JPH07300760A - Nonwoven fabric laminated network material, its production and product using the same - Google Patents

Nonwoven fabric laminated network material, its production and product using the same

Info

Publication number
JPH07300760A
JPH07300760A JP8975594A JP8975594A JPH07300760A JP H07300760 A JPH07300760 A JP H07300760A JP 8975594 A JP8975594 A JP 8975594A JP 8975594 A JP8975594 A JP 8975594A JP H07300760 A JPH07300760 A JP H07300760A
Authority
JP
Japan
Prior art keywords
elastic resin
thermoplastic elastic
thermoplastic
laminated
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8975594A
Other languages
Japanese (ja)
Other versions
JP3351488B2 (en
Inventor
Hideo Isoda
英夫 磯田
Yasushi Yamada
靖司 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP8975594A priority Critical patent/JP3351488B2/en
Publication of JPH07300760A publication Critical patent/JPH07300760A/en
Application granted granted Critical
Publication of JP3351488B2 publication Critical patent/JP3351488B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

PURPOSE:To obtain a flame retardant laminated network material, capable of cutting off the vibration, excellent in heat-resistant durability, shape retaining and cushioning properties, hardly becoming musty, having flame retardancy, comprising a cushioning material and suitable for a cushioning material. CONSTITUTION:This nonwoven fabric laminated network material is obtained by forming a three-dimensional solid structure in which continuous filaments, comprising a thermoplastic elastic resin having a soft segment content (Awt.%) and a phosphorus content (Bppm) satisfying the relationship of 60A+200<=B<=100000 and having <=100000 denier size are mostly fused, forming a network material having both substantially flattened surfaces thereof, forming heat bonding staple fibers comprising the thermoplastic elastic resin and a heat bonding thermoplastic nonelastic resin into a three-dimensional solid structure, laminating and joining the resultant fused and integrated nonwoven fabric layers to one or both surfaces of the resultant network material. Furthermore, the method for producing the nonwoven fabric laminated network material is provided and a product using the same is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、難燃性を有し、優れた
クッション性と耐熱耐久性及び振動吸収性とを有し、リ
サイクルが可能な不織布積層網状体と製法および該網状
体を用いた布団、家具、ベッド、車両用クッション材等
の製品と製法に関する。
FIELD OF THE INVENTION The present invention relates to a non-woven fabric laminated reticulated body having a flame retardant property, an excellent cushioning property, a heat resistance durability and a vibration absorption property, which is recyclable, and a method for producing the reticulated nonwoven fabric. The present invention relates to products such as futons, furniture, beds, cushioning materials for vehicles, and manufacturing methods.

【0002】[0002]

【従来の技術】現在、家具、ベッド、電車、自動車等の
クッション材に、発泡ウレタン、非弾性捲縮繊維詰綿、
及び非弾性捲縮繊維を接着した樹脂綿や硬綿などが使用
されている。
2. Description of the Related Art At present, as a cushion material for furniture, beds, trains, automobiles, etc., urethane foam, non-elastic crimped fiber wadding,
In addition, resin cotton or hard cotton to which non-elastic crimped fibers are adhered is used.

【0003】しかしながら、発泡−架橋型ウレタンはワ
ディング層やクッション材としての耐久性は極めて良好
だが、透湿透水性に劣り蓄熱性があるため蒸れやすく、
かつ、熱可塑性では無いためリサイクルが困難となり焼
却される場合、焼却炉の損傷が大きく、かつ、有毒ガス
除去に経費が掛かる。このため埋め立てされることが多
くなったが、地盤の安定化が困難なため埋め立て場所が
限定され経費も高くなっていく問題がある。また、加工
性は優れるが製造中に使用される薬品の公害問題なども
ある。また、熱可塑性ポリエステル繊維詰綿では繊維間
が固定されていないため、使用時形態が崩れたり、繊維
が移動して、かつ、捲縮のへたりで嵩高性の低下や弾力
性の低下が問題になる。
However, although the foamed-crosslinked urethane has very good durability as a wadding layer or a cushioning material, it has poor moisture permeability and heat storage property and is apt to be stuffy.
Moreover, since it is not thermoplastic, it becomes difficult to recycle, and when it is incinerated, the damage to the incinerator is large and the cost for removing the toxic gas is high. For this reason, landfilling has become more frequent, but it is difficult to stabilize the ground, and there is a problem that landfilling sites are limited and costs increase. Further, although it has excellent processability, it also has a problem of pollution of chemicals used during manufacturing. In addition, since the fibers are not fixed in the thermoplastic polyester fiber wadding, the form may collapse during use, the fibers may move, and the crimp may cause a decrease in bulkiness and elasticity. become.

【0004】ポリエステル繊維を接着剤で接着した樹脂
綿、例えば接着剤にゴム系を用いたものとして特開昭6
0−11352号公報、特開昭61−141388号公
報、特開昭61−141391号公報等がある。又、架
橋性ウレタンを用いたものとして特開昭61−1377
32号公報等がある。これらのクッション材は耐久性に
劣り、且つ、熱可塑性でなく、単一組成でもないためリ
サイクルも出来ない等の問題、及び加工性の煩雑さや製
造中に使用される薬品の公害問題などもある。
As a resin cotton in which polyester fibers are adhered with an adhesive, for example, a rubber-based adhesive is used, Japanese Patent Application Laid-Open No.
0-11352, JP-A 61-141388, JP-A 61-141391 and the like. Further, as a method using a cross-linkable urethane, JP-A-61-1377
No. 32 publication and the like. These cushion materials have inferior durability, and also have problems such as not being recyclable because they are neither thermoplastic nor single composition, and there are problems such as complexity of processability and pollution of chemicals used during manufacturing. .

【0005】ポリエステル硬綿、例えば特開昭58−3
1150号公報、特開平2−154050号公報、特開
平3−220354号公報等があるが、用いている熱接
着繊維の接着成分が脆い非晶性のポリマ−を用いるため
(例えば特開昭58−136828号公報、特開平3−
249213号公報等)接着部分が脆く、使用中に接着
部分が簡単に破壊されて形態や弾力性が低下するなどの
耐久性に劣る問題がある。改良法として、交絡処理する
方法が特開平4−245965号公報等で提案されてい
るが、接着部分の脆さは解決されず弾力性の低下が大き
い問題がある。また、加工時の煩雑さもある。更には接
着部分が変形しにくくソフトなクッション性を付与しに
くい問題もある。このため、接着部分を柔らかい、且つ
ある程度変形しても回復するポリエステルエラストマ−
を用い、芯成分に非弾性ポリエステルを用いた熱接着繊
維が特開平4−240219号公報で、同繊維を用いた
クッション材がWO−91/19032号公報、特開平
5−156561号公報、特開平5−163654号公
報等で提案されている。この繊維構造物に使われる接着
成分がポリエステルエラストマ−のソフトセグメントと
してはポリアルキレングリコ−ルの含有量が30〜50
重量%、ハ−ドセグメントの酸成分にテレフタル酸を5
0〜80モル%含有し、他の酸成分組成として特公昭6
0−1404号公報に記載された繊維と同様にイソフタ
ル酸を含有して非晶性が増すことになり、融点も180
℃以下となり低溶融粘度として熱接着部分の形成を良く
してアメーバー状の接着部を形成しているが塑性変形し
やいため、及び芯成分が非弾性ポリエステルのため、特
に加熱下での塑性変形が著しくなり、耐熱抗圧縮性が低
下する問題点がある。これらの改良法として、特開平5
−163654号公報にシ−ス成分にイソフタル酸を含
有するポリエステルエラストマ−、コア成分に非弾性ポ
リエステルを用いた熱接着複合繊維のみからなる構造体
が提案されているが上述の理由で加熱下での塑性変形が
著しくなり、耐熱抗圧縮性が低下し、ワディング層やク
ッション材に使用するには問題がある。他方、硬綿の母
材にシリコ−ン油剤を付与して繊維の摩擦係数を下げて
耐久性を向上し、風合いを良くする方法が特開昭63−
158094号公報で提案されている。が、熱接着繊維
の接着性に問題があり、耐久性が劣るのでワディング層
やクッション材に使用するには好ましくない。
Polyester hard cotton, for example, JP-A-58-3
1150, JP-A-2-154050, JP-A-3-220354, etc., but since an amorphous polymer having a brittle adhesive component of the heat-bonding fiber used is used (for example, JP-A-58). -136828, Japanese Patent Application Laid-Open No. 3-
However, there is a problem in that durability is poor such that the bonded portion is brittle and the bonded portion is easily broken during use and the form and elasticity are reduced. As an improved method, a method of entanglement treatment has been proposed in Japanese Patent Laid-Open No. 4-245965, but there is a problem that the brittleness of the bonded portion is not solved and the elasticity is largely reduced. In addition, there is complexity during processing. Further, there is a problem that the bonded portion is hard to be deformed and soft cushioning is hard to be imparted. For this reason, the polyester elastomer that is soft even at the bonded portion and recovers even if it is deformed to some extent
A heat-bonding fiber using a non-elastic polyester as a core component is disclosed in JP-A-4-240219, and a cushion material using the fiber is disclosed in WO-91 / 19032, JP-A-5-155651. It is proposed in Japanese Patent Laid-Open No. 5-163654. The adhesive component used in this fiber structure has a polyalkylene glycol content of 30 to 50 as a soft segment of polyester elastomer.
Wt%, 5% terephthalic acid as the acid component of the hard segment
It contains 0 to 80 mol% and is used as another acid component composition
As in the fiber described in Japanese Patent Publication No. 0-1404, isophthalic acid is contained to increase the amorphous property, and the melting point is 180.
The temperature is below ℃, and the heat-bonded part is well formed with a low melt viscosity to form an ameber-shaped bonded part, but it is easy to plastically deform, and because the core component is an inelastic polyester, plastic deformation especially under heating Becomes remarkable, and there is a problem that the heat resistance and compression resistance are lowered. As an improved method for these, Japanese Patent Laid-Open No.
No. 163654 proposes a structure consisting only of a polyester elastomer containing isophthalic acid as a sheath component and a heat-bonding composite fiber using an inelastic polyester as a core component. Plastic deformation becomes significant, the heat resistance and compression resistance deteriorate, and there is a problem in using it for a wadding layer or a cushion material. On the other hand, there is a method in which a silicone oil is added to a base material of hard cotton to lower the friction coefficient of fibers to improve the durability and improve the texture.
It is proposed in Japanese Patent No. 158094. However, there is a problem with the adhesiveness of the heat-adhesive fiber and the durability is poor, so it is not preferable for use in a wadding layer or cushioning material.

【0006】土木工事用に使用する熱可塑性のオレフィ
ン網状体が特開昭47−44839号公報に開示されて
いる。が、細い繊維から構成したクッションとは異なり
表面が凸凹でタッチが悪く、素材がオレフィンのため耐
熱耐久性が著しく劣りワディング層やクッション材には
使用ができないものである。また、特公平3−1766
6号公報には繊度の異なる吐出線条を互いに融着してモ
−ル状物を作る方法があるがクッション材には適さない
網状構造体である。特公平3−55583号公報には、
ごく表面のみ冷却前に回転体等の細化装置で細くする方
法が記載されている。この方法では表面をフラット化で
きず、厚みのある細い線条層を作ることできない。した
がって座り心地の良好なクッション材にはならない。特
開平1−207462号公報では、塩化ビニ−ル製のフ
ロアマットの開示があるが、室温での圧縮回復性が悪
く、耐熱性は著しく悪いので、ワディング材やクッショ
ン材としては好ましくないものである。なお、上述構造
体は難燃性に関する配慮が全くなされていない。
A thermoplastic olefin network used for civil engineering work is disclosed in JP-A-47-44839. However, unlike a cushion made of fine fibers, the surface is uneven and the touch is poor, and since the material is olefin, the heat resistance durability is extremely poor and it cannot be used as a wadding layer or cushion material. In addition, Japanese Patent Publication No. 3-1766
No. 6 discloses a method in which ejection filaments having different fineness are fused to each other to form a mold, but the mesh structure is not suitable as a cushion material. Japanese Examined Patent Publication No. 3-55583 discloses that
A method of thinning only a very surface with a thinning device such as a rotating body before cooling is described. With this method, the surface cannot be flattened and a thick thin linear layer cannot be formed. Therefore, it does not provide a comfortable cushioning material. Japanese Patent Application Laid-Open No. 1-207462 discloses a vinyl chloride floor mat, but it is not preferable as a wadding material or a cushioning material because it has poor compression recovery at room temperature and remarkably poor heat resistance. is there. Note that no consideration is given to flame retardancy in the above-mentioned structure.

【0007】[0007]

【発明が解決しようとする課題】上記問題点を解決し、
振動を遮断し、耐熱耐久性、形態保持性、クッション性
の優れた蒸れ難い、難燃性を有するクッション材に適し
た不織布積層網状体と製法及び難燃性積層網状体を用い
た布団、家具、ベッド、車両用クッション等の製品と製
法を提供することを目的とする。
To solve the above problems,
Non-woven laminate mesh suitable for cushioning material that has vibration resistance, heat resistance and durability, shape retention, cushioning properties, and is difficult to stuff, and a futon and furniture using the flame retardant laminate mesh. , Beds, cushions for vehicles, and other products and manufacturing methods.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するため
の手段、即ち、本発明は、ソフトセグメント量(A重量
%)と燐含有量(Bppm)が60A+200≦B≦1
00000の関係を満足する熱可塑性弾性樹脂からなる
繊度が100000デニ−ル以下の連続した線条を曲が
りくねらせ互いに接触させて該接触部の大部分を融着し
た3次元立体構造体を形成し、その両面が実質的にフラ
ット化された網状体の片面又は両面に熱可塑性弾性樹脂
と熱可塑性非弾性樹脂からなる熱接着性短繊維が三次元
構造を形成し、融着一体化した不織布層が積層接合され
ている見掛け密度が0.01g/cm3 から0.2g/cm
3 の不織布積層網状体、複数のオリフィスを持つ多列ノ
ズルよりソフトセグメント量(A重量%)と燐含有量
(Bppm)が60A+200≦B≦100000の関
係を満足する熱可塑性弾性樹脂を各ノズルオリフィスに
分配し、該熱可塑性樹脂の融点より10〜80℃高い溶
融温度で、該ノズルより下方に向けて吐出させ、溶融状
態で互いに接触させて融着させ3次元構造を形成しつ
つ、引取り装置で挟み込み冷却槽で冷却せしめた後、片
面又は両面に熱可塑性弾性樹脂と熱可塑性非弾性樹脂か
らなる熱接着性短繊維を開繊して三次元化したウエッブ
を積層し、圧縮しつつ熱成形する不織布積層網状体の製
法および前記不織布積層網状体を用いた製品である。
[Means for Solving the Problems] Means for solving the above problems, that is, in the present invention, the soft segment amount (A% by weight) and the phosphorus content (Bppm) are 60A + 200 ≦ B ≦ 1.
A continuous three-dimensional structure having a fineness of 100,000 denier or less and made of a thermoplastic elastic resin satisfying the relationship of 00000 is bent and brought into contact with each other to form a three-dimensional solid structure in which most of the contact portions are fused. , A non-woven fabric layer in which a thermoadhesive short fiber composed of a thermoplastic elastic resin and a thermoplastic non-elastic resin forms a three-dimensional structure on one or both sides of a reticulated body whose both sides are substantially flattened and fused and integrated. Apparent density is 0.01 g / cm 3 to 0.2 g / cm
The non-woven fabric laminated network of 3 and the multi-row nozzle having a plurality of orifices are provided with a thermoplastic elastic resin satisfying the relationship of the soft segment amount (A weight%) and the phosphorus content (Bppm) of 60A + 200 ≦ B ≦ 100000 for each nozzle orifice And then discharged downward from the nozzle at a melting temperature higher than the melting point of the thermoplastic resin by 10 to 80 ° C., and in a molten state, they are brought into contact with each other and fused to form a three-dimensional structure After sandwiching it with a device and cooling in a cooling tank, heat-adhesive short fibers consisting of thermoplastic elastic resin and thermoplastic non-elastic resin are spread on one or both sides and a three-dimensional web is laminated and compressed while heat is applied. It is a method for producing a non-woven laminated network and a product using the non-woven laminated network.

【0009】本発明における熱可塑性弾性樹脂とは、ソ
フトセグメントとして分子量300〜5000のポリエ
−テル系グリコ−ル、ポリエステル系グリコ−ル、ポリ
カ−ボネ−ト系グリコ−ルまたは長鎖の炭化水素末端を
カルボン酸または水酸基にしたオレフィン系化合物等を
ブロック共重合したポリエステル系エラストマ−、ポリ
アミド系エラストマ−、ポリウレタン系エラストマ−、
ポリオレフィン系エラストマ−などが挙げられる。熱可
塑性弾性樹脂とすることで、再溶融により再生が可能と
なるため、リサイクルが容易となる。例えば、ポリエス
テル系エラストマ−としては、熱可塑性ポリエステルを
ハ−ドセグメントとし、ポリアルキレンジオ−ルをソフ
トセグメントとするポリエステルエ−テルブロック共重
合体、または、脂肪族ポリエステルをソフトセグメント
とするポリエステルエステルブロック共重合体が例示で
きる。ポリエステルエ−テルブロック共重合体のより具
体的な事例としては、テレフタル酸、イソフタル酸、ナ
フタレン2・6ジカルボン酸、ナフタレン2・7ジカル
ボン酸、ジフェニル4・4’ジカルボン酸等の芳香族ジ
カルボン酸、1・4シクロヘキサンジカルボン酸等の脂
環族ジカルボン酸、琥珀酸、アジピン酸、セバチン酸ダ
イマ−酸等の脂肪族ジカルボン酸または、これらのエス
テル形成性誘導体などから選ばれたジカルボン酸の少な
くとも1種と、1・4ブタンジオ−ル、エチレングリコ
−ル、トリメチレングリコ−ル、テトレメチレングリコ
−ル、ペンタメチレングリコ−ル、ヘキサメチレングリ
コ−ル等の脂肪族ジオ−ル、1・1シクロヘキサンジメ
タノ−ル、1・4シクロヘキサンジメタノ−ル等の脂環
族ジオ−ル、またはこれらのエステル形成性誘導体など
から選ばれたジオ−ル成分の少なくとも1種、および平
均分子量が約300〜5000のポリエチレングリコ−
ル、ポリプロピレングリコ−ル、ポリテトラメチレング
リコ−ル、エチレンオキシド−プロピレンオキシド共重
合体等のポリアルキレンジオ−ルのうち少なくとも1種
から構成される三元ブロック共重合体である。ポリエス
テルエステルブロック共重合体としては、上記ジカルボ
ン酸とジオ−ル及び平均分子量が約300〜5000の
ポリラクトン等のポリエステルジオ−ルのうち少なくと
も各1種から構成される三元ブロック共重合体である。
熱接着性、耐加水分解性、伸縮性、耐熱性等を考慮する
と、ジカルボン酸としてはテレフタル酸、または、及び
ナフタレン2・6ジカルボン酸、ジオ−ル成分としては
1・4ブタンジオ−ル、ポリアルキレンジオ−ルとして
はポリテトラメチレングリコ−ルの3元ブロック共重合
体または、ポリエステルジオ−ルとしてポリラクトンの
3元ブロック共重合体が特に好ましい。特殊な例では、
ポリシロキサン系のソフトセグメントを導入したものも
使うこたができる。また、上記エラストマ−に非エラス
トマ−成分をブレンドされたもの、共重合したもの、ポ
リオレフィン系成分をソフトセグメントにしたもの等も
本発明の熱可塑性弾性樹脂に包含される。ポリアミド系
エラストマ−としては、ハ−ドセグメントにナイロン
6、ナイロン66、ナイロン610、ナイロン612、
ナイロン11、ナイロン12等及びそれらの共重合ナイ
ロンを骨格とし、ソフトセグメントには、平均分子量が
約300〜5000のポリエチレングリコ−ル、ポリプ
ロピレングリコ−ル、ポリテトラメチレングリコ−ル、
エチレンオキシド−プロピレンオキシド共重合体等のポ
リアルキレンジオ−ルのうち少なくとも1種から構成さ
れるブロック共重合体を単独または2種類以上混合して
用いてもよい。更には、非エラストマ−成分をブレンド
されたもの、共重合したもの等も本発明に使用できる。
ポリウレタン系エラストマ−としては、通常の溶媒(ジ
メチルホルムアミド、ジメチルアセトアミド等)の存在
または不存在下に、(A)数平均分子量1000〜60
00の末端に水酸基を有するポリエ−テル及び又はポリ
エステルと(B)有機ジイソシアネ−トを主成分とする
ポリイソシアネ−トを反応させた両末端がイソシアネ−
ト基であるプレポリマ−に、(C)ジアミンを主成分と
するポリアミンにより鎖延長したポリウレタンエラスト
マ−を代表例として例示できる。(A)のポリエステ
ル、ポリエ−テル類としては、平均分子量が約1000
〜6000、好ましくは1300〜5000のポリブチ
レンアジペ−ト共重合ポリエステルやポリエチレングリ
コ−ル、ポリプロピレングリコ−ル、ポリテトラメチレ
ングリコ−ル、エチレンオキシド−プロピレンオキシド
共重合体からなるグリコ−ル等のポリアルキレンジオ−
ルが好ましく、(B)のポリイソシアネ−トとしては、
従来公知のポリイソシアネ−トを用いることができる
が、ジフェニルメタン4・4’ジイソシアネ−トを主体
としたイソシアネ−トを用い、必要に応じ従来公知のト
リイソシアネ−ト等を微量添加使用してもよい。(C)
のポリアミンとしては、エチレンジアミン、1・2プロ
ピレンジアミン等公知のジアミンを主体とし、必要に応
じて微量のトリアミン、テトラアミンを併用してもよ
い。これらのポリウレタン系エラストマ−は単独又は2
種類以上混合して用いてもよい。なお、本発明の熱可塑
性弾性樹脂の融点は耐熱耐久性が保持できる140℃以
上が好ましく、160℃以上のものを用いると耐熱耐久
性が向上するのでより好ましい。なお、本発明の網状体
は難燃性を付与するため燐系化合物を含有させるため、
熱安定性が難燃剤を含有しないものよりやや劣るので必
要に応じ、抗酸化剤等を添加して耐熱性や耐久性を向上
させるのが特に好ましい。抗酸化剤は、好ましくはヒン
ダ−ド系抗酸化剤としては、ヒンダ−ドフェノ−ル系と
ヒンダ−ドアミン系があり、窒素を含有しないヒンダ−
ドフェノ−ル系抗酸化剤を1%〜5%添加して熱分解を
抑制すると燃焼時の致死量が少ない有毒ガスの発生を抑
えられるので特に好ましい。本発明の目的である振動や
応力の吸収機能をもたせる成分を構成する熱可塑性弾性
樹脂のソフトセグメント含有量は好ましくは15重量%
以上、より好ましくは30重量%以上であり、耐熱耐へ
たり性からは80重量%以下が好ましく、より好ましく
は70重量%以下である。即ち、本発明の弾性網状体の
振動や応力の吸収機能をもたせる成分のソフトセグメン
ト含有量は好ましくは15重量%以上80重量%以下で
あり、より好ましくは30重量%以上70重量%以下で
ある。
The thermoplastic elastic resin in the present invention means, as the soft segment, an ether type glycol, a polyester type glycol, a polycarbonate type glycol or a long chain hydrocarbon having a molecular weight of 300 to 5,000. Polyester elastomer obtained by block-copolymerizing an olefinic compound having a carboxylic acid or a hydroxyl group at the terminal, a polyamide elastomer, a polyurethane elastomer,
Examples include polyolefin elastomers. By using a thermoplastic elastic resin, it becomes possible to regenerate by remelting, and thus recycling becomes easy. For example, as the polyester elastomer, a polyester ether block copolymer having a thermoplastic polyester as a hard segment and a polyalkylenediol as a soft segment, or a polyester ester having an aliphatic polyester as a soft segment A block copolymer can be illustrated. More specific examples of the polyester ether block copolymer include aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid, naphthalene 2.6 dicarboxylic acid, naphthalene 2.7 dicarboxylic acid, and diphenyl 4.4'dicarboxylic acid. At least one of alicyclic dicarboxylic acids such as 1,4-cyclohexanedicarboxylic acid, aliphatic dicarboxylic acids such as succinic acid, adipic acid, sebacic acid dimer acid, and dicarboxylic acids selected from ester-forming derivatives thereof Seeds and aliphatic diols such as 1.4 butanediol, ethylene glycol, trimethylene glycol, tetremethylene glycol, pentamethylene glycol and hexamethylene glycol, 1.1 cyclohexane Alicyclic diols such as dimethanol and 1,4-cyclohexane dimethanol, or these Of at least one diole component selected from the ester-forming derivatives thereof and polyethylene glycol having an average molecular weight of about 300 to 5,000.
It is a ternary block copolymer composed of at least one of polyalkylenediol such as propylene, polypropylene glycol, polytetramethylene glycol, and ethylene oxide-propylene oxide copolymer. The polyester ester block copolymer is a ternary block copolymer composed of at least one of the above dicarboxylic acids, diol, and polyester diol such as polylactone having an average molecular weight of about 300 to 5,000. .
Considering heat adhesion, hydrolysis resistance, stretchability, heat resistance, etc., terephthalic acid as dicarboxylic acid, or naphthalene 2.6 dicarboxylic acid, 1.4 butanediol as diole component, and poly The alkylene diol is particularly preferably a terpolymer block copolymer of polytetramethylene glycol or the terpolymer block copolymer of polylactone as the polyester diol. In a special case,
You can also use a kotatsu that has a polysiloxane-based soft segment introduced. Also, the thermoplastic elastomer resin of the present invention includes those obtained by blending the above elastomer with a non-elastomer component, those obtained by copolymerization, those obtained by softening the polyolefin component, and the like. As a polyamide elastomer, the hard segment includes nylon 6, nylon 66, nylon 610, nylon 612,
Polyethylene glycol, polypropylene glycol, polytetramethylene glycol having an average molecular weight of about 300 to 5000 is used as the soft segment in the skeleton of nylon 11, nylon 12, etc. and their copolymerized nylon.
A block copolymer composed of at least one kind of polyalkylenediol such as ethylene oxide-propylene oxide copolymer may be used alone or in combination of two or more kinds. Furthermore, blends of non-elastomer components and copolymers thereof can be used in the present invention.
The polyurethane-based elastomer is (A) number average molecular weight of 1000 to 60 in the presence or absence of a usual solvent (dimethylformamide, dimethylacetamide, etc.).
00 has a hydroxyl group-terminated polyether and / or polyester, and (B) an organic diisocyanate-based polyisocyanate as a main component.
As a typical example, a polyurethane elastomer in which a chain-extended polyamine having a diamine (C) as a main component is added to a prepolymer which is a group having a hydroxyl group can be exemplified. The polyester or polyether of (A) has an average molecular weight of about 1,000.
To 6000, preferably 1300 to 5000, polybutylene adipate copolyester, polyethylene glycol, polypropylene glycol, polytetramethylene glycol, glycol composed of ethylene oxide-propylene oxide copolymer, etc. Polyalkylenedio-
Are preferred, and as the polyisocyanate of (B),
Although a conventionally known polyisocyanate can be used, an isocyanate mainly composed of diphenylmethane 4,4 ′ diisocyanate may be used, and if necessary, a conventionally known triisocyanate and the like may be added in a small amount. (C)
As the polyamine, a known diamine such as ethylenediamine or 1.2-propylenediamine is mainly used, and if necessary, a trace amount of triamine or tetraamine may be used in combination. These polyurethane elastomers are used alone or
You may use it in mixture of 2 or more types. The melting point of the thermoplastic elastic resin of the present invention is preferably 140 ° C. or higher at which heat resistance and durability can be maintained, and it is more preferable to use a resin having a melting point of 160 ° C. or higher because heat resistance and durability are improved. Since the reticulated body of the present invention contains a phosphorus compound in order to impart flame retardancy,
Since the thermal stability is slightly inferior to that containing no flame retardant, it is particularly preferable to add an antioxidant or the like to improve heat resistance and durability, if necessary. The antioxidant is preferably a hindered antioxidant, which includes a hindered phenol type and a hindered amine type, and does not contain nitrogen.
It is particularly preferable to add 1% to 5% of a dophenol-based antioxidant to suppress thermal decomposition, since the generation of toxic gas with a small lethal amount during combustion can be suppressed. The soft segment content of the thermoplastic elastic resin constituting the component having the function of absorbing vibration and stress which is the object of the present invention is preferably 15% by weight.
As described above, it is more preferably 30% by weight or more, preferably 80% by weight or less, and more preferably 70% by weight or less in view of heat resistance and sag resistance. That is, the soft segment content of the component having the function of absorbing vibrations and stress of the elastic network of the present invention is preferably 15% by weight or more and 80% by weight or less, more preferably 30% by weight or more and 70% by weight or less. .

【0010】本発明の難燃性を有する網状体は熱可塑性
弾性樹脂中に燐含有量(Bppm)がソフトセグメント
含有量(A重量%)に対し、60A+200≦B≦10
0000の関係を満足する必要がある。満足しない場合
は難燃性が劣るので好ましくない。100000ppm
を越えると可塑化効果による塑性変形が大きくなり熱可
塑性弾性樹脂の耐熱性が劣るので好ましくない。好まし
い燐含有量(Bppm)はソフトセグメント含有量(A
重量%)に対し、30A+1800≦B≦100000
であり、より好ましい燐含有量(Bppm)はソフトセ
グメント含有量(A重量%)に対し、16A+2600
≦B≦50000である。難燃性は多量のハロゲン化物
と無機物を添加して高度の難燃性を付与する方法がある
が、燃焼時に致死量の少ない有毒なハロゲンガスを多量
に発生し、火災時の中毒の問題があり、焼却時には、焼
却炉の損傷が大きく好ましくない。本発明では、ハロゲ
ン化物の含有量は少なくとも1重量%以下、好ましく
は、ハロゲン化物の含有量は0.5重量%以下、より好
ましくはハロゲン化物を含有しないものである。本発明
の燐系難燃剤としては、例えば、ポリエステル系熱可塑
性弾性樹脂の場合、樹脂重合時に、ハ−ドセグメント部
分に難燃剤として、例えば特開昭51−82392号公
報等に記載された10〔2・3・ジ(2・ヒドロキシエ
トキシ)−カルボニルプロピル〕9・10・ジヒドロ・
9・オキサ・10ホスファフェナレンス・10オキシロ
等のカルボン酸をハ−ドセグメントの酸成分の一部とし
て共重合したポリエステル系熱可塑性弾性樹脂とする方
法や、熱可塑性弾性樹脂に後工程で、例えば、既存化学
物質番号(3)−3735等の燐系化合物を添加して難
燃性を付与することができる。その他、難燃性を付与で
きる難燃剤としては、各種燐酸エステル、亜燐酸エステ
ル、ホスホン酸エステル(必要に応じハロゲン元素を含
有する上記燐酸エステル類)、もしくはこれら燐化合物
から誘導される重合物が例示できる。本発明は、熱可塑
性弾性樹脂中に各種改質剤、添加剤、着色剤等を必要に
応じて添加できる。本発明の難燃性網状体は、難燃性を
付与するために燐を含有させており、この理由は、上記
している如く、安全性の観点から、火災時に発生するシ
アンガス、ハロゲンガス等の致死量の少ない有毒ガスを
できるだけ少なくすることにある。このため、本発明の
難燃性網状体の燃焼ガスの毒性指数は好ましくは6以
下、より好ましくは5.5以下である。また、側地やワ
ディング層にポリエステル繊維を使用される場合が多い
ので、好ましくはポリエステル系熱可塑性弾性樹脂とす
ることで分別せずに再生リサイクルができる。
In the flame-retardant reticulate material of the present invention, the phosphorus content (Bppm) in the thermoplastic elastic resin is 60A + 200≤B≤10 with respect to the soft segment content (A% by weight).
It is necessary to satisfy the relationship of 0000. If it is not satisfied, the flame retardance is poor, which is not preferable. 100000ppm
If it exceeds the range, the plastic deformation due to the plasticizing effect becomes large and the heat resistance of the thermoplastic elastic resin is deteriorated, which is not preferable. The preferred phosphorus content (Bppm) is the soft segment content (A
Weight%), 30A + 1800 ≦ B ≦ 100,000
And the more preferable phosphorus content (Bppm) is 16A + 2600 with respect to the soft segment content (A weight%).
≦ B ≦ 50000. For flame retardancy, there is a method to add a high level of flame retardancy by adding a large amount of halides and inorganic substances, but when burning, a large amount of toxic halogen gas with a small lethal amount is generated, and there is a problem of poisoning during fire. There is a large damage to the incinerator during incineration, which is not preferable. In the present invention, the halide content is at least 1% by weight or less, preferably the halide content is 0.5% by weight or less, more preferably the halide-free content. As the phosphorus-based flame retardant of the present invention, for example, in the case of a polyester-based thermoplastic elastic resin, a flame-retardant in the hard segment portion during resin polymerization is described, for example, in JP-A-51-82392. [2.3-di (2-hydroxyethoxy) -carbonylpropyl] 9-10-dihydro-
A method of preparing a polyester-based thermoplastic elastic resin in which a carboxylic acid such as 9-oxa-10-phosphaphenalene-10-oxylo is copolymerized as a part of the acid component of the hard segment, or a thermoplastic elastic resin is used in a subsequent step. For example, the flame retardancy can be imparted by adding a phosphorus compound such as the existing chemical substance number (3) -3735. Other flame retardants capable of imparting flame retardancy include various phosphoric acid esters, phosphorous acid esters, phosphonic acid esters (the above phosphoric acid esters containing a halogen element as necessary), or polymers derived from these phosphorus compounds. It can be illustrated. In the present invention, various modifiers, additives, colorants and the like can be added to the thermoplastic elastic resin as needed. The flame-retardant reticulate material of the present invention contains phosphorus in order to impart flame retardancy. The reason is, as described above, from the viewpoint of safety, cyan gas, halogen gas, etc. generated in a fire. The goal is to minimize the lethal dose of toxic gases. Therefore, the combustion gas toxicity index of the flame-retardant reticulate material of the present invention is preferably 6 or less, more preferably 5.5 or less. In addition, since polyester fibers are often used for the side material and the wadding layer, it is preferable to use a polyester-based thermoplastic elastic resin for recycling without separation.

【0011】本発明の不織布積層網状体を構成する熱可
塑性弾性樹脂は、示差走査型熱量計にて測定した融解曲
線において、融点以下に吸熱ピ−クを有するのが好まし
い。融点以下に吸熱ピ−クを有するものは、耐熱耐へた
り性が吸熱ピ−クを有しないものより著しく向上する。
例えば、本発明の好ましいポリエステル系熱可塑性樹脂
として、ハ−ドセグメントの酸成分に剛直性のあるテレ
フタル酸やナフタレン2・6ジカルボン酸などを90モ
ル%以上含有するもの、より好ましくはテレフタル酸や
ナフタレン2・6ジカルボン酸の含有量は95モル%以
上、特に好ましくは100モル%とグリコ−ル成分をエ
ステル交換後、必要な重合度まで重合し、次いで、ポリ
アルキレンジオ−ルとして、好ましくは平均分子量が5
00以上5000以下、特に好ましくは1000以上3
000以下のポリテトラメチレングリコ−ルを15重量
%以上70重量%以下、より好ましくは30重量%以上
60重量%以下共重合量させた場合、ハ−ドセグメント
の酸成分に剛直性のあるテレフタル酸やナフタレン2・
6ジカルボン酸の含有量が多いとハ−ドセグメントの結
晶性が向上し、塑性変形しにくく、かつ、耐熱抗へたり
性が向上するが、溶融熱接着後更に融点より少なくとも
10℃以上低い温度でアニ−リング処理するとより耐熱
抗へたり性が向上する。圧縮歪みを付与してからアニ−
リングすると更に耐熱抗へたり性が向上する。このよう
な処理をした網状構造体の線条を示差走査型熱量計で測
定した融解曲線に室温以上融点以下の温度で吸熱ピーク
をより明確に発現する。なおアニ−リングしない場合は
融解曲線に室温以上融点以下に吸熱ピ−クを発現しな
い。このことから類推するに、アニ−リングにより、ハ
−ドセグメントが再配列され、疑似結晶化様の架橋点が
形成され、耐熱抗へたり性が向上しているのではないか
とも考えられる。(この処理を疑似結晶化処理と定義す
る)この疑似結晶化処理効果は、ポリアミド系弾性樹脂
やポリウレタン系弾性樹脂にも有効である。
The thermoplastic elastic resin constituting the nonwoven fabric laminated network of the present invention preferably has an endothermic peak below the melting point in the melting curve measured by a differential scanning calorimeter. Those having an endothermic peak below the melting point have significantly improved heat resistance and sag resistance than those having no endothermic peak.
For example, a preferable polyester-based thermoplastic resin of the present invention contains 90 mol% or more of terephthalic acid or naphthalene 2.6 dicarboxylic acid having rigidity in the acid component of the hard segment, more preferably terephthalic acid or The content of naphthalene 2.6 dicarboxylic acid is 95 mol% or more, particularly preferably 100 mol%, and after transesterification of the glycol component, polymerization is carried out to a required degree of polymerization, and then, as a polyalkylene diol, preferably Average molecular weight is 5
00 or more and 5000 or less, particularly preferably 1000 or more and 3
When 000 or less of polytetramethylene glycol is copolymerized in an amount of 15% by weight or more and 70% by weight or less, more preferably 30% by weight or more and 60% by weight or less, terephthalate having rigidity in the acid component of the hard segment Acid and naphthalene 2.
6 When the content of dicarboxylic acid is high, the crystallinity of the hard segment is improved, the plastic deformation is less likely to occur, and the heat resistance and fatigue resistance are improved, but the temperature after melting heat bonding is lower than the melting point by at least 10 ° C or more. The annealing treatment improves the heat resistance and sag resistance. After applying compressive strain,
The ring further improves the heat resistance and sagging resistance. The endothermic peak is more clearly expressed in the melting curve measured by a differential scanning calorimeter of the linear structure of the network structure treated as described above at a temperature of room temperature or higher and melting point or lower. If annealing is not performed, no endothermic peak appears in the melting curve above room temperature and below the melting point. By analogy with this, it is considered that the annealing causes rearrangement of the hard segments and formation of pseudo-crystallization-like cross-linking points to improve the heat resistance and sag resistance. (This treatment is defined as pseudo crystallization treatment.) This pseudo crystallization treatment effect is also effective for polyamide elastic resin and polyurethane elastic resin.

【0012】本発明は、燐含有熱可塑性弾性樹脂からな
る繊度が100000デニ−ル以下の連続した線条を曲
がりくねらせ互いに接触させて該接触部の大部分を融着
した3次元立体構造体を形成し、その両面が実質的にフ
ラット化した網状体の片面又は両面に熱接着成分が熱可
塑性弾性樹脂からなる短繊維が三次元構造を形成して融
着一体化した層が積層接合された見掛け密度が0.01
g/cm3 から0.2g/cm3 の不織布積層網状体であ
る。クッション材の機能は、クッション層は基本の繊度
を太くして少し硬くして体型保持を受け持つ層と振動減
衰性の良い成分で密度を少し高くし振動を吸収して振動
を遮断する層で構成し、表面層は繊度を細くし構成繊維
本数を多くした柔らかな層として適度の沈み込みにより
快適な臀部のタッチを与えて臀部の圧力分布を均一分散
化させると共にクッション層で吸収できなかった振動を
吸収して人体の共振部分の振動を遮断する層が一体化さ
れることで、応力や振動を一体で変形し吸収させ座り心
地を向上させることができる。本発明では、クッション
層の機能を熱可塑性弾性樹脂からなる融着した3次元立
体構造体を形成した網状体に持たせ、表面層の機能を熱
接着成分が熱可塑性弾性樹脂からなる短繊維不織布に持
たせ、接合一体化して好ましいクッション材の機能を付
与できる不織布積層網状体である。本発明の積層網状体
を構成する表面層機能を持つ短繊維不織布は柔らかな層
として適度の沈み込みにより快適な臀部のタッチを与え
るため、熱接着成分が熱可塑性弾性樹脂からなる(好ま
しくは、振動吸収機能と変形応力吸収機能が充足できる
40重量%以上、70重量%を越えると短繊維の形態保
持性が低下し、沈み込みが大きくなるので70重量%以
下)繊度が20デニ−ル以下の短繊維で構成する。20
デニ−ルを越えると短繊維不織布の見掛け密度を好まし
い表面層機能を付与できる0.01g/cm3 以上0.0
5g/cm3 以下にする場合、構成本数が少なくなり、緻
密な構造体としての特徴が出ず快適なタッチを損なうの
で好ましくない。また、短繊維に非弾性樹脂を含むので
繊度が太くなるほど圧縮変形に対しての非弾性樹脂の機
械的変形が大きくなり、損傷が大きくなって耐へたり性
が低下するので好ましくない。他方、繊度が細すぎると
嵩高性が低下して変形応答性が悪くなり表面層の機能が
低下するので好ましくない。好ましい短繊維の繊度は1
デニ−ル〜10デニ−ル、より好ましくは3デニ−ル〜
6デニ−ルである。また、熱接着成分が熱可塑性弾性樹
脂からなる短繊維が3次元構造化され、接触部の大部分
が熱接着により融着一体化した(好ましくは接触点の全
てが融着一体化した)面が実質的にフラット化された不
織布とすることで臀部の局部的な圧力を面で受け止め、
圧力分布を均一分散化させると共に、熱接着成分が熱可
塑性弾性樹脂からなる短繊維が3次元立体構造体を形成
し融着一体化されているので、熱接着点が大変形をしな
がら、熱可塑性非弾性樹脂も弾性限界を越えない範囲で
変形して構造体全体が変形してエネルギ−変換により変
形応力を吸収し、変形応力が解除されると熱可塑性弾性
樹脂のゴム弾性で容易に元の形態に回復し、熱可塑性非
弾性樹脂も弾性回復する機能があるので耐へたり性が良
好である。更には、クッション層へのダメ−ジを逓減で
き、構造体全体の耐へたり性も向上する。融着一体化さ
れていない場合は形態が保持できず、局部的な圧力を面
で受け止め、圧力分布を均一分散化できず、更に構造体
全体が変形してエネルギ−変換出来ないので耐久性が劣
り好ましくない。熱接着成分が振動吸収性の良好な熱可
塑性弾性樹脂を含有した繊維から構成されているので、
クッション層で吸収できなかった振動も吸収して人体の
共振部分の振動を遮断する層としての機能もはたす。短
繊維が熱可塑性非弾性樹脂からなる場合は、局部的な変
形応力に追随出来ないため、応力集中により構造が破壊
されていき回復性が劣るので好ましくない。また、熱可
塑性非弾性樹脂は振動吸収性が悪いので振動を遮断する
層としての機能が劣り好ましくない。短繊維不織布層の
厚みは特には限定されないが、表面層機能が発現できる
3mm〜30mmが好ましく、5mm〜20mmが特に好まし
い。他方、クッション層機能を持つ網状体は熱可塑性弾
性樹脂からなる連続した線条が接触部の大部分が融着し
た3次元立体構造体を形成し融着一体化され、両面が実
質的にフラット化されており、外部から与えられた振動
を熱可塑性弾性樹脂の振動吸収機能で大部分の振動を吸
収減衰し、局部的に大きい変形応力を与えられた場合で
も網状体の表面が実質的にフラット化され接触部の大部
分が融着しており、表面は短繊維不織布と面で接合され
ているので、網状体の面で変形応力を受け止め変形応力
を分散させ体型保持機能を発現すると共に、熱可塑性弾
性樹脂からなる線条が3次元立体構造体を形成し融着一
体化されているので、構造体全体が変形してエネルギ−
変換により変形応力を吸収し、変形応力が解除されると
熱可塑性弾性樹脂のゴム弾性で容易に元の形態に回復す
る機能があるので耐へたり性が良好である。公知の非弾
性樹脂のみからなる線条で構成した網状体では、表面層
で吸収できない大きい変形を受けるとゴム弾性を持たな
いので圧縮変形により塑性変形を生じて回復しなくなり
耐久性が劣る。網状体の表面が実質的にフラット化され
てない場合、短繊維不織布から伝達される局部的な外力
は、表面の線条及び接着点部分までに選択的に伝達さ
れ、応力集中が発生する場合があり、このような外力に
対しては応力集中による疲労が発生して耐へたり性が低
下する場合がある。なお、該線条が熱可塑性弾性樹脂か
らなる場合は3次元構造部分で構造全体が変形するので
応力集中は緩和されるが、非弾性樹脂では、そのまま応
力が接着点に集中して構造破壊を生じ回復しなくなる。
更には、表面が実質的にフラット化されてなく凸凹があ
ると座った時臀部に異物感を与えるため座り心地が悪く
なり好ましくない。なお、線状が連続していない場合
は、繊度が太い網状体では接着点が応力の伝達点となる
ため接着点に著しい応力集中が起こり構造破壊を生じ耐
熱耐久性が劣り好ましくない。融着していない場合は、
形態保持が出来ず、構造体が一体で変形しないため、応
力集中による疲労現象が起こり耐久性が劣ると同時に、
形態が変形して体型保持ができなくなるので好ましくな
い。本発明のより好ましい融着の程度は、線条が接触し
ている部分の大半が融着した状態であり、もっとも好ま
しくは接触部分が全て融着した状態である。かくして、
振動吸収性と弾性回復性の良い熱可塑性弾性樹脂からな
る連続した線条が接触部の大部分が融着した3次元立体
構造体を形成し融着一体化され表面が実質的にフラット
化されたクッション層機能を持つ網状体は、熱接着成分
が熱可塑性弾性樹脂からなる短繊維不織布で構成する表
面層から伝達される変形応力を面で受け止め応力の分散
を良くし、個々の線状に掛かる応力を少なくして構造全
体が変形して変形応力を吸収し、且つ臀部を支えるクッ
ション性も向上させ、応力が解除されると回復し、フレ
−ムから伝わる振動も振動吸収性と弾性回復性の良い熱
可塑性弾性樹脂からなるクッション層が吸収して人体の
共振部分の振動を遮断するため座り心地と耐久性を向上
させることができる。この目的から、本発明の網状体を
形成する振動吸収性と弾性回復性の良い熱可塑性弾性樹
脂からなる線条の繊度は100000デニ−ル以下であ
る。見掛け密度を0.2g/cm3 以下にした場合、10
0000デニ−ルを越えると構成本数が少なくなり、密
度斑を生じて部分的に耐久性の悪い構造ができ、応力集
中による疲労が大きくなり耐久性が低下するので好まし
くない。本発明の熱可塑性弾性樹脂からなる線条の好ま
しい繊度は、繊度が細すぎると抗圧縮性が低くなり過ぎ
て変形による応力吸収性が低下するので100デニ−ル
以上であり、構成本数の低下による構造面の緻密性を損
なわない50000デニ−ル以下である。より好ましく
は500デニ−ル以上、10000デニ−ル以下であ
る。本発明の網状体の見掛け密度は、0.005g/cm
3 では反発力が失われ、振動吸収能力や変形応力吸収能
力が不充分となりクッション機能を発現させにくくなる
場合があり、0.25g/cm3 以上では反発力が高すぎ
て座り心地が悪くなる場合があるので、振動吸収能力や
変形応力吸収機能が生かせてクッション体としての機能
が発現されやすい0.01g/cm3 以上0.20g/cm
3 以下が好ましく、より好ましくは0.03g/cm3
上0.08g/cm3 以下である。本発明における網状体
は繊度の異なる線状を見掛け密度との組合せで最適な構
成とする異繊度積層構造とする方法も好ましい実施形態
として選択できる。本発明の網状体の厚みは特に限定さ
れないが、厚みが5mm未満では応力吸収機能と応力分散
機能が低下するので、好ましい厚みは力の分散をする面
機能と振動や変形応力吸収機能が発現できる厚みとして
10mm以上であり、より好ましくは20mm以上である。
本発明の網状体と短繊維不織布が接合一体化された積層
網状体としての見掛け密度は0.01g/cm3 から0.
2g/cm3 である。0.01g/cm3 未満では体型保持
や振動吸収などのクッション機能が低下するので好まし
くない。0.2g/cm3 を越えると反発弾性が大きくな
り座り心地が悪くなるので好ましくない。好ましい見掛
け密度は0.02g/cm3 〜0.1g/cm3 であり、よ
り好ましくは0.03g/cm3 〜0.06g/cm3 であ
る。
The present invention is a three-dimensional three-dimensional structure in which continuous filaments having a fineness of 100,000 denier or less made of a phosphorus-containing thermoplastic elastic resin are bent and brought into contact with each other, and most of the contact portions are fused. A short fiber made of a thermoplastic elastic resin as a heat-adhesive component forms a three-dimensional structure on one or both sides of a reticulated body whose both sides are substantially flattened to form a layered and fusion-bonded layer. Apparent density is 0.01
It is a non-woven fabric laminated network of g / cm 3 to 0.2 g / cm 3 . The function of the cushioning material is that the cushioning layer is composed of a layer that thickens the basic fineness and makes it a little harder to support the body shape, and a layer that slightly increases the density with a component with good vibration damping and absorbs vibrations and blocks vibrations. However, the surface layer is a soft layer with a fineness and a large number of constituent fibers, which gives a comfortable touch to the buttocks due to a proper subsidence to evenly disperse the buttocks pressure distribution and vibration that could not be absorbed by the cushion layer. By integrating the layer that absorbs and absorbs the vibration of the resonance part of the human body, the stress and the vibration can be integrally deformed and absorbed to improve the sitting comfort. In the present invention, the function of the cushion layer is given to the net-like body formed by the fused three-dimensional structure made of thermoplastic elastic resin, and the function of the surface layer is a short fiber non-woven fabric whose thermo-adhesive component is made of thermoplastic elastic resin. It is a non-woven fabric laminated reticulate body that can be held in the body and integrally bonded to give a preferable cushioning material function. The short fiber non-woven fabric having a surface layer function constituting the laminated reticulate body of the present invention provides a comfortable buttocks touch due to a proper depression as a soft layer, and therefore the heat-adhesive component is made of a thermoplastic elastic resin (preferably, If the vibration absorption function and the deformation stress absorption function can be satisfied by 40% by weight or more, and if it exceeds 70% by weight, the shape retention of the short fibers deteriorates and the subsidence increases, so 70% by weight or less) Fineness is 20 denier or less Composed of short fibers. 20
When it exceeds denier, the apparent density of the short fiber non-woven fabric can be given a desired surface layer function 0.01 g / cm 3 or more 0.0
When the amount is 5 g / cm 3 or less, the number of components is reduced, the features of a dense structure are not exhibited, and the comfortable touch is impaired, which is not preferable. Further, since the short fibers contain the non-elastic resin, the thicker the fineness, the larger the mechanical deformation of the non-elastic resin against the compression deformation, and the larger the damage, the less sag resistance is not preferable. On the other hand, if the fineness is too small, the bulkiness is lowered, the deformation response is deteriorated, and the function of the surface layer is lowered, which is not preferable. The preferred fineness of short fibers is 1
Denier to 10 denier, more preferably 3 denier to
It is 6 denier. In addition, a short fiber whose thermo-adhesive component is a thermoplastic elastic resin has a three-dimensional structure, and most of contact portions are fused and integrated by heat adhesion (preferably all contact points are fused and integrated). By receiving a non-woven fabric that is substantially flat, the surface receives the local pressure of the buttocks,
While the pressure distribution is uniformly dispersed, the short fibers made of thermoplastic elastic resin as the heat-adhesive component form a three-dimensional three-dimensional structure and are fused and integrated, so that the heat-adhesion point undergoes large deformation and The plastic non-elastic resin is also deformed within a range not exceeding the elastic limit and the entire structure is deformed to absorb the deformation stress by energy conversion, and when the deformation stress is released, the rubber elasticity of the thermoplastic elastic resin easily causes the original deformation. The thermoplastic non-elastic resin has a function of elastically recovering, and therefore has good sag resistance. Further, the damage to the cushion layer can be gradually reduced, and the sag resistance of the entire structure is improved. If they are not fused and integrated, the shape cannot be maintained, the local pressure is received by the surface, the pressure distribution cannot be evenly distributed, and the entire structure is deformed and energy conversion is not possible. Inferior and not preferable. Since the heat-adhesive component is composed of fibers containing a thermoplastic elastic resin with good vibration absorption,
It also functions as a layer that absorbs vibrations that could not be absorbed by the cushion layer and blocks vibrations at the resonance part of the human body. When the short fiber is made of a thermoplastic non-elastic resin, it cannot follow local deformation stress, so that the structure is destroyed due to stress concentration and recovery is poor, which is not preferable. Further, since the thermoplastic non-elastic resin has a poor vibration absorbing property, it is not preferable because it has a poor function as a layer for blocking vibration. The thickness of the short fiber non-woven fabric layer is not particularly limited, but is preferably 3 mm to 30 mm and particularly preferably 5 mm to 20 mm so that the surface layer function can be exhibited. On the other hand, the mesh body having a cushion layer function is a three-dimensional three-dimensional structure in which continuous filaments made of a thermoplastic elastic resin are fused at most of the contact portions, and are fused and integrated, and both sides are substantially flat. Since the vibration absorption function of the thermoplastic elastic resin absorbs and attenuates most of the vibrations given from the outside, the surface of the reticulate body is substantially absorbed even when a large deformation stress is locally applied. Since most of the contact portion is flattened and fused, and the surface is joined with the short fiber non-woven fabric at the surface, it receives the deformation stress at the surface of the mesh body and disperses the deformation stress and develops the body shape holding function. Since the filaments made of thermoplastic elastic resin form a three-dimensional three-dimensional structure and are fused and integrated, the entire structure is deformed and energy is reduced.
The deformation stress is absorbed by the conversion, and when the deformation stress is released, the rubber elasticity of the thermoplastic elastic resin has a function of easily recovering the original form, so that the sag resistance is good. A known net-like body composed of filaments made only of non-elastic resin does not have rubber elasticity when subjected to a large deformation that cannot be absorbed by the surface layer, and therefore plastic deformation due to compressive deformation does not occur and recovery is inferior. When the surface of the reticulate body is not substantially flattened, the local external force transmitted from the short fiber non-woven fabric is selectively transmitted to the filaments and bonding points of the surface, resulting in stress concentration. There is a possibility that fatigue due to stress concentration may occur due to such external force and the sag resistance may deteriorate. When the filaments are made of thermoplastic elastic resin, the entire structure is deformed in the three-dimensional structure portion, so stress concentration is relieved. However, in the non-elastic resin, stress is concentrated at the bonding point and structural damage is caused. It will not occur and will not recover.
Furthermore, if the surface is not substantially flattened and has irregularities, the buttocks feel a foreign substance when sitting, which is unfavorable for sitting. When the linear shape is not continuous, the adhesive point becomes a stress transmission point in a net having a large fineness, so that remarkable stress concentration occurs at the adhesive point, resulting in structural destruction and poor heat resistance and durability. If not fused,
Since the shape cannot be maintained and the structure does not deform integrally, fatigue phenomenon occurs due to stress concentration and durability is poor, and at the same time,
It is not preferable because the shape is deformed and the body shape cannot be maintained. The more preferable degree of fusion in the present invention is that most of the portions where the filaments are in contact are fused, and most preferably all the contact portions are in fusion. Thus,
Continuous filaments made of thermoplastic elastic resin with good vibration absorption and elastic recovery form a three-dimensional three-dimensional structure in which most of the contact portions are fused and fused and integrated to make the surface substantially flat. The reticulated body with a cushion layer function receives the deformation stress transmitted from the surface layer composed of the short fiber non-woven fabric whose thermo-adhesive component is thermoplastic elastic resin on the surface, improves the dispersion of the stress and improves the individual linear shape. The stress applied is reduced and the entire structure is deformed to absorb the deformation stress, and the cushioning property that supports the buttocks is also improved, and it is recovered when the stress is released, and the vibration transmitted from the frame is also vibration absorption and elastic recovery. The cushioning layer made of a thermoplastic elastic resin having good properties absorbs the vibrations at the resonance part of the human body and blocks the vibrations of the human body, so that the sitting comfort and durability can be improved. For this purpose, the fineness of the filament formed of the thermoplastic elastic resin having good vibration absorption and elastic recovery forming the reticulated body of the present invention is 100,000 denier or less. When the apparent density is 0.2 g / cm 3 or less, 10
If it exceeds 0000 denier, the number of constituents is reduced, density unevenness is caused, and a structure having poor durability is partially formed, and fatigue due to stress concentration is increased and durability is deteriorated, which is not preferable. The preferable fineness of the filament made of the thermoplastic elastic resin of the present invention is 100 denier or more, because if the fineness is too thin, the anti-compression property becomes too low and the stress absorbability due to deformation is lowered. Is not more than 50,000 denier which does not impair the denseness of the structural surface. More preferably, it is at least 500 denier and at most 10,000 denier. The apparent density of the reticulate body of the present invention is 0.005 g / cm.
In 3 , the repulsive force is lost, and the vibration absorbing ability and the deformation stress absorbing ability are insufficient, and it may be difficult to develop the cushioning function. At 0.25 g / cm 3 or more, the repulsive force is too high and the sitting comfort becomes poor In some cases, the vibration absorbing ability and the deformation stress absorbing function can be fully utilized to easily develop the function as a cushioning body 0.01 g / cm 3 or more 0.20 g / cm
It is preferably 3 or less, more preferably 0.03 g / cm 3 or more and 0.08 g / cm 3 or less. As a preferred embodiment, a method in which the reticulate body in the present invention has a different fineness laminated structure in which a linear shape having a different fineness is combined with an apparent density to have an optimum configuration can be selected. The thickness of the reticulate body of the present invention is not particularly limited, however, if the thickness is less than 5 mm, the stress absorbing function and the stress dispersing function are deteriorated, so that the preferable thickness is capable of exhibiting a surface function for dispersing force and a vibration or deformation stress absorbing function. The thickness is 10 mm or more, more preferably 20 mm or more.
The apparent density of the laminated net body in which the net body of the present invention and the short fiber non-woven fabric are integrally bonded is from 0.01 g / cm 3 to 0.
It is 2 g / cm 3 . If it is less than 0.01 g / cm 3 , the cushioning function such as body shape retention and vibration absorption is deteriorated, which is not preferable. If it exceeds 0.2 g / cm 3 , the impact resilience becomes large and the sitting comfort becomes poor, which is not preferable. Preferred apparent density is 0.02g / cm 3 ~0.1g / cm 3 , more preferably 0.03g / cm 3 ~0.06g / cm 3 .

【0013】本発明の網状体の線条の断面形状は特には
限定されないが、中空断面や異形断面にすることで好ま
しい抗圧縮性(反発力)やタッチを付与することができ
るので特に好ましい。抗圧縮性は繊度や用いる素材のモ
ジュラスにより調整して、繊度を細くしたり、柔らかい
素材では中空率や異形度を高くし初期圧縮応力の勾配を
調整できるし、繊度をやや太くしたり、ややモジュラス
の高い素材では中空率や異形度を低くして座り心地が良
好な抗圧縮性を付与する。中空断面や異形断面の他の効
果として中空率や異形度を高くすることで、同一の抗圧
縮性を付与した場合、より軽量化が可能となり、自動車
等の座席に用いると省エネルギ−化ができ、布団などの
場合は、上げ下ろし時の取扱性が向上する。好ましい抗
圧縮性(反発力)やタッチを付与することができる他の
好ましい方法として、本発明の網状体の線条を複合構造
とする方法がある。複合構造としては、シ−スコア構造
またはサイドバイサイド構造及びそれらの組合せ構造な
どが挙げられる。が、特には熱可塑性弾性樹脂層が大変
形してもエネルギ−変換できない振動や変形応力をエネ
ルギ−変換して回復できる立体3次元構造とするために
線状の表面の50%以上を柔らかい熱可塑性弾性樹脂が
占めるシ−スコア構造またはサイドバイサイド構造及び
それらの組合せ構造などが挙げられる。すなわち、シ−
スコア構造ではシ−ス成分は振動や変形応力をエネルギ
−変換が容易なソフトセグメント含有量が多い熱可塑性
弾性樹脂とし、コア成分はソフトセグメント含有量の少
ない熱可塑性弾性樹脂とし、抗圧縮性を付与することで
適度の沈み込みによる臀部への快適なタッチを与えるこ
とができる。サイドバイサイド構造では振動や変形応力
をエネルギ−変換が容易なソフトセグメント含有量が多
い熱可塑性弾性樹脂の溶融粘度を抗圧縮性を示すソフト
セグメント含有量の少ない熱可塑性弾性樹脂の溶融粘度
より低くして線状の表面を占めるソフトセグメント含有
量が多い熱可塑性弾性樹脂の割合を多くした構造(比喩
的には偏芯シ−ス・コア構造のシ−スに熱可塑性弾性樹
脂を配した様な構造)として線状の表面を占めるソフト
セグメント含有量が多い熱可塑性弾性樹脂の割合を80
%以上としたものが特に好ましく、最も好ましくは線状
の表面を占めるソフトセグメント含有量が多い熱可塑性
弾性樹脂の割合を100%としたシ−スコアである。ソ
フトセグメント含有量が多い熱可塑性弾性樹脂の線状の
表面を占める割合が多くなると、溶融して融着するとき
の流動性が高いので接着が強固になる効果があり、構造
が一体で変形する場合、接着点の応力集中に対する耐疲
労性が向上し、耐熱性や耐久性がより向上する。
The cross-sectional shape of the filaments of the reticulate body of the present invention is not particularly limited, but a hollow cross-section or a deformed cross-section is particularly preferable because it can impart preferable anti-compression property (repulsive force) and touch. The anti-compression property can be adjusted by the fineness and the modulus of the material used to make the fineness fine, or in the soft material the hollowness and the irregularity can be increased to adjust the gradient of the initial compression stress, and the fineness can be made slightly thicker or slightly. A material with a high modulus lowers the hollow ratio and the degree of irregularity to provide anti-compression property with a comfortable sitting feeling. As another effect of the hollow cross section and the irregular cross section, by increasing the hollow ratio and the degree of irregularity, if the same anti-compression property is given, the weight can be further reduced, and the energy saving can be achieved when it is used for the seat of an automobile or the like. If it is a futon or the like, it will be easier to handle when raising and lowering. As another preferable method for imparting preferable anti-compression property (repulsive force) and touch, there is a method of forming the filament of the reticulated body of the present invention into a composite structure. Examples of the composite structure include a score core structure, a side-by-side structure, and a combination structure thereof. However, in particular, 50% or more of the linear surface is softly heat-treated in order to form a three-dimensional three-dimensional structure capable of energy-converting and recovering vibration and deformation stress that cannot be energy-converted even if the thermoplastic elastic resin layer is largely deformed. Examples thereof include a sheath core structure or a side-by-side structure occupied by a plastic elastic resin, and a combination thereof. That is, see
In the score structure, the sheath component is a thermoplastic elastic resin with a large soft segment content that facilitates energy conversion of vibrations and deformation stresses, and the core component is a thermoplastic elastic resin with a small soft segment content to provide anti-compression properties. By giving it, it is possible to give a comfortable touch to the buttocks due to a proper depression. In the side-by-side structure, the melt viscosity of a thermoplastic elastic resin with a high soft segment content that facilitates energy conversion of vibration and deformation stress is made lower than that of a thermoplastic elastic resin with a low soft segment content that exhibits anti-compressibility. A structure in which the proportion of thermoplastic elastic resin occupying a linear surface and having a large amount of soft segment is increased (metaphorically, a structure in which a thermoplastic elastic resin is arranged in an eccentric sheath-core structure) ), The proportion of the thermoplastic elastic resin occupying the linear surface and having a large soft segment content is 80
% Or more is particularly preferable, and most preferably, it is a sheath core in which the proportion of the thermoplastic elastic resin having a large soft segment content occupying the linear surface is 100%. When the proportion of the thermoplastic elastic resin with a large soft segment content that occupies the linear surface is large, the flowability when melting and fusing is high, so there is the effect of strengthening the adhesion, and the structure deforms as a unit. In this case, the fatigue resistance against stress concentration at the bonding points is improved, and the heat resistance and durability are further improved.

【0014】熱可塑性弾性樹脂からなる網状体と熱接着
成分が熱可塑性弾性樹脂からなる短繊維不織布が接合一
体化されて、実質的に両面がフラット化された不織布積
層網状体であるので、他の網状体、不織布、編織物、硬
綿、フイルム、発泡体、金属等の被熱接着体とを接着す
るのに、他の熱接着成分(熱接着不織布、熱接着繊維、
熱接着フィルム、熱接着レジン等)や接着剤等を用いて
一体積層構造体化し、車両用座席、船舶用座席、車両
用、船舶用、病院用等の業務用及び家庭用ベット、家具
用椅子、事務用椅子、布団類等の製品を得る場合、被接
着体面との接触面積を広くできるので、接着面積が広く
なり強固に接着した接着耐久性も良好な製品を得ること
ができる。この場合、難燃性の被熱接着体を用いると難
燃性の一体積層構造体を得ることができるので、本発明
では特に好ましい実施形態である。なお、網状体及び積
層網状体形成段階から製品化される任意の段階で上述の
疑似結晶化処理を施すことにより、構造体中の熱可塑性
弾性樹脂からなる成分を示差走査型熱量計で測定した融
解曲線に室温以上融点以下の温度に吸熱ピークを持つよ
うにすると製品の耐熱耐久性が格段に向上するのでより
好ましい。本発明の不織布積層網状体を形成する網状体
の線条を複合構造とした場合、または、前記熱接着成分
が熱可塑性弾性樹脂からなる短繊維の不織布層を積層す
ることで難燃性積層網状体の裏面に熱接着機能も付与で
き、補強材等を熱接着一体構造化ができる。例えば、網
状体層をシ−スコア構造とする場合、シ−ス成分の振動
や変形応力をエネルギ−変換が容易なソフトセグメント
含有量が多い熱可塑性弾性樹脂を熱接着成分とし、コア
成分の抗圧縮性を示すソフトセグメント含有量が少ない
熱可塑性弾性樹脂を網状形態の保持機能をもたせるため
の高融点成分とする構成で、熱接着成分の融点を高融点
樹脂の融点より10℃以上低くしたものを用いることに
より熱接着層の機能も付与できる。また、本発明の積層
構造体の表面層の短繊維不織布を振動や変形応力をエネ
ルギ−変換が容易なソフトセグメント含有量が多い低融
点の熱可塑性弾性樹脂を熱接着成分とした熱接着繊維で
構成することでも好ましい熱接着機能を付与できる。熱
接着機能を発現させるに好ましい積層網状体中の線条ま
たは繊維を形成する熱接着成分の融点は高融点成分の融
点より15℃から100℃低い融点であり、より好まし
くは20℃から80℃低い融点である。熱接着機能を持
つ本発明の不織布積層網状体は実質的に表面がフラット
化されて、接触部の大部分が融着していることで、網状
体、不織布、編織物、硬綿、フイルム、発泡体、金属等
の被熱接着体面との接触面積を広くできるので、熱接着
面積が広くなり、強固に熱接着した新たな成形体及び車
両用座席、船舶用座席、車両用、船舶用、病院用等の業
務用及び家庭用ベット、家具用椅子、事務用椅子、布団
類になった製品を得ることができる。なお、新たな成形
体及び製品が製品化されるまでの任意の段階で疑似結晶
化処理を施すことにより、構造体中の熱可塑性弾性樹脂
からなる線条を示差走査型熱量計で測定した融解曲線に
室温以上融点以下の温度に吸熱ピークを持つようにする
と製品の耐熱耐久性が格段に向上したものを提供できる
のでより好ましい。熱接着時に被接着体を伸張した状態
で接着すると、被接着体は熱接着成分のゴム弾性で伸張
された状態が緩和しにくいので張りのある、皺になりに
くい成形体とすることもできる。
Since a net-like body made of a thermoplastic elastic resin and a short fiber non-woven fabric made of a thermoplastic elastic resin as a heat-adhesive component are joined and integrated to form a non-woven fabric laminated net having substantially flattened surfaces, Other heat-adhesive components (heat-adhesive non-woven fabric, heat-adhesive fiber, heat-adhesive non-woven fabric, hard-woven fabric, hard cotton, film, foam, metal, etc.
Heat-adhesive film, heat-adhesive resin, etc.) and adhesives are used to make a monolithic laminated structure, and seats for vehicles, seats for ships, vehicles, ships, hospital beds, etc. When obtaining products such as office chairs and duvets, the contact area with the surface to be adhered can be widened, so that the adhesive area can be widened and a product with strong adhesion and good adhesion durability can be obtained. In this case, since a flame-retardant integrally laminated structure can be obtained by using a flame-retardant heat-bonded body, the present invention is a particularly preferred embodiment. In addition, by performing the above-mentioned pseudo crystallization treatment at any stage from the stage of forming the net body and the laminated net body into the product, the component made of the thermoplastic elastic resin in the structure was measured by a differential scanning calorimeter. It is more preferable that the melting curve has an endothermic peak at a temperature of room temperature or higher and melting point or lower because the heat resistance and durability of the product is remarkably improved. A flame-retardant laminated network when the filaments of the network forming the nonwoven laminated network of the present invention have a composite structure, or by laminating a nonwoven fabric layer of short fibers in which the thermal adhesive component is a thermoplastic elastic resin. A heat-bonding function can be added to the back surface of the body, and a reinforcing material and the like can be integrated into the heat-bonding structure. For example, when the mesh layer has a sheath core structure, a thermoplastic elastic resin containing a large amount of soft segment, which facilitates energy conversion of vibration and deformation stress of the sheath component, is used as a thermal bonding component, and the core component is A composition in which a thermoplastic elastic resin having a low soft segment content exhibiting compressibility is used as a high melting point component to have a function of retaining a net shape, and the melting point of the heat bonding component is lower than the melting point of the high melting point resin by 10 ° C. or more. By using, the function of the thermal adhesive layer can be imparted. Further, the short-fiber nonwoven fabric of the surface layer of the laminated structure of the present invention is a heat-bonding fiber having a low-melting point thermoplastic elastic resin having a large amount of soft segment that facilitates energy conversion of vibration and deformation stress as a heat-bonding component. A preferable heat-adhesion function can also be imparted by the constitution. The melting point of the heat-adhesive component forming the filaments or fibers in the laminated reticulate body which is preferable for exhibiting the heat-adhesive function is 15 ° C to 100 ° C lower than the melting point of the high-melting component, more preferably 20 ° C to 80 ° C. It has a low melting point. The non-woven laminate network of the present invention having a heat-bonding function has a substantially flat surface, and most of the contact portions are fused to form a network, a non-woven fabric, a knitted fabric, a hard cotton, a film, Since it is possible to increase the contact area with the surface of the foam, metal, etc. to be heat-bonded, the heat-bonding area becomes wider, and a new heat-bonded new molded body and vehicle seat, ship seat, vehicle, ship, You can get products such as beds for business and home use such as hospitals, furniture chairs, office chairs, and futons. In addition, by performing pseudo crystallization at any stage until new molded products and products are commercialized, the filaments made of the thermoplastic elastic resin in the structure are melted by a differential scanning calorimeter. It is more preferable to make the curve have an endothermic peak at a temperature of room temperature or higher and melting point or lower because a product with significantly improved heat resistance and durability can be provided. When the adherend is adhered in a stretched state at the time of heat-bonding, the stretched state of the adherend is less likely to be relaxed by the rubber elasticity of the heat-adhesive component, and thus a molded product having tension and less likely to wrinkle can be obtained.

【0015】次に本発明の製法を述べる。本発明の製法
は、複数のオリフィスを持つ多列ノズルよりソフトセグ
メント量(A重量%)と燐含有量(Bppm)が60A
+200≦B≦100000の関係を満足する熱可塑性
弾性樹脂を各ノズルオリフィスに分配し、該熱可塑性樹
脂の融点より10℃以上、80℃未満高い溶融温度で、
該ノズルより下方に向けて吐出させ、溶融状態で互いに
接触させて融着させ3次元構造を形成しつつ、引取り装
置で挟み込み冷却槽で冷却せしめた後、片面又は両面に
熱接着成分が熱可塑性弾性樹脂からなる短繊維を開繊し
て三次元化したウエッブを積層し、圧縮しつつ熱成形す
る難燃性積層網状体の製法であり、好ましくは、冷却後
から一体成形して製品化に至る工程で熱可塑性弾性樹脂
の融点より少なくとも10℃以下の温度でアニ−リング
する不織布積層網状体及び製品の製法である。燐含有熱
可塑性弾性樹脂は、本発明では、前記の如く、燐化合物
を重合時に添加して共重合する方法と重合後に添加して
混合練り込みする方法ができる。混合練り込みは二軸混
練押出機又はダルメ−ジ、ピン等の混練機能をもつ単軸
押出機を用い、溶融押し出し前に行う場合と、溶融押し
出し時に行う場合を選択できる。難燃剤の定量供給が出
来れば溶融押し出し時に混練するのが最も安価な方法と
なる。固体状の難燃剤は樹脂と共に乾燥混合して偏析し
ないように押出機に供給すれば簡単であるが、液状の難
燃剤は樹脂を混練押出機に定量供給しつつ別途に液状の
難燃剤も定量供給しつつ混練する方法を取るのが最も望
ましい。例えば、二軸混練押出機のベント穴から液状難
燃剤を定量供給する方法等が例示できる。このような方
法でソフトセグメント量(A重量%)と燐含有量(Bp
pm)が60A+200≦B≦100000の関係を満
足する燐含有量を熱可塑性弾性樹脂に添加して、次いで
網状体を形成する。網状体は、熱可塑性弾性樹脂を一般
的な溶融押出機を用いて溶融し、複数のオリフィスを持
つ多列ノズルに供給し、オリフィスより下方へ吐出す
る。この時の溶融温度は、熱可塑性弾性樹脂の融点より
20℃〜80℃高い温度である。熱可塑性弾性樹脂の融
点より80℃を越える高い溶融温度にすると熱分解が著
しくなり熱可塑性弾性樹脂のゴム弾性特性が低下するの
で好ましくない。他方、熱可塑性弾性樹脂の融点より1
0℃以上高くしないとメルトフラクチャ−を発生し正常
な線条形成が出来なくなり、また、吐出後ル−プ形成し
つつ接触させ融着させる際、線条の温度が低下して線条
同士が融着しなくなり接着が不充分な網状体となる場合
があり好ましくない。好ましい溶融温度は融点より20
℃から60℃高い温度、より好ましくは融点より25℃
から40℃高い温度である。オリフィスの形状は特に限
定されないが、中空断面(例えば三角中空、丸型中空、
突起つきの中空等となるよう形状)及び、又は異形断面
(例えば三角形、Y型、星型等の断面二次モ−メントが
高くなる形状)とすることで前記効果以外に溶融状態の
吐出線条が形成する3次元構造が流動緩和し難くし、逆
に接触点での流動時間を長く保持して接着点を強固にで
きるので特に好ましい。特開平1−2075号公報に記
載の接着のための加熱をする場合、3次元構造が緩和し
易くなり平面的構造化し、3次元立体構造化が困難とな
るので好ましくない。網状体の特性向上効果としては、
見掛けの嵩を高くでき軽量化になり、また抗圧縮性が向
上し、弾発性も改良できへたり難くなる。中空断面では
中空率が80%を越えると断面が潰れ易くなるので、好
ましくは軽量化の効果が発現できる10%以上70%以
下、より好ましくは20%以上60%以下である。オリ
フィスの孔間ピッチは線状が形成するル−プが充分接触
できるピッチとする必要がある。緻密な構造にするには
孔間ピッチを短くし、粗密な構造にするには孔間ピッチ
を長くする。本発明の孔間ピッチは好ましくは3mm〜2
0mm、より好ましくは5mm〜10mmである。本発明では
所望に応じ異密度化や異繊度化もできる。列間のピッチ
又は孔間のピッチも変えた構成、及び列間と孔間の両方
のピッチも変える方法などで異密度層を形成できる。ま
た、オリフィスの断面積を変えて吐出時の圧力損失差を
付与すると、溶融した熱可塑性弾性樹脂を同一ノズルか
ら一定の圧力で押し出される吐出量が圧力損失の大きい
オリフィスほど少なくなる原理を使って長手方向の区間
でオリフィスの断面積が異なる列を少なくとも複数有す
るノズルを用い異繊度線条からなる網状構造体を製造す
ることができる。次いで、該ノズルより下方に向けて吐
出させ、ル−プを形成させつつ溶融状態で互いに接触さ
せて融着させ3次元構造を形成しつつ、引取りネットで
挟み込み、網状体の表面の溶融状態の曲がりくねった吐
出線条を45°以上折り曲げて変形させて表面をフラッ
ト化すると同時に曲げられていない吐出線条との接触点
を接着して構造を形成後、連続して冷却媒体(通常は室
温の水を用いるのが冷却速度を早くでき、コスト面でも
安くなるので好ましい)で急冷して本発明の3次元立体
網状構造体化した網状体を得る。ノズル面と引取り点の
距離は少なくとも40cm以下にすることで吐出線条が冷
却され接触部が融着しなくなることを防ぐのが好まし
い。吐出線条の吐出量5g/分孔以上と多い場合は10
cm〜40cmが好ましく、吐出線条の吐出量5g/分孔未
満と少ない場合は5cm〜20cmが好ましい。網状体の厚
みは溶融状態の3次元立体構造体両面を挟み込む引取り
ネットの開口幅(引取りネット間の間隔)で決まる。本
発明では上述の理由から引取りネットの開口幅は5mm以
上とする。次いで水切り乾燥するが冷却媒体中に界面活
性剤等を添加すると、水切りや乾燥がしにくくなった
り、熱可塑性弾性樹脂が膨潤することもあり好ましくな
い。尚、ノズル面と樹脂を固化させる冷却媒体上に設置
した引取りコンベアとの距離、樹脂の溶融粘度、オリフ
ィスの孔径と吐出量などにより所望のループ径や線径を
きめられる。冷却媒体上に設置した間隔が調整可能な一
対の引取りコンベアで溶融状態の吐出線条を挟み込み停
留させることで互いに接触した部分を融着させつつ、連
続して冷却媒体中に引込み固化させ網状体を形成する
時、上記コンベアの間隔を調整することで、融着した網
状体が溶融状態でいる間で厚み調節が可能となり、所望
の厚みのものが得られる。コンベア速度も速すぎると、
接触点の形成が不充分になったり、融着点が充分に形成
されるまでに冷却され、接触部の融着が不充分になる場
合がある。また、速度が遅過ぎると溶融物が滞留し過
ぎ、密度が高くなるので、所望の見掛け密度に適したコ
ンベア速度を設定する必要がある。次いで本発明の製法
では、表面層の機能を持たせる短繊維不織布と接合一体
化する。熱接着成分が熱可塑性弾性樹脂からなる繊度が
20デニ−ル以下の短繊維は、低融点の熱可塑性弾性樹
脂と高融点の熱可塑性非弾性樹脂とを個々に溶融し、公
知の複合紡糸により紡糸し、延伸して完成糸を得られ
る。が、この方法では、熱接着成分の融点が低いので、
延伸時に高温で熱セットできないため収縮率が30%か
ら80%と高いものしか得られないので、ウエッブを熱
成形する際ウエッブ収縮による成形寸法不良を生じる。
本発明ではこの問題を解決するため、3000m/分以
上の高速紡糸により収縮率を10%以下に低収縮化して
一気に完成糸にする方法で得るのが好ましい。次いで、
巻縮を付与し、所望のカット長に切断して短繊維を得
る。本発明に使用する短繊維の複合形態は特には限定さ
れないが、熱接着繊維としての機能が必要なのでサイド
バイサイドまたはシ−スコアで、低融点成分が繊維の表
面の50%以上を占めるのが好ましく、低融点成分が繊
維の表面の100%以上を占めるのがより好ましい。か
くして得られた短繊維はカ−ド等で開繊3次元化構造と
した開繊ウエッブを、該網状体の表面に積層圧縮して熱
成形により接合一体化するか、一旦単独で開繊ウエッブ
のみを積層圧縮して熱成形により構造体化して短繊維不
織布を作成し、次いで該網状体と短繊維不織布を接合一
体化することもできる。この場合、熱接着層又は接着剤
を別途該網状体と短繊維不織布間に使用して接合一体化
してもよく、該網状体または該短繊維不織布の熱接着機
能を使って接合一体化してもよい。本発明の好ましい方
法としては、該網状体を一旦冷却後、又は一体成形して
得られた積層構造体を製品化に至る任意の工程で熱可塑
性弾性樹脂の融点より少なくとも10℃以下の温度でア
ニ−リングよる疑似結晶化処理を行い積層構造体又は製
品を得るのがより好ましい製法である。疑似結晶化処理
温度は、少なくとも融点(Tm)より10℃以上低く、
Tanδのα分散立ち上がり温度(Tαcr)以上で行
う。この処理で、融点以下に吸熱ピ−クを持ち、疑似結
晶化処理しないもの(吸熱ピ−クを有しないもの)より
耐熱耐へたり性が著しく向上する。本発明の好ましい疑
似結晶化処理温度は(Tαcr+10℃)から(Tm−
20℃)である。単なる熱処理により疑似結晶化させる
と耐熱耐へたり性が向上する。が更には、10%以上の
圧縮変形を付与してアニ−リングすることで耐熱耐へた
り性が著しく向上するのでより好ましい。また、該網状
体を一旦冷却後、乾燥工程を経する場合、乾燥温度をア
ニ−リング温度とすることで同時に疑似結晶化処理を行
うができる。また、製品化する工程で別途疑似結晶化処
理を行うができる。次いで所望の長さまたは形状に切断
してクッション材に用いる。
Next, the manufacturing method of the present invention will be described. According to the manufacturing method of the present invention, the soft segment amount (A% by weight) and the phosphorus content (Bppm) are 60 A compared with the multi-row nozzle having a plurality of orifices.
A thermoplastic elastic resin satisfying the relationship of + 200 ≦ B ≦ 100,000 is distributed to each nozzle orifice, and at a melting temperature higher than the melting point of the thermoplastic resin by 10 ° C. or more and less than 80 ° C.,
It is discharged downward from the nozzle, and in a molten state, they are brought into contact with each other and fused to form a three-dimensional structure, which is sandwiched by a take-up device and cooled in a cooling tank. It is a method of manufacturing a flame-retardant laminated mesh body in which short fibers made of a plastic elastic resin are opened and three-dimensionalized webs are laminated, and thermoformed while being compressed. In the steps up to, the method for producing a nonwoven fabric laminated reticulate body and a product, wherein annealing is performed at a temperature of at least 10 ° C. or lower than the melting point of the thermoplastic elastic resin. In the present invention, as described above, the phosphorus-containing thermoplastic elastic resin can be added by a method of adding a phosphorus compound at the time of polymerization and copolymerization, or a method of adding a phosphorus compound after polymerization and mixing and kneading. The mixing and kneading can be performed by using a twin-screw kneading extruder or a single-screw extruder having a kneading function such as a dullage, a pin, or the like, which can be performed before melt extrusion or during melt extrusion. If a fixed amount of flame retardant can be supplied, kneading at the time of melt extrusion is the cheapest method. Solid flame retardant can be easily mixed with resin and supplied to the extruder so as not to segregate.However, liquid flame retardant is supplied to the kneading extruder in a fixed amount while liquid flame retardant is also measured separately. It is most desirable to take the method of kneading while supplying. For example, a method of quantitatively supplying a liquid flame retardant through a vent hole of a twin-screw kneading extruder can be exemplified. The soft segment content (A wt%) and phosphorus content (Bp
A phosphorus content satisfying the relationship of pm) 60A + 200 ≦ B ≦ 100,000 is added to the thermoplastic elastic resin, and then a reticulate body is formed. The reticulate body is obtained by melting a thermoplastic elastic resin by using a general melt extruder, supplying the multi-row nozzle having a plurality of orifices, and discharging the resin downward from the orifices. The melting temperature at this time is 20 ° C. to 80 ° C. higher than the melting point of the thermoplastic elastic resin. If the melting temperature is higher than 80 ° C. higher than the melting point of the thermoplastic elastic resin, thermal decomposition becomes remarkable and the rubber elastic properties of the thermoplastic elastic resin deteriorate, which is not preferable. On the other hand, it is 1 from the melting point of the thermoplastic elastic resin.
If the temperature is not higher than 0 ° C., melt fracture occurs and normal filament formation cannot be performed. Further, when the filaments are ejected, the temperature of the filaments lowers when they are contacted and fused while forming loops. It is not preferable because it may not be fused and the adhesion may be insufficient to form a reticulated body. The preferred melting temperature is 20 above the melting point.
℃ to 60 ℃ higher temperature, more preferably 25 ℃ above the melting point
To 40 ° C higher temperature. The shape of the orifice is not particularly limited, but a hollow cross section (for example, triangular hollow, round hollow,
In addition to the above effect, a discharge line in a molten state can be obtained by providing a shape such as a hollow with a projection) and / or an irregular cross section (for example, a shape having a high secondary cross-sectional moment such as a triangle, a Y shape, or a star shape). It is particularly preferable because the three-dimensional structure formed by (3) makes it difficult to relax the flow, and conversely, the flow time at the contact point can be maintained for a long time to strengthen the adhesion point. When heating for adhesion as described in Japanese Patent Application Laid-Open No. 1-2075, the three-dimensional structure is easily relaxed, a planar structure is formed, and a three-dimensional three-dimensional structure becomes difficult, which is not preferable. As the effect of improving the properties of the mesh,
The apparent bulk can be increased, the weight can be reduced, the anti-compression property can be improved, and the elasticity can be improved, which makes it difficult to reduce the weight. In the hollow cross section, if the hollow ratio exceeds 80%, the cross section tends to be crushed. Therefore, it is preferably 10% or more and 70% or less, more preferably 20% or more and 60% or less, which can exhibit the effect of weight reduction. The pitch between the holes of the orifice needs to be a pitch with which the loop formed by the line can sufficiently contact. The pitch between holes is shortened for a dense structure, and the pitch between holes is lengthened for a coarse structure. The hole pitch of the present invention is preferably 3 mm to 2
It is 0 mm, more preferably 5 mm to 10 mm. In the present invention, different densities and different fineness can be obtained as desired. The different density layer can be formed by a configuration in which the pitch between rows or the pitch between holes is also changed, or a method in which the pitch between both rows and holes is also changed. Also, if the pressure loss difference at the time of discharge is given by changing the cross-sectional area of the orifice, the principle that the discharged amount of molten thermoplastic elastic resin extruded from the same nozzle at a constant pressure becomes smaller for the orifice with larger pressure loss, is used. It is possible to manufacture a reticulated structure composed of filaments of different fineness by using a nozzle having at least a plurality of rows having different cross-sectional areas of orifices in a section in the longitudinal direction. Then, the liquid is discharged downward from the nozzle, and while forming a loop, they are brought into contact with each other in a molten state to be fused to form a three-dimensional structure, and are sandwiched by a take-up net to melt the surface of the net-like body. Bending the twisted discharge line of 45 degrees or more to deform it to flatten the surface and at the same time bond the contact points with the unbent discharge line to form a structure, and then continuously cool the medium (usually at room temperature). It is preferable to use the water of (1) because the cooling rate can be increased and the cost can be reduced). The distance between the nozzle surface and the take-off point is preferably at least 40 cm or less to prevent the discharge filament from being cooled and the contact portion not being fused. 10 if the discharge amount of discharge line is 5g / hole or more
cm to 40 cm is preferable, and 5 cm to 20 cm is preferable when the discharge amount of the discharge line is less than 5 g / min. The thickness of the net-like body is determined by the opening width (interval between the take-up nets) of the take-up net sandwiching both surfaces of the three-dimensional structure in the molten state. In the present invention, the opening width of the take-up net is set to 5 mm or more for the above reason. Next, it is drained and dried, but if a surfactant or the like is added to the cooling medium, draining and drying may be difficult, or the thermoplastic elastic resin may swell, which is not preferable. The desired loop diameter and wire diameter can be determined by the distance between the nozzle surface and the take-up conveyor installed on the cooling medium for solidifying the resin, the melt viscosity of the resin, the orifice hole diameter and the discharge amount, and the like. A pair of take-up conveyors with adjustable spacing installed on the cooling medium sandwiches and holds the melted discharge filaments to fuse the portions that are in contact with each other and continuously draw in the cooling medium to solidify. By adjusting the distance between the conveyors when forming the body, the thickness can be adjusted while the fused net-like body is in a molten state, and a desired thickness can be obtained. If the conveyor speed is too fast,
In some cases, the contact points may be insufficiently formed, or the contact points may be cooled by sufficient cooling until the fusion points are sufficiently formed. Further, if the speed is too slow, the melt will stay too much and the density will increase, so it is necessary to set the conveyor speed suitable for the desired apparent density. Next, in the production method of the present invention, it is joined and integrated with a short fiber non-woven fabric having a surface layer function. The short fibers having a fineness of 20 denier or less, in which the heat-adhesive component is a thermoplastic elastic resin, individually melt a low-melting point thermoplastic elastic resin and a high-melting point thermoplastic non-elastic resin, and use known composite spinning. A finished yarn can be obtained by spinning and drawing. However, in this method, since the melting point of the heat-adhesive component is low,
Since heat setting cannot be performed at a high temperature during stretching, only a high shrinkage ratio of 30% to 80% can be obtained, and therefore, when the web is thermoformed, a molding dimension defect due to web shrinkage occurs.
In the present invention, in order to solve this problem, it is preferable to obtain the finished yarn at a stretch by reducing the shrinkage rate to 10% or less by high-speed spinning at 3000 m / min or more. Then
A crimp is applied and cut into a desired cut length to obtain short fibers. Although the composite form of the short fibers used in the present invention is not particularly limited, it is preferable that the low melting point component occupies 50% or more of the surface of the fiber in the side-by-side or the score, since the function as the heat-bonding fiber is required. More preferably, the low melting point component occupies 100% or more of the surface of the fiber. The short fibers thus obtained are provided with an opening web having a three-dimensional opening structure with a card or the like, which is laminated and compressed on the surface of the reticulated body and bonded and integrated by thermoforming, or once opened. It is also possible to laminate and compress only the above to form a structure by thermoforming to form a short fiber non-woven fabric, and then join and integrate the net body and the short fiber non-woven fabric. In this case, a thermal adhesive layer or an adhesive may be separately used between the reticulate body and the short fiber non-woven fabric for bonding and integration, or the thermal rebonding function of the reticulate body or the short fiber non-woven fabric may be used for bonding and integration. Good. As a preferred method of the present invention, after the net-like body is once cooled, or in any step leading to commercialization of a laminated structure obtained by integrally molding, the temperature is at least 10 ° C. or lower than the melting point of the thermoplastic elastic resin. A more preferable production method is to obtain a laminated structure or a product by performing a pseudo-crystallization treatment by annealing. The pseudo-crystallization treatment temperature is at least 10 ° C. lower than the melting point (Tm),
It is performed at or above the α dispersion rising temperature (Tαcr) of Tan δ. By this treatment, the heat-resistant sag resistance is remarkably improved as compared with the one having no endothermic peak (having no endothermic peak) having an endothermic peak below the melting point. The preferred pseudo-crystallization treatment temperature of the present invention is from (Tαcr + 10 ° C) to (Tm-
20 ° C). If it is pseudo-crystallized by simple heat treatment, heat resistance and sag resistance are improved. However, it is more preferable to impart compressive deformation of 10% or more and anneal to significantly improve the heat resistance and sag resistance. Further, when the reticulate body is once cooled and then subjected to a drying step, the pseudo crystallization treatment can be simultaneously performed by setting the drying temperature to the annealing temperature. Also, a pseudo crystallization treatment can be separately performed in the process of commercialization. Then, it is cut into a desired length or shape and used as a cushion material.

【0016】本発明の不織布積層網状体をクッション用
いる場合、その使用目的、使用部位により使用する樹
脂、繊度、ル−プ径、嵩密度を選択する必要がある。例
えば、ソフトなタッチと適度の沈み込みと張りのある膨
らみを付与するためには、低密度で細い繊度、細かいル
−プ径にするのが好ましく、中層のクッション機能も発
現させるには、共振振動数を低くし、適度の硬さと圧縮
時のヒステリシスを直線的に変化させて体型保持性を良
くし、耐久性を保持させるために、中密度で太い繊度、
やや大きいル−プ径の層と低密度で細い繊度、細かいル
−プ径の層を積層一体化した構造にするのが好ましい。
また、3次元構造を損なわない程度に成形型等を用いて
使用目的にあった形状に成形してそのまま側地を被せ車
両用座席、船舶用座席、ベット、椅子、家具等に用いる
ことができる。勿論、用途との関係で要求性能に合うべ
く他の素材、例えば、異なる網状体、短繊維集合体から
なる硬綿クッション材、不織布等と組合せて用いること
も可能である。また、樹脂製造過程以外でも性能を低下
させない範囲で製造過程から成形体に加工し、製品化す
る任意の段階で難燃化、防虫抗菌化、耐熱化、撥水撥油
化、着色、芳香等の機能付与を薬剤添加等の処理加工が
できる。
When the non-woven fabric laminated network of the present invention is used as a cushion, it is necessary to select the resin to be used, the fineness, the loop diameter and the bulk density depending on the purpose of use and the site of use. For example, in order to impart a soft touch, moderate depression and bulging with tension, it is preferable to have a low density and fine fineness and a fine loop diameter. Low frequency, moderate hardness and linear change of hysteresis at the time of compression to improve body retention, and to maintain durability, medium density, thick fineness,
It is preferable to have a structure in which a layer having a rather large loop diameter and a layer having a low density, a fine fineness, and a fine loop diameter are laminated and integrated.
Further, it can be used for vehicle seats, boat seats, beds, chairs, furniture, etc. by molding it into a shape suitable for the purpose of use by using a molding die or the like to the extent that the three-dimensional structure is not impaired, and then covering the side fabric as it is. . Of course, it is also possible to use it in combination with other materials such as a different mesh body, a hard cotton cushion material composed of a short fiber aggregate, a non-woven fabric or the like so as to meet the required performance in relation to the application. In addition, other than the resin manufacturing process, the molded product is processed from the manufacturing process to the extent that performance is not deteriorated, and at any stage of commercialization, it becomes flame retardant, insecticidal, antibacterial, heat resistant, water / oil repellent, colored, aroma, etc. It is possible to perform the processing such as the addition of chemicals to add the function.

【0017】[0017]

【実施例】以下に実施例で本発明を詳述する。EXAMPLES The present invention will be described in detail below with reference to examples.

【0018】なお、実施例中の評価は以下の方法で行っ
た。 1.融点(Tm)および融点以下の吸熱ピ−ク 島津製作所製TA50,DSC50型示差熱分析計を使
用し、昇温速度20℃/分で測定した吸発熱曲線から吸
熱ピ−ク(融解ピ−ク)温度を求めた。 2.Tαcr ポリマ−を融点+10℃に加熱して、厚み約300μm
のフイルムを作成して、オリエンテック社製バイブロン
DDVII型を用い、110Hz、昇温速度1℃/分で測
定したTanδ(虚数弾性率M”と弾性率の実数部分
M’との比M”/M’)のゴム弾性領域から融解領域へ
の転移点温度に相当するα分散の立ち上がり温度。 3.見掛け密度 試料を15cm×15cmの大きさに切断し、4か所の高さ
を測定し、体積を求め試料の重さを体積で徐した値で示
す。(n=4の平均値) 4.線条の繊度 試料を10箇所から各線条部分を切り出し、アクリル樹
脂で包埋して断面を削り出し切片を作成して断面写真を
得る。各部分の断面写真より各部の断面積(Si)を求
める。また、同様にして得た切片をアセトンでアクリル
樹脂を溶解し、真空脱泡して密度勾配管を用いて40℃
にて測定した比重(SGi)を求める。ついで次式より
線状の9000mの重さを求める。(単位cgs) 繊度=〔(1/n)ΣSi×SGi〕×900000 5.融着 試料を目視判断で融着しているか否かを接着している繊
維同士を手で引っ張って外れないか否かで外れないもの
を融着していると判断する。 6.難燃性 F−MVSS302法により難燃基準(60秒以下で消
炎する)を満たすものを合格、満たさないものを不合格
と判定した。 7.燃焼ガスの毒性指数 JIS−K−7217の方法で測定した各燃焼ガス量
(mg)を10分間吸入での致死量(mg/10リット
ル)で除した値の積算値で示す。 8.耐熱耐久性(70℃残留歪) 試料を15cm×15cmの大きさに切断し、50%圧縮し
て70℃乾熱中22時間放置後冷却して圧縮歪みを除き
1日放置後の厚み(b)を求め、処理前の厚み(a)か
ら次式、即ち(a−b)/a×100より算出する。単
位%(n=3の平均値) 9.繰返し圧縮歪 試料を15cm×15cmの大きさに切断し、島津製作所製
サ−ボパルサ−にて、25℃65%RH室内にて50%
の厚みまで1Hzのサイクルで圧縮回復を繰り返し2万
回後の試料を1日放置後の厚み(b)を求め、処理前の
厚み(a)から次式、即ち(a−b)/a×100より
算出する。単位%(n=3の平均値) 10. 座り心地 バケットシ−トの形状に切断した難燃性積層網状体を熱
成形用雌金型に入れ、牡金型で圧縮して詰め込み160
℃〜230℃の熱風にて5分間熱成形してバケットシ−
ト状に成形したクッションに東洋紡績製ハイムからなる
ポリエステルモケットの側地を被って、座席用フレ−ム
にセットして座部は4か所、背部は6か所の側地止めを
入れた座席を作成し、30℃RH75%室内で作成した
座席にパネラ−を座らせ以下の評価をおこなった。(n
=5) (1) 床つき感:座ったときの「どすん」と床に当たった
感じの程度を感覚的に定性評価した。感じない;◎、殆
ど感じない;○、やや感じる;△、感じる;× (2) 蒸れ感:2時間座っていて、臀部やふと股の内側の
座席と接する部分が蒸れた感じを感覚的に定性評価し
た。殆ど感じない:◎、僅かに蒸れを感じる;○、やや
蒸れを感じる;△、蒸れを著しく感じる;× (3) 8時間以内でどの程度我慢して座席に座っていられ
るか:1時間以内;×、2時間以内;△、4時間以内;
○、4時間以上;◎ (4) 4時間座席に座らせたときの腰の疲れ程度を感覚的
に定性評価した。無し;◎、殆ど疲れない;○、やや疲
れる;△、非常に疲れる;× (5) 総合評価: (1)から(4) までの評価の◎を4点、○
を3点、△を2点、×を1点として12点以上で△を含
まないもの;非常に良い(◎)、12点以上で△を含む
もの;良い(○)、10点以上で×を含まないもの;や
や悪い(△)、×を含むもの;悪い(×)として評価し
た。
The evaluations in the examples were carried out by the following methods. 1. Melting point (Tm) and endothermic peak below melting point The endothermic peak (melting peak) is determined from the endothermic curve measured at a temperature rising rate of 20 ° C / min using a TA50, DSC50 type differential thermal analyzer manufactured by Shimadzu Corporation. -H) The temperature was determined. 2. Heat the Tαcr polymer to a melting point of + 10 ° C to a thickness of approximately 300 μm.
Film was prepared and measured using a Vibron DDVII type manufactured by Orientec Co., Ltd. at a rate of 110 Hz and a heating rate of 1 ° C./min. Tan δ (the ratio of the imaginary elastic modulus M ″ to the real part M ′ of the elastic modulus M ″ / The rising temperature of α dispersion corresponding to the transition temperature from the rubber elastic region to the melting region of M ′). 3. Apparent Density The sample is cut into a size of 15 cm × 15 cm, the heights at four positions are measured, the volume is calculated, and the weight of the sample is divided by the volume. (Average value of n = 4) 4. Fineness of filaments Each filament portion is cut out from 10 places, embedded with acrylic resin, the cross section is cut out to make a section, and a cross section photograph is obtained. The cross-sectional area (Si) of each part is obtained from the cross-sectional photograph of each part. In addition, a piece obtained in the same manner was dissolved in acrylic resin with acetone, degassed in vacuum, and a density gradient tube was used to 40 ° C.
Determine the specific gravity (SGi) measured in. Then, a linear weight of 9000 m is obtained from the following equation. (Unit: cgs) Fineness = [(1 / n) ΣSi × SGi] × 9000000 5. Fusing Whether or not the sample is fused by visual judgment Whether the fibers adhering to each other cannot be pulled apart by hand It is judged that something that does not come off is fused. 6. Flame Retardance Those satisfying the flame retardancy standard (extinguishing flame in 60 seconds or less) by the F-MVSS302 method were judged to be pass, and those not satisfying it were judged to be disqualified. 7. Combustion gas toxicity index Shown as an integrated value of the values obtained by dividing each combustion gas amount (mg) measured by the method of JIS-K-7217 by the lethal dose (mg / 10 liter) after 10 minutes of inhalation. 8. Heat resistance and durability (residual strain at 70 ° C) A sample was cut into a size of 15 cm × 15 cm, compressed by 50%, left in dry heat at 70 ° C for 22 hours, then cooled to remove compression strain and left for 1 day ( b) is obtained, and is calculated from the thickness (a) before processing by the following equation, that is, (ab) / a × 100. Unit:% (average value of n = 3) 9. Cyclic compression strain A sample is cut into a size of 15 cm x 15 cm, and it is 50% in a RH chamber at 25 ° C and 65% in a Shimadzu Servo pulsar.
The thickness (b) after leaving the sample for 20,000 times after repeating compression recovery at a cycle of 1 Hz up to the thickness of 1 is calculated from the thickness (a) before the treatment, that is, (ab) / ax Calculated from 100. Unit% (average value of n = 3) 10. Sit comfort The flame-retardant laminated network cut into the shape of a bucket sheet is put in a female mold for thermoforming, and compressed by an oyster mold to be packed 160
Thermoforming for 5 minutes with hot air at ℃ to 230 ℃
The side cushion of TOYOBO HEIM made polyester moquette was put on the cushion shaped like a toe, and it was set on the seat frame, and four side stoppers were placed on the seat and six on the back. A seat was prepared, and a paneler was allowed to sit on the seat prepared in a room at 30 ° C. and RH 75%, and the following evaluation was performed. (N
= 5) (1) Feeling on the floor: The "dosun" when sitting and the degree of feeling when hitting the floor were qualitatively and qualitatively evaluated. Not felt; ◎, hardly felt; ○, slightly felt; △, felt; × (2) Feeling of stuffiness: Feeling stuffy when sitting for 2 hours and the buttocks and the part of the crotch that contacts the seat inside the crotch Qualitatively evaluated. Almost no feeling: ◎, slightly stuffy; ○, slightly stuffy; △, significantly stuffy; × (3) How long you can sit in the seat within 8 hours: within 1 hour; × within 2 hours; △ within 4 hours;
○ 4 hours or more; ◎ (4) A qualitative qualitative evaluation was performed on the degree of waist fatigue when the user sat in the seat for 4 hours. None; ◎, hardly tired; ○, slightly tired; △, very tired; × (5) Overall evaluation: 4 points from ◎ of the evaluations from (1) to (4), ○
3 points, △ is 2 points, × is 1 point and does not include Δ with 12 points or more; very good (⊚), that with 12 points or more; Good (○), 10 points or more is x It was evaluated as those which did not contain; those which were somewhat bad (Δ) and those which contained x; bad (x).

【0019】実施例1〜2 ポリエステル系エラストマ−として、ジメチルテレフタ
レ−ト(DMT)又は、ジメチルナフタレ−ト(DM
N)と1・4ブタンジオ−ル(1・4BD)を少量の触
媒と仕込み、常法によりエステル交換後、ポリテトラメ
チレングリコ−ル(PTMG)を添加して昇温減圧しつ
つ重縮合せしめポリエ−テルエステルブロック共重合エ
ラストマ−を生成させ、次いで抗酸化剤を2%添加し、
混合練込み後ペレット化し、50℃48時間真空乾燥し
て得られた熱可塑性弾性樹脂原料の処方を表1に示す。
Examples 1 and 2 Dimethyl terephthalate (DMT) or dimethyl naphthalate (DM) was used as the polyester elastomer.
N) and 1.4 butanediol (1.4 BD) were charged with a small amount of a catalyst, and after transesterification by a conventional method, polytetramethylene glycol (PTMG) was added and polycondensation was performed while heating and depressurizing. -Forming a terester block copolymer elastomer, then adding 2% of an antioxidant,
Table 1 shows the formulation of the thermoplastic elastic resin raw material obtained by mixing, kneading, pelletizing, and vacuum drying at 50 ° C. for 48 hours.

【0020】[0020]

【表1】 [Table 1]

【0021】幅50cm、長さ5cmのノズル有効面に幅方
向の孔間ピッチを10mm、長さ方向の孔間ピッチ5mmの
千鳥配列としたオリフィス形状は外径2mm、内径1.6
mmでトリプルブリッジの中空形成性断面としたノズル
に、得られた熱可塑性弾性樹脂原料(A−1及びA−
2)とを2本の混練機能をもつ押出機にて別々に定量供
給しつつ、難燃剤として既存化学物質番号(3)−37
35を燐含有量10000ppmとなるように添加して
溶融し、A−1とA−2をオリフィス直前でA−1をシ
−ス成分に、A−2をコア成分となるように(シ−ス/
コア:50/50重量比)分配し、溶融温度245℃に
て、単孔吐出量2g/分(A−1:1g/分、A−2:
1g/分)でノズル下方に吐出させ、ノズル面10cm下
に冷却水を配し、幅60cmのステンレス製エンドレスネ
ットを平行に5cm間隔で一対の引取りコンベアを水面上
に一部出るように配して、該溶融状態の吐出線状を曲が
りくねらせル−プを形成して接触部分を融着させつつ3
次元網状構造を形成し、該溶融状態の網状構造体の両面
を引取りコンベア−で挟み込みつつ毎分1mの速度で2
5℃の冷却水中へ引込み固化させて両面を融着フラット
化した後、所定の大きさに切断して得られた燐含有熱可
塑性弾性樹脂からなる網状体は、断面形状がシ−スコア
構造の三角おむすび型中空断面で中空率が38%、繊度
が9000デニ−ルの線条で形成しており、平均の見掛
け密度が0.045g/cm3 、燐含有量が10000p
pm(60A+200=2780ppm)であった。別
途に、常法により公知の複合紡糸機にて、熱可塑性弾性
樹脂A−1をシ−ス成分、相対粘度1.0のポリブチレ
ンテレフタレ−ト(PBT)をコア成分となるように個
々に溶融してオリフィス直前で分配し、各吐出量を50
/50重量比で、単孔当たり1.6g/分孔(0.8g
/分:0.8g/分)として紡糸温度265℃にて、紡
糸速度3500m/分にて得た繊度が4.1デニ−ル、
乾熱160℃での収縮率4%の糸を収束してトウ状でク
リンパ−にて機械巻縮を付与し、64mmに切断してシ−
スコア断面の熱可塑性弾性樹脂からなる短繊維を得た。
該短繊維をオ−プナ−にて予備開繊した後カ−ドで開繊
して得たウエッブを目付け1000g/m2 に積層し、
該網状体に積層し、見掛け密度が0.05g/cm3 とな
るように圧縮し、180℃の熱風にて5分間熱処理後冷
却して両面がフラットな積層構造体を得た。次いで厚み
の10%圧縮して、100℃の熱風にて20分疑似結晶
化処理して得た本発明の難燃性積層網状体の特性を表2
に示す。表2で明らかなごとく、実施例1は柔らかい弾
性樹脂の特性が生かせた積層網状体のため耐熱性、常温
での耐久性に優れ、座り心地ともに優れ、難燃性を有
し、燃焼ガスの毒性指数も低い安全性の高いクッション
材であった。評価用に作成した座席も性能が優れている
ことが判る。
Orifice shapes having a staggered arrangement with a hole-to-hole pitch of 10 mm in the width direction and a hole-to-hole pitch of 5 mm on the nozzle effective surface of 50 cm in width and 5 cm in length are 2 mm in outer diameter and 1.6 in inner diameter.
The resulting thermoplastic elastic resin raw material (A-1 and A-
2) and 2) are separately supplied in a fixed amount by an extruder having two kneading functions, and the existing chemical substance number (3) -37 is used as a flame retardant.
35 was added so as to have a phosphorus content of 10000 ppm and melted, and A-1 and A-2 were made just before the orifice so that A-1 became the sheath component and A-2 became the core component (see Su /
Core: 50/50 weight ratio) Dispensed, at a melting temperature of 245 ° C., single hole discharge rate 2 g / min (A-1: 1 g / min, A-2:
1 g / min), the cooling water is placed below the nozzle surface 10 cm, and stainless steel endless nets with a width of 60 cm are arranged in parallel at intervals of 5 cm so that a part of the pair of take-up conveyors appears on the water surface. Then, the melted discharge line is bent to form a loop, and the contact portion is fused.
A two-dimensional network structure is formed, and both surfaces of the molten network structure are sandwiched by a take-up conveyor-at a speed of 1 m / min.
A net made of a phosphorus-containing thermoplastic elastic resin obtained by pulling into cooling water at 5 ° C. and solidifying to melt and flatten both surfaces and then cutting to a predetermined size has a cross-sectional shape of a sheath core structure. Triangular rice ball type hollow cross section with a hollowness of 38%, fineness of 9000 denier, and an average apparent density of 0.045 g / cm 3 and a phosphorus content of 10,000 p
It was pm (60A + 200 = 2780ppm). Separately, the thermoplastic elastic resin A-1 was used as a sheath component, and polybutylene terephthalate (PBT) having a relative viscosity of 1.0 was used as a core component by a conventional composite spinning machine by a conventional method. It is melted into a liquid and distributed just before the orifice, and each discharge amount is 50
1.6 g / min. Hole (0.8 g
/ Min: 0.8 g / min) at a spinning temperature of 265 ° C. and a spinning speed of 3500 m / min to obtain a fineness of 4.1 denier,
A yarn having a shrinkage ratio of 4% at a dry heat of 160 ° C is converged, and a tow-like yarn is crimped and mechanically crimped.
Short fibers made of a thermoplastic elastic resin having a score cross section were obtained.
A web obtained by pre-opening the short fibers with an opener and then opening with a card was laminated to have a basis weight of 1000 g / m 2 .
It was laminated on the net-like body, compressed so that the apparent density was 0.05 g / cm 3 , heat-treated for 5 minutes with hot air at 180 ° C., and then cooled to obtain a laminated structure having flat both sides. Next, the characteristics of the flame-retardant laminated network of the present invention obtained by compressing 10% of the thickness and performing pseudo-crystallization treatment with hot air at 100 ° C. for 20 minutes are shown in Table 2.
Shown in. As is clear from Table 2, Example 1 is a laminated reticulate body that takes advantage of the characteristics of the soft elastic resin, and thus has excellent heat resistance and durability at room temperature, is comfortable to sit on, has flame retardancy, and is It was a highly safe cushioning material with a low toxicity index. It can be seen that the seat created for evaluation also has excellent performance.

【0022】[0022]

【表2】 [Table 2]

【0023】実施例2 ジメチルイソフタレ−ト(DMI)20モル%とDMT
80モル%及び1・4ブタンジオ−ル(1・4BD)を
少量の触媒と仕込み、実施例1の方法と同様にして得た
ポリエステル系熱可塑性弾性樹脂の処方を表1に示す。
オリフィスの孔形状を孔径φ1mmの丸断面としたノズル
を用い、A−3のみを単成分で用い、燐含有量9000
ppmとなるように難燃剤を添加した以外実施例1と同
様にして得た網状体は中実丸断面で繊度9000デニ−
ルの線条から形成されており、平均の見掛け密度が0.
046g/cm3 、燐含有量9000ppm(60A+2
00=3320ppm)であった。次いで実施例1と同
様にして得た積層網状体の特性を表2に示す。表2で明
らかなごとく、実施例2は耐熱性と常温での耐久性は実
用上使用可能で、座り心地が優れ、難燃性を有し、燃焼
ガスの毒性指数も低い安全性の高いクッション材であ
り、評価用に作成した座席も優れていることが判る。
Example 2 20 mol% of dimethyl isophthalate (DMI) and DMT
Table 1 shows the formulation of the polyester-based thermoplastic elastic resin obtained in the same manner as in Example 1 by charging 80 mol% and 1.4-butanediol (1.4-BD) with a small amount of a catalyst.
A nozzle having a circular cross section with a hole diameter of 1 mm was used for the orifice, and only A-3 was used as a single component, and the phosphorus content was 9000.
The reticulate body obtained in the same manner as in Example 1 except that the flame retardant was added so as to be in ppm was a solid round cross section with a fineness of 9000 deniers.
The average apparent density is 0.
046g / cm 3 , phosphorus content 9000ppm (60A + 2
00 = 3320 ppm). Then, the properties of the laminated network obtained in the same manner as in Example 1 are shown in Table 2. As is clear from Table 2, Example 2 is a cushion with high heat resistance and durability at room temperature that can be used practically, has excellent sitting comfort, has flame retardancy, and has a low toxicity index of combustion gas and high safety. It is clear that the seats made for evaluation are excellent because they are made of wood.

【0024】実施例3 ポリウレタン系エラストマ−として、4・4’ジフェニ
ルメタンジイソシアネ−ト(MDI)とPTMG及び鎖
延長剤として1・4BDを添加して重合し次いで抗酸化
剤2%を添加混合練込み後ペレット化し真空乾燥してポ
リエ−テル系ウレタンポリマ−の処方を表3に示す。
Example 3 As a polyurethane elastomer, 4,4'-diphenylmethane diisocyanate (MDI), PTMG and 1.4BD as a chain extender were added and polymerized, and then 2% of an antioxidant was added and mixed. Table 3 shows the formulation of the polyether urethane polymer after kneading, pelletizing and vacuum drying.

【0025】[0025]

【表3】 [Table 3]

【0026】得られた熱可塑性弾性樹脂(シ−ス成分:
B−1、コア成分:B−2)に燐含有量12000pp
mとなるように難燃剤を添加して、溶融温度220℃と
した以外実施例1と同様にして得た網状体の線条のシ−
スコア構造の断面形状が三角おむすび型の中空断面で中
空率40%、繊度が9800デニ−ル、平均の見掛け密
度が0.047g/cm3 、燐含有量12000ppm
(60A+200=3260ppm)であった。他方、
B−1をシ−ス成分に、相対粘度1.0のPBTをコア
成分とし、紡糸温度を265℃とした以外実施例1と同
様にして得た複合繊維の特性は、繊度が4.5デニ−
ル、150℃での収縮率が4%であった。この複合繊維
を実施例1と同様にして1000g/m2 の積層ウエッ
ブにし、該網状体と積層し、160℃の熱風にて5分間
熱処理後冷却して両面がフラットな積層構造体を得た。
次いで厚みの10%圧縮して、100℃の熱風にて20
分疑似結晶化処理して得た本発明の積層網状体の特性を
表2に示す。実施例3は柔らかいウレタンの特性を生か
した積層網状体で耐熱性、常温での耐久性、座り心地と
もに優れ、難燃性を有し、燃焼ガスの毒性指数も低い安
全性の高いクッション材であった。評価用に作成した座
席も優れていることが判る。
The thermoplastic elastic resin thus obtained (seed component:
B-1, core component: B-2) with a phosphorus content of 12,000 pp
A flame-retardant was added so that the melting point became m, and the melting temperature was 220 ° C.
The cross-sectional shape of the score structure is a triangular rice ball type hollow cross section with a hollow ratio of 40%, a fineness of 9800 denier, an average apparent density of 0.047 g / cm 3 , and a phosphorus content of 12000 ppm.
It was (60A + 200 = 3260ppm). On the other hand,
The composite fiber obtained in the same manner as in Example 1 except that B-1 was used as a sheath component, PBT having a relative viscosity of 1.0 was used as a core component, and the spinning temperature was 265 ° C had a fineness of 4.5. Denny
The shrinkage at 150 ° C. was 4%. This composite fiber was formed into a laminated web of 1000 g / m 2 in the same manner as in Example 1, laminated with the mesh, heat-treated with hot air at 160 ° C. for 5 minutes and then cooled to obtain a laminated structure having flat both sides. .
Then, compress it by 10% of its thickness, and heat it with hot air at 100 ° C
Table 2 shows the characteristics of the laminated network of the present invention obtained by the pseudo-crystallization process. Example 3 is a cushioning material with high safety, which is a laminated reticulated body that takes advantage of the characteristics of soft urethane, has excellent heat resistance, durability at room temperature, and comfortable to sit on, has flame retardancy, and has a low toxicity index of combustion gas. there were. It can be seen that the seat created for evaluation is also excellent.

【0027】比較例1 固有粘度0.63のポリエチレンテレフタレ−ト(PE
T)単成分のみを用い、燐含有量5000ppmとなる
ように難燃剤を添加して、溶融温度を280℃とした以
外、実施例2と同様にして得た比較例1に用いる網状体
は、繊度が8800デニ−ル、見掛け密度が0.047
g/cm3 、燐含有量5000ppm(60A+200=
200ppm)であった。次いで、疑似結晶化処理しな
かった以外、実施例2と同様にして得た積層網状体の特
性を表2に示す。比較例1は難燃性を有するが、非弾性
ポリエステルからなる網状体のため耐熱耐久性が悪く、
熱接着成分が熱可塑性弾性樹脂からなる短繊維不織布を
表面層に使用しているにも係わらず、硬くて座り心地も
悪いクッション材である。
Comparative Example 1 Polyethylene terephthalate (PE having an intrinsic viscosity of 0.63)
T) The reticulate body used in Comparative Example 1 obtained in the same manner as in Example 2 except that the flame retardant was added so that the phosphorus content was 5000 ppm and the melting temperature was 280 ° C. Fineness 8800 denier, apparent density 0.047
g / cm 3 , phosphorus content 5000 ppm (60 A + 200 =
200 ppm). Next, Table 2 shows the properties of the laminated network obtained in the same manner as in Example 2 except that the pseudo crystallization treatment was not performed. Comparative Example 1 has flame retardancy, but has poor heat resistance and durability due to the reticulated body made of non-elastic polyester,
It is a cushion material that is hard and uncomfortable to sit on, even though a short fiber non-woven fabric whose thermo-adhesive component is a thermoplastic elastic resin is used for the surface layer.

【0028】比較例2 燐含有量200ppmとなるように難燃剤を添加した以
外、実施例2と同様にして得た網状体は中実丸断面で繊
度9000デニ−ルの線条から形成されており、平均の
見掛け密度が0.046g/cm3 、燐含有量200pp
m(60A+200=3320ppm)であった。次い
で、疑似結晶化処理しなかった以外実施例2と同様にし
て得た積層網状体の特性を表2に示す。比較例2は熱可
塑性弾性樹脂からなるので、座り心地は良いが、耐熱性
や耐久性が劣り、難燃性も不合格になるクッション材の
例である。
Comparative Example 2 A reticulate body obtained in the same manner as in Example 2 except that a flame retardant was added so that the phosphorus content was 200 ppm was formed from filaments having a solid round cross section and a fineness of 9000 denier. And an average apparent density of 0.046 g / cm 3 and a phosphorus content of 200 pp
It was m (60A + 200 = 3320ppm). Next, Table 2 shows the characteristics of the laminated network obtained in the same manner as in Example 2 except that the pseudo crystallization treatment was not performed. Comparative Example 2 is an example of a cushioning material which is made of a thermoplastic elastic resin and therefore is comfortable to sit on, but is poor in heat resistance and durability and fails in flame retardancy.

【0029】比較例3 ノズル面60cm下に引取りコンベアネットを配して引き
取ったあと疑似結晶化処理をしなかった以外、実施例2
と同様の方法で得た網状体の特性の一部を表2に示す。
なお、接着状態が不良で不織布とも接着しにくく形態保
持が悪いため、難燃性、見掛け密度、70℃残留歪、繰
返圧縮歪み、及び座り心地の評価はしていない。比較例
3は形態が固定されていないのでクッション材に適さな
い例である。
Comparative Example 3 Example 2 was repeated except that a take-up conveyor net was placed 60 cm below the nozzle surface and no pseudo-crystallization treatment was performed after the take-up conveyor net was taken.
Table 2 shows a part of the properties of the reticulate body obtained by the same method as described above.
The flame retardancy, apparent density, residual strain at 70 ° C., repeated compressive strain, and sitting comfort were not evaluated because the adhesive state is poor and it is difficult to adhere to the non-woven fabric and the shape retention is poor. Comparative Example 3 is an example that is not suitable for a cushioning material because its shape is not fixed.

【0030】比較例4 燐含有量を121000ppmとなるように難燃剤を添
加した以外、実施例2と同様にして得た網状体は中実丸
断面で繊度9000デニ−ルの線条から形成されてお
り、平均の見掛け密度が0.046g/cm3 、燐含有量
121000ppm(60A+200=3320pp
m)であった。次いで、疑似結晶化処理しなかった以外
実施例2と同様にして得た積層網状体の特性を表2に示
す。比較例4は燐含有量があまりに多量に添加されてい
るので、難燃性は合格するが熱可塑性弾性樹脂の特性が
劣化して、座り心地がやや劣り、耐熱性や耐久性が著し
く劣るクッション材の例である。
Comparative Example 4 A reticulate body obtained in the same manner as in Example 2 except that a flame retardant was added so that the phosphorus content was 121,000 ppm was formed from filaments having a solid round cross section and a fineness of 9000 denier. The average apparent density is 0.046 g / cm 3 , and the phosphorus content is 121000 ppm (60 A + 200 = 3320 pp).
m). Next, Table 2 shows the characteristics of the laminated network obtained in the same manner as in Example 2 except that the pseudo crystallization treatment was not performed. In Comparative Example 4, the phosphorus content is too large, and thus the flame-retardant property is passed, but the characteristics of the thermoplastic elastic resin are deteriorated, the sitting comfort is slightly inferior, and the heat resistance and durability are significantly inferior. It is an example of a material.

【0031】比較例5 幅50cm、長さ5cmのノズル有効面に幅方向の孔間ピッ
チ4mm、長さ方向の孔間ピッチ3mmの千鳥配列としたオ
リフィス径φ1mmとしたノズルを用いて単孔当たりの吐
出量0.012g/分にて吐出させて、ノズル面5cm下
に引取りコンベアネットを配して1.5m/分にて引き
取った以外、実施例2と同様にして得た線条の繊度が4
0デニール、見掛け密度が0.008g/cm3 、燐含有
量9000ppm(60A+200=3320ppm)
の網状体を用いて、積層網状体の見掛け密度を0.00
9g/cm3 となるように圧縮した以外、比較例2と同様
にして作成した積層網状体の特性を表2に示す。比較例
5は難燃性は合格するが、線状の繊度が細い緻密な網状
体をクッション層にした場合もで、見掛け密度が低すぎ
て沈み込みが大きくなり床つき感が大きくなり座り心地
のやや劣るクッション材であった。
Comparative Example 5 Using a nozzle having a width of 50 cm and a length of 5 cm and having an orifice diameter of 1 mm in a staggered arrangement with a hole-to-hole pitch of 4 mm in the width direction and a hole-to-hole pitch of 3 mm in the length direction, a single hole was used. Of a filament obtained in the same manner as in Example 2 except that the discharge rate was 0.012 g / min, a take-up conveyor net was placed 5 cm below the nozzle surface, and the rate was 1.5 m / min. Fineness is 4
0 denier, apparent density 0.008 g / cm 3 , phosphorus content 9000 ppm (60A + 200 = 3320 ppm)
The apparent density of the laminated mesh is 0.00
Table 2 shows the characteristics of the laminated reticulate body prepared in the same manner as in Comparative Example 2 except that the composition was compressed to 9 g / cm 3 . Although Comparative Example 5 passes the flame retardancy, it is also a case where a dense reticulate body having a fine linear fineness is used as the cushion layer, and the apparent density is too low to cause large depressions and a feeling of flooring, resulting in a comfortable sitting feeling. It was a slightly inferior cushion material.

【0032】比較例6 単孔当たりの吐出量3g/分にて吐出させ、引取りコン
ベアネットの速度を0.3m/分とし、疑似結晶化処理
しなかった以外実施例2と同様して得た線条繊度が13
000デニ−ルで、網状体の平均見掛け密度が0.21
g/cm3 、燐含有量9000ppm(60A+200=
3320ppm)の網状体を用い、疑似結晶化処理しな
い以外実施例2と同様にして作成した積層網状体の特性
を表2に示す。比較例6は見掛け密度が高いため、タッ
チは良好だが座り心地がやや劣り、耐熱性、耐久性が不
充分なクッション材であった。
Comparative Example 6 Obtained in the same manner as in Example 2 except that the discharge rate per single hole was 3 g / min, the take-up conveyor net speed was 0.3 m / min, and no pseudo-crystallization treatment was performed. Streak fineness of 13
000 denier, the average apparent density of the reticulate body is 0.21.
g / cm 3 , phosphorus content 9000ppm (60A + 200 =
Table 3 shows the characteristics of the laminated reticulated body produced in the same manner as in Example 2 except that the reticulated body of 3320 ppm) was used and the pseudo crystallization treatment was not performed. Since Comparative Example 6 had a high apparent density, it was a cushioning material having a good touch but a little inferior sitting comfort, and insufficient heat resistance and durability.

【0033】比較例7 幅50cm、長さ5cmのノズル有効面に幅方向の孔間ピッ
チ10mm、長さ方向の孔間ピッチ20mmの千鳥配列とし
たオリフィス径φ2mmとしたノズルを用いて、単孔当た
りの吐出量25g/分にて吐出させて、ノズル面30cm
下に引取りコンベアネットを配して1m/分にて引き取
った以外、実施例2と同様にして得た線条の繊度は11
3000デニ−ルで、平均の見掛け密度は0.154g
/cm3 、燐含有量9000ppm(60A+200=3
320ppm)の網状体を用い、疑似結晶化処理しない
以外実施例2と同様にして作成した積層網状体の特性を
表2に示す。比較例5は繊度が著しく太く密度斑のある
積層網状体のため、難燃性は合格するが、耐熱耐久性が
悪くなり、座り心地もやや悪くなるクッション材であっ
た。
Comparative Example 7 A nozzle having a width of 50 cm and a length of 5 cm and having a staggered arrangement of holes with a pitch of 10 mm in the width direction and a pitch of 20 mm between the holes in the length direction was used as a nozzle having a diameter of 2 mm to form a single hole. Discharge at a rate of 25 g / min per nozzle, nozzle surface 30 cm
The fineness of the filament obtained in the same manner as in Example 2 was 11 except that a take-up conveyor net was arranged below and the take-up was carried out at 1 m / min.
At 3000 denier, the average apparent density is 0.154 g.
/ Cm 3 , phosphorus content 9000ppm (60A + 200 = 3
Table 2 shows the characteristics of the laminated reticulated body prepared in the same manner as in Example 2 except that the reticulated body of 320 ppm) was used and the pseudo crystallization treatment was not performed. Comparative Example 5 was a cushioning material having a remarkably fineness and a density unevenness, and therefore passing flame retardancy, but having poor heat resistance and durability and a little poor sitting comfort.

【0034】比較例8 疑似結晶化処理しない以外、実施例2と同様にして得た
線条は繊度9100デニ−ル、平均の見掛け密度は0.
045g/cm3 、燐含有量9000ppm(60A+2
00=3320ppm)の網状体と、東洋紡績社製4−
44−EE7を用いて疑似結晶化処理しない以外、実施
例2と同様にして作成した熱接着繊維が熱可塑性非弾性
樹脂からなる短繊維不織布を表面層に積層し、接合一体
化した積層網状体の特性を表2に示す。比較例8はクッ
ション層が熱可塑性弾性樹脂で構成されているので座り
心地は良いが、耐熱性と耐久性がやや不良なクッション
材であった。
Comparative Example 8 A filament obtained in the same manner as in Example 2 except that the pseudo crystallization treatment was not performed had a fineness of 9100 denier and an average apparent density of 0.
045g / cm 3 , phosphorus content 9000ppm (60A + 2
00 = 3320 ppm) reticulate body and 4-manufactured by Toyobo Co., Ltd.
Non-pseudo-crystallization treatment using 44-EE7 was performed, but a short-fiber non-woven fabric in which the thermo-adhesive fiber made of a thermoplastic inelastic resin was laminated in the same manner as in Example 2 was laminated on the surface layer, and joined and integrated. The characteristics of are shown in Table 2. In Comparative Example 8, since the cushion layer was made of the thermoplastic elastic resin, the cushioning material was comfortable to sit on, but was slightly poor in heat resistance and durability.

【0035】比較例9 引取りコンベアネットの間隔(開口幅)を15cmとした
以外、実施例2と同様にして得た線条繊度が9000デ
ニ−ルで、網状体の平均見掛け密度が0.043g/cm
3 、燐含有量9000ppm(60A+200=332
0ppm)の表面が実質的にフラット化されていない網
状体を用い、疑似結晶化処理しない以外実施例2と同様
にして作成した積層構造体の特性を表2に示す。比較例
9は網状体の表面が凹凸になっているため、見掛け密度
が低いのに耐久性が劣り、熱接着が不充分になり、少し
異物感を感じる座り心地のやや劣るクッション材であっ
た。
Comparative Example 9 The linear fineness obtained in the same manner as in Example 2 was 9000 denier, and the average apparent density of the reticulate body was 0. 0, except that the spacing (opening width) of the take-up conveyor net was 15 cm. 043 g / cm
3 , phosphorus content 9000ppm (60A + 200 = 332
Table 2 shows the characteristics of the laminated structure produced in the same manner as in Example 2 except that the reticulate body whose surface (0 ppm) was not substantially flattened was used and the pseudo crystallization treatment was not performed. Comparative Example 9 was a cushioning material having a somewhat inferior durability because of its low apparent density because of its uneven surface, poor thermal adhesion, and a slightly inferior sitting comfort with a feeling of foreign matter. .

【0036】実施例4 実施例1で得た不織布積層網状体を長さ120cmに切断
して、厚み5cm、幅120cm、長さ50cm毎にキルティ
ングした幅120cm、長さ200cmの側地に入れマット
レスを作成した。このマットレスをベッドに設置し、2
5℃RH65%室内にてパネラ−4人に7時間使用させ
て寝心地を官能評価した。なお、ベットにはシ−ツを掛
け、掛け布団は1.8kgのダウン/フェザ−:90/1
0を中綿にしたもの、枕はパネラ−が毎日使用している
ものを着用させた。評価結果は、床つき感がなく、沈み
込みが適度で、蒸れを感じない快適な寝心地のベットで
あった。比較のため、密度0.04g/cm3 で厚み10
cmの発泡ウレタン板状体で同様のマットレスを作成し、
ベットに設置して寝心地を評価した結果、床つき感は少
ないが沈み込みが大きくやや蒸れを感じる寝心地の悪い
ベットであった。
Example 4 The non-woven laminate network obtained in Example 1 was cut into a length of 120 cm, quilted every 5 cm in thickness, 120 cm in width and 50 cm in length, and put in a side cloth of 120 cm in width and 200 cm in length to form a mattress. It was created. Place this mattress on the bed and
The panel comfort was sensory-evaluated by allowing 4 panelists to use it in a room at 5 ° C RH 65% for 7 hours. The bed is covered with sheets and the comforter is 1.8 kg down / feather: 90/1.
0 was used as batting, and the pillow was worn by the paneler every day. As a result of the evaluation, the bed was a bed which had no feeling of flooring, had a moderate depression, and did not feel stuffy and had a comfortable sleeping comfort. For comparison, a density of 0.04 g / cm 3 and a thickness of 10
Create a similar mattress with a cm urethane foam plate,
As a result of placing it on a bed and evaluating the comfort of the bed, it was a bed with a low feeling of flooring but a large degree of sinking and a slight stuffiness, which was uncomfortable to sleep.

【0037】実施例5 実施例1で得た不織布積層網状体を幅38cm、長さ40
cmでコ−ナ−をア−ル10cmとした形状に切断し、座り
心地評価用に用いたポリエステルモケットを側地にして
事務椅子フレ−ムに設置し、市販のポリウレタンをクッ
ションに使用した事務椅子と対比させて、座り心地を4
時間座らせ評価した結果、蒸れ感、床つき感、座ったま
ま我慢できる時間は、本発明の不織布積層網状体を用い
たものが著しく優れていた。
Example 5 The non-woven fabric laminated net body obtained in Example 1 was prepared to have a width of 38 cm and a length of 40.
The corner was cut into a shape with 10 cm of the corner, and the polyester moquette used for sitting comfort evaluation was set on the side of the office chair frame, and the commercially available polyurethane was used for the cushion. Compared to a chair, it provides a comfortable sitting 4
As a result of evaluation by sitting for a while, the stuffy feeling, the feeling of flooring, and the time to be able to stand while sitting were significantly excellent in those using the nonwoven fabric laminated reticulate body of the present invention.

【0038】[0038]

【発明の効果】振動や応力吸収性の良い燐含有熱可塑性
弾性樹脂から成る線条が3次元立体構造を形成し融着一
体化した表面が実質的にフラット化された網状体をクッ
ション層とし、熱接着成分が振動や応力吸収性の良い熱
可塑性弾性樹脂から成る短繊維不織布を表面層として接
合一体化した本発明の不織布積層構造体は、振動遮断
性、耐熱耐久性、嵩高性、座り心地の良く蒸れにくい、
且つ難燃性で燃焼ガスの毒性指数が低い安全性の高いク
ッション材であり、そのまま側地を被せて又は、他の素
材との併用して、上記の好ましい特性を付与した車両用
座席、船舶用座席、車両用、船舶用、病院やホテル等の
業務用ベット、家具用クッション、寝装用品等の製品を
提供できる。更には、車両用や建築資材としての内装材
や断熱材等にも有用なものである。
EFFECTS OF THE INVENTION The cushion layer is a net-like body in which the filaments made of a phosphorus-containing thermoplastic elastic resin having a good vibration and stress absorbing property form a three-dimensional three-dimensional structure and are fused and integrated and the surface is substantially flattened. The nonwoven fabric laminated structure of the present invention in which the short-fiber nonwoven fabric whose heat-adhesive component is made of a thermoplastic elastic resin having good vibration and stress absorption is joined and integrated as a surface layer has a vibration isolation property, a heat resistance durability, a bulkiness, and a sedentary property. Comfortable and hard to stuff,
It is a highly safe cushioning material that is flame-retardant and has a low toxicity index of combustion gas, and is covered with a side material as it is or is used in combination with other materials. We can provide products such as seats for vehicles, vehicles, ships, beds for business use in hospitals and hotels, cushions for furniture, bedding and the like. Furthermore, it is also useful as an interior material and a heat insulating material for vehicles and building materials.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 ソフトセグメント量(A重量%)と燐含
有量(Bppm)が60A+200≦B≦100000
の関係を満足する熱可塑性弾性樹脂からなる繊度が10
0000デニ−ル以下の連続した線条を曲がりくねらせ
互いに接触させて該接触部の大部分を融着した3次元立
体構造体を形成し、その両面が実質的にフラット化され
た網状体の片面又は両面に熱可塑性弾性樹脂と熱可塑性
非弾性樹脂からなる熱接着性短繊維が三次元構造を形成
し、融着一体化した不織布層が積層接合されている見掛
け密度が0.01g/cm3 から0.2g/cm3 の不織布
積層網状体。
1. The soft segment amount (A wt%) and phosphorus content (Bppm) are 60A + 200 ≦ B ≦ 100,000.
The fineness of the thermoplastic elastic resin satisfying the above relation is 10
A continuous linear filament of 0000 denier or less is bent and brought into contact with each other to form a three-dimensional three-dimensional structure in which most of the contact portions are fused, and a net-like body whose both surfaces are substantially flattened is formed. Thermoadhesive short fibers composed of thermoplastic elastic resin and thermoplastic non-elastic resin form a three-dimensional structure on one or both sides, and the non-woven fabric layers fused and integrated are laminated and joined. Apparent density is 0.01 g / cm Nonwoven laminated network of 3 to 0.2 g / cm 3 .
【請求項2】 連続した線条の断面形状が中空断面又は
及び異形断面である請求項1記載の不織布積層網状体。
2. The non-woven fabric laminated reticulate body according to claim 1, wherein the cross-sectional shape of the continuous filaments is a hollow cross section and / or a modified cross section.
【請求項3】 連続した線条を構成する熱可塑性弾性樹
脂が示差走査型熱量計で測定した融解曲線に室温以上融
点以下の温度に吸熱ピークを有する請求項1記載の不織
布積層網状体。
3. The non-woven fabric laminated reticulate body according to claim 1, wherein the thermoplastic elastic resin constituting the continuous filament has an endothermic peak at a temperature of room temperature or higher and melting point or lower in a melting curve measured by a differential scanning calorimeter.
【請求項4】 複数のオリフィスを持つ多列ノズルより
ソフトセグメント量(A重量%)と燐含有量(Bpp
m)が60A+200≦B≦100000の関係を満足
する熱可塑性弾性樹脂を各ノズルオリフィスに分配し、
該熱可塑性樹脂の融点より10〜80℃高い溶融温度
で、該ノズルより下方に向けて吐出させ、溶融状態で互
いに接触させて融着させ3次元構造を形成しつつ、引取
り装置で挟み込み冷却槽で冷却せしめた後、片面又は両
面に熱可塑性弾性樹脂と熱可塑性非弾性樹脂からなる熱
接着性短繊維を開繊して三次元化したウエッブを積層
し、圧縮しつつ熱成形する不織布積層網状体の製法。
4. A soft segment amount (A wt%) and a phosphorus content (Bpp) from a multi-row nozzle having a plurality of orifices.
m) is a thermoplastic elastic resin satisfying the relation of 60A + 200 ≦ B ≦ 100,000, and is distributed to each nozzle orifice,
At a melting temperature higher than the melting point of the thermoplastic resin by 10 to 80 ° C., it is discharged downward from the nozzle, brought into contact with each other in a molten state and fused to form a three-dimensional structure, and sandwiched and cooled by a take-up device. After cooling in a tank, open a thermo-adhesive short fiber consisting of thermoplastic elastic resin and thermoplastic non-elastic resin on one or both sides to laminate a three-dimensional web, which is thermoformed while being compressed. Reticulate body manufacturing method.
【請求項5】 冷却後から一体成形して製品化に至る工
程で熱可塑性弾性樹脂の融点より少なくとも10℃以下
の温度でアニ−リングする請求項4に記載の不織布積層
網状体の製法。
5. The method for producing a non-woven fabric reticulated body according to claim 4, wherein annealing is performed at a temperature of at least 10 ° C. or lower than the melting point of the thermoplastic elastic resin in the step of integrally molding after cooling and commercialization.
【請求項6】 請求項1に記載の不織布積層網状体を用
いた車両用座席、船舶用座席、車両用、船舶用、病院用
等の業務用及び家庭用ベット、家具用椅子、事務用椅子
および布団のいずれかに記載の製品。
6. A vehicle seat, a ship seat, a vehicle, a ship, a hospital bed, etc. for business and home use, a furniture chair, and an office chair using the nonwoven fabric laminated reticulated body according to claim 1. And the product described in any of the futons.
JP8975594A 1994-04-27 1994-04-27 Nonwoven laminated net, manufacturing method and product using the same Expired - Fee Related JP3351488B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8975594A JP3351488B2 (en) 1994-04-27 1994-04-27 Nonwoven laminated net, manufacturing method and product using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8975594A JP3351488B2 (en) 1994-04-27 1994-04-27 Nonwoven laminated net, manufacturing method and product using the same

Publications (2)

Publication Number Publication Date
JPH07300760A true JPH07300760A (en) 1995-11-14
JP3351488B2 JP3351488B2 (en) 2002-11-25

Family

ID=13979553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8975594A Expired - Fee Related JP3351488B2 (en) 1994-04-27 1994-04-27 Nonwoven laminated net, manufacturing method and product using the same

Country Status (1)

Country Link
JP (1) JP3351488B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005168999A (en) * 2003-12-15 2005-06-30 Nishikawa Living Inc Fiber laminate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005168999A (en) * 2003-12-15 2005-06-30 Nishikawa Living Inc Fiber laminate

Also Published As

Publication number Publication date
JP3351488B2 (en) 2002-11-25

Similar Documents

Publication Publication Date Title
JP3473710B2 (en) Mixed fineness reticulated body, manufacturing method and products using it
JP3454373B2 (en) Elastic network, manufacturing method and products using the same
JP3431097B2 (en) Multilayer laminated net, manufacturing method and product using the same
JP3430444B2 (en) Netting structure for cushion, manufacturing method thereof and cushion product
JP3431096B2 (en) Nonwoven laminated net, manufacturing method and product using the same
JP3444375B2 (en) Multilayer net, manufacturing method and products using the same
JP3431098B2 (en) Flame-retardant reinforced mesh, manufacturing method and products using the same
JP3454375B2 (en) Nonwoven laminated structure, manufacturing method and product using the same
JP3444368B2 (en) Nonwoven laminated net, manufacturing method and product using the same
JP3351488B2 (en) Nonwoven laminated net, manufacturing method and product using the same
JP3430445B2 (en) Composite net, its manufacturing method and products using it
JP3430448B2 (en) Laminated structure, manufacturing method and products using the same
JP3431090B2 (en) Nonwoven laminated net, manufacturing method and product using the same
JP3430449B2 (en) Nonwoven laminated net, manufacturing method and product using the same
JP3430447B2 (en) Laminated elastic structure, manufacturing method and product using the same
JP3444372B2 (en) Multilayer laminated net, manufacturing method and product using the same
JP3351489B2 (en) Nonwoven laminated net, manufacturing method and product using the same
JP3351490B2 (en) Nonwoven laminated net, manufacturing method and product using the same
JP3431091B2 (en) Nonwoven laminated net, manufacturing method and product using the same
JP3431092B2 (en) Nonwoven laminated net, manufacturing method and product using the same
JP3444369B2 (en) Laminated net, manufacturing method and product using the same
JP3351491B2 (en) Flame-retardant laminated net, manufacturing method and product using the same
JP3444370B2 (en) Multilayer laminated net, manufacturing method and product using the same
JP3444371B2 (en) Multilayer laminated net, manufacturing method and product using the same
JPH07300756A (en) Multilayer laminated network material, its production and product using the same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070920

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080920

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080920

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090920

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20090920

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20100920

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100920

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110920

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120920

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130920

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees