JP3473710B2 - Mixed fineness reticulated body, manufacturing method and products using it - Google Patents

Mixed fineness reticulated body, manufacturing method and products using it

Info

Publication number
JP3473710B2
JP3473710B2 JP11301794A JP11301794A JP3473710B2 JP 3473710 B2 JP3473710 B2 JP 3473710B2 JP 11301794 A JP11301794 A JP 11301794A JP 11301794 A JP11301794 A JP 11301794A JP 3473710 B2 JP3473710 B2 JP 3473710B2
Authority
JP
Japan
Prior art keywords
mixed
fineness
elastic resin
thermoplastic elastic
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP11301794A
Other languages
Japanese (ja)
Other versions
JPH07324273A (en
Inventor
英夫 磯田
靖司 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP11301794A priority Critical patent/JP3473710B2/en
Publication of JPH07324273A publication Critical patent/JPH07324273A/en
Application granted granted Critical
Publication of JP3473710B2 publication Critical patent/JP3473710B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、優れたクッション性と
耐熱耐久性及び振動吸収性とを有し、リサイクルが可能
な異繊度混合網状体と製法および異繊度混合網状体を用
いた布団、家具、ベッド、車両用クッション材等の製品
に関する。
FIELD OF THE INVENTION The present invention relates to a reusable heterogeneous-fine mixed reticulate body having excellent cushioning properties, heat resistance durability, and vibration absorption, and a futon using the process and the different fine-fineness mixed reticulated body, It relates to products such as furniture, beds, and cushioning materials for vehicles.

【0002】[0002]

【従来の技術】現在、家具、ベッド、電車、自動車等の
クッション材に、発泡ウレタン、非弾性捲縮繊維詰綿、
及び非弾性捲縮繊維を接着した樹脂綿や硬綿などが使用
されている。
2. Description of the Related Art At present, as a cushion material for furniture, beds, trains, automobiles, etc., urethane foam, non-elastic crimped fiber wadding,
In addition, resin cotton or hard cotton to which non-elastic crimped fibers are adhered is used.

【0003】しかしながら、発泡−架橋型ウレタンはワ
ディング層やクッション材としての耐久性は極めて良好
だが、透湿透水性に劣り蓄熱性があるため蒸れやすく、
かつ、熱可塑性では無いためリサイクルが困難となり焼
却される場合、焼却炉の損傷が大きく、かつ、有毒ガス
除去に経費が掛かる。このため埋め立てされることが多
くなったが、地盤の安定化が困難なため埋め立て場所が
限定され経費も高くなっていく問題がある。また、加工
性は優れるが製造中に使用される薬品の公害問題なども
ある。また、熱可塑性ポリエステル繊維詰綿では繊維間
が固定されていないため、使用時形態が崩れたり、繊維
が移動して、かつ、捲縮のへたりで嵩高性の低下や弾力
性の低下が問題になる。
However, although the foamed-crosslinked urethane has very good durability as a wadding layer or a cushioning material, it has poor moisture permeability and heat storage property and is apt to be stuffy.
Moreover, since it is not thermoplastic, it becomes difficult to recycle, and when it is incinerated, the damage to the incinerator is large and the cost for removing the toxic gas is high. For this reason, landfilling has become more frequent, but it is difficult to stabilize the ground, and there is a problem that landfilling sites are limited and costs increase. Further, although it has excellent processability, it also has a problem of pollution of chemicals used during manufacturing. In addition, since the fibers are not fixed in the thermoplastic polyester fiber wadding, the form may collapse during use, the fibers may move, and the crimp may cause a decrease in bulkiness and elasticity. become.

【0004】ポリエステル繊維を接着剤で接着した樹脂
綿、例えば接着剤にゴム系を用いたものとして特開昭6
0−11352号公報、特開昭61−141388号公
報、特開昭61−141391号公報等がある。又、架
橋性ウレタンを用いたものとして特開昭61−1377
32号公報等がある。これらのクッション材は耐久性に
劣り、且つ、熱可塑性でなく、単一組成でもないためリ
サイクルも出来ない等の問題、及び加工性の煩雑さや製
造中に使用される薬品の公害問題などもある。
As a resin cotton in which polyester fibers are adhered with an adhesive, for example, a rubber-based adhesive is used, Japanese Patent Application Laid-Open No.
0-11352, JP-A 61-141388, JP-A 61-141391 and the like. Further, as a method using a cross-linkable urethane, JP-A-61-1377
No. 32 publication and the like. These cushion materials have inferior durability, and also have problems such as not being recyclable because they are neither thermoplastic nor single composition, and there are problems such as complexity of processability and pollution of chemicals used during manufacturing. .

【0005】ポリエステル硬綿、例えば特開昭58−3
1150号公報、特開平2−154050号公報、特開
平3−220354号公報等があるが、用いている熱接
着繊維の接着成分が脆い非晶性のポリマ−を用いるため
(例えば特開昭58−136828号公報、特開平3−
249213号公報等)接着部分が脆く、使用中に接着
部分が簡単に破壊されて形態や弾力性が低下するなどの
耐久性に劣る問題がある。改良法として、交絡処理する
方法が特開平4−245965号公報等で提案されてい
るが、接着部分の脆さは解決されず弾力性の低下が大き
い問題がある。また、加工時の煩雑さもある。更には接
着部分が変形しにくくソフトなクッション性を付与しに
くい問題もある。このため、接着部分を柔らかい、且つ
ある程度変形しても回復するポリエステルエラストマ−
を用い、芯成分に非弾性ポリエステルを用いた熱接着繊
維が特開平4−240219号公報で、同繊維を用いた
クッション材がWO−91/19032号公報、特開平
5−156561号公報、特開平5−163654号公
報等で提案されている。この繊維構造物に使われる接着
成分がポリエステルエラストマ−のソフトセグメントと
してはポリアルキレングリコ−ルの含有量が30〜50
重量%、ハ−ドセグメントの酸成分にテレフタル酸を5
0〜80モル%含有し、他の酸成分組成として特公昭6
0−1404号公報に記載された繊維と同様にイソフタ
ル酸を含有して非晶性が増すことになり、融点も180
℃以下となり低溶融粘度として熱接着部分の形成を良く
してアメーバー状の接着部を形成しているが塑性変形し
やいため、及び芯成分が非弾性ポリエステルのため、特
に加熱下での塑性変形が著しくなり、耐熱抗圧縮性が低
下する問題点がある。これらの改良法として、特開平5
−163654号公報にシ−ス成分にイソフタル酸を含
有するポリエステルエラストマ−、コア成分に非弾性ポ
リエステルを用いた熱接着複合繊維のみからなる構造体
が提案されているが上述の理由で加熱下での塑性変形が
著しくなり、耐熱抗圧縮性が低下し、ワディング層やク
ッション材に使用するには問題がある。他方、硬綿の母
材にシリコ−ン油剤を付与して繊維の摩擦係数を下げて
耐久性を向上し、風合いを良くする方法が特開昭63−
158094号公報で提案されている。が、熱接着繊維
の接着性に問題があり、耐久性が劣るのでワディング層
やクッション材に使用するには好ましくない。
Polyester hard cotton, for example, JP-A-58-3
1150, JP-A-2-154050, JP-A-3-220354, etc., but since an amorphous polymer having a brittle adhesive component of the heat-bonding fiber used is used (for example, JP-A-58). -136828, Japanese Patent Application Laid-Open No. 3-
However, there is a problem in that durability is poor such that the bonded portion is brittle and the bonded portion is easily broken during use and the form and elasticity are reduced. As an improved method, a method of entanglement treatment has been proposed in Japanese Patent Laid-Open No. 4-245965, but there is a problem that the brittleness of the bonded portion is not solved and the elasticity is largely reduced. In addition, there is complexity during processing. Further, there is a problem that the bonded portion is hard to be deformed and soft cushioning is hard to be imparted. For this reason, the polyester elastomer that is soft even at the bonded portion and recovers even if it is deformed to some extent
A heat-bonding fiber using a non-elastic polyester as a core component is disclosed in JP-A-4-240219, and a cushion material using the fiber is disclosed in WO-91 / 19032, JP-A-5-155651. It is proposed in Japanese Patent Laid-Open No. 5-163654. The adhesive component used in this fiber structure has a polyalkylene glycol content of 30 to 50 as a soft segment of polyester elastomer.
Wt%, 5% terephthalic acid as the acid component of the hard segment
It contains 0 to 80 mol% and is used as another acid component composition
As in the fiber described in Japanese Patent Publication No. 0-1404, isophthalic acid is contained to increase the amorphous property, and the melting point is 180.
The temperature is below ℃, and the heat-bonded part is well formed with a low melt viscosity to form an ameber-shaped bonded part, but it is easy to plastically deform, and because the core component is an inelastic polyester, plastic deformation especially under heating Becomes remarkable, and there is a problem that the heat resistance and compression resistance are lowered. As an improved method for these, Japanese Patent Laid-Open No.
No. 163654 proposes a structure consisting only of a polyester elastomer containing isophthalic acid as a sheath component and a heat-bonding composite fiber using an inelastic polyester as a core component. Plastic deformation becomes significant, the heat resistance and compression resistance deteriorate, and there is a problem in using it for a wadding layer or a cushion material. On the other hand, there is a method in which a silicone oil is added to a base material of hard cotton to lower the friction coefficient of fibers to improve the durability and improve the texture.
It is proposed in Japanese Patent No. 158094. However, there is a problem with the adhesiveness of the heat-adhesive fiber and the durability is poor, so it is not preferable for use in a wadding layer or cushioning material.

【0006】土木工事用に使用する熱可塑性のオレフィ
ン網状体が特開昭47−44839号公報に開示されて
いる。が、細い繊維から構成したクッションとは異なり
表面が凸凹でタッチが悪く、素材がオレフィンのため耐
熱耐久性が著しく劣りワディング層やクッション材には
使用ができないものである。また、特公平3−1766
6号公報には繊度の異なる吐出線条を互いに融着してモ
−ル状物を作る方法があるがクッション材には適さない
網状構造体である。特公平3−55583号公報には、
ごく表面のみ冷却前に回転体等の細化装置で細くする方
法が記載されている。この方法では表面をフラット化で
きず、厚みのある細い線条層を作ることできない。した
がって座り心地の良好なクッション材にはならない。特
開平1−207462号公報では、塩化ビニ−ル製のフ
ロアマットの開示があるが、室温での圧縮回復性が悪
く、耐熱性は著しく悪いので、ワディング材やクッショ
ン材としては好ましくないものである。なお、上述構造
体は振動減衰に関する配慮が全くなされていない。
A thermoplastic olefin network used for civil engineering work is disclosed in JP-A-47-44839. However, unlike a cushion made of fine fibers, the surface is uneven and the touch is poor, and since the material is olefin, the heat resistance durability is extremely poor and it cannot be used as a wadding layer or cushion material. In addition, Japanese Patent Publication No. 3-1766
No. 6 discloses a method in which ejection filaments having different fineness are fused to each other to form a mold, but the mesh structure is not suitable as a cushion material. Japanese Examined Patent Publication No. 3-55583 discloses that
A method of thinning only a very surface with a thinning device such as a rotating body before cooling is described. With this method, the surface cannot be flattened and a thick thin linear layer cannot be formed. Therefore, it does not provide a comfortable cushioning material. Japanese Patent Application Laid-Open No. 1-207462 discloses a vinyl chloride floor mat, but it is not preferable as a wadding material or a cushioning material because it has poor compression recovery at room temperature and remarkably poor heat resistance. is there. Note that no consideration is given to vibration damping in the above-mentioned structure.

【0007】[0007]

【発明が解決しようとする課題】上記問題点を解決し、
振動を遮断し、耐熱耐久性、形態保持性、クッション性
の優れた蒸れ難い、クッション材に適した熱可塑性弾性
樹脂からなる異繊度混合網状体と製法及び異繊度混合網
状体を用いた布団、家具、ベッド、車両用クッション等
の製品と製法を提供することを目的とする。
To solve the above problems,
Isolates vibrations, heat resistance and durability, shape retention, is hard to stuffy and has excellent cushioning properties, heterogeneous mixed mesh made of thermoplastic elastic resin suitable for cushion material and method and futon using heterogeneous mixed mesh, It aims to provide products and manufacturing methods such as furniture, beds, and cushions for vehicles.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するため
の手段、即ち本発明は、熱可塑性弾性樹脂からなる連続
した太い線条と細い線条を混在させて曲がりくねらせ互
いに接触させて該接触部の大部分を融着した3次元立体
構造体を形成し、その両面は実質的にフラット化されて
おり、前記の太い線条と細い線条は断面二次モ−メント
比が5〜500であり、見掛け密度が0.01〜0.2
g/cm3 であることを特徴とする異繊度混合網状体、複
数の断面積が異なるオリフィスが混在するノズルより熱
可塑性弾性樹脂を各ノズルオリフィスに分配し、該熱可
塑性樹脂の融点より10〜80℃高い溶融温度で、該ノ
ズルより下方に向けて吐出させ、溶融状態で互いに接触
させて融着させ3次元構造を形成しつつ、引取り装置で
挟み込み冷却槽で冷却せしめる異繊度混合網状体の製法
および前記異繊度混合網状体を用いた製品である。
Means for Solving the Problems In order to solve the above-mentioned problems, the present invention provides a continuous thick line and a thin line made of a thermoplastic elastic resin mixed with each other so as to bend and contact each other. A three-dimensional three-dimensional structure is formed by fusing most of the contact portion, and both surfaces thereof are substantially flattened, and the thick filaments and thin filaments have a cross-sectional secondary moment ratio of 5 to 5. 500 and an apparent density of 0.01 to 0.2
g / cm 3 of different fineness mixed reticulate body, a plurality of orifices having different cross-sectional areas are mixed, and a thermoplastic elastic resin is distributed to each nozzle orifice from the nozzle. A heterogeneous mixed reticulate body which is discharged downward from the nozzle at a melting temperature higher than 80 ° C., is in contact with each other in a molten state and is fused to form a three-dimensional structure, which is sandwiched by a take-up device and cooled in a cooling tank. And a product using the different fineness mixed reticulate body.

【0009】本発明における熱可塑性弾性樹脂とは、ソ
フトセグメントとして分子量300〜5000のポリエ
−テル系グリコ−ル、ポリエステル系グリコ−ル、ポリ
カ−ボネ−ト系グリコ−ルまたは長鎖の炭化水素末端を
カルボン酸または水酸基にしたオレフィン系化合物等を
ブロック共重合したポリエステル系エラストマ−、ポリ
アミド系エラストマ−、ポリウレタン系エラストマ−、
ポリオレフィン系エラストマ−などが挙げられる。熱可
塑性弾性樹脂とすることで、再溶融により再生が可能と
なるため、リサイクルが容易となる。例えば、ポリエス
テル系エラストマ−としては、熱可塑性ポリエステルを
ハ−ドセグメントとし、ポリアルキレンジオ−ルをソフ
トセグメントとするポリエステルエ−テルブロック共重
合体、または、脂肪族ポリエステルをソフトセグメント
とするポリエステルエステルブロック共重合体が例示で
きる。ポリエステルエ−テルブロック共重合体のより具
体的な事例としては、テレフタル酸、イソフタル酸、ナ
フタレン2・6ジカルボン酸、ナフタレン2・7ジカル
ボン酸、ジフェニル4・4’ジカルボン酸等の芳香族ジ
カルボン酸、1・4シクロヘキサンジカルボン酸等の脂
環族ジカルボン酸、琥珀酸、アジピン酸、セバチン酸ダ
イマ−酸等の脂肪族ジカルボン酸または、これらのエス
テル形成性誘導体などから選ばれたジカルボン酸の少な
くとも1種と、1・4ブタンジオ−ル、エチレングリコ
−ル、トリメチレングリコ−ル、テトレメチレングリコ
−ル、ペンタメチレングリコ−ル、ヘキサメチレングリ
コ−ル等の脂肪族ジオ−ル、1・1シクロヘキサンジメ
タノ−ル、1・4シクロヘキサンジメタノ−ル等の脂環
族ジオ−ル、またはこれらのエステル形成性誘導体など
から選ばれたジオ−ル成分の少なくとも1種、および平
均分子量が約300〜5000のポリエチレングリコ−
ル、ポリプロピレングリコ−ル、ポリテトラメチレング
リコ−ル、エチレンオキシド−プロピレンオキシド共重
合体等のポリアルキレンジオ−ルのうち少なくとも1種
から構成される三元ブロック共重合体である。ポリエス
テルエステルブロック共重合体としては、上記ジカルボ
ン酸とジオ−ル及び平均分子量が約300〜5000の
ポリラクトン等のポリエステルジオ−ルのうち少なくと
も各1種から構成される三元ブロック共重合体である。
熱接着性、耐加水分解性、伸縮性、耐熱性等を考慮する
と、ジカルボン酸としてはテレフタル酸、または、及び
ナフタレン2・6ジカルボン酸、ジオ−ル成分としては
1・4ブタンジオ−ル、ポリアルキレンジオ−ルとして
はポリテトラメチレングリコ−ルの3元ブロック共重合
体または、ポリエステルジオ−ルとしてポリラクトンの
3元ブロック共重合体が特に好ましい。特殊な例では、
ポリシロキサン系のソフトセグメントを導入したものも
使うこたができる。また、上記エラストマ−に非エラス
トマ−成分をブレンドされたもの、共重合したもの、ポ
リオレフィン系成分をソフトセグメントにしたもの等も
本発明の熱可塑性弾性樹脂に包含される。ポリアミド系
エラストマ−としては、ハ−ドセグメントにナイロン
6、ナイロン66、ナイロン610、ナイロン612、
ナイロン11、ナイロン12等及びそれらの共重合ナイ
ロンを骨格とし、ソフトセグメントには、平均分子量が
約300〜5000のポリエチレングリコ−ル、ポリプ
ロピレングリコ−ル、ポリテトラメチレングリコ−ル、
エチレンオキシド−プロピレンオキシド共重合体等のポ
リアルキレンジオ−ルのうち少なくとも1種から構成さ
れるブロック共重合体を単独または2種類以上混合して
用いてもよい。更には、非エラストマ−成分をブレンド
されたもの、共重合したもの等も本発明に使用できる。
ポリウレタン系エラストマ−としては、通常の溶媒(ジ
メチルホルムアミド、ジメチルアセトアミド等)の存在
または不存在下に、(A)数平均分子量1000〜60
00の末端に水酸基を有するポリエ−テル及び又はポリ
エステルと(B)有機ジイソシアネ−トを主成分とする
ポリイソシアネ−トを反応させた両末端がイソシアネ−
ト基であるプレポリマ−に、(C)ジアミンを主成分と
するポリアミンにより鎖延長したポリウレタンエラスト
マ−を代表例として例示できる。(A)のポリエステ
ル、ポリエ−テル類としては、平均分子量が約1000
〜6000、好ましくは1300〜5000のポリブチ
レンアジペ−ト共重合ポリエステルやポリエチレングリ
コ−ル、ポリプロピレングリコ−ル、ポリテトラメチレ
ングリコ−ル、エチレンオキシド−プロピレンオキシド
共重合体からなるグリコ−ル等のポリアルキレンジオ−
ルが好ましく、(B)のポリイソシアネ−トとしては、
従来公知のポリイソシアネ−トを用いることができる
が、ジフェニルメタン4・4’ジイソシアネ−トを主体
としたイソシアネ−トを用い、必要に応じ従来公知のト
リイソシアネ−ト等を微量添加使用してもよい。(C)
のポリアミンとしては、エチレンジアミン、1・2プロ
ピレンジアミン等公知のジアミンを主体とし、必要に応
じて微量のトリアミン、テトラアミンを併用してもよ
い。これらのポリウレタン系エラストマ−は単独又は2
種類以上混合して用いてもよい。なお、本発明の熱可塑
性弾性樹脂の融点は耐熱耐久性が保持できる140℃以
上が好ましく、160℃以上のものを用いると耐熱耐久
性が向上するのでより好ましい。なお、必要に応じ、難
燃剤、抗酸化剤等を添加して難燃性や耐久性を向上させ
るのが特に好ましい。難燃剤は、ハロゲン系化合物、ハ
ロゲン系化合物と無機物(例えば三酸化アンチモンや酸
化ほう素等)、燐系化合物、燐系化合物とメラミン化合
物等が挙げられるが、燐系化合物を用い、例えば、10
〔2・3・ジ(2・ヒドロキシエトキシ)−カルボニル
プロピル〕9・10・ジヒドロ・9・オキサ・10ホス
ファフェナレンス・10オキシロやビス(1・3−フェ
ニレン−ジフェニル)ホスフェ−ト等の燐化合物を燐含
有量で5000ppm以上、100000ppm以下添
加して難燃性を付与すると、燃焼時の致死量が少ない有
毒ガスの発生を抑えられるので好ましくい。燐系難燃剤
を含有すると熱分解し易いので300℃以下の温度での
熱分解を抑制するために抗酸化剤を含有させるのが好ま
しい。抗酸化剤は、好ましくはヒンダ−ド系抗酸化剤と
しては、ヒンダ−ドフェノ−ル系とヒンダ−ドアミン系
があり、窒素を含有しないヒンダ−ドフェノ−ル系抗酸
化剤を1%〜5%添加して熱分解を抑制すると燃焼時の
致死量が少ない有毒ガスの発生を抑えられるので特に好
ましい。本発明の目的である振動や応力の吸収機能をも
たせる成分を構成する熱可塑性弾性樹脂のソフトセグメ
ント含有量は好ましくは15重量%以上、より好ましく
は30重量%以上であり、耐熱耐へたり性からは80重
量%以下が好ましく、より好ましくは70重量%以下で
ある。即ち、本発明の弾性網状体の振動や応力の吸収機
能をもたせる成分のソフトセグメント含有量は好ましく
は15重量%以上80重量%以下であり、より好ましく
は30重量%以上70重量%以下である。
The thermoplastic elastic resin in the present invention means, as the soft segment, an ether type glycol, a polyester type glycol, a polycarbonate type glycol or a long chain hydrocarbon having a molecular weight of 300 to 5,000. Polyester elastomer obtained by block-copolymerizing an olefinic compound having a carboxylic acid or a hydroxyl group at the terminal, a polyamide elastomer, a polyurethane elastomer,
Examples include polyolefin elastomers. By using a thermoplastic elastic resin, it becomes possible to regenerate by remelting, and thus recycling becomes easy. For example, as the polyester elastomer, a polyester ether block copolymer having a thermoplastic polyester as a hard segment and a polyalkylenediol as a soft segment, or a polyester ester having an aliphatic polyester as a soft segment A block copolymer can be illustrated. More specific examples of the polyester ether block copolymer include aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid, naphthalene 2.6 dicarboxylic acid, naphthalene 2.7 dicarboxylic acid, and diphenyl 4.4'dicarboxylic acid. At least one of alicyclic dicarboxylic acids such as 1,4-cyclohexanedicarboxylic acid, aliphatic dicarboxylic acids such as succinic acid, adipic acid, sebacic acid dimer acid, and dicarboxylic acids selected from ester-forming derivatives thereof Seeds and aliphatic diols such as 1.4 butanediol, ethylene glycol, trimethylene glycol, tetremethylene glycol, pentamethylene glycol and hexamethylene glycol, 1.1 cyclohexane Alicyclic diols such as dimethanol and 1,4-cyclohexane dimethanol, or these Of at least one diole component selected from the ester-forming derivatives thereof and polyethylene glycol having an average molecular weight of about 300 to 5,000.
It is a ternary block copolymer composed of at least one of polyalkylenediol such as propylene, polypropylene glycol, polytetramethylene glycol, and ethylene oxide-propylene oxide copolymer. The polyester ester block copolymer is a ternary block copolymer composed of at least one of the above dicarboxylic acids, diol, and polyester diol such as polylactone having an average molecular weight of about 300 to 5,000. .
Considering heat adhesion, hydrolysis resistance, stretchability, heat resistance, etc., terephthalic acid as dicarboxylic acid, or naphthalene 2.6 dicarboxylic acid, 1.4 butanediol as diole component, and poly The alkylene diol is particularly preferably a terpolymer block copolymer of polytetramethylene glycol or the terpolymer block copolymer of polylactone as the polyester diol. In a special case,
You can also use a kotatsu that has a polysiloxane-based soft segment introduced. Also, the thermoplastic elastomer resin of the present invention includes those obtained by blending the above elastomer with a non-elastomer component, those obtained by copolymerization, those obtained by softening the polyolefin component, and the like. As a polyamide elastomer, the hard segment includes nylon 6, nylon 66, nylon 610, nylon 612,
Polyethylene glycol, polypropylene glycol, polytetramethylene glycol having an average molecular weight of about 300 to 5000 is used as the soft segment in the skeleton of nylon 11, nylon 12, etc. and their copolymerized nylon.
A block copolymer composed of at least one kind of polyalkylenediol such as ethylene oxide-propylene oxide copolymer may be used alone or in combination of two or more kinds. Furthermore, blends of non-elastomer components and copolymers thereof can be used in the present invention.
The polyurethane-based elastomer is (A) number average molecular weight of 1000 to 60 in the presence or absence of a usual solvent (dimethylformamide, dimethylacetamide, etc.).
00 has a hydroxyl group-terminated polyether and / or polyester, and (B) an organic diisocyanate-based polyisocyanate as a main component.
As a typical example, a polyurethane elastomer in which a chain-extended polyamine having a diamine (C) as a main component is added to a prepolymer which is a group having a hydroxyl group can be exemplified. The polyester or polyether of (A) has an average molecular weight of about 1,000.
To 6000, preferably 1300 to 5000, polybutylene adipate copolyester, polyethylene glycol, polypropylene glycol, polytetramethylene glycol, glycol composed of ethylene oxide-propylene oxide copolymer, etc. Polyalkylenedio-
Are preferred, and as the polyisocyanate of (B),
Although a conventionally known polyisocyanate can be used, an isocyanate mainly composed of diphenylmethane 4,4 ′ diisocyanate may be used, and if necessary, a conventionally known triisocyanate and the like may be added in a small amount. (C)
As the polyamine, a known diamine such as ethylenediamine or 1.2-propylenediamine is mainly used, and if necessary, a trace amount of triamine or tetraamine may be used in combination. These polyurethane elastomers are used alone or
You may use it in mixture of 2 or more types. The melting point of the thermoplastic elastic resin of the present invention is preferably 140 ° C. or higher at which heat resistance and durability can be maintained, and it is more preferable to use a resin having a melting point of 160 ° C. or higher because heat resistance and durability are improved. In addition, it is particularly preferable to add a flame retardant, an antioxidant, or the like, if necessary, to improve flame retardancy and durability. Examples of the flame retardant include halogen compounds, halogen compounds and inorganic substances (for example, antimony trioxide, boron oxide, etc.), phosphorus compounds, phosphorus compounds and melamine compounds, and the like.
Such as [2.3-di (2-hydroxyethoxy) -carbonylpropyl] 9-10-dihydro-9-oxa-10-phosphaphenalene-10-oxylo and bis (1.3-phenylene-diphenyl) phosphate. It is preferable to add a phosphorus compound in a phosphorus content of 5,000 ppm or more and 100,000 ppm or less to impart flame retardancy, since it is possible to suppress generation of toxic gas with a small lethal amount during combustion. If the phosphorus-based flame retardant is contained, thermal decomposition tends to occur. Therefore, it is preferable to contain an antioxidant in order to suppress thermal decomposition at a temperature of 300 ° C. or lower. The antioxidant is preferably a hindered phenol-based antioxidant and a hindered amine-based antioxidant, and a nitrogen-free hindered phenol-based antioxidant is 1% to 5%. It is particularly preferable to suppress the thermal decomposition by adding it, because the generation of toxic gas with a small lethal amount at the time of combustion can be suppressed. The soft segment content of the thermoplastic elastic resin constituting the component having the function of absorbing vibration and stress, which is the object of the present invention, is preferably 15% by weight or more, more preferably 30% by weight or more, and heat resistance and sag resistance Therefore, it is preferably 80% by weight or less, and more preferably 70% by weight or less. That is, the soft segment content of the component having the function of absorbing vibrations and stress of the elastic network of the present invention is preferably 15% by weight or more and 80% by weight or less, more preferably 30% by weight or more and 70% by weight or less. .

【0010】本発明の異繊度混合網状体を構成する熱可
塑性弾性樹脂は、示差走査型熱量計にて測定した融解曲
線において、融点以下に吸熱ピ−クを有するのが好まし
い。融点以下に吸熱ピ−クを有するものは、耐熱耐へた
り性が吸熱ピ−クを有しないものより著しく向上する。
例えば、本発明の好ましいポリエステル系熱可塑性樹脂
として、ハ−ドセグメントの酸成分に剛直性のあるテレ
フタル酸やナフタレン2・6ジカルボン酸などを90モ
ル%以上含有するもの、より好ましくはテレフタル酸や
ナフタレン2・6ジカルボン酸の含有量は95モル%以
上、特に好ましくは100モル%とグリコ−ル成分をエ
ステル交換後、必要な重合度まで重合し、次いで、ポリ
アルキレンジオ−ルとして、好ましくは平均分子量が5
00以上5000以下、特に好ましくは1000以上3
000以下のポリテトラメチレングリコ−ルを15重量
%以上70重量%以下、より好ましくは30重量%以上
60重量%以下共重合量させた場合、ハ−ドセグメント
の酸成分に剛直性のあるテレフタル酸やナフタレン2・
6ジカルボン酸の含有量が多いとハ−ドセグメントの結
晶性が向上し、塑性変形しにくく、かつ、耐熱抗へたり
性が向上するが、溶融熱接着後更に融点より少なくとも
10℃以上低い温度でアニ−リング処理するとより耐熱
抗へたり性が向上する。圧縮歪みを付与してからアニ−
リングすると更に耐熱抗へたり性が向上する。このよう
な処理をした網状構造体の線条を示差走査型熱量計で測
定した融解曲線に室温以上融点以下の温度で吸熱ピーク
をより明確に発現する。なおアニ−リングしない場合は
融解曲線に室温以上融点以下に吸熱ピ−クを発現しな
い。このことから類推するに、アニ−リングにより、ハ
−ドセグメントが再配列され、疑似結晶化様の架橋点が
形成され、耐熱抗へたり性が向上しているのではないか
とも考えられる。(この処理を疑似結晶化処理と定義す
る)この疑似結晶化処理効果は、ポリアミド系弾性樹脂
やポリウレタン系弾性樹脂にも有効である。
It is preferable that the thermoplastic elastic resin constituting the heterogeneous mixed network of the present invention has an endothermic peak below the melting point in the melting curve measured by a differential scanning calorimeter. Those having an endothermic peak below the melting point have significantly improved heat resistance and sag resistance than those having no endothermic peak.
For example, a preferable polyester-based thermoplastic resin of the present invention contains 90 mol% or more of terephthalic acid or naphthalene 2.6 dicarboxylic acid having rigidity in the acid component of the hard segment, more preferably terephthalic acid or The content of naphthalene 2.6 dicarboxylic acid is 95 mol% or more, particularly preferably 100 mol%, and after transesterification of the glycol component, polymerization is carried out to a required degree of polymerization, and then, as a polyalkylene diol, preferably Average molecular weight is 5
00 or more and 5000 or less, particularly preferably 1000 or more and 3
When 000 or less of polytetramethylene glycol is copolymerized in an amount of 15% by weight or more and 70% by weight or less, more preferably 30% by weight or more and 60% by weight or less, terephthalate having rigidity in the acid component of the hard segment Acid and naphthalene 2.
6 When the content of dicarboxylic acid is high, the crystallinity of the hard segment is improved, the plastic deformation is less likely to occur, and the heat resistance and fatigue resistance are improved, but the temperature after melting heat bonding is lower than the melting point by at least 10 ° C or more. The annealing treatment improves the heat resistance and sag resistance. After applying compressive strain,
The ring further improves the heat resistance and sagging resistance. The endothermic peak is more clearly expressed in the melting curve measured by a differential scanning calorimeter of the linear structure of the network structure treated as described above at a temperature of room temperature or higher and melting point or lower. If annealing is not performed, no endothermic peak appears in the melting curve above room temperature and below the melting point. By analogy with this, it is considered that the annealing causes rearrangement of the hard segments and formation of pseudo-crystallization-like cross-linking points to improve the heat resistance and sag resistance. (This treatment is defined as pseudo crystallization treatment.) This pseudo crystallization treatment effect is also effective for polyamide elastic resin and polyurethane elastic resin.

【0011】本発明は、熱可塑性弾性樹脂からなる連続
した太い線条と細い線条を混在させて曲がりくねらせ、
互いに接触させて該接触部の大部分を融着した3次元立
体構造体を形成し、その両面が実質的にフラット化した
見掛け密度が0.01g/cm 3 から0.2g/cm3 の網
状体を構成する該線状の太い線条と細い線条との断面二
次モ−メント比が5以上500以下である異繊度混合網
状体である。クッション材の機能は、基本の繊度を太く
して少し硬くして体型保持を受け持ち適度の沈み込みに
より快適な臀部のタッチと臀部の圧力分布を均一分散化
させる成分と振動減衰性の良い成分で振動吸収して座席
から伝わる振動を遮断する成分で構成し、応力や振動を
一体で変形し吸収させ座り心地を向上させることができ
る。本発明では、太い線条を混在させることで体型保持
機能を向上させ、好ましいクッション機能を発現する異
繊度混合網状体である。本発明の網状体は熱可塑性弾性
樹脂で構成されているので、外部から与えられた振動を
熱可塑性弾性樹脂の振動吸収機能で大部分の振動を吸収
減衰して振動遮断層として働く。又、局部的に大きい変
形応力を与えられた場合でも変形応力を網状体の表面が
実質的にフラット化され接触部の大部分が融着した熱可
塑性弾性樹脂からなる網状体の面で変形応力を受け止め
変形応力を分散させ、太い線条が適度の抗圧縮性を示し
つつ、細い線条と共に圧縮による変形を生じて融着一体
化した3次元立体構造体全体が変形してエネルギ−変換
して変形応力を吸収し、個々の線条への応力集中を回避
でき、応力が解除されると、熱可塑性弾性樹脂のゴム弾
性が発現し容易に元の形態に回復するので耐へたり性が
良好であると共に太い線条の抗圧縮性が圧縮時の応力に
対する変形歪みがバネ的に変化し、座ったとき、細い線
条と太い線条が混在しているので低い反発力で臀部を支
えつつ適度の沈み込みを生じて床つき感を与えず体型保
持機能を発現するので柔らか過ぎて沈み込みが大きくな
る欠点を向上できた。公知の非弾性樹脂のみからなる線
条で構成した網状体では、表面層で吸収できない大きい
変形を受けるとゴム弾性を持たないので圧縮変形により
塑性変形を生じて回復しなくなり耐久性が劣る。網状体
の表面が実質的にフラット化されてない場合、局部的な
外力は、表面の線条及び接着点部分までに選択的に伝達
され、応力集中が発生する場合があり、このような外力
に対しては応力集中による疲労が発生して耐へたり性が
低下する場合がある。なお、外部から変形応力を伝達さ
れる層が熱可塑性弾性樹脂からなる場合は3次元構造部
分で構造全体が変形するので応力集中は緩和されるが、
非弾性樹脂のみからなる場合では、そのまま応力が接着
点に集中して構造破壊を生じ回復しなくなる。更には、
表面が実質的にフラット化されてなく凸凹があると座っ
た時臀部に異物感を与えるため座り心地が悪くなり好ま
しくない。なお、線状が連続していない場合は、繊度が
太い網状体では接着点が応力の伝達点となるため接着点
に著しい応力集中が起こり構造破壊を生じ耐熱耐久性が
劣り好ましくない。融着していない場合は、形態保持が
出来ず、構造体が一体で変形しないため、応力集中によ
る疲労現象が起こり耐久性が劣ると同時に、形態が変形
して体型保持ができなくなるので好ましくない。本発明
のより好ましい融着の程度は、線条が接触している部分
の大半が融着した状態であり、もっとも好ましくは接触
部分が全て融着した状態である。融着一体化した3次元
立体構造体全体が変形してエネルギ−変換して変形応力
を吸収し、応力が解除されると回復し、フレ−ムから伝
わる振動も振動吸収性と弾性回復性の良い熱可塑性弾性
樹脂線条が吸収して人体の共振部分の振動を遮断するた
め座り心地と耐久性を向上させることができる。本発明
の網状体の見掛け密度は、0.005g/cm3 では反発
力が失われ、振動吸収能力や変形応力吸収能力が不充分
となりクッション機能を発現させにくくなる場合があ
り、0.20g/cm3 以上では反発力が高すぎて座り心
地が悪くなる場合があるので、振動吸収能力や変形応力
吸収機能が生かせてクッション体としての機能が発現さ
れやすい0.01g/cm3 以上0.10g/cm3 以下が
好ましく、より好ましくは0.03g/cm3以上0.0
8g/cm3 以下である。本発明は、太い線条と細い線条
が混在して三次元立体構造を形成しているので、変形時
の抗圧縮性を均一に発現できると共に、柔らかさを示す
細い線条のみガ選択的に大変形を受けないで三次元ネッ
トワ−ク構造全体が変形して力の分散を良好にしてい
る。偏在化すると均一な抗圧縮性が発現できず、局部的
に太い線条や細い線条に応力集中を生じて耐久性が劣る
ので好ましくない。本発明の太い線条と細い線条との断
面二次モ−メント比は、5以上500以下(繊度の比で
言うと中実丸断面の場合では、太い線条の繊度と細い線
条の繊度の比は1.7倍以上8倍以下となる。)であ
る。5未満では、太い線条の抗圧縮成分としての機能が
発現しにくいので好ましくない。500を越えると太い
線条と細い線条との粗密差が大きくなり過ぎて三次元立
体構造に密度斑を生じやすくなり、又、細い線条のネッ
トワ−ク補強効果が失われて、太い線条に応力集中を生
じやすくなり、耐久性が低下するので好ましくない。太
い線条と細い線条との断面二次モ−メント比は、好まし
くは10以上300以下、より好ましくは20以上10
0以下である。しかして、本発明の網状体を形成する線
条の繊度は100000デニ−ル以下が好ましい。見掛
け密度を0.2g/cm3 以下にした場合、100000
デニ−ルを越えると構成本数が少なくなり、密度斑を生
じて部分的に耐久性の悪い構造ができ、応力集中による
疲労が大きくなり耐久性が低下するので好ましくない。
本発明の網状体を構成する線条の繊度は、繊度が細すぎ
ると抗圧縮性が低くなり過ぎて変形による応力吸収性が
低下するので100デニ−ル以上が好ましい。より好ま
しくは抗圧縮性の効果が出やすい500デニ−ル以上、
構成本数の低下による構造面の緻密性を損なわない10
000デニ−ル以下である。本発明の網状体の厚みは用
途により所望の厚みを選択でき、特に限定されないが、
5mm未満では応力吸収機能と応力分散機能が低下するの
で、好ましい厚みは力の分散をする面機能と振動や変形
応力吸収機能が発現できる厚みとして10mm以上であ
り、より好ましくは20mm以上である。
The present invention is a continuous thermoplastic elastic resin.
I made a mixture of thick and thin filaments,
A three-dimensional vertical structure in which most of the contact parts are fused by contacting each other.
Formed a body structure with both sides substantially flat
Apparent density is 0.01g / cm 3To 0.2 g / cm3Net
The cross section of the linear thick line and thin line that form a strip
Different fineness mixed net having a secondary moment ratio of 5 or more and 500 or less
It is a state. The function of the cushioning material is to thicken the basic fineness.
And make it a little harder to hold the body shape and moderately sink
More comfortable buttocks touch and even distribution of buttocks pressure distribution
The seat that absorbs vibration with a component that makes it and a component with good vibration damping
It is composed of components that block the vibration transmitted from the
It can be deformed and absorbed as a unit to improve the sitting comfort
It In the present invention, the body shape is maintained by mixing thick filaments.
Difference that improves function and develops a desirable cushion function
It is a finely mixed reticulate body. The network of the present invention has thermoplastic elasticity.
Since it is made of resin, it can be used to
Most of the vibration is absorbed by the vibration absorption function of thermoplastic elastic resin
Damps and acts as a vibration isolation layer. In addition, locally large changes
Even if a shape stress is applied, the surface of the mesh body will be subjected to a deformation stress.
A heat transfer that is substantially flattened and most of the contact area is fused.
Responsive to deformation stress on the surface of a net made of plastic elastic resin
Disperses the deformation stress, and the thick filaments show an appropriate compression resistance.
At the same time, deformation occurs due to compression along with the thin filaments and the fusion is integrated.
Energy conversion by transformation of the entire three-dimensional structure
Absorbs deformation stress and avoids stress concentration on individual filaments
Yes, when the stress is released, the thermoplastic elastic resin rubber bullet
Since it develops the property and easily recovers the original form,
Good and thick line resistance to compression stress
The deformation strain against it changes like a spring, and when you sit down, a thin line
Since the strips and thick lines are mixed, the buttocks are supported with low repulsive force.
Body shape retention without giving a feeling of flooring
Since it has a longevity function, it is too soft and the subsidence is large
It was possible to improve the drawbacks. Wire made only of known inelastic resin
A mesh composed of strips cannot be absorbed by the surface layer.
When it is deformed, it does not have rubber elasticity.
Plastic deformation occurs and recovery does not occur, resulting in poor durability. Mesh
If the surface of the
External force is selectively transmitted to the surface line and adhesive points
And stress concentration may occur.
As a result, fatigue due to stress concentration occurs and
It may decrease. The deformation stress is transmitted from the outside.
3D structure part when the layer to be formed is made of thermoplastic elastic resin
Since the entire structure is deformed in minutes, stress concentration is relieved,
If only non-elastic resin is used, the stress will be applied as it is.
It concentrates on the points and causes structural destruction, which makes it impossible to recover. Furthermore,
Sit when the surface is not substantially flat and uneven
When you do so, you may feel uncomfortable in your buttocks, which may make you uncomfortable to sit in.
Not good. If the linear shape is not continuous, the fineness is
In a thick net, the adhesion point becomes the stress transmission point, so the adhesion point
Severe stress concentration on the
Inferior and not preferable. If not fused, shape retention
This is not possible and the structure does not deform as a unit.
Fatigue phenomenon occurs and the durability deteriorates, and at the same time the shape changes
It is not preferable because the body shape cannot be maintained. The present invention
The more preferable degree of fusion is the area where the filaments are in contact.
Most of them are fused, most preferably contact
All parts are in a fused state. 3D fused and integrated
The whole three-dimensional structure is deformed and energy is converted into deformation stress.
Is absorbed and is recovered when the stress is released, and transmitted from the frame.
Even if it vibrates, thermoplastic elasticity has good vibration absorption and elastic recovery.
The resin wire absorbs and blocks the vibration of the resonance part of the human body.
You can improve comfort and durability. The present invention
Apparent density of reticulate body is 0.005g / cm3Then repulsion
Loss of force, insufficient vibration absorption capacity and deformation stress absorption capacity
It may be difficult to develop the cushion function.
0.20 g / cm3Above, the repulsive force is too high and the sitting heart
Since the ground may be deteriorated, vibration absorption capacity and deformation stress
The function as a cushion body is developed by utilizing the absorption function.
Easy to get 0.01g / cm30.10 g / cm or more3The following is
Preferably, more preferably 0.03 g / cm30.0 or more
8 g / cm3It is the following. The present invention has a thick line and a thin line.
When three-dimensional structure is formed by mixing
Can exhibit uniform anti-compression property and shows softness
Only the thin filaments do not undergo large deformation selectively in the three-dimensional network.
The entire tow structure is deformed to disperse the force well.
It If it is unevenly distributed, uniform anti-compression property cannot be expressed and local
Intensity is poor due to stress concentration on thick and thin filaments
It is not preferable. Disconnection between thick and thin filaments of the present invention
The surface secondary moment ratio is 5 to 500 (in terms of fineness ratio)
In the case of a solid round cross section, the fineness and the fineness of thick filaments
The fineness ratio of the stripes is 1.7 times or more and 8 times or less. )
It If it is less than 5, the function of the thick filament as an anti-compression component is
It is not preferable because it is difficult to develop. Thick above 500
The difference in density between the filaments and the thin filaments becomes too large, resulting in a three-dimensional
Density unevenness is likely to occur in the body structure, and the thin linear nets
Loss of tow reinforcement effect, resulting in stress concentration on thick filaments.
It is not preferable because it becomes easy to twist and durability is lowered. Thick
The cross-section secondary moment ratio between the fine and fine lines is preferably
10 to 300, more preferably 20 to 10
It is 0 or less. Thus, the wire forming the mesh body of the present invention
The fineness of the strip is preferably 100,000 denier or less. Apparent
0.2g / cm3If you do the following, 100,000
If it exceeds denier, the number of components will decrease and density unevenness will occur.
In some cases, a structure with poor durability is partially formed, and stress concentration
It is not preferable because fatigue increases and durability deteriorates.
The fineness of the filaments constituting the reticulated body of the present invention is too fine.
If so, the compressive resistance becomes too low and the stress absorption due to deformation is
Since it decreases, 100 denier or more is preferable. More preferred
More than 500 denier, which is easy to get the anti-compression effect,
Does not impair the denseness of the structural surface due to the decrease in the number of constituents 10
It is less than 000 denier. The thickness of the mesh of the present invention is
The desired thickness can be selected depending on the way and is not particularly limited,
If it is less than 5 mm, the stress absorption function and the stress dispersion function will deteriorate.
So, the preferable thickness is the surface function that distributes the force and the vibration and deformation.
A thickness of 10 mm or more that can exhibit a stress absorbing function
And more preferably 20 mm or more.

【0012】本発明の網状体の線条の断面形状は特には
限定されないが、中空断面や異形断面にすることで太い
線条と細い線条の混在化効果に加えて更に好ましい抗圧
縮性(反発力)やタッチを付与することができるので特
に好ましい。抗圧縮性は繊度や用いる素材のモジュラス
により調整して、繊度を細くしたり、柔らかい素材では
中空率や異形度を高くし初期圧縮応力の勾配を調整でき
るし、繊度をやや太くしたり、ややモジュラスの高い素
材では中空率や異形度を低くして座り心地が良好な抗圧
縮性を付与する。中空断面や異形断面の他の効果として
中空率や異形度を高くすることで、同一の抗圧縮性を付
与した場合、より軽量化が可能となり、自動車等の座席
に用いると省エネルギ−化ができ、布団などの場合は、
上げ下ろし時の取扱性が向上する。好ましい抗圧縮性
(反発力)やタッチを付与することができる他の好まし
い方法として、本発明の網状体の線条を複合構造とする
方法がある。複合構造としては、シ−スコア構造または
サイドバイサイド構造及びそれらの組合せ構造などが挙
げられる。が、特には熱可塑性弾性樹脂層が大変形して
もエネルギ−変換できない振動や変形応力をエネルギ−
変換して回復できる立体3次元構造とするために線状の
表面の50%以上を柔らかい熱可塑性弾性樹脂が占める
シ−スコア構造またはサイドバイサイド構造及びそれら
の組合せ構造などが挙げられる。すなわち、シ−スコア
構造ではシ−ス成分は振動や変形応力をエネルギ−変換
が容易なソフトセグメント含有量が多い熱可塑性弾性樹
脂とし、コア成分はソフトセグメント含有量の少ない熱
可塑性弾性樹脂とし、抗圧縮性を付与することで適度の
沈み込みによる臀部への快適なタッチを与えることがで
きる。サイドバイサイド構造では振動や変形応力をエネ
ルギ−変換が容易なソフトセグメント含有量が多い熱可
塑性弾性樹脂の溶融粘度を抗圧縮性を示すソフトセグメ
ント含有量の少ない熱可塑性弾性樹脂の溶融粘度より低
くして線状の表面を占めるソフトセグメント含有量が多
い熱可塑性弾性樹脂の割合を多くした構造(比喩的には
偏芯シ−ス・コア構造のシ−スに熱可塑性弾性樹脂を配
した様な構造)として線状の表面を占めるソフトセグメ
ント含有量が多い熱可塑性弾性樹脂の割合を80%以上
としたものが特に好ましく、最も好ましくは線状の表面
を占めるソフトセグメント含有量が多い熱可塑性弾性樹
脂の割合を100%としたシ−スコアである。ソフトセ
グメント含有量が多い熱可塑性弾性樹脂の線状の表面を
占める割合が多くなると、溶融して融着するときの流動
性が高いので接着が強固になる効果があり、構造が一体
で変形する場合、接着点の応力集中に対する耐疲労性が
向上し、耐熱性や耐久性がより向上する。
The cross-sectional shape of the filaments of the reticulate body of the present invention is not particularly limited, but the hollow section or the irregular section has the effect of mixing thick filaments and thin filaments and more preferable anti-compression property ( Repulsive force) and touch can be imparted, which is particularly preferable. The anti-compression property can be adjusted by the fineness and the modulus of the material used to make the fineness fine, or in the soft material the hollowness and the irregularity can be increased to adjust the gradient of the initial compression stress, and the fineness can be made slightly thicker or slightly. A material with a high modulus lowers the hollow ratio and the degree of irregularity to provide anti-compression property with a comfortable sitting feeling. As another effect of the hollow cross section and the irregular cross section, by increasing the hollow ratio and the degree of irregularity, if the same anti-compression property is given, the weight can be further reduced, and the energy saving can be achieved when it is used for the seat of an automobile or the like. Yes, if you have a futon,
Improves handling when lifting and lowering. As another preferable method for imparting preferable anti-compression property (repulsive force) and touch, there is a method of forming the filament of the reticulated body of the present invention into a composite structure. Examples of the composite structure include a score core structure, a side-by-side structure, and a combination structure thereof. However, in particular, when the thermoplastic elastic resin layer is largely deformed, the energy and the deformation stress that cannot be converted into energy are converted into energy.
In order to obtain a three-dimensional three-dimensional structure that can be converted and restored, a sheath-core structure or a side-by-side structure in which 50% or more of the linear surface is occupied by a soft thermoplastic elastic resin, and a combination thereof are mentioned. That is, in the sheath core structure, the sheath component is a thermoplastic elastic resin having a large soft segment content which is easy to energy-convert vibration and deformation stress, and the core component is a thermoplastic elastic resin having a small soft segment content, By giving anti-compression property, it is possible to give a comfortable touch to the buttocks due to an appropriate depression. In the side-by-side structure, the melt viscosity of a thermoplastic elastic resin with a high soft segment content that facilitates energy conversion of vibration and deformation stress is made lower than that of a thermoplastic elastic resin with a low soft segment content that exhibits anti-compressibility. A structure in which the proportion of thermoplastic elastic resin occupying a linear surface and having a large amount of soft segment is increased (metaphorically, a structure in which a thermoplastic elastic resin is arranged in an eccentric sheath-core structure) It is particularly preferable that the ratio of the thermoplastic elastic resin having a large soft segment content occupying the linear surface is 80% or more, and most preferably the thermoplastic elastic resin having a large soft segment content occupying the linear surface. Is a score with the ratio of 100% as 100%. When the proportion of the thermoplastic elastic resin with a large soft segment content that occupies the linear surface is large, the flowability when melting and fusing is high, so there is the effect of strengthening the adhesion, and the structure deforms as a unit. In this case, the fatigue resistance against stress concentration at the bonding points is improved, and the heat resistance and durability are further improved.

【0013】熱可塑性弾性樹脂からなる太い線条と細い
線条が混在化して三次元立体構造を形成して接触部の大
部分が融着接合され実質的に表面がフラット化されてい
るので、異繊度混合網状体と他の網状体、不織布、編織
物、硬綿、フイルム、発泡体、金属等の被熱接着体とを
接着するのに、他の熱接着成分(熱接着不織布、熱接着
繊維、熱接着フィルム、熱接着レジン等)や接着剤等を
用いて一体積層構造体化し、車両用座席、船舶用座席、
車両用、船舶用、病院用等の業務用及び家庭用ベット、
家具用椅子、事務用椅子、布団類等の製品を得る場合、
被接着体面との接触面積を広くできるので、接着面積が
広くなり強固に接着した接着耐久性も良好な製品を得る
ことができる。なお、異繊度混合網状体形成段階から製
品化される任意の段階で上述の疑似結晶化処理を施すこ
とにより、構造体中の熱可塑性弾性樹脂成分を示差走査
型熱量計で測定した融解曲線に室温以上融点以下の温度
に吸熱ピークを持つようにすると製品の耐熱耐久性が格
段に向上するのでより好ましい。本発明の異繊度混合網
状体の線条を複合構造化して、振動や変形応力をエネル
ギ−変換が容易なソフトセグメント含有量が多い低融点
の熱可塑性弾性樹脂を熱接着成分、形態保持成分にソフ
トセグメント含有量の少ない熱可塑性弾性樹脂とするこ
とで熱接着機能を付与できる。好ましい熱接着機能付与
には、例えば、シ−スコア構造ではシ−ス成分の振動や
変形応力をエネルギ−変換が容易なソフトセグメント含
有量が多い熱可塑性弾性樹脂を熱接着成分とし、コア成
分にソフトセグメント含有量の少ない熱可塑性弾性樹脂
を網状形態の保持機能をもたせるための高融点成分とす
る構成で、熱接着成分の融点を高融点樹脂の融点より1
0℃以上低くしたものを用いることにより熱接着層の機
能が付与できる。好ましい熱接着成分の融点は高融点成
分の融点より15℃から50℃低い融点であり、より好
ましくは20℃から40℃低い融点である。好ましい実
施形態である熱接着機能を持つ本発明の異繊度混合網状
体は実質的に表面がフラット化されて、接触部の大部分
が融着していることで、網状体、不織布、編織物、硬
綿、フイルム、発泡体、金属等の被熱接着体面との接触
面積を広くできるので、熱接着面積が広くなり、強固に
熱接着した新たな成形体及び車両用座席、船舶用座席、
車両用、船舶用、病院用等の業務用及び家庭用ベット、
家具用椅子、事務用椅子、布団類になった製品を得るこ
とができる。なお、新たな成形体及び製品が製品化され
るまでの任意の段階で疑似結晶化処理を施すことによ
り、構造体中の熱可塑性弾性樹脂からなる線条を示差走
査型熱量計で測定した融解曲線に室温以上融点以下の温
度に吸熱ピークを持つようにすると製品の耐熱耐久性が
格段に向上したものを提供できるのでより好ましい。熱
接着時に被接着体を伸張した状態で接着すると、被接着
体は接着層のゴム弾性で伸張された状態が緩和しないの
で張りのある、皺になりにくい成形体とすることもでき
る。
Since thick and thin filaments made of a thermoplastic elastic resin are mixed to form a three-dimensional three-dimensional structure, most of the contact portions are fusion-bonded and the surface is substantially flattened. Other heat-adhesive components (heat-bonded non-woven fabric, heat-bonded non-woven fabric, heat-bonded non-woven fabric, heat-bonded non-woven fabric, heat-bonded non-woven fabric, non-woven fabric, knitted fabric, hard cotton, film, foam, metal, etc. (Fiber, heat-bonded film, heat-bonded resin, etc.) or adhesive to form an integrated laminated structure, which is used for vehicle seats, ship seats,
Beds for vehicles such as vehicles, ships, hospitals, etc.
If you want to get furniture chairs, office chairs, futons and other products,
Since the contact area with the adherend surface can be widened, it is possible to obtain a product that has a wide bonding area and is firmly bonded and has good adhesion durability. Incidentally, by performing the above pseudo-crystallization treatment at any stage of commercialization from the different fineness mixed reticulate body forming step, the thermoplastic elastic resin component in the structure becomes a melting curve measured by a differential scanning calorimeter. It is more preferable to have an endothermic peak at a temperature of room temperature or higher and melting point or lower because the heat resistance and durability of the product is remarkably improved. The filaments of the different fineness mixed reticulate body of the present invention are formed into a composite structure, and a low melting point thermoplastic elastic resin having a large soft segment content that facilitates energy conversion of vibration and deformation stress is used as a heat-bonding component and a shape-retaining component. By using a thermoplastic elastic resin having a low soft segment content, a heat adhesion function can be imparted. In order to impart a preferable heat-adhesive function, for example, in a sheath-core structure, a thermoplastic elastic resin having a large soft segment content that facilitates energy conversion of vibration and deformation stress of a sheath component is used as a heat-adhesive component and a core component is used. A thermoplastic elastic resin with a low soft segment content is used as a high melting point component to have a net-like shape holding function.
The function of the heat-bonding layer can be imparted by using the one whose temperature is lowered by 0 ° C. or more. The melting point of the heat-bonding component is preferably 15 ° C. to 50 ° C. lower than the melting point of the high melting point component, and more preferably 20 ° C. to 40 ° C. lower. The heterogeneous-fineness mixed reticulate body of the present invention having a heat-bonding function, which is a preferred embodiment, has a substantially flat surface, and most of the contact portions are fused to form a reticulate body, a nonwoven fabric, or a knitted fabric. , A hard cotton, film, foam, metal, etc., the contact area with the surface to be heat-bonded can be widened, so that the heat-bonded area becomes wider, and a new heat-bonded molded body and vehicle seat, ship seat,
Beds for vehicles such as vehicles, ships, hospitals, etc.
You can get furniture chairs, office chairs, and futon products. In addition, by performing pseudo crystallization at any stage until new molded products and products are commercialized, the filaments made of the thermoplastic elastic resin in the structure are melted by a differential scanning calorimeter. It is more preferable to make the curve have an endothermic peak at a temperature of room temperature or higher and melting point or lower because a product with significantly improved heat resistance and durability can be provided. When the adherend is adhered in a stretched state at the time of heat-bonding, the adhered body does not relax the stretched state due to the rubber elasticity of the adhesive layer, so that the adherend can be a molded body having tension and less likely to wrinkle.

【0014】次に、本発明の製法を述べる。本発明の製
法は複数の断面積が異なるオリフィスが混在するノズル
より熱可塑性弾性樹脂を各ノズルオリフィスに分配し、
該熱可塑性樹脂の融点より10℃から80℃高い溶融温
度で、該ノズルより下方に向けて吐出させ、溶融状態で
互いに接触させて融着させ3次元構造を形成しつつ、引
取り装置で挟み込み冷却槽で冷却せしめる異繊度混合網
状体の製法であり、好ましくは冷却後から一体成形して
製品化に至る工程で熱可塑性弾性樹脂の融点より少なく
とも10℃以下の温度でアニ−リングする異繊度混合網
状体及び製品の製法である。網状体は、一般的な押出機
を用いて熱可塑性弾性樹脂を溶融し、複数の断面積が異
なるオリフィスが混在するノズルに分配して融点より1
0℃から80℃高い溶融温度で、所望の見掛け密度にな
る吐出量を下方に向け吐出する。融点より80℃を越え
る高い溶融温度にすると熱分解が著しくなり熱可塑性樹
脂の特性が低下するので好ましくない。他方、融点より
10℃以上高くしないとメルトフラクチャ−を発生し正
常な線条形成が出来なくなり、また、吐出後ル−プ形成
しつつ接触させ融着させる際、線条の温度が低下して線
条同士が融着しなくなり接着が不充分な網状体となる場
合があり好ましくない。好ましい溶融温度は融点より2
0℃から60℃高い温度、より好ましくは融点より30
℃から50℃高い温度である。難燃剤を溶融押出し時に
練り込む場合は、2軸押出機又は単軸押出機では、ダル
メ−ジ、ピン等の混練り機能を有するスクリュ−を用い
て均一に混練させるのが好ましい。多成分の場合は多成
分押出機を用いて熱可塑性弾性樹脂を各単独成分毎に別
々に溶融し、複数の断面積が異なるオリフィスが混在す
るノズル背面で各熱可塑性弾性樹脂を合流分配し、各成
分の融点より10℃から80℃高い同一の溶融温度で、
好ましくは低融点成分の融点より20℃から80℃高
く、高融点成分の融点より15℃から40℃高い温度、
より好ましくは低融点成分の融点より40℃から70℃
高く、高融点成分の融点より20℃から30℃高い温度
となる同一の溶融温度で所望の見掛け密度になる吐出量
でオリフィスより下方へ吐出する。合流直前の溶融温度
差は10℃以下にしないと異常流動を発生し複合形態の
形成が損なわれる場合がある。シ−スコアでは、コア成
分を中心から供給し、その回りからシ−ス成分を合流さ
せ、吐出する。サイドバイサイドでは左右又は前後から
各成分を前記溶融温度で合流させ吐出する。本発明の複
数の断面積が異なるオリフィスが混在するノズルとは、
例えば、長手方向の有効幅50mm、幅方向の有効幅50
0mmの場合、ノズルの幅方向の列の孔間ピッチは5mm一
定、列間のピッチが5mm一定の丸断面のオリフィス形状
の場合、オリフィスの断面積を変えて吐出時の圧力損失
差を付与すると溶融した熱可塑性樹脂を同一ノズルから
一定の圧力で押し出される吐出量が圧力損失の大きいオ
リフィスほど少なくなる原理を用いて、太い線条をつく
るオリフィス径をφ1mm、細い線条をつくるオリフィス
径をφ0.7mmとして一個毎にφ1mmとφ0.7mmとし
て長手方向の列毎に2.5mmずつずらした千鳥配列とす
ることで交互にφ1mmとφ0.7mmとを配列したノズル
や、1列目をφ1mmから配列したら、2列目はφ0.7
mmから配列して、1列毎に交互にφ1mmとφ0.7mmと
を直行配列したノズルなどが例示できる。勿論、細い孔
径を2個と太い孔径を1個毎や細い孔径を3個と太い孔
径を1個毎の様な組合せも必要に応じ選択できる。オリ
フィスの形状は特に限定されないが、中空断面(例えば
三角中空、丸型中空、突起つきの中空等となるよう形
状)及び、又は異形断面(例えば三角形、Y型、星型等
の断面二次モ−メントが高くなる形状)とすることで前
記効果以外に溶融状態の吐出線条が形成する3次元構造
が流動緩和し難くし、逆に接触点での流動時間を長く保
持して接着点を強固にできるので特に好ましい。特開平
1−2075号公報に記載の接着のための加熱をする場
合、3次元構造が緩和し易くなり平面的構造化し、3次
元立体構造化が困難となるので好ましくない。網状体の
特性向上効果としては、見掛けの嵩を高くでき軽量化に
なり、また抗圧縮性が向上し、弾発性も改良できへたり
難くなる。中空断面では中空率が80%を越えると断面
が潰れ易くなるので、好ましくは軽量化の効果が発現で
きる10%以上70%以下、より好ましくは20%以上
60%以下である。オリフィスの孔間ピッチは線状が形
成するル−プが充分接触できるピッチとする必要があ
る。緻密な構造にするには孔間ピッチを短くし、粗な構
造にするには孔間ピッチを長くする。本発明の孔間ピッ
チは好ましくは3mm〜20mm、より好ましくは5mm〜1
0mmである。勿論、特定部分の孔密度をかえて、クッシ
ョン特性を最適化することができる。本発明では所望に
応じ異密度化や異繊度化もできる。列間のピッチ又は孔
間のピッチも変えた構成、及び列間と孔間の両方のピッ
チも変える方法などで異密度層を形成できる。また、列
間で異繊度線条からなる網状構造体も製造できる。次い
で、該ノズルより下方に向けて吐出させ、ル−プを形成
させつつ溶融状態で互いに接触させて融着させ3次元構
造を形成しつつ、線状が溶融状態の網状構造体両面を引
取りネットで挟み込み、網状体の表面の溶融状態の曲が
りくねった吐出線条を45°以上折り曲げて変形させて
表面をフラット化すると同時に曲げられていない吐出線
条との接触点を接着して構造を形成後、連続して冷却媒
体(通常は室温の水を用いるのが冷却速度を早くでき、
コスト面でも安くなるので好ましい)で急冷して本発明
の3次元立体網状構造体化した網状体を得る。ノズル面
と引取り点の距離は少なくとも40cm以下にすることで
吐出線条が冷却され接触部が融着しなくなることを防ぐ
のが好ましい。基本的には吐出線条の吐出量5g/分孔
以上と多い場合は10cm〜40cmが好ましく、吐出線条
の吐出量5g/分孔未満と少ない場合は5cm〜20cmが
好ましいが、本発明では、太い線条と細い線条を混在化
させているので、細い線条の吐出量にあわせたノズル面
と引取り点の距離に設定するのが好ましい。網状体の厚
みは溶融状態の3次元立体構造体両面を挟み込む引取り
ネットの開口幅(引取りネット間の間隔)で決まる。本
発明では上述の理由から引取りネットの開口幅は5mm以
上とする。次いで水切り乾燥するが、冷却媒体中に界面
活性剤等を添加すると、水切りや乾燥がしにくくなった
り、熱可塑性弾性樹脂が膨潤することもあり好ましくな
い。次いで所望の長さまたは形状に切断してクッション
材に用いる。尚、ノズル面と樹脂を固化させる冷却媒体
上に設置した引取りコンベアとの距離、樹脂の溶融粘
度、オリフィスの孔径と吐出量などにより所望のループ
径や線径をきめられる。冷却媒体上に設置した間隔が調
整可能な一対の引取りコンベアで溶融状態の吐出線条を
挟み込み停留させることで互いに接触した部分を融着さ
せつつ連続して冷却媒体中に引込み固化させ網状構造体
を形成する時、上記コンベアの間隔を調整することで、
融着した網状体が溶融状態でいる間で厚み調節が可能と
なり、所望の厚みのものが得られる。コンベア速度も速
すぎると、接触点の形成が不充分になったり、融着点が
充分に形成されるまでに冷却され、接触部の融着が不充
分になる場合がある。また、速度が遅過ぎると溶融物が
滞留し過ぎ、密度が高くなるので、所望の見掛け密度に
適したコンベア速度を設定する必要がある。本発明の好
ましい方法としては、一旦冷却後、一体成形して製品化
に至る任意の工程で熱可塑性弾性樹脂の融点より少なく
とも10℃以下の温度でアニ−リングよる疑似結晶化処
理を行い異繊度混合網状体又は製品を得るのがより好ま
しい製法である。疑似結晶化処理温度は、少なくとも融
点(Tm)より10℃以上低く、Tanδのα分散立ち
上がり温度(Tαcr)以上で行う。この処理で、融点
以下に吸熱ピ−クを持ち、疑似結晶化処理しないもの
(吸熱ピ−クを有しないもの)より耐熱耐へたり性が著
しく向上する。本発明の好ましい疑似結晶化処理温度は
(Tαcr+10℃)から(Tm−20℃)である。単
なる熱処理により疑似結晶化させると耐熱耐へたり性が
向上する。が更には、10%以上の圧縮変形を付与して
アニ−リングすることで耐熱耐へたり性が著しく向上す
るのでより好ましい。また、一旦冷却後、乾燥工程を経
する場合、乾燥温度をアニ−リング温度とすることで同
時に疑似結晶化処理を行うができる。また、製品化する
工程で別途疑似結晶化処理を行うができる。
Next, the manufacturing method of the present invention will be described. The manufacturing method of the present invention distributes the thermoplastic elastic resin to each nozzle orifice from a nozzle in which a plurality of orifices having different cross-sectional areas are mixed,
At a melting temperature higher than the melting point of the thermoplastic resin by 10 ° C. to 80 ° C., they are discharged downward from the nozzle, and in a molten state, they are brought into contact with each other and fused to form a three-dimensional structure, and are sandwiched by a take-up device. This is a method for producing a mixed reticulate body which can be cooled in a cooling tank, and preferably a different fineness which is annealed at a temperature of at least 10 ° C. or lower than the melting point of the thermoplastic elastic resin in the process of integrally molding after cooling to reach commercialization. It is a method for producing a mixed reticulate body and a product. The reticulate body is prepared by melting a thermoplastic elastic resin by using a general extruder and distributing it to a nozzle in which a plurality of orifices having different cross-sectional areas are mixed to obtain a melting point of 1 or more.
At a melting temperature higher than 0 ° C. to 80 ° C., a discharge amount that achieves a desired apparent density is discharged downward. When the melting temperature is higher than 80 ° C., which is higher than the melting point, thermal decomposition becomes remarkable and the characteristics of the thermoplastic resin are deteriorated, which is not preferable. On the other hand, unless the temperature is higher than the melting point by 10 ° C. or more, melt fracture occurs and normal filament formation cannot be performed, and the temperature of the filament decreases when contacting and fusing while forming loop after discharge. The filaments may not be fused to each other and may result in a network having insufficient adhesion, which is not preferable. 2 is preferable to melting point
0 ° C to 60 ° C higher, more preferably 30 above melting point
The temperature is higher by 50 ° C to 50 ° C. When the flame retardant is kneaded at the time of melt extrusion, in a twin-screw extruder or a single-screw extruder, it is preferable to uniformly knead with a screw having a kneading function such as a dullage or a pin. In the case of multi-component, the thermoplastic elastic resin is separately melted by using a multi-component extruder for each individual component, and the thermoplastic elastic resins are jointly distributed at the nozzle back surface where a plurality of orifices having different cross-sectional areas are mixed, At the same melting temperature, which is 10-80 ° C higher than the melting point of each component,
20 ° C. to 80 ° C. higher than the melting point of the low melting point component and 15 ° C. to 40 ° C. higher than the melting point of the high melting point component,
More preferably from the melting point of the low melting point component to 40 ° C to 70 ° C
It is discharged at a higher discharge temperature below the orifice with a discharge amount that gives a desired apparent density at the same melting temperature, which is 20 ° C. to 30 ° C. higher than the melting point of the high melting point component. Unless the melting temperature difference immediately before joining is 10 ° C. or less, abnormal flow may occur and the formation of the composite morphology may be impaired. In the sheath core, the core component is supplied from the center, and the sheath component is merged from around the core component and discharged. On the side-by-side, the respective components are combined at the melting temperature and discharged from the left and right or the front and back. The nozzle of the present invention in which a plurality of orifices having different cross-sectional areas are mixed,
For example, an effective width of 50 mm in the longitudinal direction and an effective width of 50 in the width direction.
In the case of 0 mm, the pitch between the holes in the row in the width direction of the nozzle is constant at 5 mm, and in the case of an orifice shape with a round cross section with a constant pitch between rows, if the cross-sectional area of the orifice is changed, the pressure loss difference at the time of discharge is given Using the principle that the molten thermoplastic resin is extruded from the same nozzle at a constant pressure with a smaller pressure loss in orifices, the orifice diameter for making thick filaments is φ1 mm and the orifice diameter for making thin filaments is φ0. Nozzles in which φ1 mm and φ0.7 mm are alternately arranged by staggered arrangement in which each row has a diameter of 1 mm and φ0.7 mm is shifted by 2.5 mm for each row in the longitudinal direction, and the first row is from φ1 mm If arranged, the second row is φ0.7
An example is a nozzle in which φ1 mm and φ0.7 mm are arranged in a straight line and are arranged in a straight line alternately in each column. Of course, a combination of two thin holes and one thick hole or three thin holes and one thick hole can be selected as needed. The shape of the orifice is not particularly limited, but may be a hollow cross section (for example, a triangular hollow shape, a round hollow shape, a shape with a protrusion, etc.) and / or an irregular cross section (for example, a triangular, Y-shaped, star-shaped cross-section secondary mode). In addition to the above effects, it is difficult for the three-dimensional structure formed by the discharge filaments in the molten state to relax the flow, and on the contrary, the flow time at the contact point is maintained for a long time to strengthen the adhesion point. It is particularly preferable because it can be When heating for adhesion as described in Japanese Patent Application Laid-Open No. 1-2075, the three-dimensional structure is easily relaxed, a planar structure is formed, and a three-dimensional three-dimensional structure becomes difficult, which is not preferable. As an effect of improving the properties of the reticulate body, the apparent bulk can be increased, the weight can be reduced, the anti-compression property can be improved, and the elasticity can be improved, which is difficult to obtain. In the hollow cross section, if the hollow ratio exceeds 80%, the cross section tends to be crushed. Therefore, it is preferably 10% or more and 70% or less, more preferably 20% or more and 60% or less, which can exhibit the effect of weight reduction. The pitch between the holes of the orifice needs to be a pitch with which the loop formed by the line can sufficiently contact. The pitch between holes is shortened for a dense structure, and the pitch between holes is lengthened for a coarse structure. The pitch between holes of the present invention is preferably 3 mm to 20 mm, more preferably 5 mm to 1.
It is 0 mm. Of course, the cushion characteristics can be optimized by changing the hole density of a specific portion. In the present invention, different densities and different fineness can be obtained as desired. The different density layer can be formed by a configuration in which the pitch between rows or the pitch between holes is also changed, or a method in which the pitch between both rows and holes is also changed. Further, it is possible to manufacture a reticulated structure having different fineness filaments between rows. Then, the liquid is discharged downward from the nozzle, and while forming a loop, they are brought into contact with each other in a molten state and fused to form a three-dimensional structure, and both sides of the reticulated structural body in a linear state are drawn. It is sandwiched by a net, and the twisted discharge line on the surface of the mesh is bent over 45 ° to deform and flatten the surface, and at the same time the contact point with the unbent discharge line is bonded to form a structure. After that, continuously cooling medium (usually using room temperature water can increase the cooling rate,
It is preferable because it is cheap in terms of cost), and is rapidly cooled to obtain the three-dimensional three-dimensional net-structured net-like body of the present invention. The distance between the nozzle surface and the take-off point is preferably at least 40 cm or less to prevent the discharge filament from being cooled and the contact portion not being fused. Basically, 10 cm to 40 cm is preferable when the discharge amount of the discharge line is large at 5 g / min or more, and 5 cm to 20 cm is preferable when the discharge amount of the discharge line is less than 5 g / min hole, but in the present invention, Since the thick filaments and the thin filaments are mixed, it is preferable to set the distance between the nozzle surface and the take-off point according to the discharge amount of the thin filaments. The thickness of the net-like body is determined by the opening width (interval between the take-up nets) of the take-up net sandwiching both surfaces of the three-dimensional structure in the molten state. In the present invention, the opening width of the take-up net is set to 5 mm or more for the above reason. Next, it is drained and dried, but if a surfactant or the like is added to the cooling medium, it is difficult to drain and dry, and the thermoplastic elastic resin swells, which is not preferable. Then, it is cut into a desired length or shape and used as a cushion material. The desired loop diameter and wire diameter can be determined by the distance between the nozzle surface and the take-up conveyor installed on the cooling medium for solidifying the resin, the melt viscosity of the resin, the orifice hole diameter and the discharge amount, and the like. A pair of take-up conveyors with adjustable intervals installed on the cooling medium sandwiches and holds the molten discharge filaments so that the parts that are in contact with each other are fused and continuously drawn into the cooling medium to solidify By adjusting the interval of the conveyor when forming the body,
The thickness can be adjusted while the fused network is in a molten state, and a desired thickness can be obtained. If the conveyor speed is too high, the formation of contact points may be insufficient, or the contact point may be cooled until the fusion point is sufficiently formed, resulting in insufficient fusion of the contact portion. Further, if the speed is too slow, the melt will stay too much and the density will increase, so it is necessary to set the conveyor speed suitable for the desired apparent density. As a preferred method of the present invention, after cooling once, in any step leading to product formation by integral molding, a pseudo-crystallization treatment by annealing is performed at a temperature of at least 10 ° C. or lower than the melting point of the thermoplastic elastic resin to carry out a different fineness. A more preferred method is to obtain a mixed reticulate or product. The pseudo-crystallization treatment temperature is at least 10 ° C. lower than the melting point (Tm), and is higher than the α dispersion rising temperature (Tαcr) of Tan δ. By this treatment, the heat-resistant sag resistance is remarkably improved as compared with the one having no endothermic peak (having no endothermic peak) having an endothermic peak below the melting point. The preferred pseudo-crystallization treatment temperature of the present invention is (Tαcr + 10 ° C) to (Tm-20 ° C). If it is pseudo-crystallized by simple heat treatment, heat resistance and sag resistance are improved. However, it is more preferable to impart compressive deformation of 10% or more and anneal to significantly improve the heat resistance and sag resistance. When the drying step is performed after cooling once, the pseudo crystallization treatment can be performed at the same time by setting the drying temperature to the annealing temperature. Also, a pseudo crystallization treatment can be separately performed in the process of commercialization.

【0015】本発明の異繊度混合網状体をクッション材
にもちいる場合、その使用目的、使用部位により使用す
る樹脂、繊度、ル−プ径、嵩密度を選択する必要があ
る。例えば、ソフトなタッチと適度の沈み込みと張りの
ある膨らみを付与するためには、低密度で細い繊度、細
かいル−プ径にするのが好ましく、中層のクッション機
能も発現させるには、共振振動数を低くし、適度の硬さ
と圧縮時のヒステリシスを直線的に変化させて体型保持
性を良くし、耐久性を保持させるために、中密度で太い
繊度、やや大きいル−プ径の層と低密度で細い繊度、細
かいル−プ径の層を積層一体化した構造にするのが好ま
しい。また、3次元構造を損なわない程度に成形型等を
用いて使用目的にあった形状に成形して側地を被せ車両
用座席、船舶用座席、ベット、椅子、家具等に用いるこ
とができる。勿論、用途との関係で要求性能に合うべく
他の素材、例えば、異なる網状体、短繊維集合体からな
る硬綿クッション材、不織布等と組合せて用いることも
可能である。また、樹脂製造過程以外でも性能を低下さ
せない範囲で製造過程から成形体に加工し、製品化する
任意の段階で難燃化、防虫抗菌化、耐熱化、撥水撥油
化、着色、芳香等の機能付与を薬剤添加等の処理加工が
できる。
When the different fineness mixed reticulate body of the present invention is used as a cushioning material, it is necessary to select the resin, fineness, loop diameter and bulk density to be used depending on the purpose and site of use. For example, in order to impart a soft touch, moderate depression and bulging with tension, it is preferable to have a low density and fine fineness and a fine loop diameter. A layer with medium density, thick fineness, and a slightly larger loop diameter to lower the frequency, improve linearity of moderate hardness and compression hysteresis to improve body retention, and maintain durability. It is preferable to have a structure in which layers having low density, fine fineness, and fine loop diameter are laminated and integrated. Further, it can be used for vehicle seats, boat seats, beds, chairs, furniture, etc. by molding it into a shape suitable for the purpose of use by using a molding die or the like to the extent that the three-dimensional structure is not impaired. Of course, it is also possible to use it in combination with other materials such as a different mesh body, a hard cotton cushion material composed of a short fiber aggregate, a non-woven fabric or the like so as to meet the required performance in relation to the application. In addition, other than the resin manufacturing process, the molded product is processed from the manufacturing process to the extent that performance is not deteriorated, and at any stage of commercialization, it becomes flame retardant, insecticidal, antibacterial, heat resistant, water / oil repellent, colored, aroma, etc. It is possible to perform the processing such as the addition of chemicals to add the function.

【0016】[0016]

【実施例】以下に実施例で本発明を詳述する。EXAMPLES The present invention will be described in detail below with reference to examples.

【0017】なお、実施例中の評価は以下の方法で行っ
た。 融点(Tm)および融点以下の吸熱ピ−ク 島津製作所製TA50,DSC50型示差熱分析計を使
用し、昇温速度20℃/分で測定した吸発熱曲線から吸
熱ピ−ク(融解ピ−ク)温度を求めた。 Tαcr ポリマ−を融点+10℃に加熱して、厚み約300μm
のフイルムを作成して、オリエンテック社製バイブロン
DDVII型を用い、110Hz、昇温速度1℃/分で測
定したTanδ(虚数弾性率M”と弾性率の実数部分
M’との比M”/M’)のゴム弾性領域から融解領域へ
の転移点温度に相当するα分散の立ち上がり温度。 見掛け密度 試料を15cm×15cmの大きさに切断し、4か所の高さ
を測定し、体積を求め試料の重さを体積で徐した値で示
す。(n=4の平均値) 線条の断面二次モ−メント比と繊度 試料を10箇所から各線条部分を切り出し、アクリル樹
脂で包埋して断面を削り出し切片を作成して断面写真を
得る。各部分の断面写真を拡大して太い線条と細い線条
の各部の断面積(Si)と断面二次モ−メント(Ii)
を求める。次いで太い線条の断面二次モ−メント(Il
i)と細い線条の断面二次モ−メント(Isi)との比
(IΔ)を次式で求める。(各部n=5の平均) IΔ=Σ(Ili)/Σ(Isi) また、同様にして得た切片をアセトンでアクリル樹脂を
溶解し、真空脱泡して密度勾配管を用いて40℃にて測
定した比重(SGi)を求める。ついで次式より線状の
9000mの重さを求める。(単位cgs) 繊度=〔(1/n)ΣSi×SGi〕×900000 融着 試料を目視判断で融着しているか否かを接着している繊
維同士を手で引っ張って外れないか否かで外れないもの
を融着していると判断する。 耐熱耐久性(70℃残留歪) 試料を15cm×15cmの大きさに切断し、50%圧縮し
て70℃乾熱中22時間放置後冷却して圧縮歪みを除き
1日放置後の厚み(b)を求め、処理前の厚み(a)か
ら次式、即ち(a−b)/a×100より算出する。単
位%(n=3の平均値) 繰返し圧縮歪 試料を15cm×15cmの大きさに切断し、島津製作所製
サ−ボパルサ−にて、25℃65%RH室内にて50%
の厚みまで1Hzのサイクルで圧縮回復を繰り返し2万
回後の試料を1日放置後の厚み(b)を求め、処理前の
厚み(a)から次式、即ち(a−b)/a×100より
算出する。単位%(n=3の平均値) 座り心地 常法により公知の複合紡糸機にて、後述する熱可塑性弾
性樹脂A−1に難燃剤を加えなかった組成をシ−ス成
分、A−2に難燃剤を加えなかった組成をコア成分とな
るように個々に溶融してオリフィス直前で分配し、各吐
出量を50/50重量比で、単孔当たり1.6g/分孔
(0.8g/分:0.8g/分)として紡糸温度245
℃にて吐出し、紡糸速度3500m/分にて得た繊度が
4.1デニ−ル、乾熱160℃での収縮率8%の糸を収
束してトウ状でクリンパ−にて機械巻縮を付与し、64
mmに切断してシ−スコア断面の熱可塑性弾性樹脂からな
る熱接着繊維を得た。母材繊維は、常法により、極限粘
度0.63と0.56のPETを重量比50/50にて
分配し、単孔当たりの吐出量3.0g/分(1.5g/
分:1.5g/分)として紡糸温度285℃にてC型オ
リフィスより吐出し、紡糸速度1300m/分で複合紡
糸し、次いで70℃及び180℃にて2段延伸して得た
延伸糸を64mmに切断し、乾熱160℃にて巻縮を発現
させて得た6デニ−ル、初期引張り抵抗度38g/デニ
−ルの立体巻縮糸を得た。得られた熱接着繊維(30重
量%)及び母材繊維(70重量%)を混合しオ−プナ−
にて予備開繊した後カ−ドで開繊して得たウエッブを目
付け500g/m2 に積層したカ−ドウエッブを、バケ
ットシ−トの形状に切断した多層網状体の表面側に、成
形したクッションの見掛けの嵩密度を0.05g/cm3
となるように積層して熱成形用雌金型に入れ、牡金型で
圧縮して詰め込み200℃の熱風にて5分間熱接着成形
してバケットシ−ト状に成形したクッションに東洋紡績
製ハイムからなるポリエステルモケットの側地を被っ
て、座席用フレ−ムにセットして座部は4か所、背部は
6か所の側地止めを入れた座席を作成し、30℃RH7
5%室内で作成した座席にパネラ−を座らせ以下の評価
をおこなった。(n=5) (1) 床つき感:座ったときの「どすん」と床に当たった
感じの程度を感覚的に定性評価した。感じない;◎、殆
ど感じない;○、やや感じる;△、感じる;× (2) 蒸れ感:2時間座っていて、臀部やふと股の内側の
座席と接する部分が蒸れた感じを感覚的に定性評価し
た。殆ど感じない:◎、僅かに蒸れを感じる;○、やや
蒸れを感じる;△、蒸れを著しく感じる;× (3) 8時間以内でどの程度我慢して座席に座っていられ
るか:1時間以内;×、2時間以内;△、4時間以内;
○、4時間以上;◎ (4) 4時間座席に座らせたときの腰の疲れ程度を感覚的
に定性評価した。無し;◎、殆ど疲れない;○、やや疲
れる;△、非常に疲れる;× (5) 総合評価: (1)から(4) までの評価の◎を4点、○
を3点、△を2点、×を1点として12点以上で△を含
まないもの;非常に良い(◎)、12点以上で△を含む
もの;良い(○)、10点以上で×を含まないもの;や
や悪い(△)、×を含むもの;悪い(×)として評価し
た。
The evaluations in the examples were carried out by the following methods. Melting point (Tm) and endothermic peak below melting point TA50, DSC50 type differential thermal analyzer manufactured by Shimadzu Corporation was used, and the endothermic peak (melting peak) was measured from the endothermic curve measured at a temperature rising rate of 20 ° C./min. ) The temperature was determined. Tαcr polymer is heated to the melting point + 10 ° C and the thickness is about 300 μm.
Film was prepared and measured using a Vibron DDVII type manufactured by Orientec Co., Ltd. at a rate of 110 Hz and a heating rate of 1 ° C./min. Tan δ (the ratio of the imaginary elastic modulus M ″ to the real part M ′ of the elastic modulus M ″ / The rising temperature of α dispersion corresponding to the transition temperature from the rubber elastic region to the melting region of M ′). The apparent density sample is cut into a size of 15 cm × 15 cm, the heights at four locations are measured, the volume is determined, and the weight of the sample is divided by the volume. (Average value of n = 4) Cross section secondary moment ratio of filaments and fineness Each filament portion was cut out from 10 places of the sample, embedded with acrylic resin, the cross section was cut out to create a section, and a cross section photograph was taken. obtain. The cross-sectional photograph of each part is enlarged to show the cross-sectional area (Si) and cross-section secondary moment (Ii) of each part of thick and thin filaments.
Ask for. Next, the secondary secondary cross-section moment (Il
The ratio (IΔ) between i) and the secondary moment of cross section (Isi) of the thin filament is calculated by the following equation. (Average of each part n = 5) IΔ = Σ (Ili) / Σ (Isi) Further, a section obtained in the same manner was dissolved in acrylic resin with acetone, vacuum defoamed, and heated to 40 ° C. using a density gradient tube. The specific gravity (SGi) measured by Then, a linear weight of 9000 m is obtained from the following equation. (Unit: cgs) Fineness = [(1 / n) ΣSi × SGi] × 900000 Whether or not the fusion-bonded sample is fused by visual judgment is determined by whether or not the fibers adhering to each other can be pulled out by hand and removed. It is determined that something that does not come off is fused. Heat resistance and durability (residual strain at 70 ° C) Cut a sample into a size of 15 cm x 15 cm, compress it by 50%, leave it in dry heat at 70 ° C for 22 hours, then cool to remove compression strain and leave it for 1 day (b) Is calculated, and is calculated from the thickness (a) before processing by the following equation, that is, (ab) / a × 100. Unit% (average value of n = 3) Cyclic compression strain sample is cut into a size of 15 cm x 15 cm, and is 50% in a RH room at 25 ° C and 65% in a Shimadzu Servo Pulser.
The thickness (b) after leaving the sample for 20,000 times after repeating compression recovery at a cycle of 1 Hz up to the thickness of 1 is calculated from the thickness (a) before the treatment, that is, (ab) / ax Calculated from 100. Unit% (average value of n = 3) A composition in which a flame retardant was not added to a thermoplastic elastic resin A-1 described later was used as a sheath component and A-2 by a known composite spinning machine by a conventional sitting comfort method. The composition containing no flame retardant was individually melted to form the core component and distributed immediately before the orifice. Each discharge amount was 50/50 by weight, and 1.6 g / min. Min: 0.8 g / min) and spinning temperature 245
At a spinning rate of 3500 m / min, the yarn having a fineness of 4.1 denier and a shrinkage rate of 8% at a dry heat of 160 ° is converged into a tow-shaped crimp. Is given, 64
It was cut into mm to obtain a heat-bonding fiber made of a thermoplastic elastic resin having a cross section of sheath core. As the base material fiber, PET having an intrinsic viscosity of 0.63 and 0.56 was distributed at a weight ratio of 50/50 by a conventional method, and the discharge amount per single hole was 3.0 g / min (1.5 g / min.
Min: 1.5 g / min) at a spinning temperature of 285 ° C., discharged from a C type orifice, composite spinning at a spinning speed of 1300 m / min, and then drawn in two stages at 70 ° C. and 180 ° C. to obtain a drawn yarn. A three-dimensional crimped yarn having a denier of 6 denier and an initial tensile resistance of 38 g / denier was obtained by cutting into 64 mm and causing crimping at a dry heat of 160 ° C. The resulting heat-bonded fiber (30% by weight) and the base material fiber (70% by weight) were mixed to form an opener.
A web obtained by pre-opening with a card and opening with a card and having a basis weight of 500 g / m 2 was laminated to form a carded web on the surface side of a multi-layer mesh body cut into the shape of a bucket sheet. The apparent bulk density of the cushion is 0.05 g / cm 3
To be laminated into a thermoforming female mold, compressed with an oyster mold, and packed and heat-bonded with hot air at 200 ° C for 5 minutes to form a bucket sheet-shaped cushion. Cover the side of polyester moquette consisting of, and set it on the seat frame to create a seat with 4 side seats and 6 side backs and 30 ° C RH7
5% A paneler was allowed to sit on the seat created in the room and the following evaluation was performed. (N = 5) (1) Feeling on the floor: The degree of "dosun" when sitting and the feeling of hitting the floor were qualitatively and qualitatively evaluated. Not felt; ◎, hardly felt; ○, slightly felt; △, felt; × (2) Feeling of stuffiness: Feeling stuffy when sitting for 2 hours and the buttocks and the part of the crotch that contacts the seat inside the crotch Qualitatively evaluated. Almost no feeling: ◎, slightly stuffy; ○, slightly stuffy; △, significantly stuffy; × (3) How long you can sit in the seat within 8 hours: within 1 hour; × within 2 hours; △ within 4 hours;
○ 4 hours or more; ◎ (4) A qualitative qualitative evaluation was performed on the degree of waist fatigue when the user sat in the seat for 4 hours. None; ◎, hardly tired; ○, slightly tired; △, very tired; × (5) Overall evaluation: 4 points from ◎ of the evaluations from (1) to (4), ○
3 points, △ is 2 points, × is 1 point and does not include Δ with 12 points or more; very good (⊚), that with 12 points or more; Good (○), 10 points or more is x It was evaluated as those which did not contain; those which were somewhat bad (Δ) and those which contained x; bad (x).

【0018】実施例1 ポリエステル系エラストマ−として、ジメチルテレフタ
レ−ト(DMT)又は、ジメチルナフタレ−ト(DM
N)と1・4ブタンジオ−ル(1・4BD)を少量の触
媒と仕込み、常法によりエステル交換後、ポリテトラメ
チレングリコ−ル(PTMG)を添加して昇温減圧しつ
つ重縮合せしめポリエ−テルエステルブロック共重合エ
ラストマ−を生成させ、次いで、難燃剤として旭電化製
アデカスタブPFRを燐含有量で10000ppmと抗
酸化剤として旭電化製アデカスタブAO330を2%と
を添加混合練込み後ペレット化し、50℃48時間真空
乾燥して得られた熱可塑性弾性樹脂原料の処方を表1に
示す。
Example 1 As a polyester elastomer, dimethyl terephthalate (DMT) or dimethyl naphthalate (DM) was used.
N) and 1.4 butanediol (1.4 BD) were charged with a small amount of a catalyst, and after transesterification by a conventional method, polytetramethylene glycol (PTMG) was added and polycondensation was performed while heating and depressurizing. -Terester block copolymer elastomer is produced, and then Asahi Denka Adekastab PFR is added as a flame retardant at a phosphorus content of 10000 ppm and Asahi Denka Adekastab AO330 is added as 2%, and the mixture is kneaded and pelletized. Table 1 shows the formulation of the thermoplastic elastic resin raw material obtained by vacuum drying at 50 ° C. for 48 hours.

【0019】[0019]

【表1】 [Table 1]

【0020】幅50cm、長さ5cmのノズル有効面に幅方
向の孔間ピッチをを5mmとし、長さ方向に5mm間隔でオ
リフィス形状が外径2mm、内径1.6mmでトリプルブリ
ッジの中空形成性断面と、φ0.5mmの丸断面オリフィ
スを交互に配列し、長さ方向の列間のずれを5mmにした
各孔が千鳥配列となったノズルを用い、得られた熱可塑
性弾性樹脂原料(A−1及びA−2)とを2本の押出機
にて別々に溶融し、ギヤポンプを介してA−1とA−2
をオリフィス直前でA−1をシ−ス成分に、A−2をコ
ア成分となるように(シ−ス/コア:50/50重量比
で単孔吐出量2.0g/分孔)トリプルブリッジの中空
形成オリフィスへ供給し、丸孔オリフィスへはA−1の
み(単孔吐出量0.5g/分孔)を供給して、溶融温度
240℃にてノズル下方に吐出させ、ノズル面10cm下
に冷却水を配し、幅60cmのステンレス製エンドレスネ
ットを平行に5cm間隔で一対の引取りコンベアを水面上
に一部出るように配して、該溶融状態の吐出線状を曲が
りくねらせル−プを形成して接触部分を融着させつつ3
次元網状構造を形成しつつ、両面を引取りコンベアで挟
み込みつつ毎分1mの速度で25℃の冷却水中へ引込み
固化させた後、所定の大きさに切断して、次いで厚みの
80%まで圧縮して100℃の熱風にて20分疑似結晶
化処理し得られた太い線条の断面形状はシ−スコア構造
の三角おむすび型中空断面で中空率が38%、繊度が9
000デニ−ルの線条で形成しており、細い線条の断面
は丸断面で繊度が2200デニ−ルで、断面二次モ−メ
ント比が172、平均の見掛け密度が0.056g/cm
3 の三次元網状構造の実質的に表面がフラット化された
異繊度混合網状体の特性を表2に示す。実施例1の実施
例1は柔らかい弾性樹脂の特性とやや硬い弾性樹脂の特
性を生かせた緻密な異繊度混合網状体のため耐熱性、常
温での耐久性、座り心地ともに優れ、難燃性も付与され
た優れた安全性の良いクッション材であった。評価用に
作成した座席も性能が優れていることが判る。
With a 50 cm wide and 5 cm long nozzle effective surface, the hole-to-hole pitch in the width direction is 5 mm, and the orifice shape is 2 mm in outer diameter and 1.6 mm in inner diameter at intervals of 5 mm in the length direction, and the hollow forming property of triple bridge is formed. A thermoplastic elastic resin raw material (A) obtained by using a nozzle in which cross-sections and circular cross-section orifices with a diameter of 0.5 mm are alternately arranged -1 and A-2) are separately melted in two extruders, and A-1 and A-2 are melted through a gear pump.
Triple bridge with A-1 as the sheath component and A-2 as the core component immediately before the orifice (seed / core: 50/50 weight ratio, single hole discharge rate 2.0 g / min) To the hollow forming orifice, and to the round hole orifice, only A-1 (single hole discharge amount 0.5 g / minute hole) is supplied and discharged below the nozzle at a melting temperature of 240 ° C., 10 cm below the nozzle surface. Cooling water is placed in the chamber, and stainless steel endless nets with a width of 60 cm are arranged in parallel at intervals of 5 cm so that a part of the pair of take-up conveyors are exposed above the water surface. -While forming a ridge and fusing the contact portion, 3
While forming a three-dimensional mesh structure, both sides are sandwiched by a take-up conveyor, drawn into cooling water at 25 ° C at a speed of 1 m / min to be solidified, cut into a predetermined size, and then compressed to 80% of the thickness. The cross-sectional shape of the thick filament obtained by pseudo-crystallization treatment with hot air at 100 ° C. for 20 minutes is a triangular rice ball-shaped hollow cross-section with a sheath core structure having a hollow ratio of 38% and a fineness of 9
It is made up of 000 denier filaments. The fine filaments have a round cross section with a fineness of 2200 denier, a cross sectional secondary moment ratio of 172, and an average apparent density of 0.056 g / cm.
Table 2 shows the properties of the heterogeneous mixed reticulate body in which the surface of the three-dimensional reticulated structure of 3 is substantially flattened. Example 1 of Example 1 is a dense reticulated mixed reticulate body that takes advantage of the characteristics of a soft elastic resin and the characteristics of a slightly hard elastic resin, and thus is excellent in heat resistance, durability at room temperature, comfortable to sit on, and flame retardant. It was an excellent cushioning material with excellent safety. It can be seen that the seat created for evaluation also has excellent performance.

【0021】[0021]

【表2】 [Table 2]

【0022】実施例2 ジメチルイソフタレ−ト(DMI)20モル%とDMT
80モル%及び1・4ブタンジオ−ル(1・4BD)を
少量の触媒と仕込み、実施例1の方法と同様にして得た
ポリエステル系熱可塑性弾性樹脂の処方を表1に示す。
幅50cm、長さ5cmのノズル有効面に幅方向の孔間ピッ
チを5mmとし、長さ方向に5mm間隔でオリフィス形状が
φ1mmと、φ0.7mmの丸断面オリフィスを交互に配列
し、長さ方向の列間のずれを5mmにした各孔が千鳥配列
となったノズルを用い、得られた熱可塑性弾性樹脂A−
3をノズルに分配し、溶融温度210℃にて、全吐出量
1590g/分にて吐出し、引取りコンベア速度を1.
3m/分とした以外実施例1と同様にして得た太い線条
の繊度が10400デニ−ル、細い線条の繊度が250
0デニ−ル、断面二次モ−メント比が73、見掛け密度
が0.048g/cm3 の異繊度混合網状体の特性を表2
に示す。表2で明らかなごとく、実施例2は耐熱性と常
温での耐久性は実用上使用可能で、体型保持性が改善さ
れ、座り心地の優れたクッション材であり、評価用に作
成した座席も優れていることが判る。
Example 2 20 mol% of dimethyl isophthalate (DMI) and DMT
Table 1 shows the formulation of the polyester-based thermoplastic elastic resin obtained in the same manner as in Example 1 by charging 80 mol% and 1.4-butanediol (1.4-BD) with a small amount of a catalyst.
A 50 cm wide and 5 cm long nozzle effective surface has a hole-to-hole pitch of 5 mm, and orifices of 1 mm in diameter and 0.7 mm in round cross section are alternately arranged at intervals of 5 mm in the length direction. Of the thermoplastic elastic resin A-
No. 3 was distributed to the nozzle, and the total discharge amount was 1590 g / min at a melting temperature of 210 ° C. and the take-up conveyor speed was 1.
Thick filaments having a fineness of 10400 denier and fine filaments having a fineness of 250 were obtained in the same manner as in Example 1 except that the fineness was 3 m / min.
Table 2 shows the characteristics of a heterogeneous mixed reticulate body having a denier of 0, a cross-sectional secondary moment ratio of 73, and an apparent density of 0.048 g / cm 3.
Shown in. As is clear from Table 2, Example 2 is a cushioning material that is practically usable in terms of heat resistance and durability at room temperature, has improved body retention, and is comfortable to sit on. It turns out to be excellent.

【0023】実施例3 ポリウレタン系エラストマ−として、4・4’ジフェニ
ルメタンジイソシアネ−ト(MDI)とPTMG及び鎖
延長剤として1・4BDを添加して重合し次いで、抗酸
化剤2%を添加混合練込み後ペレット化し真空乾燥して
ポリエ−テル系ウレタンポリマ−の処方を表3に示す。
Example 3 As a polyurethane elastomer, 4,4'-diphenylmethane diisocyanate (MDI), PTMG and 1.4BD as a chain extender were added and polymerized, and then 2% of an antioxidant was added. After mixing and kneading, pelletizing, vacuum drying, and prescription of the polyether urethane polymer are shown in Table 3.

【0024】[0024]

【表3】 [Table 3]

【0025】得られた熱可塑性弾性樹脂を太い線条のシ
−ス成分にB−1,コア成分にB−2を用い、細い線条
にB−1を用い、溶融温度を210℃とした以外実施例
1と同様にして得た太い線条の断面形状はシ−スコア構
造の三角おむすび型中空断面で中空率40%、繊度は1
1000デニ−ル、細い線条が丸断面の繊度が2500
デニ−ル、断面二次モ−メント比が230、平均の見掛
け密度が0.055g/cm3 の異繊度混合網状体の特性
を表2に示す。実施例4は熱可塑性弾性樹脂にウレタン
を用いた異繊度混合網状体で耐熱性、常温での耐久性、
座り心地ともに優れたクッション材であった。評価用に
作成した座席も優れていることが判る。
The thermoplastic elastic resin thus obtained was used with B-1 as a sheath component of a thick filament, B-2 as a core component, B-1 as a thin filament, and a melting temperature of 210.degree. Other than that, the cross-sectional shape of the thick filament obtained in the same manner as in Example 1 is a triangular rice ball type hollow cross-section with a sheath core structure, the hollow ratio is 40%, and the fineness is 1
1000 denier, fine filament with round cross section has fineness of 2500
Table 2 shows the characteristics of the denier, the cross sectional secondary moment ratio of 230 and the average apparent density of 0.055 g / cm 3 of the mixed fineness reticulated body. Example 4 is a heterogeneous mixed reticulate body using urethane as a thermoplastic elastic resin, which has heat resistance, durability at room temperature,
It was a cushioning material with excellent sitting comfort. It can be seen that the seat created for evaluation is also excellent.

【0026】比較例1〜2 比較例1は、固有粘度0.63のPETを用いて、溶融
温度280℃にて吐出し、比較例2はメルトインデック
ス12のPPを用い、溶融温度を240℃とし、疑似結
晶化処理しなかった以外、実施例2と同様にして得た異
繊度混合網状体の特性を表2に示す。比較例1の網状体
は、太い線条が中実丸断面で繊度8900デニ−ル、細
い線条が中実丸断面で繊度2100デニ−ル、断面二次
モ−メント比が76、平均の見掛け密度が0.054g
/cm3 であった。比較例2の網状体は太い線条が中実丸
断面で繊度21000デニ−ル、細い線条が5300デ
ニ−ル、断面二次モ−メント比が62、平均の見掛け密
度が0.053g/cm3 であった。比較例1は非弾性ポ
リエステルからなる網状体のため耐熱耐久性が悪く、硬
くて座り心地も悪いクッション材の例である。比較例2
は繊度がやや太い非弾性オレフィンからなる網状体のた
め、耐熱耐久性が悪く、硬くて座り心地の悪いクッショ
ン材の例である。
Comparative Examples 1 and 2 In Comparative Example 1, PET having an intrinsic viscosity of 0.63 was used and discharged at a melting temperature of 280 ° C. In Comparative Example 2, PP having a melt index of 12 was used and the melting temperature was 240 ° C. Table 2 shows the characteristics of the different fineness mixed reticulate body obtained in the same manner as in Example 2 except that the pseudo crystallization treatment was not performed. In the reticulate body of Comparative Example 1, the thick filaments had a fineness of 8900 denier in a solid round section, the fine filaments had a fineness of 2100 denier in a solid round section, and the secondary moment ratio of the cross section was 76. Apparent density is 0.054g
It was / cm 3 . In the reticulate body of Comparative Example 2, the thick filament has a solid round cross section with a fineness of 21,000 denier, the fine filament has 5300 denier, the secondary moment ratio of cross section is 62, and the average apparent density is 0.053 g / It was cm 3 . Comparative Example 1 is an example of a cushioning material that is poor in heat resistance and durability because it is a net-like body made of non-elastic polyester and is hard and uncomfortable to sit on. Comparative example 2
This is an example of a cushion material that is hard and uncomfortable to sit on because it is a reticulate body made of non-elastic olefin with a slightly finer fineness, and has poor heat resistance and durability.

【0027】比較例3 ノズル面60cm下に引取りコンベアネットを配して引き
取ったあと疑似結晶化処理をしなかった以外、実施例2
と同様の方法で得た網状体の特性の一部を表−2に示
す。なお、融着状態が不良で形態保持が悪いため、50
%圧縮時反発力、見掛け密度、70℃残留歪、繰返圧縮
歪み、及び座り心地の評価はしていない。比較例3は形
態が固定されていないのでクッション材に適さない例で
ある。
Comparative Example 3 Example 2 was repeated except that a take-up conveyor net was placed 60 cm below the nozzle surface and no pseudo crystallization treatment was performed after the take-up conveyor net was taken out.
Table 2 shows some of the properties of the reticulate body obtained by the same method as described in (1). In addition, since the fusion state is poor and the shape retention is poor, 50
% Repulsive force at compression, apparent density, residual strain at 70 ° C., repeated compressive strain, and sitting comfort were not evaluated. Comparative Example 3 is an example that is not suitable for a cushioning material because its shape is not fixed.

【0028】比較例4 オリフィスの孔径を全てφ1mmにして、全吐出量を55
0g/分とし、ノズル面10cm下に引取りコンベアネッ
トを配して引き取ったあと疑似結晶化処理をしなかった
以外、実施例2と同様にして得た、繊度が2000〜2
400デニ−ル、断面二次モ−メント比が1.7、平均
の見掛け密度が0.022g/cm3 の網状体の特性を表
2に示す。比較例4は熱可塑性弾性樹脂を用いているの
でタッチは良いが、断面二次モ−メント比が少なく体型
保持性が劣り、耐熱性と耐久性がやや劣るクッション材
の例である。
COMPARATIVE EXAMPLE 4 All orifices had a diameter of 1 mm and the total discharge amount was 55 mm.
The fineness was 2000-2, which was obtained in the same manner as in Example 2 except that 0 g / min was set and a take-up conveyor net was placed 10 cm below the nozzle surface and no pseudo-crystallization treatment was performed.
Table 2 shows the characteristics of the reticulate body having a denier of 400, a secondary sectional moment ratio of 1.7, and an average apparent density of 0.022 g / cm 3 . Since Comparative Example 4 uses a thermoplastic elastic resin, it has a good touch, but it is an example of a cushioning material having a small cross-section secondary moment ratio and inferior body retention, and slightly inferior heat resistance and durability.

【0029】比較例5 長さ方向に5mm間隔でオリフィス形状がφ1mmと、φ
0.5mmの丸断面オリフィスを交互に配列し、全吐出量
2100g/分にて吐出させて、ノズル面10cm下に引
取りコンベアネットを配して1m/分にて引き取り、疑
似結晶化処理しなかった以外、実施例2と同様にして得
た太い線条の繊度は32000デニ−ルで、断面二次モ
−メント比が4000、平均の見掛け密度は0.085
g/cm3 の異繊度混合網状体の特性を表2に示す。比較
例5は太い線条の繊度が著しく太く細い線条との断面二
次モ−メント比が著しく大きいため、密度斑のある異繊
度混合網状体のため、耐熱耐久性が悪くなり、座り心地
もやや悪くなるクッション材の例である。
Comparative Example 5 Orifice shape was φ1 mm at intervals of 5 mm in the longitudinal direction.
Arrange 0.5mm round cross-section orifices alternately, discharge at a total discharge rate of 2100g / min, arrange a take-up conveyor net 10cm below the nozzle surface and take-off at 1m / min for pseudo-crystallization treatment. The thick filaments obtained in the same manner as in Example 2 had a fineness of 32,000 denier, a secondary cross-section moment ratio of 4000, and an average apparent density of 0.085.
Table 2 shows the properties of the gauze / cm 3 mixed fineness reticulate body. In Comparative Example 5, the fineness of the thick filaments is remarkably large, and the secondary moment ratio in cross section with the thin filaments is remarkably large. Therefore, since the heterogeneous mixed reticulate body has density unevenness, the heat resistance and durability are deteriorated, and sitting comfort is improved. This is an example of a cushion material that becomes slightly worse.

【0030】比較例6 引取りコンベアネットの両面が凸凹を有する金網とし、
疑似結晶化処理しない以外実施例2と同様にして得た太
い線条が中実丸断面で繊度10000デニ−ル、断面二
次モ−メント比が72、平均の見掛け密度が0.048
g/cm3 の異繊度混合網状体の特性を表2に示す。比較
例6は網状体の表面が凹凸になっているため、見掛け密
度が低いのに耐久性が劣り、表面層との熱接着が不充分
になり、少し異物感を感じる座り心地のやや劣るクッシ
ョン材の例である。
COMPARATIVE EXAMPLE 6 A take-up conveyor net is a wire mesh having irregularities on both sides,
The thick filaments obtained in the same manner as in Example 2 except that the pseudo crystallization treatment was not performed had a solid round cross section, a fineness of 10,000 denier, a cross sectional secondary moment ratio of 72, and an average apparent density of 0.048.
Table 2 shows the properties of the gauze / cm 3 mixed fineness reticulate body. In Comparative Example 6, since the surface of the net-like body is uneven, the apparent density is low, but the durability is poor, the thermal adhesion with the surface layer is insufficient, and the cushion feels a little inferior and is slightly inferior in sitting comfort. It is an example of a material.

【0031】比較例7 全吐出量を500g/分にて吐出させ、引取りコンベア
ネットの速度を4m/分とし、疑似結晶化処理しなかっ
た以外実施例2と同様して得た太い線条の繊度が290
0デニ−ル、断面二次モ−メント比が51、見掛け密度
が0.005g/cm3 の異繊度混合網状体の特性を表2
に示す。比較例7は見掛け密度が低いため、座り心地が
劣り、耐熱性、耐久性が劣るクッション材である。
Comparative Example 7 Thick filaments obtained in the same manner as in Example 2 except that the total discharge rate was 500 g / min, the take-up conveyor net speed was 4 m / min, and no pseudo-crystallization treatment was performed. Has a fineness of 290
Table 2 shows the characteristics of a heterogeneous mixed reticulate body having a denier of 0, a cross sectional secondary moment ratio of 51, and an apparent density of 0.005 g / cm 3.
Shown in. Comparative Example 7 has a low apparent density, and therefore is a cushioning material having inferior sitting comfort, heat resistance and durability.

【0032】比較例8 全吐出量を4500g/分にて吐出させ、引取りコンベ
アネットの速度を0.8m/分とし、疑似結晶化処理し
なかった以外実施例2と同様して得た太い線条の繊度が
28000デニ−ル、断面二次モ−メント比が66、見
掛け密度が0.23g/cm3 の異繊度混合網状体の特性
を表2に示す。比較例7は見掛け密度が高いため、座り
心地がやや劣り、耐熱性、耐久性が劣るクッション材で
ある。
Comparative Example 8 A thick sample obtained in the same manner as in Example 2 except that the total discharge amount was 4500 g / min, the take-up conveyor net speed was 0.8 m / min, and no pseudo-crystallization treatment was performed. Table 2 shows the characteristics of the heterogeneous mixed reticulate body having a filament fineness of 28,000 denier, a sectional secondary moment ratio of 66, and an apparent density of 0.23 g / cm 3 . Comparative Example 7 has a high apparent density and therefore is a cushioning material which is slightly inferior in sitting comfort and inferior in heat resistance and durability.

【0033】実施例5 常法により公知の複合紡糸機にて、実施例1で得た熱可
塑性弾性樹脂A−1をシ−ス成分、A−2をコア成分と
なるように個々に溶融してオリフィス直前で分配し、各
吐出量を50/50重量比で、単孔当たり1.6g/分
孔(0.8g/分:0.8g/分)として紡糸温度24
5℃にて吐出し、紡糸速度3500m/分にて得た繊度
が4.1デニ−ル、乾熱160℃での収縮率10%の糸
を収束してトウ状でクリンパ−にて機械巻縮を付与し、
64mmに切断してシ−スコア断面の熱可塑性弾性樹脂か
らなる熱接着繊維を得た。母材繊維は、常法により、極
限粘度0.63と0.56のPETを重量比50/50
に分配して単孔当たり3.0g/分孔(1g/分:1g
/分)として紡糸温度265℃にてC型オリフィスより
吐出し、紡糸速度1300m/分で複合紡糸し、次い
で、70℃及び180℃にて2段延伸して得た延伸糸を
64mmに切断し170℃にてフリ−熱処理して立体捲縮
を発現させ、中空断面で中空率32%のシ−スコア構造
の繊度6デニ−ル、初期引張り抵抗度38g/デニ−
ル、捲縮度20%、捲縮数18個/インチの母材繊維を
得た。得られた熱接着繊維と母材繊維を40/60重量
比で混合し、オ−プナ−にて予備開繊した後カ−ドで開
繊して得たウエッブを目付け1000g/m2 に積層
し、実施例1で得た異繊度混合網状体を長さ120cmに
切断した網状体表面に積層し、見掛け密度が0.06g
/cm3 となるように圧縮し、180℃の熱風にて5分間
熱処理後冷却して両面がフラットな不織布積層網状体を
得た。次いで厚みの10%圧縮して、100℃の熱風に
て20分疑似結晶化処理して厚み7cmのクッションを4
枚作成した。得られたクッションを厚み7cm、幅120
cm、長さ50cm毎にキルティングした幅120cm、長さ
200cmの側地に入れマットレスを作成した。このマッ
トレスをベッドに設置し、25℃RH65%室内にてパ
ネラ−4人に7時間使用させて寝心地を官能評価した。
なお、ベットにはシ−ツを掛け、掛け布団は1.8kgの
ダウン/フェザ−:90/10を中綿にしたもの、枕は
パネラ−が毎日使用しているものを着用させた。評価結
果は、床つき感がなく、沈み込みが適度で、蒸れを感じ
ない快適な寝心地の45°メセナミン法による難燃性も
合格する安全性の高いベットであった。比較のため、密
度0.04g/cm3 で厚み10cmの発泡ウレタン板状体
で同様のマットレスを作成し、ベットに設置して寝心地
を評価した結果、床つき感は少ないが沈み込みが大きく
やや蒸れを感じる寝心地の悪いベットであった。
Example 5 The thermoplastic elastic resin A-1 obtained in Example 1 was individually melted so as to be the sheath component and A-2 to be the core component by a known composite spinning machine by a conventional method. At a weight ratio of 50/50, with 1.6 g / min per hole (0.8 g / min: 0.8 g / min) as the spinning temperature.
A yarn having a fineness of 4.1 denier obtained at a spinning speed of 3500 m / min at a spinning speed of 3500 m and a shrinkage rate of 10% at a dry heat of 160 ° is converged into a tow shape and mechanically wound by a crimper. Give contraction,
It was cut into 64 mm to obtain a heat-bonded fiber made of a thermoplastic elastic resin having a sheath core cross section. As the base material fiber, PET having an intrinsic viscosity of 0.63 and 0.56 is used in a weight ratio of 50/50 by a conventional method.
3.0g / min per hole (1g / min: 1g
/ Min) is discharged from a C-shaped orifice at a spinning temperature of 265 ° C., composite spinning is performed at a spinning speed of 1300 m / min, and then the drawn yarn obtained by two-stage drawing at 70 ° C. and 180 ° C. is cut into 64 mm. Free heat treatment at 170 ° C. to develop three-dimensional crimps, fineness 6 denier with a sheath core structure having a hollow ratio of 32% in hollow section, initial tensile resistance 38 g / denier
A base material fiber having a crimp degree of 20% and a crimp number of 18 / inch was obtained. The heat-bonded fibers thus obtained and the base material fibers were mixed at a weight ratio of 40/60, pre-opened with an opener and then opened with a card, and the web obtained was laminated to have a basis weight of 1000 g / m 2 . Then, the different fineness mixed reticulated body obtained in Example 1 was laminated on the reticulated body surface cut to a length of 120 cm, and the apparent density was 0.06 g.
/ Cm 3 and compressed with hot air of 180 ° C. for 5 minutes and then cooled to obtain a non-woven fabric laminated mesh body having flat both sides. Then, compress it by 10% of the thickness and quasi-crystallize it with hot air at 100 ° C for 20 minutes to make a cushion with a thickness of 7 cm.
I made one. The obtained cushion has a thickness of 7 cm and a width of 120.
cm, a length of 200 cm was quilted every 50 cm, and the mattress was made by putting it in a lateral area of 120 cm in width and 200 cm in length. This mattress was placed on a bed, and a paneler-4 person used it for 7 hours in a room at 25 ° C. RH 65% to sensory-evaluate the sleeping comfort.
The bed was covered with sheets, the comforter was 1.8 kg of down / feather: 90/10, and the pillow was the one used by the paneler every day. As a result of the evaluation, the bed was highly safe and passed the flame retardancy according to the 45 ° mesenamin method with no feeling of flooring, moderate depression, and comfortable sleeping without feeling stuffiness. For comparison, a similar mattress was prepared from a urethane foam plate with a density of 0.04 g / cm 3 and a thickness of 10 cm, and the mattress was placed on a bed and the sleeping comfort was evaluated. It was a bed that made me feel stuffy and didn't feel comfortable to sleep.

【0034】実施例6 実施例1で得た異繊度混合網状体を実施例5と同様にし
て不織布を積層した網状体を作成し、幅38cm、長さ4
0cmでコ−ナ−をア−ル10cmとした形状に切断し、座
り心地評価用に用いたポリエステルモケットを側地にし
て事務椅子フレ−ムに設置し、市販のポリウレタンをク
ッションに使用した事務椅子と対比させて、座り心地を
4時間座らせ評価した結果、蒸れ感、床つき感、座った
まま我慢できる時間は、本発明の不織布を積層した異繊
度混合網状体を用いたものが著しく優れていた。
Example 6 A net body was prepared by laminating nonwoven fabrics of the mixed fineness network obtained in Example 1 in the same manner as in Example 5, and the width was 38 cm and the length was 4 cm.
The corner was cut at 0 cm to make the corner 10 cm, and the polyester moquette used for sitting comfort evaluation was placed on the side of the office chair frame, and the commercially available polyurethane was used for the cushion. As a result of evaluating the sitting comfort for 4 hours in comparison with a chair, the feeling of stuffiness, the feeling of being on the floor, and the time that the patient can endure while sitting are remarkable when using the heterogeneous-fineness mixed reticulate body in which the nonwoven fabric of the present invention is laminated. Was excellent.

【0035】[0035]

【発明の効果】熱可塑性弾性樹脂からなる太い線条と細
い線条が混在した連続線条が3次元網状構造を形成し融
着一体化した、表面が実質的にフラット化された本発明
の異繊度混合網状体は、振動遮断性、耐熱耐久性、嵩高
性、体型保持性が向上して座り心地のより改善された、
蒸れにくいクッション材であり、他の素材との併用によ
る上記の好ましい特性を付与した車両用座席、船舶用座
席、車両用、船舶用、病院やホテル等の業務用ベット、
家具用クッション、寝装用品等の製品を提供できる。更
には、車両用や建築資材としての内装材や断熱材等にも
有用なものである。
EFFECTS OF THE INVENTION The continuous filaments made of thermoplastic elastic resin and having a mixture of thick filaments and thin filaments form a three-dimensional network structure and are fused together to form a substantially flat surface. The different fineness reticulated body has improved vibration isolation, heat resistance and durability, bulkiness, and body shape retention, and has improved sitting comfort.
A cushioning material that is resistant to stuffiness, and is used in combination with other materials to give the above-mentioned preferable characteristics to vehicle seats, boat seats, vehicles, boats, commercial beds such as hospitals and hotels,
Products such as furniture cushions and bedding can be provided. Furthermore, it is also useful as an interior material and a heat insulating material for vehicles and building materials.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI D01F 6/62 303 D01F 6/62 303D 6/86 301 6/86 301B 6/92 304 6/92 304H (56)参考文献 特開 平2−92214(JP,A) 特開 平7−189105(JP,A) 特開 平1−213454(JP,A) 特開 昭58−109670(JP,A) 特開 昭58−149362(JP,A) 特開 昭55−17527(JP,A) 実開 平1−16326(JP,U) 実開 平2−18300(JP,U) 実開 平2−18371(JP,U) (58)調査した分野(Int.Cl.7,DB名) D04H 1/00 - 18/00 B68G 1/00 - 15/00 D01D 1/00 - 13/02 D01F 1/00 - 13/04 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI D01F 6/62 303 D01F 6/62 303D 6/86 301 6/86 301B 6/92 304 6/92 304H (56) References Kaihei 2-92214 (JP, A) JP 7-189105 (JP, A) JP 1-213454 (JP, A) JP 58-109670 (JP, A) JP 58-149362 ( JP, A) JP 55-17527 (JP, A) Actual flat 1-16326 (JP, U) Actual flat 2-18300 (JP, U) Actual flat 2-18371 (JP, U) (58 ) Fields surveyed (Int.Cl. 7 , DB name) D04H 1/00-18/00 B68G 1/00-15/00 D01D 1/00-13/02 D01F 1/00-13/04

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 熱可塑性弾性樹脂からなる連続した太い
線条と細い線条を混在させて曲がりくねらせ互いに接触
させて該接触部の大部分を融着した3次元立体構造体を
形成し、その両面は実質的にフラット化されており、前
記の太い線条と細い線条は断面二次モ−メント比が5〜
500であり、見掛け密度が0.01〜0.2g/cm3
であることを特徴とする異繊度混合網状体。
1. A three-dimensional three-dimensional structure in which a continuous thick filament and a thin filament made of a thermoplastic elastic resin are mixed and bent to be in contact with each other to melt most of the contact portion, Both sides thereof are substantially flattened, and the thick and thin filaments have a cross-section secondary moment ratio of 5 to 5.
It is 500, and the apparent density is 0.01 to 0.2 g / cm 3.
A mixed reticulate body characterized by being:
【請求項2】 連続した線条の断面形状が中空断面及び
/又は異形断面である請求項1記載の異繊度混合網状
体。
2. The mixed fineness reticulated body according to claim 1, wherein the continuous filaments have a hollow cross section and / or a modified cross section.
【請求項3】 熱可塑性弾性樹脂中の燐が5000pp
m以上含有されている請求項1記載の異繊度混合網状
体。
3. Phosphorus in the thermoplastic elastic resin is 5000 pp
The reticulated mixed reticulate body according to claim 1, wherein the reticulated body contains m or more.
【請求項4】 連続した線条を構成する熱可塑性弾性樹
脂が示差走査型熱量計で測定した融解曲線に室温以上融
点以下の温度に吸熱ピークを有する請求項1記載の異繊
度混合網状体。
4. The heterogeneous mixed reticulate body according to claim 1, wherein the thermoplastic elastic resin constituting the continuous filament has an endothermic peak at a temperature of room temperature or higher and melting point or lower in a melting curve measured by a differential scanning calorimeter.
【請求項5】 複数の断面積が異なるオリフィスが混在
するノズルより熱可塑性弾性樹脂を各ノズルオリフィス
に分配し、該熱可塑性樹脂の融点より10〜80℃高い
溶融温度で、該ノズルより下方に向けて吐出させ、溶融
状態で互いに接触させて融着させ3次元構造を形成しつ
つ、引取り装置で挟み込み冷却槽で冷却せしめる異繊度
混合網状体の製法。
5. A thermoplastic elastic resin is distributed to each nozzle orifice from a nozzle in which a plurality of orifices having different cross-sectional areas coexist, and the temperature is lower than the nozzle at a melting temperature 10 to 80 ° C. higher than the melting point of the thermoplastic resin. A method for producing a different fineness mixed reticulate body in which a three-dimensional structure is formed by ejecting toward each other and contacting each other in a molten state and fusing them to form a three-dimensional structure, which is sandwiched by a drawing device and cooled in a cooling tank.
【請求項6】 冷却後から一体成形して製品化に至る工
程で熱可塑性弾性樹脂の融点より少なくとも10℃以下
の温度でアニ−リングする請求項に記載の異繊度混合
網状体の製法。
6. The method for producing a mixed fineness reticulated body according to claim 5 , wherein annealing is performed at a temperature of at least 10 ° C. or lower than the melting point of the thermoplastic elastic resin in a step of integrally molding after cooling and commercialization.
【請求項7】 請求項1に記載の異繊度混合網状体を用
いた車両用座席、船舶用座席、車両用、船舶用、病院用
等の業務用及び家庭用ベット、家具用椅子、事務用椅子
および布団のいずれかに記載の製品。
7. A seat for a vehicle, a seat for a ship, a seat for a vehicle, a seat for a vehicle, a seat for a ship, a commercial bed for home use, a chair for furniture, an office work, etc., which uses the mixed fineness reticulated body according to claim 1. The product described on either the chair or the futon.
JP11301794A 1994-05-26 1994-05-26 Mixed fineness reticulated body, manufacturing method and products using it Expired - Lifetime JP3473710B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11301794A JP3473710B2 (en) 1994-05-26 1994-05-26 Mixed fineness reticulated body, manufacturing method and products using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11301794A JP3473710B2 (en) 1994-05-26 1994-05-26 Mixed fineness reticulated body, manufacturing method and products using it

Publications (2)

Publication Number Publication Date
JPH07324273A JPH07324273A (en) 1995-12-12
JP3473710B2 true JP3473710B2 (en) 2003-12-08

Family

ID=14601357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11301794A Expired - Lifetime JP3473710B2 (en) 1994-05-26 1994-05-26 Mixed fineness reticulated body, manufacturing method and products using it

Country Status (1)

Country Link
JP (1) JP3473710B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11313734A (en) * 1998-05-07 1999-11-16 France Bed Co Ltd Instrument and method for measuring performance of mattress
US8563121B2 (en) 2000-03-15 2013-10-22 C-Eng Co., Ltd. Three-dimensional netted structure having four molded surfaces
ATE470741T1 (en) 2000-03-15 2010-06-15 C Eng Co Ltd THREE-DIMENSIONAL NETWORK STRUCTURE, METHOD AND DEVICE
US8757996B2 (en) 2000-03-15 2014-06-24 C-Eng Co., Ltd. Apparatus and method for manufacturing three-dimensional netted structure
JP4499891B2 (en) * 2000-08-16 2010-07-07 アイン興産株式会社 Spring structure resin molded product and manufacturing method thereof
JP6664239B2 (en) * 2016-03-08 2020-03-13 株式会社エアウィーヴ Filament three-dimensional combined body manufacturing apparatus and filament three-dimensional combined body

Also Published As

Publication number Publication date
JPH07324273A (en) 1995-12-12

Similar Documents

Publication Publication Date Title
JP3473710B2 (en) Mixed fineness reticulated body, manufacturing method and products using it
JP3454373B2 (en) Elastic network, manufacturing method and products using the same
JP3430444B2 (en) Netting structure for cushion, manufacturing method thereof and cushion product
JP3444375B2 (en) Multilayer net, manufacturing method and products using the same
JP3431097B2 (en) Multilayer laminated net, manufacturing method and product using the same
JP3430446B2 (en) Composite elastic network, its production method and products using it
JP3444368B2 (en) Nonwoven laminated net, manufacturing method and product using the same
JP3430445B2 (en) Composite net, its manufacturing method and products using it
JP3454375B2 (en) Nonwoven laminated structure, manufacturing method and product using the same
JP3444374B2 (en) Multilayer laminated net, manufacturing method and product using the same
JP3431096B2 (en) Nonwoven laminated net, manufacturing method and product using the same
JP3431098B2 (en) Flame-retardant reinforced mesh, manufacturing method and products using the same
JP3430448B2 (en) Laminated structure, manufacturing method and products using the same
JP3431090B2 (en) Nonwoven laminated net, manufacturing method and product using the same
JP3430447B2 (en) Laminated elastic structure, manufacturing method and product using the same
JP3430449B2 (en) Nonwoven laminated net, manufacturing method and product using the same
JP3444369B2 (en) Laminated net, manufacturing method and product using the same
JP3454374B2 (en) Laminated net, manufacturing method and product using the same
JP3444372B2 (en) Multilayer laminated net, manufacturing method and product using the same
JP3444371B2 (en) Multilayer laminated net, manufacturing method and product using the same
JP3431091B2 (en) Nonwoven laminated net, manufacturing method and product using the same
JP3431092B2 (en) Nonwoven laminated net, manufacturing method and product using the same
JP3444370B2 (en) Multilayer laminated net, manufacturing method and product using the same
JP3351489B2 (en) Nonwoven laminated net, manufacturing method and product using the same
JPH07300760A (en) Nonwoven fabric laminated network material, its production and product using the same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070919

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080919

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080919

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20090919

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20090919

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20100919

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100919

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20130919

EXPY Cancellation because of completion of term