction occurs.
JP-A-61-137732, WO91-1903
It is not preferable because it has poor heat resistance and durability like the structure disclosed in Japanese Patent Publication No. 2 or the like. If they are not fused, the shape cannot be maintained and the structure does not deform integrally, resulting in a fatigue phenomenon due to stress concentration and poor durability, and at the same time deforming the shape and making it impossible to maintain the body shape, which is not preferable. . The more preferable degree of fusion in the present invention is that most of the portions where the filaments are in contact are fused, and most preferably all the contact portions are in fusion. The function of the cushion material is that the cushion layer is a layer that thickens the basic fineness and makes it a little harder and is responsible for body shape maintenance, and a layer with a slightly higher density with a component with good vibration damping properties that absorbs vibration and blocks vibration. Configure and
The surface layer is a slightly soft layer with a slightly finer fineness and a larger number of filaments, which gives a comfortable touch to the buttocks due to the appropriate subsidence to evenly disperse the buttocks pressure distribution and cannot be absorbed by the cushion layer. By integrating the layer that absorbs the vibration and blocks the vibration of the resonance part of the human body, the stress and the vibration can be integrally deformed and absorbed to improve the sitting comfort. Further, the surface in contact with the frame is reinforced with a reinforcing material to be integrated with the cushion layer to form a surface (reinforcing layer) for supporting the cushion material, and by maintaining the shape of the cushion, a comfortable and durable seat can be obtained. . The flame-retardant reinforcing network of the present invention is also intended to provide a cushioning material having the functions of both the cushion layer and the reinforcing layer. As a reinforcing material for the cushioning layer, a thin thermoplastic resin having a high reinforcing effect is strong. Continuous fiber nonwoven fabric made of non-elastic resin is bonded and integrated. If it is not joined to the cushion layer, the reinforcing effect of the cushion layer will be lost, which is not preferable. If the reinforcing material is a monofilament non-woven fabric, the reinforcing effect per thickness of the non-woven fabric is poor and the weight becomes heavy, which is not preferable. Preferred non-woven fabric of the present invention is a spunbonded nonwoven fabric having a basis weight is 20g / m 2 ~500g / m 2 . If the basis weight is less than 20 g / m 2 , the reinforcing effect will be poor and 500 g
If it exceeds / m 2 , the moldability is deteriorated, which is not preferable. It is preferable that the cushion layer and the reinforcing layer are made of polyester, for example, because it is not necessary to separate them when the seat is recycled. Thus, continuous filaments made of a thermoplastic elastic resin having good vibration absorption and elastic recovery form a three-dimensional three-dimensional structure in which most of the contact portions are fused, and the fusion is integrated so that the surface is substantially flat. Reinforced reticulate body in which a reinforcing layer is integrally joined to the cushion layer and the back surface of the cushion layer,
The surface layer receives deformation stress on the surface and improves the dispersion of stress,
The stress applied to each individual line is reduced, the entire structure supported by the reinforcing layer deforms to absorb the deformation stress, and also improves the cushioning property to support the buttocks, recovers when the stress is released, and The cushion layer made of a thermoplastic elastic resin having good vibration absorption and elastic recovery absorbs the vibration transmitted from the body and blocks the vibration of the resonance part of the human body, so that the sitting comfort and durability can be improved. For this purpose, the fineness of the filament made of a thermoplastic elastic resin having good vibration absorption and elastic recovery forming the reinforced mesh of the present invention is 100,000 denier or less. When the apparent density is 0.2 g / cm 3 or less, the number of constituents decreases when the density exceeds 100,000 denier, and uneven density occurs to form a partially inferior structure, and fatigue due to stress concentration increases. It is not preferable because the durability is lowered. The fineness of the filament made of the thermoplastic elastic resin of the present invention is 100 denier or more because if the fineness is too thin, the anti-compression property becomes too low and the stress absorbability due to deformation is lowered, and thus the number of constituents is lowered. It is 50,000 denier or less so as not to impair the denseness of the structural surface. More preferably, it is at least 500 denier and at most 10,000 denier. The average apparent density of the reinforced reticulate body of the present invention is 0.
005g / cm 3 in repulsive force is lost, there is a case where vibration absorption capacity and deformation stress absorption capacity is less likely to express insufficient and becomes cushioning function, comfort too high repulsive force at 0.25 g / cm 3 or more May deteriorate, so that the function as a cushioning body is easily expressed by utilizing the vibration absorbing ability and the deformation stress absorbing function, and is 0.01 g / cm 3 or more and 0.20 g / cm 3 or less, preferably 0.03 g. /
It is not less than cm 3 and not more than 0.08 g / cm 3 . In the present invention, a method of forming a different fineness laminated structure in which a linear shape having a different fineness is combined with an apparent density to have an optimum configuration can be selected as a preferred embodiment. The thickness of the reinforced reticulate body of the present invention is not particularly limited, but if the thickness is less than 5 mm, the stress absorbing function and the stress dispersing function are deteriorated. The thickness that can be achieved is 10 mm or more, and more preferably 20 mm or more.

【0014】本発明の難燃性補強網状体の線条の断面形
状は特には限定されないが、中空断面や異形断面にする
ことで好ましい抗圧縮性(反発力)やタッチを付与する
ことができるので特に好ましい。抗圧縮性は繊度や用い
る素材のモジュラスにより調整して、繊度を細くした
り、柔らかい素材では中空率や異形度を高くし初期圧縮
応力の勾配を調整できるし、繊度をやや太くしたり、や
やモジュラスの高い素材では中空率や異形度を低くして
座り心地が良好な抗圧縮性を付与する。中空断面や異形
断面の他の効果として中空率や異形度を高くすること
で、同一の抗圧縮性を付与した場合、より軽量化が可能
となり、自動車等の座席に用いると省エネルギ−化がで
き、布団などの場合は、上げ下ろし時の取扱性が向上す
る。好ましい抗圧縮性(反発力)やタッチを付与するこ
とができる他の好ましい方法として、本発明の積層網状
体の線条を複合構造とする方法がある。複合構造として
は、シ−スコア構造またはサイドバイサイド構造及びそ
れらの組合せ構造などが挙げられる。が、特にはクッシ
ョン層が大変形してもエネルギ−変換できない振動や変
形応力をエネルギ−変換して回復できる立体3次元構造
とするために線状の表面の50%以上を柔らかい熱可塑
性弾性樹脂が占めるシ−スコア構造またはサイドバイサ
イド構造及びそれらの組合せ構造などが挙げられる。す
なわち、シ−スコア構造ではシ−ス成分は振動や変形応
力をエネルギ−変換が容易なソフトセグメント含有量が
多い熱可塑性弾性樹脂とし、コア成分は抗圧縮性を示す
ソフトセグメント含有量が少ない熱可塑性弾性樹脂で構
成し適度の沈み込みによる臀部への快適なタッチを与え
ることができる。サイドバイサイド構造では振動や変形
応力をエネルギ−変換が容易なソフトセグメント含有量
が多い熱可塑性弾性樹脂の溶融粘度をソフトセグメント
含有量が少ない抗圧縮性を示す熱可塑性弾性樹脂の溶融
粘度より低くして線状の表面を占めるソフトセグメント
含有量が多い熱可塑性弾性樹脂の割合を多くした構造
(比喩的には偏芯シ−ス・コア構造のシ−スに熱可塑性
弾性樹脂を配した様な構造)として線状の表面を占める
ソフトセグメント含有量が多い熱可塑性弾性樹脂の割合
を80%以上としたものが特に好ましく、最も好ましく
は線状の表面を占めるソフトセグメント含有量が多い熱
可塑性弾性樹脂の割合を100%としたシ−スコアであ
る。ソフトセグメント含有量が多い熱可塑性弾性樹脂の
線状の表面を占める割合が多くなると、溶融して融着す
るときの流動性が高いので接着が強固になる効果があ
り、構造が一体で変形する場合、接着点の応力集中に対
する耐疲労性が向上し、耐熱性や耐久性がより向上す
る。
The cross-sectional shape of the filament of the flame-retardant reinforced net-like body of the present invention is not particularly limited, but a preferable anti-compression property (repulsive force) and touch can be imparted by forming a hollow cross section or a modified cross section. Therefore, it is particularly preferable. The anti-compression property can be adjusted by the fineness and the modulus of the material used to make the fineness fine, or in the soft material the hollowness and the irregularity can be increased to adjust the gradient of the initial compression stress, and the fineness can be made slightly thicker or slightly. A material with a high modulus lowers the hollow ratio and the degree of irregularity to provide anti-compression property with a comfortable sitting feeling. As another effect of the hollow cross section and the irregular cross section, by increasing the hollow ratio and the degree of irregularity, if the same anti-compression property is given, the weight can be further reduced, and the energy saving can be achieved when it is used for the seat of an automobile or the like. If it is a futon or the like, it will be easier to handle when raising and lowering. As another preferable method capable of imparting preferable anti-compression property (repulsive force) and touch, there is a method of forming the filament of the laminated network of the present invention into a composite structure. Examples of the composite structure include a score core structure, a side-by-side structure, and a combination structure thereof. However, in particular, 50% or more of the linear surface is made of a soft thermoplastic elastic resin in order to obtain a three-dimensional structure in which vibration and deformation stress that cannot be energy-converted even if the cushion layer is largely deformed can be energy-converted and recovered. And a side-by-side structure and a combination thereof. That is, in the sheath core structure, the sheath component is a thermoplastic elastic resin having a large content of soft segments that can easily convert energy into vibration and deformation stress, and the core component is a thermoelastic resin having a small content of soft segments exhibiting anti-compression properties. Composed of a plastic elastic resin, it can give a comfortable touch to the buttocks due to an appropriate depression. With the side-by-side structure, the melt viscosity of a thermoplastic elastic resin with a high soft segment content that facilitates energy conversion of vibration and deformation stress is lower than the melt viscosity of a thermoplastic elastic resin with a low soft segment content that exhibits anti-compression properties. A structure in which the proportion of thermoplastic elastic resin occupying a linear surface and having a large amount of soft segment is increased (metaphorically, a structure in which a thermoplastic elastic resin is arranged in an eccentric sheath-core structure) It is particularly preferable that the ratio of the thermoplastic elastic resin having a large soft segment content occupying the linear surface is 80% or more, and most preferably the thermoplastic elastic resin having a large soft segment content occupying the linear surface. Is a score with the ratio of 100% as 100%. When the proportion of the thermoplastic elastic resin with a large soft segment content that occupies the linear surface is large, the flowability when melting and fusing is high, so there is the effect of strengthening the adhesion, and the structure deforms as a unit. In this case, the fatigue resistance against stress concentration at the bonding points is improved, and the heat resistance and durability are further improved.

【0015】熱可塑性弾性樹脂からなる線条で構成され
た難燃性補強網状体は実質的に表面がフラット化され
て、接触部の大部分が融着していること、及び裏面が補
強効果の高い熱可塑性非弾性樹脂からなる連続繊維不織
布を接合一体化しており、両面が実質的にフラット化さ
れているので、難燃性補強網状体と他の網状体、不織
布、編織物、硬綿、フイルム、発泡体、金属等の被熱接
着体とを接着するのに、他の熱接着成分(熱接着不織
布、熱接着繊維、熱接着フィルム、熱接着レジン等)や
接着剤等を用いて一体積層構造体化し、車両用座席、船
舶用座席、車両用、船舶用、病院用等の業務用及び家庭
用ベット、家具用椅子、事務用椅子、布団類等の製品を
得る場合、被接着体面との接触面積を広くできるので、
接着面積が広くなり強固に接着した接着耐久性も良好な
製品を得ることができる。この場合、難燃性の被熱接着
体を用いると難燃性の一体積層構造体を得ることができ
るので、本発明では特に好ましい実施形態である。な
お、難燃性補強網状体形成段階から製品化される任意の
段階で上述の疑似結晶化処理を施すことにより、構造体
中の熱可塑性弾性樹脂からなる線条を示差走査型熱量計
で測定した融解曲線に室温以上融点以下の温度に吸熱ピ
ークを持つようにすると製品の耐熱耐久性が格段に向上
するのでより好ましい。本発明の補強網状体の線条を複
合構造とした場合、好ましい熱接着機能も付与できる。
例えば、シ−スコア構造ではシ−ス成分の振動や変形応
力をエネルギ−変換が容易なソフトセグメント含有量が
多い熱可塑性弾性樹脂を熱接着成分とし、コア成分の抗
圧縮性を示すソフトセグメント含有量が少ない熱可塑性
弾性樹脂を網状形態の保持機能をもたせるための高融点
成分とする構成で、熱接着成分の融点を高融点樹脂の融
点より10℃以上低くしたものを用いることにより熱接
着層の機能も付与できる。また、本発明の難燃性補強網
状体の表面層を振動や変形応力をエネルギ−変換が容易
なソフトセグメント含有量が多い低融点の熱可塑性弾性
樹脂を熱接着成分とし積層することでも好ましい熱接着
機能を付与できる。熱接着機能を発現させるに好ましい
網状体中の線条を形成する熱接着成分の融点は高融点成
分の融点より15℃から50℃低い融点であり、より好
ましくは20℃から40℃低い融点である。熱接着機能
を持つ本発明の難燃性補強網状体は実質的に表面がフラ
ット化されて、接触部の大部分が融着していることで、
網状体、不織布、編織物、硬綿、フイルム、発泡体、金
属等の被熱接着体面との接触面積を広くできるので、熱
接着面積が広くなり、強固に熱接着した新たな成形体及
び車両用座席、船舶用座席、車両用、船舶用、病院用等
の業務用及び家庭用ベット、家具用椅子、事務用椅子、
布団類になった製品を得ることができる。なお、新たな
成形体及び製品が製品化されるまでの任意の段階で疑似
結晶化処理を施すことにより、構造体中の熱可塑性弾性
樹脂からなる線条を示差走査型熱量計で測定した融解曲
線に室温以上融点以下の温度に吸熱ピークを持つように
すると製品の耐熱耐久性が格段に向上したものを提供で
きるのでより好ましい。熱接着時に被接着体を伸張した
状態で接着すると、被接着体は接着層のゴム弾性で伸張
された状態が緩和しないので張りのある、皺になりにく
い成形体とすることもできる。
The flame-retardant reinforcing mesh formed of filaments made of thermoplastic elastic resin has a substantially flat surface so that most of the contact portions are fused and the back surface has a reinforcing effect. The continuous fiber non-woven fabric made of high thermoplastic non-elastic resin is bonded and integrated, and both sides are substantially flattened, so the flame-retardant reinforcing net and other nets, non-woven fabric, knitted fabric, hard cotton Other heat-adhesive components (heat-bonded non-woven fabric, heat-bonded fiber, heat-bonded film, heat-bonded resin, etc.) and adhesives are used to bond heat-bonded materials such as film, foam, metal, etc. To obtain products such as vehicle seats, ship seats, vehicle beds, ship seats, hospital beds, and other commercial and household beds, furniture chairs, office chairs, futons, etc. as an integrated laminated structure Since the contact area with the body surface can be widened,
It is possible to obtain a product having a wide adhesion area and strong adhesion and good adhesion durability. In this case, since a flame-retardant integrally laminated structure can be obtained by using a flame-retardant heat-bonded body, the present invention is a particularly preferred embodiment. In addition, by performing the above-mentioned pseudo crystallization treatment at any stage from the flame retardant reinforced reticulated body forming stage to commercialization, the filaments made of the thermoplastic elastic resin in the structure are measured with a differential scanning calorimeter. It is more preferable that the melting curve has an endothermic peak at a temperature of room temperature or higher and melting point or lower because the heat resistance and durability of the product is remarkably improved. When the filaments of the reinforced reticulate body of the present invention have a composite structure, a preferable heat adhesion function can be imparted.
For example, in the sheath core structure, a thermoplastic elastic resin containing a large amount of soft segment that facilitates energy conversion of vibration and deformation stress of the sheath component is used as a heat-adhesive component, and a soft segment containing the compressive property of the core component is contained. A thermoplastic adhesive resin having a small amount is used as a high melting point component to have a function of holding a net-like shape, and the melting point of the thermal bonding component is lower than the melting point of the high melting point resin by 10 ° C. or more. The function of can be added. In addition, it is also preferable to laminate the surface layer of the flame-retardant reinforcing network of the present invention with a low-melting point thermoplastic elastic resin having a high soft segment content that facilitates energy conversion of vibration and deformation stress as a heat-adhesive component. Adhesive function can be added. The melting point of the heat-bonding component that forms the filaments in the reticulate body, which is preferable for exhibiting the heat-bonding function, is 15 ° C to 50 ° C lower than the melting point of the high-melting point component, and more preferably 20 ° C to 40 ° C lower melting point. is there. The flame-retardant reinforcing mesh body of the present invention having a heat-bonding function has a substantially flat surface, and most of the contact portions are fused,
Since the contact area with the surface of the object to be heat-bonded, such as a mesh, a non-woven fabric, a knitted woven fabric, a hard cotton, a film, a foam, and a metal, can be widened, the heat-bonded area can be widened, and a new molded body and vehicle can be firmly heat-bonded. Seats, seats for ships, vehicles, ships, hospital beds, and other commercial and household beds, furniture chairs, office chairs,
You can get futon products. In addition, by performing pseudo crystallization at any stage until new molded products and products are commercialized, the filaments made of the thermoplastic elastic resin in the structure are melted by a differential scanning calorimeter. It is more preferable to make the curve have an endothermic peak at a temperature of room temperature or higher and melting point or lower because a product with significantly improved heat resistance and durability can be provided. When the adherend is adhered in a stretched state at the time of heat-bonding, the adhered body does not relax the stretched state due to the rubber elasticity of the adhesive layer, so that the adherend can be a molded body having tension and less likely to wrinkle.

【0016】次に本発明の製法を述べる。本発明の製法
は、複数のオリフィスを持つ多列ノズルよりソフトセグ
メント量(A重量%)と燐含有量(Bppm)が60A
+200≦B≦100000の関係を満足する熱可塑性
弾性樹脂を各ノズルオリフィスに分配し、該熱可塑性樹
脂の融点より20℃以上、80℃未満高い溶融温度で、
該ノズルより下方に向けて吐出させ、溶融状態で互いに
接触させて融着させ3次元構造を形成しつつ、片面に燐
含有量が1000ppm以上含有する熱可塑性非弾性樹
脂からなる連続繊維不織布を接合させて引取り装置で挟
み込み冷却槽で冷却せしめる難燃性補強網状体の製法で
ある。本発明では、前記の如く、燐化合物を重合時に添
加して共重合する方法と重合後に添加して混合練り込み
する方法ができる。混合練り込みは二軸混練押出機又は
ダルメ−ジ、ピン等の混練機能をもつ単軸押出機を用
い、溶融押し出し前に行う場合と、溶融押し出し時に行
う場合を選択できる。難燃剤の定量供給が出来れば溶融
押し出し時に混練するのが最も安価な方法となる。固体
状の難燃剤は樹脂と共に乾燥混合して偏析しないように
押出機に供給すれば簡単であるが、液状の難燃剤は樹脂
を混練押出機に定量供給しつつ別途に液状の難燃剤も定
量供給しつつ混練する方法を取るのが最も望ましい。例
えば、二軸混練押出機のベント穴から液状難燃剤を定量
供給する方法等が例示できる。このような方法でソフト
セグメント量(A重量%)と燐含有量(Bppm)が6
0A+200≦B≦100000の関係を満足する燐含
有量を熱可塑弾性樹脂に添加して、次いで溶融押出しし
て網状体を形成する。溶融した燐含有熱可塑弾性樹脂は
複数のオリフィスを持つ多列ノズルに供給し、オリフィ
スより下方へ吐出する。この時の溶融温度は、熱可塑性
弾性樹脂の融点より20℃〜80℃高い温度である。熱
可塑性弾性樹脂の融点より80℃を越える高い溶融温度
にすると熱分解が著しくなり熱可塑性弾性樹脂のゴム弾
性特性が低下するので好ましくない。他方、熱可塑性弾
性樹脂の融点より10℃以上高くしないとメルトフラク
チャ−を発生し正常な線条形成が出来なくなり、また、
吐出後ル−プ形成しつつ接触させ融着させる際、線条の
温度が低下して線条同士が融着しなくなり接着が不充分
な網状体となる場合があり好ましくない。しかして、本
発明では、溶融状態の線状を互いに接触させて融着させ
3次元構造を形成しつつ、片面に連続繊維不織布を接合
させるため、溶融状態の線状を互に融着させうる温度よ
り5℃以上高くしないと不織布と線状の融着接合が不充
分になる。好ましい溶融温度は融点より25℃から60
℃高い温度、より好ましくは融点より30℃から40℃
高い温度である。オリフィスの形状は特に限定されない
が、中空断面(例えば三角中空、丸型中空、突起つきの
中空等となるよう形状)及び、又は異形断面(例えば三
角形、Y型、星型等の断面二次モ−メントが高くなる形
状)とすることで前記効果以外に溶融状態の吐出線条が
形成する3次元構造が流動緩和し難くし、逆に接触点で
の流動時間を長く保持して接着点を強固にできるので特
に好ましい。特開平1−2075号公報に記載の接着の
ための加熱をする場合、3次元構造が緩和し易くなり平
面的構造化し、3次元立体構造化が困難となるので好ま
しくない。網状体の特性向上効果としては、見掛けの嵩
を高くでき軽量化になり、また抗圧縮性が向上し、弾発
性も改良できへたり難くなる。中空断面では中空率が8
0%を越えると断面が潰れ易くなるので、好ましくは軽
量化の効果が発現できる10%以上70%以下、より好
ましくは20%以上60%以下である。オリフィスの孔
間ピッチは線状が形成するル−プが充分接触できるピッ
チとする必要がある。緻密な構造にするには孔間ピッチ
を短くし、粗密な構造にするには孔間ピッチを長くす
る。本発明の孔間ピッチは好ましくは3mm〜20mm、よ
り好ましくは5mm〜10mmである。本発明では所望に応
じ異密度化や異繊度化もできる。列間のピッチ又は孔間
のピッチも変えた構成、及び列間と孔間の両方のピッチ
も変える方法などで異密度層を形成できる。また、オリ
フィスの断面積を変えて吐出時の圧力損失差を付与する
と、溶融した熱可塑性弾性樹脂を同一ノズルから一定の
圧力で押し出される吐出量が圧力損失の大きいオリフィ
スほど少なくなる原理を使って長手方向の区間でオリフ
ィスの断面積が異なる列を少なくとも複数有するノズル
を用い異繊度線条からなる網状構造体を製造することが
できる。次いで、該ノズルより下方に向けて吐出させ、
ル−プを形成させつつ溶融状態で互いに接触させて融着
させ3次元構造を形成しつつ、片面に熱可塑性非弾性樹
脂からなる連続繊維不織布を連続的に供給し、溶融状態
の3次元立体構造体と接合させた、線状が溶融状態の補
強層を接合した網状構造体両面を引取りネットで挟み込
み、網状体の表面の溶融状態の曲がりくねった吐出線条
を45°以上折り曲げて変形させて表面をフラット化す
ると同時に曲げられていない吐出線条との接触点を接着
して構造を形成後、連続して冷却媒体(通常は室温の水
を用いるのが冷却速度を早くでき、コスト面でも安くな
るので好ましい)で急冷して本発明の3次元立体網状構
造体化した難燃性補強網状体を得る。ノズル面と引取り
点の距離は少なくとも40cm以下にすることで吐出線条
が冷却され接触部が融着しなくなることを防ぐのが好ま
しい。吐出線条の吐出量5g/分孔以上と多い場合は1
0cm〜40cmが好ましく、吐出線条の吐出量5g/分孔
未満と少ない場合は5cm〜20cmが好ましい。難燃性補
強網状体の厚みは溶融状態の3次元立体構造体両面を挟
み込む引取りネットの開口幅(引取りネット間の間隔)
で決まる。本発明では上述の理由から引取りネットの開
口幅は5mm以上とする。次いで水切り乾燥するが冷却媒
体中に界面活性剤等を添加すると、水切りや乾燥がしに
くくなったり、熱可塑性弾性樹脂が膨潤することもあり
好ましくない。尚、ノズル面と樹脂を固化させる冷却媒
体上に設置した引取りコンベアとの距離、樹脂の溶融粘
度、オリフィスの孔径と吐出量などにより所望のループ
径や線径をきめられる。冷却媒体上に設置した間隔が調
整可能な一対の引取りコンベアで溶融状態の吐出線条を
挟み込み停留させることで互いに接触した部分を融着さ
せつつ連続的に供給される連続繊維不織布とも接合融着
させ、連続して冷却媒体中に引込み固化させ網状構造体
を形成する時、上記コンベアの間隔を調整することで、
融着した網状体が溶融状態でいる間で厚み調節が可能と
なり、所望の厚みのものが得られる。コンベア速度も速
すぎると、接触点の形成が不充分になったり、融着点が
充分に形成されるまでに冷却され、接触部の融着が不充
分になる場合がある。また、速度が遅過ぎると溶融物が
滞留し過ぎ、密度が高くなるので、所望の見掛け密度に
適したコンベア速度を設定する必要がある。なお、連続
的に供給される連続繊維不織布の供給速度は引取りコン
ベアの表面速度と同一にしないと引きつれや弛みを生じ
クッションの補強機能が低下するので好ましくない。本
発明の好ましい方法としては、一旦冷却後、一体成形し
て製品化に至る任意の工程で熱可塑性弾性樹脂の融点よ
り少なくとも10℃以下の温度でアニ−リングよる疑似
結晶化処理を行い難燃性補強網状体又は製品を得るのが
より好ましい製法である。疑似結晶化処理温度は、少な
くとも融点(Tm)より10℃以上低く、Tanδのα
分散立ち上がり温度(Tαcr)以上で行う。この処理
で、融点以下に吸熱ピ−クを持ち、疑似結晶化処理しな
いもの(吸熱ピ−クを有しないもの)より耐熱耐へたり
性が著しく向上する。本発明の好ましい疑似結晶化処理
温度は(Tαcr+10℃)から(Tm−20℃)であ
る。単なる熱処理により疑似結晶化させると耐熱耐へた
り性が向上する。が更には、10%以上の圧縮変形を付
与してアニ−リングすることで耐熱耐へたり性が著しく
向上するのでより好ましい。また、一旦冷却後、乾燥工
程を経する場合、乾燥温度をアニ−リング温度とするこ
とで同時に疑似結晶化処理を行うができる。また、製品
化する工程で別途疑似結晶化処理を行うができる。次い
で所望の長さまたは形状に切断してクッション材に用い
る。
Next, the manufacturing method of the present invention will be described. According to the manufacturing method of the present invention, the soft segment amount (A% by weight) and the phosphorus content (Bppm) are 60 A compared with the multi-row nozzle having a plurality of orifices.
A thermoplastic elastic resin satisfying the relationship of + 200 ≦ B ≦ 100,000 is distributed to each nozzle orifice, and at a melting temperature higher than the melting point of the thermoplastic resin by 20 ° C. or more and less than 80 ° C.,
A continuous fiber non-woven fabric made of a thermoplastic non-elastic resin having a phosphorus content of 1000 ppm or more is bonded to one surface while discharging downward from the nozzle, contacting each other in a molten state and fusing to form a three-dimensional structure. This is a method for producing a flame-retardant reinforced mesh body which is sandwiched by a take-up device and cooled in a cooling tank. In the present invention, as described above, a method of adding a phosphorus compound at the time of polymerization and copolymerization and a method of adding a phosphorus compound after polymerization and mixing and kneading can be performed. The mixing and kneading can be performed by using a twin-screw kneading extruder or a single-screw extruder having a kneading function such as a dullage, a pin, or the like, which can be performed before melt extrusion or during melt extrusion. If a fixed amount of flame retardant can be supplied, kneading at the time of melt extrusion is the cheapest method. Solid flame retardant can be easily mixed with resin and supplied to the extruder so as not to segregate.However, liquid flame retardant is supplied to the kneading extruder in a fixed amount while liquid flame retardant is also measured separately. It is most desirable to take the method of kneading while supplying. For example, a method of quantitatively supplying a liquid flame retardant through a vent hole of a twin-screw kneading extruder can be exemplified. With such a method, the soft segment amount (A% by weight) and the phosphorus content (Bppm) are 6
A phosphorus content satisfying the relation of 0A + 200 ≦ B ≦ 100,000 is added to the thermoplastic elastic resin, and then melt extruded to form a reticulated body. The molten phosphorus-containing thermoplastic elastic resin is supplied to a multi-row nozzle having a plurality of orifices and discharged downward from the orifices. The melting temperature at this time is 20 ° C. to 80 ° C. higher than the melting point of the thermoplastic elastic resin. If the melting temperature is higher than 80 ° C. higher than the melting point of the thermoplastic elastic resin, thermal decomposition becomes remarkable and the rubber elastic properties of the thermoplastic elastic resin deteriorate, which is not preferable. On the other hand, unless the temperature is higher than the melting point of the thermoplastic elastic resin by 10 ° C. or more, melt fracture occurs and normal filament formation cannot be performed.
When they are contacted and fused while forming a loop after discharge, the temperature of the filaments may be lowered and the filaments may not be fused to each other, which may result in insufficient adhesion to form a reticulated body. Thus, in the present invention, the continuous linear nonwoven fabrics are bonded to one surface while the molten linear shapes are brought into contact with each other and fused to form a three-dimensional structure, so that the molten linear shapes can be fused to each other. If the temperature is not higher than 5 ° C, the non-woven fabric and the linear fusion bonding will be insufficient. The preferred melting temperature is 25 ° C to 60 ° C above the melting point
℃ higher temperature, more preferably 30 ℃ to 40 ℃ above the melting point
It is a high temperature. The shape of the orifice is not particularly limited, but may be a hollow cross section (for example, a triangular hollow shape, a round hollow shape, a shape with a protrusion, etc.) and / or an irregular cross section (for example, a triangular, Y-shaped, star-shaped cross-section secondary mode). In addition to the above effects, it is difficult for the three-dimensional structure formed by the discharge filaments in the molten state to relax the flow, and on the contrary, the flow time at the contact point is maintained for a long time to strengthen the adhesion point. It is particularly preferable because it can be When heating for adhesion as described in Japanese Patent Application Laid-Open No. 1-2075, the three-dimensional structure is easily relaxed, a planar structure is formed, and a three-dimensional three-dimensional structure becomes difficult, which is not preferable. As an effect of improving the properties of the reticulate body, the apparent bulk can be increased, the weight can be reduced, the anti-compression property can be improved, and the elasticity can be improved, which is difficult to obtain. The hollow section has a hollow ratio of 8
If it exceeds 0%, the cross section tends to be crushed, so that it is preferably 10% or more and 70% or less, more preferably 20% or more and 60% or less so that the effect of weight reduction can be exhibited. The pitch between the holes of the orifice needs to be a pitch with which the loop formed by the line can sufficiently contact. The pitch between holes is shortened for a dense structure, and the pitch between holes is lengthened for a coarse structure. The pitch between the holes of the present invention is preferably 3 mm to 20 mm, more preferably 5 mm to 10 mm. In the present invention, different densities and different fineness can be obtained as desired. The different density layer can be formed by a configuration in which the pitch between rows or the pitch between holes is also changed, or a method in which the pitch between both rows and holes is also changed. Also, if the pressure loss difference at the time of discharge is given by changing the cross-sectional area of the orifice, the principle that the discharged amount of molten thermoplastic elastic resin extruded from the same nozzle at a constant pressure becomes smaller for the orifice with larger pressure loss, is used. It is possible to manufacture a reticulated structure composed of filaments of different fineness by using a nozzle having at least a plurality of rows having different cross-sectional areas of orifices in a section in the longitudinal direction. Then, discharge downward from the nozzle,
While forming a loop, they are brought into contact with each other in a molten state and fused to form a three-dimensional structure, while continuously feeding a continuous fiber non-woven fabric made of a thermoplastic non-elastic resin on one side to form a three-dimensional solid in a molten state. Both sides of the net-like structure joined to the structure and joined to the reinforcing layer in the molten linear state are sandwiched by a take-up net, and the twisted discharge filaments on the surface of the net-like body are bent by 45 ° or more to be deformed. The surface is flattened at the same time, and at the same time the contact points with the unbent discharge line are adhered to form the structure, and then the cooling medium is continuously used (usually using room temperature water can increase the cooling speed, which is cost-effective. However, it is cheaper, which is preferable), and is rapidly cooled to obtain the flame-retardant reinforced reticulated body of the present invention having a three-dimensional solid reticulated structure. The distance between the nozzle surface and the take-off point is preferably at least 40 cm or less to prevent the discharge filament from being cooled and the contact portion not being fused. 1 if the discharge rate of discharge line is 5g / hole or more
0 cm to 40 cm is preferable, and 5 cm to 20 cm is preferable when the discharge amount of the discharge filament is less than 5 g / hole. The thickness of the flame-retardant reinforcement mesh is the opening width of the take-up net that sandwiches both surfaces of the three-dimensional structure in the molten state (the distance between the take-up nets).
Depends on. In the present invention, the opening width of the take-up net is set to 5 mm or more for the above reason. Next, it is drained and dried, but if a surfactant or the like is added to the cooling medium, draining and drying may be difficult, or the thermoplastic elastic resin may swell, which is not preferable. The desired loop diameter and wire diameter can be determined by the distance between the nozzle surface and the take-up conveyor installed on the cooling medium for solidifying the resin, the melt viscosity of the resin, the orifice hole diameter and the discharge amount, and the like. Placed on the cooling medium, a pair of take-up conveyors with adjustable spacing sandwiches the molten discharge filaments and holds them together to fuse the portions that are in contact with each other and to bond them together with the continuous fiber nonwoven fabric that is continuously supplied. When it is attached and continuously drawn into a cooling medium to form a net-like structure by solidification, by adjusting the interval of the conveyor,
The thickness can be adjusted while the fused network is in a molten state, and a desired thickness can be obtained. If the conveyor speed is too high, the formation of contact points may be insufficient, or the contact point may be cooled until the fusion point is sufficiently formed, resulting in insufficient fusion of the contact portion. Further, if the speed is too slow, the melt will stay too much and the density will increase, so it is necessary to set the conveyor speed suitable for the desired apparent density. In addition, if the supply speed of the continuous fiber nonwoven fabric continuously supplied is not the same as the surface speed of the take-up conveyor, pulling or loosening occurs and the reinforcing function of the cushion is deteriorated, which is not preferable. As a preferred method of the present invention, after cooling once, a pseudo crystallization treatment by annealing is performed at a temperature of at least 10 ° C. or lower than the melting point of the thermoplastic elastic resin in any step leading to product formation by integrally molding and flame retardance. A more preferred method is to obtain a sex-reinforced network or product. The pseudo-crystallization treatment temperature is at least 10 ° C. lower than the melting point (Tm), and the tan α
The temperature is higher than the dispersion rising temperature (Tαcr). By this treatment, the heat-resistant sag resistance is remarkably improved as compared with the one having no endothermic peak (having no endothermic peak) having an endothermic peak below the melting point. The preferred pseudo-crystallization treatment temperature of the present invention is (Tαcr + 10 ° C) to (Tm-20 ° C). If it is pseudo-crystallized by simple heat treatment, heat resistance and sag resistance are improved. However, it is more preferable to impart compressive deformation of 10% or more and anneal to significantly improve the heat resistance and sag resistance. When the drying step is performed after cooling once, the pseudo crystallization treatment can be performed at the same time by setting the drying temperature to the annealing temperature. Also, a pseudo crystallization treatment can be separately performed in the process of commercialization. Then, it is cut into a desired length or shape and used as a cushion material.

【0017】本発明の難燃性補強網状体をクッション用
いる場合、その使用目的、使用部位により使用する樹
脂、繊度、ル−プ径、嵩密度を選択する必要がある。例
えば、ソフトなタッチと適度の沈み込みと張りのある膨
らみを付与するためには、低密度で細い繊度、細かいル
−プ径にするのが好ましく、中層のクッション機能も発
現させるには、共振振動数を低くし、適度の硬さと圧縮
時のヒステリシスを直線的に変化させて体型保持性を良
くし、耐久性を保持させるために、中密度で太い繊度、
やや大きいル−プ径の層と低密度で細い繊度、細かいル
−プ径の層を積層一体化した構造にするのが好ましい。
また、3次元構造を損なわない程度に成形型等を用いて
使用目的にあった形状に成形して側地を被せ車両用座
席、船舶用座席、ベット、椅子、家具等に用いることが
できる。勿論、用途との関係で要求性能に合うべく他の
素材、例えば、異なる網状体、短繊維集合体からなる硬
綿クッション材、不織布等と組合せて用いることも可能
である。また、樹脂製造過程以外でも性能を低下させな
い範囲で製造過程から成形体に加工し、製品化する任意
の段階で難燃化、防虫抗菌化、耐熱化、撥水撥油化、着
色、芳香等の機能付与を薬剤添加等の処理加工ができ
る。
When using the cushion of the flame-retardant reinforcing net according to the present invention, it is necessary to select the resin to be used, the fineness, the loop diameter and the bulk density depending on the purpose of use and the site of use. For example, in order to impart a soft touch, moderate depression and bulging with tension, it is preferable to have a low density and fine fineness and a fine loop diameter. Low frequency, moderate hardness and linear change of hysteresis at the time of compression to improve body retention, and to maintain durability, medium density, thick fineness,
It is preferable to have a structure in which a layer having a rather large loop diameter and a layer having a low density, a fine fineness, and a fine loop diameter are laminated and integrated.
Further, it can be used for vehicle seats, boat seats, beds, chairs, furniture, etc. by molding it into a shape suitable for the purpose of use by using a molding die or the like to the extent that the three-dimensional structure is not impaired. Of course, it is also possible to use it in combination with other materials such as a different mesh body, a hard cotton cushion material composed of a short fiber aggregate, a non-woven fabric or the like so as to meet the required performance in relation to the application. In addition, other than the resin manufacturing process, the molded product is processed from the manufacturing process to the extent that performance is not deteriorated, and at any stage of commercialization, it becomes flame retardant, insecticidal, antibacterial, heat resistant, water / oil repellent, colored, aroma, etc. It is possible to perform the processing such as the addition of chemicals to add the function.

【0018】[0018]

【実施例】以下に実施例で本発明を詳述する。EXAMPLES The present invention will be described in detail below with reference to examples.

【0019】なお、実施例中の評価は以下の方法で行っ
た。 1.融点(Tm)および融点以下の吸熱ピ−ク 島津製作所製TA50,DSC50型示差熱分析計を使
用し、昇温速度20℃/分で測定した吸発熱曲線から吸
熱ピ−ク(融解ピ−ク)温度を求めた。 2.Tαcr ポリマ−を融点+10℃に加熱して、厚み約300μm
のフイルムを作成して、オリエンテック社製バイブロン
DDVII型を用い、110Hz、昇温速度1℃/分で測
定したTanδ(虚数弾性率M”と弾性率の実数部分
M’との比M”/M’)のゴム弾性領域から融解領域へ
の転移点温度に相当するα分散の立ち上がり温度。 3.見掛け密度 試料を15cm×15cmの大きさに切断し、4か所の高さ
を測定し、体積を求め試料の重さを体積で徐した値で示
す。(n=4の平均値) 4.線条の繊度 試料を10箇所から各線条部分を切り出し、アクリル樹
脂で包埋して断面を削り出し切片を作成して断面写真を
得る。各部分の断面写真より各部の断面積(Si)を求
める。また、同様にして得た切片をアセトンでアクリル
樹脂を溶解し、真空脱泡して密度勾配管を用いて40℃
にて測定した比重(SGi)を求める。ついで次式より
線状の9000mの重さを求める。(単位cgs) 繊度=〔(1/n)ΣSi×SGi〕×900000 5.融着 試料を目視判断で融着しているか否かを接着している繊
維同士を手で引っ張って外れないか否かで外れないもの
を融着していると判断する。 6.補強効果 試料を30cm×30cmの大きさに切り出し、直径24cm
の鉄球に鎖を接続した鉄球が30cm上から試料の上に自
由落下できる装置にて、0.5Hzのサイクルで100回
鉄球を試料の中央上に落下させて、試料の損傷の程度を
以下の基準で判定した。◎:損傷なし。○:損傷軽度。
△:構造が部分的に破壊した。×:構造が殆ど破壊して
る。(n=3の平均値) 7.耐熱耐久性(70℃残留歪) 試料を15cm×15cmの大きさに切断し、50%圧縮し
て70℃乾熱中22時間放置後冷却して圧縮歪みを除き
1日放置後の厚み(b)を求め、処理前の厚み(a)か
ら次式、即ち(a−b)/a×100より算出する。単
位%(n=3の平均値) 8.繰返し圧縮歪 試料を15cm×15cmの大きさに切断し、島津製作所製
サ−ボパルサ−にて、25℃65%RH室内にて50%
の厚みまで1Hzのサイクルで圧縮回復を繰り返し2万
回後の試料を1日放置後の厚み(b)を求め、処理前の
厚み(a)から次式、即ち(a−b)/a×100より
算出する。単位%(n=3の平均値) 9.難燃性 F−MVSS302法により、難燃基準(60秒以下で
消炎する)を満たすものを合格、満たさないものを不合
格と判定した。 10. 燃焼ガスの毒性指数 JIS−K−7217の方法で測定した各燃焼ガス量
(mg)を10分間吸入した時の致死量(mg/10リ
ットル)で除した値の積算値で示す。 11. 座り心地 常法により公知の複合紡糸機にて、後述する熱可塑性弾
性樹脂A−1をシ−ス成分、A−2をコア成分となるよ
うに個々に溶融してオリフィス直前で分配し、各吐出量
を50/50重量比で、単孔当たり1.6g/分孔
(0.8g/分:0.8g/分)として紡糸温度245
℃にて吐出し、紡糸速度3500m/分にて得た繊度が
4.1デニ−ル、乾熱160℃での収縮率8%の糸を収
束してトウ状でクリンパ−にて機械巻縮を付与し、64
mmに切断してシ−スコア断面の熱可塑性弾性樹脂からな
る熱接着繊維を得た。母材繊維は、常法により、極限粘
度0.63と0.56のPETを重量比50/50にて
分配し、単孔当たりの吐出量3.0g/分(1.5g/
分:1.5g/分)として紡糸温度285℃にてC型オ
リフィスより吐出し、紡糸速度1300m/分で複合紡
糸し、次いで70℃及び180℃にて2段延伸して得た
延伸糸を64mmに切断し、乾熱160℃にて巻縮を発現
させて得た6デニ−ル、初期引張り抵抗度38g/デニ
−ルの立体巻縮糸を得た。得られた熱接着繊維(30重
量%)及び母材繊維(70重量%)を混合しオ−プナ−
にて予備開繊した後カ−ドで開繊して得たウエッブを目
付け500g/m2 に積層したカ−ドウエッブを、バケ
ットシ−トの形状に切断した多層網状体の表面側に、成
形したクッションの見掛けの嵩密度を0.05g/cm3
となるように積層して熱成形用雌金型に入れ、牡金型で
圧縮して詰め込み200℃の熱風にて5分間熱接着成形
してバケットシ−ト状に成形したクッションに東洋紡績
製ハイムからなるポリエステルモケットの側地を被っ
て、座席用フレ−ムにセットして座部は4か所、背部は
6か所の側地止めを入れた座席を作成し、30℃RH7
5%室内で作成した座席にパネラ−を座らせ以下の評価
をおこなった。(n=5) (1) 床つき感:座ったときの「どすん」と床に当たった
感じの程度を感覚的に定性評価した。感じない;◎、殆
ど感じない;○、やや感じる;△、感じる;× (2) 蒸れ感:2時間座っていて、臀部やふと股の内側の
座席と接する部分が蒸れた感じを感覚的に定性評価し
た。殆ど感じない:◎、僅かに蒸れを感じる;○、やや
蒸れを感じる;△、蒸れを著しく感じる;× (3) 8時間以内でどの程度我慢して座席に座っていられ
るか:1時間以内;×、2時間以内;△、4時間以内;
○、4時間以上;◎ (4) 4時間座席に座らせたときの腰の疲れ程度を感覚的
に定性評価した。無し;◎、殆ど疲れない;○、やや疲
れる;△、非常に疲れる;× (5) 総合評価: (1)から(4) までの評価の◎を4点、○
を3点、△を2点、×を1点として12点以上で△を含
まないもの;非常に良い(◎)、12点以上で△を含む
もの;良い(○)、10点以上で×を含まないもの;や
や悪い(△)、×を含むもの;悪い(×)として評価し
た。
The evaluations in the examples were carried out by the following methods. 1. Melting point (Tm) and endothermic peak below melting point TA50, DSC50 type differential thermal analyzer manufactured by Shimadzu Corp. was used to measure the endothermic peak (melting peak) from the endothermic curve measured at a heating rate of 20 ° C / min. -H) The temperature was determined. 2. Heat the Tαcr polymer to a melting point of + 10 ° C to a thickness of approximately 300 μm.
Film was prepared and measured using a Vibron DDVII type manufactured by Orientec Co., Ltd. at a rate of 110 Hz and a heating rate of 1 ° C./min. Tan δ (the ratio of the imaginary elastic modulus M ″ to the real part M ′ of the elastic modulus M ″ / The rising temperature of α dispersion corresponding to the transition temperature from the rubber elastic region to the melting region of M ′). 3. Apparent density The sample is cut into a size of 15 cm x 15 cm, the heights at four locations are measured, the volume is calculated, and the weight of the sample is divided by the volume. (Average value of n = 4) 4. Fineness of the filaments Each filament portion is cut out from 10 locations, embedded in acrylic resin, the cross section is cut out to prepare a section, and a cross-section photograph is obtained. The cross-sectional area (Si) of each part is obtained from the cross-sectional photograph of each part. In addition, a piece obtained in the same manner was dissolved in acrylic resin with acetone, degassed in vacuum, and a density gradient tube was used to 40 ° C.
Determine the specific gravity (SGi) measured in. Then, a linear weight of 9000 m is obtained from the following equation. (Unit: cgs) Fineness = [(1 / n) ΣSi × SGi] × 9000000 5. Whether or not the fusion-bonded sample is fused by visual judgment Is it not possible to pull the fibers adhering together by hand to separate them? It is judged that something that does not come off is fused. 6. Reinforcing effect Cut a sample into a size of 30 cm x 30 cm, diameter 24 cm
The degree of damage of the sample by dropping the iron ball 100 times with 0.5Hz cycle on the center of the sample with the device that the iron ball with the chain connected to the Was judged according to the following criteria. ⊚: No damage. ○: Slight damage.
Δ: The structure was partially destroyed. X: The structure is almost destroyed. (Average value of n = 3) 7. Heat resistance and durability (residual strain at 70 ° C) The sample was cut into a size of 15 cm x 15 cm, compressed by 50%, left in dry heat at 70 ° C for 22 hours, and then cooled to reduce compression strain. Except for this, the thickness (b) after standing for 1 day is calculated, and is calculated from the thickness (a) before the treatment by the following equation, that is, (ab) / a × 100. Unit% (average value of n = 3) 8. Cyclic compressive strain sample is cut into a size of 15 cm × 15 cm, and it is 50% in a RH chamber at 25 ° C. and 65% at a Shimadzu Servo Pulser.
The thickness (b) after leaving the sample for 20,000 times after repeating compression recovery at a cycle of 1 Hz up to the thickness of 1 is calculated from the thickness (a) before the treatment, that is, (ab) / ax Calculated from 100. Unit% (average value of n = 3) 9. Flame retardance According to the F-MVSS302 method, those satisfying the flame retardancy standard (extinguishing flame in 60 seconds or less) were judged as pass, and those not satisfying it were judged as fail. 10. Combustion gas toxicity index Shown as an integrated value of values obtained by dividing each combustion gas amount (mg) measured by the method of JIS-K-7217 by the lethal dose (mg / 10 liter) when inhaled for 10 minutes. 11. Sedentary comfort Using a known composite spinning machine, the thermoplastic elastic resin A-1 to be described later is individually melted so as to become the sheath component and A-2 as the core component, and distributed immediately before the orifice. The spinning temperature was 245, with each discharge rate being 50/50 weight ratio and 1.6 g / min per hole (0.8 g / min: 0.8 g / min).
At a spinning rate of 3500 m / min, the yarn having a fineness of 4.1 denier and a shrinkage rate of 8% at a dry heat of 160 ° is converged into a tow-shaped crimp. Is given, 64
It was cut into mm to obtain a heat-bonding fiber made of a thermoplastic elastic resin having a cross section of sheath core. As the base material fiber, PET having an intrinsic viscosity of 0.63 and 0.56 was distributed at a weight ratio of 50/50 by a conventional method, and the discharge amount per single hole was 3.0 g / min (1.5 g / min.
Min: 1.5 g / min) at a spinning temperature of 285 ° C., discharged from a C type orifice, composite spinning at a spinning speed of 1300 m / min, and then drawn in two stages at 70 ° C. and 180 ° C. to obtain a drawn yarn. A three-dimensional crimped yarn having a denier of 6 denier and an initial tensile resistance of 38 g / denier was obtained by cutting into 64 mm and causing crimping at a dry heat of 160 ° C. The resulting heat-bonded fiber (30% by weight) and the base material fiber (70% by weight) were mixed to form an opener.
A web obtained by pre-opening with a card and opening with a card and having a basis weight of 500 g / m 2 was laminated to form a carded web on the surface side of a multi-layer mesh body cut into the shape of a bucket sheet. The apparent bulk density of the cushion is 0.05 g / cm 3
To be laminated into a thermoforming female mold, compressed with an oyster mold, and packed and heat-bonded with hot air at 200 ° C for 5 minutes to form a bucket sheet-shaped cushion. Cover the side of polyester moquette consisting of, and set it on the seat frame to create a seat with 4 side seats and 6 side backs and 30 ° C RH7
5% A paneler was allowed to sit on the seat created in the room and the following evaluation was performed. (N = 5) (1) Feeling on the floor: The degree of "dosun" when sitting and the feeling of hitting the floor were qualitatively and qualitatively evaluated. Not felt; ◎, hardly felt; ○, slightly felt; △, felt; × (2) Feeling of stuffiness: Feeling stuffy when sitting for 2 hours and the buttocks and the part of the crotch that contacts the seat inside the crotch Qualitatively evaluated. Almost no feeling: ◎, slightly stuffy; ○, slightly stuffy; △, significantly stuffy; × (3) How long you can sit in the seat within 8 hours: within 1 hour; × within 2 hours; △ within 4 hours;
○ 4 hours or more; ◎ (4) A qualitative qualitative evaluation was performed on the degree of waist fatigue when the user sat in the seat for 4 hours. None; ◎, hardly tired; ○, slightly tired; △, very tired; × (5) Overall evaluation: 4 points from ◎ of the evaluations from (1) to (4), ○
3 points, △ is 2 points, × is 1 point and does not include Δ with 12 points or more; very good (⊚), that with 12 points or more; Good (○), 10 points or more is x It was evaluated as those which did not contain; those which were somewhat bad (Δ) and those which contained x; bad (x).

【0020】実施例1 ポリエステル系エラストマ−として、ジメチルテレフタ
レ−ト(DMT)又は、ジメチルナフタレ−ト(DM
N)と1・4ブタンジオ−ル(1・4BD)を少量の触
媒と仕込み、常法によりエステル交換後、ポリテトラメ
チレングリコ−ル(PTMG)を添加して昇温減圧しつ
つ重縮合せしめポリエ−テルエステルブロック共重合エ
ラストマ−を生成させ、次いで抗酸化剤2%を添加混合
練込み後ペレット化し、50℃48時間真空乾燥して得
られた熱可塑性弾性樹脂原料の処方を表1に示す。
Example 1 As a polyester elastomer, dimethyl terephthalate (DMT) or dimethyl naphthalate (DM) was used.
N) and 1.4 butanediol (1.4 BD) were charged with a small amount of a catalyst, and after transesterification by a conventional method, polytetramethylene glycol (PTMG) was added and polycondensation was performed while heating and depressurizing. -Formation of terester block copolymer elastomer, then addition and mixing of 2% of antioxidant, kneading, pelletizing, and vacuum drying at 50 ° C for 48 hours are shown in Table 1. .

【0021】[0021]

【表1】 [Table 1]

【0022】幅50cm、長さ5cmのノズル有効面に幅方
向の孔間ピッチ10mm、長さ方向の孔間ピッチ5mmの千
鳥配列としたオリフィス形状は外径2mm、内径1.6mm
でトリプルブリッジの中空形成性断面としたノズルに、
得られたA−1及びA−2を、2本の混練り機能をもつ
押出機にて、別々に定量供給しつつ、難燃剤として既存
化学物質番号(3)−3735を燐含有量10000p
pmとなるように添加して溶融混練りし、A−1とA−
2をオリフィス直前でA−1をシ−ス成分に、A−2を
コア成分となるように(シ−ス/コア:50/50重量
比)オリフィス背面に分配し、245℃にて単孔当たり
の吐出量2.0g/分にてノズル下方に吐出させ、ノズ
ル面10cm下に冷却水を配し、幅60cmのステンレス製
エンドレスネットを平行に5cm間隔で一対の引取りコン
ベアを水面上に一部出るように配して、一方のコンベア
にニップしながら、幅50cmにスリットした酸成分とし
てジメチルテレフタル酸と10〔2・3・ジ(2・ヒド
ロキシエトキシ)−カルボニルプロピル〕9・10・ジ
ヒドロ・9・オキサ・10ホスファフェナレンス・10
オキシロを燐含有量で5000ppmとなる量と、グリ
コ−ル成分に1・4BDを少量の触媒と仕込み、常法に
よりエステル交換後、昇温減圧しつつ重縮合せしめて得
た相対粘度1.0の共重合PBT繊維からなる目付け1
00g/m2のニ−ドルパンチされたスパンボンド不織
布を連続的に片側から供給した上に該溶融状態の吐出線
状を引取り、接触部分を融着させつつ、スパンボンド不
織布とも融着させ、片側がスパンボンド不織布からなる
網状構造を形成した積層体の両面を挟み込みつつ毎分1
mの速度で25℃の冷却水中へ引込み固化させ、次いで
100℃の熱風乾燥機中で20分疑似結晶化処理した
後、所定の大きさに切断して得られた難燃性補強網状体
の特性を表2に示す。実施例1の難燃性補強網状体は断
面形状がシースコア構造の三角おむすび型中空断面で中
空率が40%、繊度が9000デニ−ル、燐含有量10
000ppm(60A+200=2780ppm)の線
条で形成しており、平均の見掛け密度が0.047g/
cm3 であった。実施例1は柔らかい弾性樹脂の特性が生
かせた難燃性補強網状構造のため耐熱性、常温での耐久
性、座り心地ともに優れたクッション機能を有し、難燃
性で燃焼ガスの毒性指数も低い安全性の高いクッション
材で、補強効果も実用使用に耐えるものであった。評価
用に作成した座席も性能が優れていることが判る。
Orifice shapes having a staggered arrangement with a hole-to-hole pitch of 10 mm in the width direction and a hole-to-hole pitch of 5 mm on the effective surface of a nozzle having a width of 50 cm and a length of 5 cm have an outer diameter of 2 mm and an inner diameter of 1.6 mm.
With a nozzle with a triple bridge hollow forming cross section,
The existing chemical substance number (3) -3735 was added as a flame retardant to the obtained A-1 and A-2 as a flame retardant while supplying them in a fixed amount separately in an extruder having two kneading functions, and a phosphorus content of 10,000 p
It is added so as to be pm and melt-kneaded, and A-1 and A-
Dispense 2 into the rear face of the orifice so that A-1 is the sheath component and A-2 is the core component immediately before the orifice (sees / core: 50/50 weight ratio), and a single hole is made at 245 ° C. A discharge amount of 2.0 g / min per discharge is made below the nozzle, cooling water is arranged 10 cm below the nozzle surface, and stainless steel endless nets with a width of 60 cm are arranged in parallel with a pair of take-up conveyors at intervals of 5 cm on the water surface. While arranging so that a part of it is exposed and nipping it on one conveyor, dimethyl terephthalic acid and 10 [2.3 · di (2-hydroxyethoxy) -carbonylpropyl] 9 · 10 · 10 as an acid component slit into a width of 50 cm. Dihydro ・ 9 ・ oxa ・ 10 phosphaphenalene ・ 10
Relative viscosity of 1.0 obtained by charging oxylo with a phosphorus content of 5000 ppm and a small amount of 1.4BD as a glycol component with a small amount of catalyst, transesterifying by a conventional method, and then polycondensing while heating and depressurizing. Of a copolymerized PBT fiber of 1
00 g / m 2 of the needle-punched spunbonded nonwoven fabric was continuously supplied from one side, and then the discharge line in the molten state was taken out, and the spunbonded nonwoven fabric was also fused while melting the contact portion. One side per minute while sandwiching both sides of a laminate having a net-like structure formed of spunbonded nonwoven fabric on one side
of the flame-retardant reinforced reticulate body obtained by pulling it into cooling water at 25 ° C. at a speed of m to solidify it, then performing pseudo-crystallization treatment for 20 minutes in a hot air dryer at 100 ° C., and then cutting it into a predetermined size. The characteristics are shown in Table 2. The flame-retardant reinforced reticulate body of Example 1 has a triangular rice ball-shaped hollow cross section having a sheath core structure, a hollow ratio of 40%, a fineness of 9000 denier, and a phosphorus content of 10
It is formed by filaments of 000 ppm (60 A + 200 = 2780 ppm), and the average apparent density is 0.047 g /
It was cm 3 . Example 1 has a flame-retardant reinforced net structure that makes use of the characteristics of the soft elastic resin, and thus has a cushioning function that is excellent in heat resistance, durability at room temperature, and sitting comfort, and is also flame-retardant and has a combustion gas toxicity index. It is a cushioning material with low safety and a reinforcing effect that can withstand practical use. It can be seen that the seat created for evaluation also has excellent performance.

【0023】[0023]

【表2】 [Table 2]

【0024】実施例2 ジメチルイソフタレ−ト(DMI)20モル%とDMT
80モル%及び1・4ブタンジオ−ル(1・4BD)を
少量の触媒と仕込み、実施例1の方法と同様にして得た
ポリエステル系熱可塑性弾性樹脂の処方を表1に示す。
A−3に燐含有量8000ppmとなるように難燃剤を
添加し、オリフィスの孔形状を孔径φ1mmの丸断面とし
たノズルを用いた以外実施例1と同様にして得た弾性複
合網状体の特性を表−2に示す。なお、中実丸断面の繊
度が9000デニ−ル、燐含有量8000ppm(60
A+200=3320ppm)の線条から形成されてお
り、網状体の平均の見掛け密度が0.046g/cm3
あった。表2で明らかなごとく、実施例2は耐熱性と常
温での耐久性は実用上使用可能で、座り心地の優れたク
ッション機能を有し、難燃性で、燃焼ガスの毒性指数も
低い安全性の高いクッション材であり、補強効果は実用
使用が可能なものであった。評価用に作成した座席も優
れていることが判る。
Example 2 20 mol% of dimethyl isophthalate (DMI) and DMT
Table 1 shows the formulation of the polyester-based thermoplastic elastic resin obtained in the same manner as in Example 1 by charging 80 mol% and 1.4-butanediol (1.4-BD) with a small amount of a catalyst.
Properties of the elastic composite reticulate body obtained in the same manner as in Example 1 except that a flame retardant was added to A-3 so that the phosphorus content was 8000 ppm, and a nozzle having a circular cross section with an orifice hole shape of φ1 mm was used. Is shown in Table-2. The fineness of the solid round cross section is 9000 denier and the phosphorus content is 8000 ppm (60
A + 200 = 3320 ppm), and the average apparent density of the reticulate body was 0.046 g / cm 3 . As is clear from Table 2, Example 2 has practically usable heat resistance and durability at room temperature, has a cushioning function with excellent sitting comfort, is flame-retardant, and has a low combustion gas toxicity index. It was a cushioning material with high properties, and its reinforcing effect could be used practically. It can be seen that the seat created for evaluation is also excellent.

【0025】実施例3 ポリウレタン系エラストマ−として、4・4’ジフェニ
ルメタンジイソシアネ−ト(MDI)とPTMG及び鎖
延長剤として1・4BDを添加して重合し次いで抗酸化
剤2%を添加混合練込み後ペレット化し真空乾燥してポ
リエ−テル系ウレタンポリマ−の処方を表3に示す。
Example 3 As a polyurethane elastomer, 4,4'-diphenylmethane diisocyanate (MDI), PTMG and 1.4BD as a chain extender were added and polymerized, and then 2% of an antioxidant was added and mixed. Table 3 shows the formulation of the polyether urethane polymer after kneading, pelletizing and vacuum drying.

【0026】[0026]

【表3】 [Table 3]

【0027】得られた熱可塑性弾性樹脂B−1のみに燐
含有量12000ppmとなるように難燃剤を添加し、
溶融温度220℃とした以外実施例1と同様にして得た
弾性複合網状体の特性を表2に示す。実施例3は線条の
断面形状が三角おむすび型の中空断面で中空率は41
%、繊度が9800デニ−ル、燐含有量12000pp
m(60A+200=2480ppm)の線条から形成
されており、燐含有量12000ppmの補強層と接合
した網状体の平均の見掛け密度が0.047g/cm3
あった。実施例3は柔らかいウレタンの特性を生かした
難燃性補強網状体で耐熱性、常温での耐久性、座り心地
ともに優れたクッション機能を有し、難燃性で、燃焼ガ
スの毒性指数も低い安全性の高いクッション材で、補強
効果も実用使用に耐えるものであった。評価用に作成し
た座席も優れていることが判る。
A flame retardant was added to the obtained thermoplastic elastic resin B-1 only so that the phosphorus content would be 12000 ppm.
Table 2 shows the properties of the elastic composite network obtained in the same manner as in Example 1 except that the melting temperature was 220 ° C. In Example 3, the cross-sectional shape of the filament is a triangular rice ball-shaped hollow cross-section and the hollow ratio is 41.
%, Fineness 9800 denier, phosphorus content 12000 pp
The average apparent density of the mesh body formed of filaments of m (60A + 200 = 2480 ppm) and joined to the reinforcing layer having a phosphorus content of 12000 ppm was 0.047 g / cm 3 . Example 3 is a flame-retardant reinforced reticulate body that takes advantage of the characteristics of soft urethane, has a cushioning function that is excellent in heat resistance, durability at room temperature, and sitting comfort, is flame-retardant, and has a low toxicity index of combustion gas. It is a cushion material with high safety, and the reinforcing effect was that it could withstand practical use. It can be seen that the seat created for evaluation is also excellent.

【0028】比較例1 燐含有量で5000ppmとなるように10〔2・3・
ジ(2・ヒドロキシエトキシ)−カルボニルプロピル〕
9・10・ジヒドロ・9・オキサ・10ホスファフェナ
レンス・10オキシロを共重合した固有粘度0.63の
ポリエチレンテレフタレ−ト(PET)を溶融温度28
5℃とし、疑似結晶化処理しなかった以外、実施例2と
同様にして得た線条の繊度が比較例1は8800デニ−
ル、燐含有量が5000ppmで、燐含有量5000p
pmの補強層と接合した網状体の見掛け密度が0.04
7g/cm3 の難燃性補強網状体の特性を表2に示す。比
較例1は難燃性は有るが、熱可塑性非弾性ポリエステル
からなる網状体のため耐熱耐久性が悪く、硬くて座り心
地も悪いクッション材で補強効果の試験では構造体が破
壊した例である。
COMPARATIVE EXAMPLE 1 The phosphorus content was adjusted to 5000 ppm so that the content was 10 [2.3.
Di (2-hydroxyethoxy) -carbonylpropyl]
Polyethylene terephthalate (PET) having an intrinsic viscosity of 0.63 copolymerized with 9,10, dihydro, 9, oxa, 10 phosphaphenalenes, 10 oxylo is melted at 28
The fineness of the filament obtained in the same manner as in Example 2 was 8800 deniers except that the temperature was 5 ° C. and the pseudo-crystallization treatment was not performed.
And phosphorus content is 5000ppm, phosphorus content 5000p
The apparent density of the mesh body joined to the pm reinforcement layer is 0.04.
Table 2 shows the characteristics of the flame-retardant reinforced reticulate body of 7 g / cm 3 . Comparative Example 1 is an example in which the structure is broken in the test of the reinforcing effect by the cushioning material which is hard and uncomfortable to sit in because it is flame-retardant, but the heat resistance and durability are poor because it is a reticulated body made of thermoplastic inelastic polyester. .

【0029】比較例2 補強層に使う連続繊維不織布を使わず、疑似結晶化処理
をしなかった以外、実施例2と同様にして得た線条の繊
度が9000デニ−ル、燐含有量が8000ppm(6
0A+200=3320ppm)、見掛け密度が0.0
44g/cm3 で補強層のない網状体は、難燃性は合格
し、座り心地も良好だが、耐熱性、耐久性がやや劣り、
補強材がないので補強効果の試験では構造体が破壊した
例である。
Comparative Example 2 A filament obtained in the same manner as in Example 2 except that the continuous fiber non-woven fabric used for the reinforcing layer was not used and the pseudo-crystallization treatment was not performed had a fineness of 9000 denier and a phosphorus content of 8000ppm (6
0A + 200 = 3320ppm), apparent density is 0.0
The net-like body with a reinforcing layer of 44 g / cm 3 passed the flame retardancy and had a good sitting comfort, but was slightly inferior in heat resistance and durability.
Since there is no reinforcing material, the structure was destroyed in the test of the reinforcing effect.

【0030】比較例3 燐含有量で100ppmとなるように10〔2・3・ジ
(2・ヒドロキシエトキシ)−カルボニルプロピル〕9
・10・ジヒドロ・9・オキサ・10ホスファフェナレ
ンス・10オキシロを共重合したPBTからなる連続繊
維不織布を補強層として、疑似結晶化処理をしなかった
以外、実施例2と同様にして得た線条の繊度が9000
デニ−ル、燐含有量が8000ppm(60A+200
=3320ppm)、燐含有量100ppmの補強層と
接合した網状体の見掛け密度が0.048g/cm3 の網
状体は、座り心地も良好だが、耐熱性、耐久性がやや劣
り、補強材が難燃化されていないので難燃性は不合格と
なる例である。
Comparative Example 3 10 [2.3-di (2-hydroxyethoxy) -carbonylpropyl] 9 so that the phosphorus content was 100 ppm
Obtained in the same manner as in Example 2 except that the continuous fiber nonwoven fabric composed of PBT copolymerized with 10-dihydro-9-oxa-10-phosphaphenalene-10-oxylo was used as a reinforcing layer and no pseudo-crystallization treatment was performed. The fineness of the streaks is 9000
Denier and phosphorus content is 8000ppm (60A + 200
= 3320 ppm), the net-like body joined to the reinforcing layer having a phosphorus content of 100 ppm and having an apparent density of 0.048 g / cm 3 has good sitting comfort, but is slightly inferior in heat resistance and durability and is difficult to reinforce. Since it is not combusted, flame retardancy is an example of failure.

【0031】比較例4 A−3に燐含有量が200ppmとなるように難燃剤を
添加し、疑似結晶化処理をしなかった以外、実施例2と
同様にして得た線条の繊度が9000デニ−ル、燐含有
量が200ppm(60A+200=3320pp
m)、燐含有量5000ppmの補強層と接合した網状
体の見掛け密度が0.048g/cm3 の網状体は、座り
心地も良好だが、耐熱性、耐久性がやや劣り、網状体が
難燃化されていないので難燃性は不合格となる例であ
る。
Comparative Example 4 A filament was obtained in the same manner as in Example 2 except that a flame retardant was added to A-3 so that the phosphorus content was 200 ppm and the pseudo-crystallization treatment was not performed. Denier and phosphorus content is 200ppm (60A + 200 = 3320pp
m), a net-like body having an apparent density of 0.048 g / cm 3 joined to a reinforcing layer having a phosphorus content of 5000 ppm has good sitting comfort, but is slightly inferior in heat resistance and durability, and the net-like body is flame-retardant. Flame retardancy is an example of failure because it has not been converted.

【0032】比較例5 210g/分の吐出量で、ノズル面下5cmに引取りコン
ベアネットを配して引取り速度1.2m/分にて引取
り、疑似結晶化処理しなかった以外、実施例2と同様に
して得た繊度が1800デニ−ル、燐含有量が9000
ppm(60A+200=3320ppm)の網状体に
燐含有量5000ppmの補強層が接合された平均の見
掛け密度が0.09g/cm3 の網状体は、難燃性は合格
するが、密度が低すぎて座り心地が著しく劣り、耐熱
性、耐久性も不充分なクッション材で、補強材の形態保
持性も劣る例である。
Comparative Example 5 A discharge amount of 210 g / min, a take-up conveyor net placed 5 cm below the nozzle surface, and a take-up speed of 1.2 m / min. The fineness obtained in the same manner as in Example 2 is 1800 denier and the phosphorus content is 9000.
A reticulate body having an average apparent density of 0.09 g / cm 3 in which a reinforcing layer having a phosphorus content of 5000 ppm is joined to a reticulate body of ppm (60A + 200 = 3320 ppm) passes flame retardancy, but the density is too low. This is an example of a cushioning material that is extremely inferior in sitting comfort, has insufficient heat resistance and durability, and has poor shape retention of the reinforcing material.

【0033】比較例6 単孔当たりの吐出量3g/分にて吐出させ、引取りコン
ベアネットの速度を0.3m/分とし、疑似結晶化処理
しなかった以外実施例2と同様して得た線条繊度が13
000デニ−ルで、燐含有量が9000ppm(60A
+200=3320ppm)のA−3層に燐含有量50
00ppmの補強層が接合された平均見掛け密度が0.
21g/cm3 の網状体は、難燃性はあるが、見掛け密度
が高いため座り心地がやや劣り、耐熱性、耐久性が不充
分なクッション材で、補強材の形態保持性も劣る例であ
る。
Comparative Example 6 Obtained in the same manner as in Example 2 except that the discharge amount per single hole was 3 g / min, the take-up conveyor net speed was 0.3 m / min, and no pseudo-crystallization treatment was performed. Streak fineness of 13
000 denier and phosphorus content of 9000ppm (60A
+ 200 = 3320ppm) A-3 layer has a phosphorus content of 50
The average apparent density when the reinforcing layer of 00 ppm is joined is 0.
The 21 g / cm 3 mesh is flame-retardant, but has a high apparent density, which makes it slightly inferior to sitting comfort, and is a cushioning material with insufficient heat resistance and durability. is there.

【0034】比較例7 幅50cm、長さ5cmのノズル有効面に幅方向の孔間ピッ
チ10mm、長さ方向の孔間ピッチ20mmの千鳥配列とし
たオリフィス径φ2mmとしたノズルを用いて単孔当たり
の吐出量25g/分にて吐出させて、ノズル面30cm下
に引取りコンベアネットを配して1m/分にて引き取っ
た以外、比較例2と同様にして得た線条の繊度は113
000デニ−ルで燐含有量が9000ppm(60A+
200=3320ppm)のA−3層に燐含有量500
0ppmの補強層が接合された平均見掛け密度が0.1
5g/cm3 の網状体は、難燃性はあるが、繊度が著しく
太く密度斑があるため、耐熱耐久性が悪くなり、座り心
地もやや悪くなるクッション材で、補強材の形態保持性
も劣る例である。
Comparative Example 7 Using a nozzle having a diameter of 2 mm and a staggered arrangement with a hole-to-hole pitch of 10 mm in the width direction and a hole-to-hole pitch of 20 mm on the effective surface of a nozzle having a width of 50 cm and a length of 5 cm, a single hole was used. The fineness of the filaments obtained in the same manner as in Comparative Example 2 was 113 except that the discharge rate was 25 g / min and the take-up conveyor net was placed 30 cm below the nozzle surface and the rate was 1 m / min.
Phosphorus content of 9000 denier and 9,000 ppm (60 A +
200 = 3320ppm) A-3 layer has a phosphorus content of 500
The average apparent density when the reinforcing layer of 0 ppm is joined is 0.1
The 5 g / cm 3 mesh is flame-retardant, but its fineness is remarkably thick and it has density unevenness, so it is a cushioning material that has poor heat resistance and durability, and is somewhat uncomfortable to sit on. This is an inferior example.

【0035】比較例8 スパンボンド不織布を供給しない側の引取りコンベアネ
ット表面が凸凹の引取りコンベア−を用い、疑似結晶化
処理しない以外、実施例2と同様にして得た線条繊度が
9000デニ−ルで燐含有量9000ppm(60A+
200=3320ppm)のA−3層と補強層が燐含有
量5000ppmの融着一体化した平均の見掛け密度は
0.048g/cm3 の網状体は網状体の表面が凹凸にな
っているため、見掛け密度が低いのに耐久性が劣り、熱
接着が不充分になり、臀部に異物感を与える座り心地の
悪いクッション材で、補強材の形態保持性も劣る例であ
る。
Comparative Example 8 The linear fineness obtained in the same manner as in Example 2 was 9000, except that the take-up conveyor net on the side where the spunbonded nonwoven fabric was not supplied was used and the surface of the take-up conveyor was uneven. Denier phosphorus content 9000ppm (60A +
Since 200 = 3320ppm) average apparent density of the mesh-like body of 0.048 g / cm 3 to A-3 layer and the reinforcing layer are integrated fused phosphorus content 5000ppm of the surface of the mesh body has become uneven, This is an example of a cushioning material which has a low apparent density but is inferior in durability, insufficient thermal bonding, gives a feeling of foreign matter to the buttocks and is uncomfortable to sit on, and inferior in shape retention of the reinforcing material.

【0036】比較例9 ノズル面60cm下に引取りコンベアネットを配して引き
取ったあと疑似結晶化処理をしなかった以外、実施例2
と同様の方法で得た網状体の特性の一部を表2に示す。
なお、接着状態が不良で不織布とも接着せず形態保持が
悪いため、50%圧縮時反発力、見掛け密度、補強効
果、70℃残留歪、繰返圧縮歪み、及び座り心地の評価
はしていない。比較例9は形態が固定されていないので
クッション材用ワディング層に適さない例である。
Comparative Example 9 Example 2 was repeated except that the take-up conveyor net was placed 60 cm below the nozzle surface and the pseudo-crystallization treatment was not performed after the take-up conveyor net was taken.
Table 2 shows a part of the properties of the reticulate body obtained by the same method as described above.
In addition, since the adhesive state is poor and the non-woven fabric does not adhere and the shape retention is poor, the repulsive force at 50% compression, apparent density, reinforcing effect, residual strain at 70 ° C., repeated compressive strain, and sitting comfort are not evaluated. . Comparative Example 9 is an example that is not suitable for a cushioning wadding layer because the shape is not fixed.

【0037】参考例1 幅50cm、長さ5cmのノズル有効面に幅方向の孔間ピッ
チ5mm、長さ方向の孔間ピッチ5mmの千鳥配列としたオ
リフィス径φ1mmとしたノズルを用いて吐出量22g/
分にて吐出させて、ノズル面5cm下に引取りコンベアネ
ットを配して0.2m/分にて引き取った以外、比較例
2と同様にして得た線条の繊度は92デニ−ルで燐含有
量が9000ppm(60A+200=3320pp
m)のA−3層に燐含有量5000ppmの補強層が接
合された平均見掛け密度が0.015g/cm3 の網状体
は、難燃性はあるが、耐熱耐久性がやや悪くなり、繊度
が著しく細いため座り心地が著しく悪くなるクッション
材で、補強材の形態保持性も劣る例である。
Reference Example 1 A nozzle having a width of 50 cm and a length of 5 cm and having an orifice diameter of 1 mm in a staggered arrangement with a hole-to-hole pitch of 5 mm in the width direction and a hole-to-hole pitch of 5 mm in the length direction on a nozzle effective surface of 22 mm was used to discharge 22 g. /
The fineness of the filament obtained in the same manner as in Comparative Example 2 was 92 denier, except that the take-up conveyor net was placed 5 cm below the nozzle surface and the take-up was carried out at 0.2 m / min. Phosphorus content is 9000ppm (60A + 200 = 3320pp
The reticulate body having an average apparent density of 0.015 g / cm 3 in which a reinforcing layer having a phosphorus content of 5000 ppm is joined to the A-3 layer of m) has flame retardancy, but has a slightly poor heat resistance and durability, and has a fineness. This is an example of a cushioning material whose seating comfort is remarkably deteriorated due to its extremely thin shape, and the shape retention of the reinforcing material is also poor.

【0038】参考例2 A−3に燐含有量が110000ppmとなるように難
燃剤を添加し、疑似結晶化処理をしなかった以外、実施
例2と同様にして得た線条の繊度が9000デニ−ル、
燐含有量が110000ppm(60A+200=33
20ppm)、燐含有量5000ppmの補強層と接合
した網状体の見掛け密度が0.048g/cm3 の網状体
は、A−1層に難燃剤をあまりにも多く添加し過ぎて熱
可塑性弾性樹脂の特性が著しく劣化しているため、座り
心地、耐熱性、耐久性が劣る劣悪なクッション材となる
例である。
Reference Example 2 A filament was obtained in the same manner as in Example 2 except that a flame retardant was added to A-3 so that the phosphorus content was 110000 ppm and the pseudo-crystallization treatment was not performed. Denier,
Phosphorus content is 110000ppm (60A + 200 = 33
20 ppm), a net body having an apparent density of 0.048 g / cm 3 of a net body joined with a reinforcing layer having a phosphorus content of 5000 ppm is a thermoplastic elastic resin by adding too much flame retardant to the A-1 layer. This is an example of an inferior cushioning material that is inferior in sitting comfort, heat resistance, and durability because the characteristics are remarkably deteriorated.

【0039】参考例3 燐含有量が11000ppmとなるように共重合した補
強層を用い、疑似結晶化処理をしなかった以外、実施例
2と同様にして得た線条の繊度が9000デニ−ル、燐
含有量が8000ppm(60A+200=3320p
pm)、燐含有量11000ppmの補強層と接合した
網状体の見掛け密度が0.048g/cm 3 の網状体は、
座り心地は良く、難燃性であるが、補強層に難燃剤を多
く添加し過ぎて熱可塑性非弾性樹脂の特性が劣化してい
るため、、耐熱性、耐久性がやや劣り、補強効果が無く
なる例である。
Reference Example 3 Copolymerized to have a phosphorus content of 11,000 ppm
Example except that the strong layer was used and the pseudo-crystallization treatment was not performed
The fineness of the filament obtained in the same manner as in No. 2 is 9000 denier and phosphorus.
Content is 8000ppm (60A + 200 = 3320p
pm), joined with a reinforcing layer having a phosphorus content of 11000 ppm
Apparent density of mesh is 0.048g / cm 3The net of
It is comfortable to sit on and flame-retardant, but the reinforcement layer contains many flame-retardants.
If added too much, the properties of the thermoplastic inelastic resin have deteriorated.
Therefore, the heat resistance and durability are slightly inferior and there is no reinforcement effect.
Here is an example.

【0040】実施例5 実施例1で得た複合網状体を長さ120cmに切断して、
その両面に東洋紡績製熱接着繊維4−64−TE5と東
洋紡績製立体巻縮ステープル10−64−745を30
/70重量比で混合開繊して得たカ−ドウエッブを全体
の0.05g/cm3 となるように表面側に積層圧縮して
200℃の熱風にて10分間一体熱成形して厚み7cmの
クッションを4枚作成した。得られたクッションを厚み
7cm、幅120cm、長さ50cm毎にキルティングした幅
120cm、長さ200cmの側地に入れマットレスを作成
した。このマットレスをベッドに設置し、25℃RH6
5%室内にてパネラ−4人に7時間使用させて寝心地を
官能評価した。なお、ベットにはシ−ツを掛け、掛け布
団は1.8kgのダウン/フェザ−:90/10を中綿に
したもの、枕はパネラ−が毎日使用しているものを着用
させた。評価結果は、床つき感がなく、沈み込みが適度
で、蒸れを感じない快適な寝心地のベットであった。比
較のため、密度0.04g/cm3 で厚み10cmの発泡ウ
レタン板状体で同様のマットレスを作成し、ベットに設
置して寝心地を評価した結果、床つき感は少ないが沈み
込みが大きくやや蒸れを感じる寝心地の悪いベットであ
った。
Example 5 The composite reticulate body obtained in Example 1 was cut into a length of 120 cm,
On both sides, 30 pieces of Toyobo's thermal bonding fiber 4-64-TE5 and Toyobo's three-dimensional crimp staple 10-64-745 are used.
A card web obtained by mixing and opening at a weight ratio of / 70 is laminated and compressed on the surface side so that the total weight is 0.05 g / cm 3, and thermoformed integrally with hot air at 200 ° C. for 10 minutes to obtain a thickness of 7 cm. I made 4 cushions. The obtained cushion was quilted at a thickness of 7 cm, a width of 120 cm, and a length of 50 cm, and the mattress was put in a side cloth having a width of 120 cm and a length of 200 cm. This mattress is placed on the bed and at 25 ℃ RH6
The panel comfort was sensory-evaluated by allowing the paneller to be used by 4 people for 7 hours in a 5% room. The bed was covered with sheets, the comforter was 1.8 kg of down / feather: 90/10, and the pillow was the one used by the paneler every day. As a result of the evaluation, the bed was a bed which had no feeling of flooring, had a moderate depression, and did not feel stuffy and had a comfortable sleeping comfort. For comparison, a similar mattress was prepared from a urethane foam plate with a density of 0.04 g / cm 3 and a thickness of 10 cm, and the mattress was placed on a bed and the sleeping comfort was evaluated. It was a bed that made me feel stuffy and didn't feel comfortable to sleep.

【0041】[0041]

【発明の効果】燐含有熱可塑性弾性樹脂から成る線条が
3次元網状構造を形成し融着一体化した表面が実質的に
フラット化され、裏面に燐含有連続繊維の不織布を補強
した本発明の難燃性補強網状体は、振動遮断性、耐熱耐
久性、嵩高性、座り心地が良好で蒸れにくいクッション
機能をもち、難燃性で燃焼ガスの毒性指数が低い安全性
の高いクッション材であり、他の素材との併用による上
記の好ましい特性を付与した車両用座席、船舶用座席、
車両用、船舶用、病院やホテル等の業務用ベット、家具
用クッション、寝装用品等の製品を提供できる。更に
は、車両用や建築資材としての内装材や断熱材等にも有
用なものである。
Industrial Applicability The present invention in which filaments made of a phosphorus-containing thermoplastic elastic resin form a three-dimensional network structure and are fused and integrated to form a substantially flat surface, and the back surface is reinforced with a nonwoven fabric of phosphorus-containing continuous fibers. The flame-retardant reinforced mesh is a cushioning material with high safety that is vibration-proof, heat-resistant and durable, bulky, has a cushioning function that is comfortable to sit in and does not easily get damp, and is flame-retardant and has a low combustion gas toxicity index. Yes, vehicle seats, boat seats, which have been given the above-mentioned preferable characteristics by being used in combination with other materials,
Products such as vehicles, ships, commercial beds for hospitals and hotels, furniture cushions, bedding products, etc. can be provided. Furthermore, it is also useful as an interior material and a heat insulating material for vehicles and building materials.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI D01F 6/92 304 D01F 6/92 304H // D01F 6/00 6/00 A 6/62 303 6/62 303D 6/86 301 6/86 301B (56)参考文献 特開 平7−52332(JP,A) 特開 平6−207317(JP,A) 特開 平6−173115(JP,A) 特開 平5−272043(JP,A) 特開 昭55−17527(JP,A) 特開 平1−213454(JP,A) 特開 昭58−109670(JP,A) 特開 昭58−149362(JP,A) 実開 平1−16326(JP,U) 実開 平2−18300(JP,U) 実開 平2−18371(JP,U) (58)調査した分野(Int.Cl.7,DB名) D04H 1/00 - 18/00 B68G 1/00 - 15/00 B32B 1/00 - 35/00 D01D 1/00 - 13/02 D01F 1/00 - 13/04 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 ID FI D01F 6/92 304 D01F 6/92 304H // D01F 6/00 6/00 A 6/62 303 6/62 303D 6/86 301 6/86 301B (56) Reference JP-A-7-52332 (JP, A) JP-A-6-207317 (JP, A) JP-A-6-173115 (JP, A) JP-A-5-272043 (JP , A) JP 55-17527 (JP, A) JP 1-213454 (JP, A) JP 58-109670 (JP, A) JP 58-149362 (JP, A) 1-16326 (JP, U) Actual flat 2-18300 (JP, U) Actual flat 2-18371 (JP, U) (58) Fields investigated (Int.Cl. 7 , DB name) D04H 1/00 -18/00 B68G 1/00-15/00 B32B 1/00-35/00 D01D 1/00-13/02 D01F 1/00-13/04

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 ソフトセグメント量(A重量%)と燐含
有量(Bppm)が60A+200≦B≦100000
の関係を満足する熱可塑性弾性樹脂からなる繊度が10
0000デニ−ル以下の連続した線条を曲がりくねらせ
互いに接触させて該接触部の大部分が融着し、3次元立
体構造体を形成した網状体の片面に燐含有量が1000
ppm以上20000ppm以下の熱可塑性非弾性樹脂
からなる連続繊維不織布が接合され、熱可塑性弾性樹脂
層表面がフラット化されており、見掛密度が0.01〜
0.2g/cm3 であることを特徴とする難燃性補強網状
体。
1. The soft segment amount (A wt%) and phosphorus content (Bppm) are 60A + 200 ≦ B ≦ 100,000.
The fineness of the thermoplastic elastic resin satisfying the above relation is 10
A continuous linear filament having a density of 0000 denier or less is bent and brought into contact with each other so that most of the contact portions are fused and the phosphorus content is 1000 on one surface of the reticulated body forming a three-dimensional three-dimensional structure.
A continuous fiber nonwoven fabric made of a thermoplastic non-elastic resin of not less than ppm and not more than 20000 ppm is joined, the surface of the thermoplastic elastic resin layer is flattened, and the apparent density is 0.01 to
A flame-retardant reinforced reticulate body characterized by having a content of 0.2 g / cm 3 .
【請求項2】 連続した線条の断面形状が中空断面又は
及び異形断面である請求項1記載の難燃性補強網状体。
2. The flame-retardant reinforced net-like body according to claim 1, wherein the cross-sectional shape of the continuous filament is a hollow cross section and / or a modified cross section.
【請求項3】 連続した線条を構成する熱可塑性弾性樹
脂が示差走査型熱量計で測定した融解曲線に室温以上融
点以下の温度に吸熱ピークを有する請求項1記載の難燃
性補強網状体。
3. The flame-retardant reinforced reticulated body according to claim 1, wherein the thermoplastic elastic resin forming the continuous filaments has an endothermic peak at a temperature above room temperature and below the melting point in the melting curve measured by a differential scanning calorimeter. .
【請求項4】 複数のオリフィスを持つ多列ノズルより
燐含有量(Bppm)がソフトセグメント量(A重量
%)とが60A+200≦B≦100000を満足する
熱可塑性弾性樹脂を各ノズルオリフィスに分配し、該熱
可塑性樹脂の融点より20〜80℃高い溶融温度で、該
ノズルより下方に向けて吐出させ、溶融状態で互いに接
触させて融着させ3次元構造を形成しつつ、片面に燐含
有量が1000ppm以上20000ppm以下の熱可
塑性非弾性樹脂からなる連続繊維不織布を接合させて引
取り装置で挟み込み冷却槽で冷却せしめる難燃性補強網
状体の製法。
4. A thermoplastic elastic resin having a phosphorus content (Bppm) and a soft segment amount (A weight%) of 60A + 200 ≦ B ≦ 100000 is distributed to each nozzle orifice from a multi-row nozzle having a plurality of orifices. , At a melting temperature 20 to 80 ° C. higher than the melting point of the thermoplastic resin, discharged downward from the nozzle, and in a molten state, they are brought into contact with each other to be fused to form a three-dimensional structure, and a phosphorus content on one side. Of 1000 ppm or more and 20000 ppm or less of a continuous fiber non-woven fabric made of thermoplastic non-elastic resin, joined by a take-up device and cooled in a cooling tank.
【請求項5】 冷却後から一体成形して製品化に至る工
程で熱可塑性弾性樹脂の融点より少なくとも10℃以下
の温度でアニ−リングする請求項4に記載の難燃性補強
網状体の製法。
5. The method for producing a flame-retardant reinforced reticulate body according to claim 4, wherein annealing is performed at a temperature of at least 10 ° C. or lower than the melting point of the thermoplastic elastic resin in a step of integrally molding after cooling and commercialization. .
【請求項6】 請求項1に記載の難燃性補強網状体を用
いた車両用座席、船舶用座席、車両用、船舶用、病院用
等の業務用及び家庭用ベット、家具用椅子、事務用椅子
および布団のいずれかに記載の製品。
6. A vehicular seat, a vehicular seat, a vehicular seat, a vehicular seat, a commercial or domestic bed, a chair for furniture, office work, etc., which uses the flame-retardant reinforced mesh according to claim 1. The product described in either the chair or the futon.
JP11119594A 1994-05-25 1994-05-25 Flame-retardant reinforced mesh, manufacturing method and products using the same Expired - Fee Related JP3431098B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11119594A JP3431098B2 (en) 1994-05-25 1994-05-25 Flame-retardant reinforced mesh, manufacturing method and products using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11119594A JP3431098B2 (en) 1994-05-25 1994-05-25 Flame-retardant reinforced mesh, manufacturing method and products using the same

Publications (2)

Publication Number Publication Date
JPH07324272A JPH07324272A (en) 1995-12-12
JP3431098B2 true JP3431098B2 (en) 2003-07-28

Family

ID=14554913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11119594A Expired - Fee Related JP3431098B2 (en) 1994-05-25 1994-05-25 Flame-retardant reinforced mesh, manufacturing method and products using the same

Country Status (1)

Country Link
JP (1) JP3431098B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5731062A (en) * 1995-12-22 1998-03-24 Hoechst Celanese Corp Thermoplastic three-dimensional fiber network
CN117677319A (en) * 2021-07-29 2024-03-08 爱维福股份有限公司 Mattress and order receiving method for mattress

Also Published As

Publication number Publication date
JPH07324272A (en) 1995-12-12

Similar Documents

Publication Publication Date Title
JP3473710B2 (en) Mixed fineness reticulated body, manufacturing method and products using it
JP3454373B2 (en) Elastic network, manufacturing method and products using the same
JP3431097B2 (en) Multilayer laminated net, manufacturing method and product using the same
JP3431098B2 (en) Flame-retardant reinforced mesh, manufacturing method and products using the same
JP3444375B2 (en) Multilayer net, manufacturing method and products using the same
JP3473711B2 (en) Polyester wadding material and its manufacturing method
JPH0856772A (en) Seat and its manufacture
JP3431096B2 (en) Nonwoven laminated net, manufacturing method and product using the same
JP3454375B2 (en) Nonwoven laminated structure, manufacturing method and product using the same
JP3444374B2 (en) Multilayer laminated net, manufacturing method and product using the same
JP3430445B2 (en) Composite net, its manufacturing method and products using it
JP3444368B2 (en) Nonwoven laminated net, manufacturing method and product using the same
JP3351488B2 (en) Nonwoven laminated net, manufacturing method and product using the same
JP3431090B2 (en) Nonwoven laminated net, manufacturing method and product using the same
JP3430448B2 (en) Laminated structure, manufacturing method and products using the same
JP3444372B2 (en) Multilayer laminated net, manufacturing method and product using the same
JP3430449B2 (en) Nonwoven laminated net, manufacturing method and product using the same
JP3444369B2 (en) Laminated net, manufacturing method and product using the same
JP3351491B2 (en) Flame-retardant laminated net, manufacturing method and product using the same
JP3431092B2 (en) Nonwoven laminated net, manufacturing method and product using the same
JP3431091B2 (en) Nonwoven laminated net, manufacturing method and product using the same
JP3351490B2 (en) Nonwoven laminated net, manufacturing method and product using the same
JP3444371B2 (en) Multilayer laminated net, manufacturing method and product using the same
JP3351489B2 (en) Nonwoven laminated net, manufacturing method and product using the same
JPH0810470A (en) Seat and production thereof

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080523

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090523

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090523

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100523

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100523

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees