JP3444375B2 - Multilayer net, manufacturing method and products using the same - Google Patents

Multilayer net, manufacturing method and products using the same

Info

Publication number
JP3444375B2
JP3444375B2 JP8852294A JP8852294A JP3444375B2 JP 3444375 B2 JP3444375 B2 JP 3444375B2 JP 8852294 A JP8852294 A JP 8852294A JP 8852294 A JP8852294 A JP 8852294A JP 3444375 B2 JP3444375 B2 JP 3444375B2
Authority
JP
Japan
Prior art keywords
elastic resin
layer
thermoplastic
thermoplastic elastic
melting point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP8852294A
Other languages
Japanese (ja)
Other versions
JPH07300757A (en
Inventor
英夫 磯田
靖司 山田
昭則 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP8852294A priority Critical patent/JP3444375B2/en
Publication of JPH07300757A publication Critical patent/JPH07300757A/en
Application granted granted Critical
Publication of JP3444375B2 publication Critical patent/JP3444375B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Artificial Filaments (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Nonwoven Fabrics (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、優れたクッション性と
耐熱耐久性及び振動吸収性とを有し、リサイクルが可能
な不織布で補強された多層網状体と製法および多層網状
体を用いた布団、家具、ベッド、車両用クッション材等
の製品と製法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multilayer mesh body having excellent cushioning property, heat resistance durability and vibration absorption property, reinforced by a recyclable non-woven fabric, a manufacturing method and a futon using the multilayer mesh body. , Furniture, beds, cushioning materials for vehicles, etc. and manufacturing method.

【0002】[0002]

【従来の技術】現在、家具、ベッド、電車、自動車等の
クッション材に、発泡ウレタン、非弾性捲縮繊維詰綿、
及び非弾性捲縮繊維を接着した樹脂綿や硬綿などが使用
されている。
2. Description of the Related Art At present, as a cushion material for furniture, beds, trains, automobiles, etc., urethane foam, non-elastic crimped fiber wadding,
In addition, resin cotton or hard cotton to which non-elastic crimped fibers are adhered is used.

【0003】しかしながら、発泡−架橋型ウレタンはワ
ディング層やクッション材としての耐久性は極めて良好
だが、透湿透水性に劣り蓄熱性があるため蒸れやすく、
かつ、熱可塑性では無いためリサイクルが困難となり焼
却される場合、焼却炉の損傷が大きく、かつ、有毒ガス
除去に経費が掛かる。このため埋め立てされることが多
くなったが、地盤の安定化が困難なため埋め立て場所が
限定され経費も高くなっていく問題がある。また、加工
性は優れるが製造中に使用される薬品の公害問題なども
ある。また、熱可塑性ポリエステル繊維詰綿では繊維間
が固定されていないため、使用時形態が崩れたり、繊維
が移動して、かつ、捲縮のへたりで嵩高性の低下や弾力
性の低下が問題になる。
However, although the foamed-crosslinked urethane has very good durability as a wadding layer or a cushioning material, it has poor moisture permeability and heat storage property and is apt to be stuffy.
Moreover, since it is not thermoplastic, it becomes difficult to recycle, and when it is incinerated, the damage to the incinerator is large and the cost for removing the toxic gas is high. For this reason, landfilling has become more frequent, but it is difficult to stabilize the ground, and there is a problem that landfilling sites are limited and costs increase. Further, although it has excellent processability, it also has a problem of pollution of chemicals used during manufacturing. In addition, since the fibers are not fixed in the thermoplastic polyester fiber wadding, the form may collapse during use, the fibers may move, and the crimp may cause a decrease in bulkiness and elasticity. become.

【0004】ポリエステル繊維を接着剤で接着した樹脂
綿、例えば接着剤にゴム系を用いたものとして特開昭6
0−11352号公報、特開昭61−141388号公
報、特開昭61−141391号公報等がある。又、架
橋性ウレタンを用いたものとして特開昭61−1377
32号公報等がある。これらのクッション材は耐久性に
劣り、且つ、熱可塑性でなく、単一組成でもないためリ
サイクルも出来ない等の問題、及び加工性の煩雑さや製
造中に使用される薬品の公害問題などもある。
As a resin cotton in which polyester fibers are adhered with an adhesive, for example, a rubber-based adhesive is used, Japanese Patent Application Laid-Open No.
0-11352, JP-A 61-141388, JP-A 61-141391 and the like. Further, as a method using a cross-linkable urethane, JP-A-61-1377
No. 32 publication and the like. These cushion materials have inferior durability, and also have problems such as not being recyclable because they are neither thermoplastic nor single composition, and there are problems such as complexity of processability and pollution of chemicals used during manufacturing. .

【0005】ポリエステル硬綿、例えば特開昭58−3
1150号公報、特開平2−154050号公報、特開
平3−220354号公報等があるが、用いている熱接
着繊維の接着成分が脆い非晶性のポリマ−を用いるため
(例えば特開昭58−136828号公報、特開平3−
249213号公報等)接着部分が脆く、使用中に接着
部分が簡単に破壊されて形態や弾力性が低下するなどの
耐久性に劣る問題がある。改良法として、交絡処理する
方法が特開平4−245965号公報等で提案されてい
るが、接着部分の脆さは解決されず弾力性の低下が大き
い問題がある。また、加工時の煩雑さもある。更には接
着部分が変形しにくくソフトなクッション性を付与しに
くい問題もある。このため、接着部分を柔らかい、且つ
ある程度変形しても回復するポリエステルエラストマ−
を用い、芯成分に非弾性ポリエステルを用いた熱接着繊
維が特開平4−240219号公報で、同繊維を用いた
クッション材がWO−91/19032号公報、特開平
5−156561号公報、特開平5−163654号公
報等で提案されている。この繊維構造物に使われる接着
成分がポリエステルエラストマ−のソフトセグメントと
してはポリアルキレングリコ−ルの含有量が30〜50
重量%、ハ−ドセグメントの酸成分にテレフタル酸を5
0〜80モル%含有し、他の酸成分組成として特公昭6
0−1404号公報に記載された繊維と同様にイソフタ
ル酸を含有して非晶性が増すことになり、融点も180
℃以下となり低溶融粘度として熱接着部分の形成を良く
してアメーバー状の接着部を形成しているが塑性変形し
やいため、及び芯成分が非弾性ポリエステルのため、特
に加熱下での塑性変形が著しくなり、耐熱抗圧縮性が低
下する問題点がある。これらの改良法として、特開平5
−163654号公報にシ−ス成分にイソフタル酸を含
有するポリエステルエラストマ−、コア成分に非弾性ポ
リエステルを用いた熱接着複合繊維のみからなる構造体
が提案されているが上述の理由で加熱下での塑性変形が
著しくなり、耐熱抗圧縮性が低下し、ワディング層やク
ッション材に使用するには問題がある。他方、硬綿の母
R>材にシリコ−ン油剤を付与して繊維の摩擦係数を下げ
て耐久性を向上し、風合いを良くする方法が特開昭63
−158094号公報で提案されている。が、熱接着繊
維の接着性に問題があり、耐久性が劣るのでワディング
層やクッション材に使用するには好ましくない。
Polyester hard cotton, for example, JP-A-58-3
1150, JP-A-2-154050, JP-A-3-220354, etc., but since an amorphous polymer having a brittle adhesive component of the heat-bonding fiber used is used (for example, JP-A-58). -136828, Japanese Patent Application Laid-Open No. 3-
However, there is a problem in that durability is poor such that the bonded portion is brittle and the bonded portion is easily broken during use and the form and elasticity are reduced. As an improved method, a method of entanglement treatment has been proposed in Japanese Patent Laid-Open No. 4-245965, but there is a problem that the brittleness of the bonded portion is not solved and the elasticity is largely reduced. In addition, there is complexity during processing. Further, there is a problem that the bonded portion is hard to be deformed and soft cushioning is hard to be imparted. For this reason, the polyester elastomer that is soft even at the bonded portion and recovers even if it is deformed to some extent
A heat-bonding fiber using a non-elastic polyester as a core component is disclosed in JP-A-4-240219, and a cushion material using the fiber is disclosed in WO-91 / 19032, JP-A-5-155651. It is proposed in Japanese Patent Laid-Open No. 5-163654. The adhesive component used in this fiber structure has a polyalkylene glycol content of 30 to 50 as a soft segment of polyester elastomer.
Wt%, 5% terephthalic acid as the acid component of the hard segment
It contains 0 to 80 mol% and is used as another acid component composition
As in the fiber described in Japanese Patent Publication No. 0-1404, isophthalic acid is contained to increase the amorphous property, and the melting point is 180.
The temperature is below ℃, and the heat-bonded part is well formed with a low melt viscosity to form an ameber-shaped bonded part, but it is easy to plastically deform, and because the core component is an inelastic polyester, plastic deformation especially under heating Becomes remarkable, and there is a problem that the heat resistance and compression resistance are lowered. As an improved method for these, Japanese Patent Laid-Open No.
No. 163654 proposes a structure consisting only of a polyester elastomer containing isophthalic acid as a sheath component and a heat-bonding composite fiber using an inelastic polyester as a core component. Plastic deformation becomes significant, the heat resistance and compression resistance deteriorate, and there is a problem in using it for a wadding layer or a cushion material. On the other hand, hard cotton mother
A method of adding a silicone oil agent to the R> material to lower the friction coefficient of the fiber to improve the durability and improve the texture is disclosed in Japanese Patent Laid-Open No. Sho 63-63.
It is proposed in Japanese Patent No. 158094. However, there is a problem with the adhesiveness of the heat-adhesive fiber and the durability is poor, so it is not preferable for use in a wadding layer or cushioning material.

【0006】土木工事用に使用する熱可塑性のオレフィ
ン網状体が特開昭47−44839号公報に開示されて
いる。が、細い繊維から構成したクッションとは異なり
表面が凸凹でタッチが悪く、素材がオレフィンのため耐
熱耐久性が著しく劣りワディング層やクッション材には
使用ができないものである。また、特公平3−1766
6号公報には繊度の異なる吐出線条を互いに融着してモ
−ル状物を作る方法があるがクッション材には適さない
網状構造体である。特公平3−55583号公報には、
ごく表面のみ冷却前に回転体等の細化装置で細くする方
法が記載されている。この方法では表面をフラット化で
きず、厚みのある細い線条層を作ることできない。した
がって座り心地の良好なクッション材にはならない。特
開平1−207462号公報では、塩化ビニ−ル製のフ
ロアマットの開示があるが、室温での圧縮回復性が悪
く、耐熱性は著しく悪いので、ワディング材やクッショ
ン材としては好ましくないものである。なお、上述構造
体は振動減衰に関する配慮が全くなされていない。
A thermoplastic olefin network used for civil engineering work is disclosed in JP-A-47-44839. However, unlike a cushion made of fine fibers, the surface is uneven and the touch is poor, and since the material is olefin, the heat resistance durability is extremely poor and it cannot be used as a wadding layer or cushion material. In addition, Japanese Patent Publication No. 3-1766
No. 6 discloses a method in which ejection filaments having different fineness are fused to each other to form a mold, but the mesh structure is not suitable as a cushion material. Japanese Examined Patent Publication No. 3-55583 discloses that
A method of thinning only a very surface with a thinning device such as a rotating body before cooling is described. With this method, the surface cannot be flattened and a thick thin linear layer cannot be formed. Therefore, it does not provide a comfortable cushioning material. Japanese Patent Application Laid-Open No. 1-207462 discloses a vinyl chloride floor mat, but it is not preferable as a wadding material or a cushioning material because it has poor compression recovery at room temperature and remarkably poor heat resistance. is there. Note that no consideration is given to vibration damping in the above-mentioned structure.

【0007】[0007]

【発明が解決しようとする課題】上記問題点を解決し、
振動を遮断し、耐熱耐久性、形態保持性、クッション性
の優れた蒸れ難い、熱可塑性弾性樹脂層と熱可塑性非弾
性樹脂層が積層された網状体を不織布で補強したクッシ
ョン材に適した多層網状体と製法及び多層網状体を用い
た布団、家具、ベッド、車両用クッション等の製品と製
法を提供することを目的とする。
To solve the above problems,
A multi-layer suitable for cushioning material that is reinforced with a non-woven fabric that is a net-like body that is laminated with a thermoplastic elastic resin layer and a thermoplastic non-elastic resin layer, which has excellent heat resistance and durability, shape retention and cushioning properties An object of the present invention is to provide a product and a manufacturing method such as a futon, furniture, a bed, and a cushion for a vehicle using a net-like body and a manufacturing method and a multilayer net-like body.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するため
の手段、即ち本発明は、繊度が100〜100000デ
ニ−ルの連続した線条を曲がりくねらせ互いに接触させ
て該接触部の大部分が融着した3次元立体構造体を形成
した熱可塑性弾性樹脂層と熱可塑性非弾性樹脂層とが積
層融着しており、前記熱可塑性弾性樹脂層面は実質的に
フラット化されており該熱可塑性弾性樹脂層の片面に連
続繊維からなる不織布が接合されている密度が0.01
g/cm3 から0.2g/cm3 の多層網状体、複数のオリ
フィスを持つ多列ノズルより熱可塑性弾性樹脂と熱可塑
性非弾性樹脂を各層になる様に各ノズルオリフィスに分
配し、該熱可塑性樹脂の融点より10〜120℃高い溶
融温度で、該ノズルより下方に向けて吐出させ、溶融状
態で互いに接触させて融着させ3次元構造を形成しつ
つ、片面に連続繊維からなる不織布を接合させて引取り
装置で挟み込み冷却槽で冷却せしめる多層網状体の製法
および前記多層網状体を用いた製品である。
Means for Solving the Problems The means for solving the above problems, that is, the present invention, is to make continuous filaments having a fineness of 100 to 100,000 denier meander and contact with each other, and most of the contact portions are contacted with each other. The thermoplastic elastic resin layer and the thermoplastic non-elastic resin layer forming a three-dimensional three-dimensional structure fused to each other are laminated and fused, and the surface of the thermoplastic elastic resin layer is substantially flattened. A nonwoven fabric made of continuous fibers is bonded to one surface of the plastic elastic resin layer, and the density is 0.01.
g / cm 3 to 0.2 g / cm 3 multi-layer mesh body, multi-row nozzles with multiple orifices to distribute thermoplastic elastic resin and thermoplastic inelastic resin to each nozzle orifice in each layer, At a melting temperature higher than the melting point of the plastic resin by 10 to 120 ° C., a non-woven fabric composed of continuous fibers is formed on one side while being discharged downward from the nozzle, contacting each other in a molten state and fusing to form a three-dimensional structure. It is a method for producing a multi-layer net body that is joined and sandwiched by a take-up device and cooled in a cooling tank, and a product using the multi-layer net body.

【0009】本発明における熱可塑性弾性樹脂とは、ソ
フトセグメントとして分子量300〜5000のポリエ
−テル系グリコ−ル、ポリエステル系グリコ−ル、ポリ
カ−ボネ−ト系グリコ−ルまたは長鎖の炭化水素末端を
カルボン酸または水酸基にしたオレフィン系化合物等を
ブロック共重合したポリエステル系エラストマ−、ポリ
アミド系エラストマ−、ポリウレタン系エラストマ−、
ポリオレフィン系エラストマ−などが挙げられる。熱可
塑性弾性樹脂とすることで、再溶融により再生が可能と
なるため、リサイクルが容易となる。例えば、ポリエス
テル系エラストマ−としては、熱可塑性ポリエステルを
ハ−ドセグメントとし、ポリアルキレンジオ−ルをソフ
トセグメントとするポリエステルエ−テルブロック共重
合体、または、脂肪族ポリエステルをソフトセグメント
とするポリエステルエステルブロック共重合体が例示で
きる。ポリエステルエ−テルブロック共重合体のより具
体的な事例としては、テレフタル酸、イソフタル酸、ナ
フタレン2・6ジカルボン酸、ナフタレン2・7ジカル
ボン酸、ジフェニル4・4’ジカルボン酸等の芳香族ジ
カルボン酸、1・4シクロヘキサンジカルボン酸等の脂
環族ジカルボン酸、琥珀酸、アジピン酸、セバチン酸ダ
イマ−酸等の脂肪族ジカルボン酸または、これらのエス
テル形成性誘導体などから選ばれたジカルボン酸の少な
くとも1種と、1・4ブタンジオ−ル、エチレングリコ
−ル、トリメチレングリコ−ル、テトレメチレングリコ
−ル、ペンタメチレングリコ−ル、ヘキサメチレングリ
コ−ル等の脂肪族ジオ−ル、1・1シクロヘキサンジメ
タノ−ル、1・4シクロヘキサンジメタノ−ル等の脂環
族ジオ−ル、またはこれらのエステル形成性誘導体など
から選ばれたジオ−ル成分の少なくとも1種、および平
均分子量が約300〜5000のポリエチレングリコ−
ル、ポリプロピレングリコ−ル、ポリテトラメチレング
リコ−ル、エチレンオキシド−プロピレンオキシド共重
合体等のポリアルキレンジオ−ルのうち少なくとも1種
から構成される三元ブロック共重合体である。ポリエス
テルエステルブロック共重合体としては、上記ジカルボ
ン酸とジオ−ル及び平均分子量が約300〜5000の
ポリラクトン等のポリエステルジオ−ルのうち少なくと
も各1種から構成される三元ブロック共重合体である。
熱接着性、耐加水分解性、伸縮性、耐熱性等を考慮する
と、ジカルボン酸としてはテレフタル酸、または、及び
ナフタレン2・6ジカルボン酸、ジオ−ル成分としては
1・4ブタンジオ−ル、ポリアルキレンジオ−ルとして
はポリテトラメチレングリコ−ルの3元ブロック共重合
体または、ポリエステルジオ−ルとしてポリラクトンの
3元ブロック共重合体が特に好ましい。特殊な例では、
ポリシロキサン系のソフトセグメントを導入したものも
使うこたができる。また、上記エラストマ−に非エラス
トマ−成分をブレンドされたもの、共重合したもの、ポ
リオレフィン系成分をソフトセグメントにしたもの等も
本発明の熱可塑性弾性樹脂に包含される。ポリアミド系
エラストマ−としては、ハ−ドセグメントにナイロン
6、ナイロン66、ナイロン610、ナイロン612、
ナイロン11、ナイロン12等及びそれらの共重合ナイ
ロンを骨格とし、ソフトセグメントには、平均分子量が
約300〜5000のポリエチレングリコ−ル、ポリプ
ロピレングリコ−ル、ポリテトラメチレングリコ−ル、
エチレンオキシド−プロピレンオキシド共重合体等のポ
リアルキレンジオ−ルのうち少なくとも1種から構成さ
れるブロック共重合体を単独または2種類以上混合して
用いてもよい。更には、非エラストマ−成分をブレンド
されたもの、共重合したもの等も本発明に使用できる。
ポリウレタン系エラストマ−としては、通常の溶媒(ジ
メチルホルムアミド、ジメチルアセトアミド等)の存在
または不存在下に、(A)数平均分子量1000〜60
00の末端に水酸基を有するポリエ−テル及び又はポリ
エステルと(B)有機ジイソシアネ−トを主成分とする
ポリイソシアネ−トを反応させた両末端がイソシアネ−
ト基であるプレポリマ−に、(C)ジアミンを主成分と
するポリアミンにより鎖延長したポリウレタンエラスト
マ−を代表例として例示できる。(A)のポリエステ
ル、ポリエ−テル類としては、平均分子量が約1000
〜6000、好ましくは1300〜5000のポリブチ
レンアジペ−ト共重合ポリエステルやポリエチレングリ
コ−ル、ポリプロピレングリコ−ル、ポリテトラメチレ
ングリコ−ル、エチレンオキシド−プロピレンオキシド
共重合体からなるグリコ−ル等のポリアルキレンジオ−
ルが好ましく、(B)のポリイソシアネ−トとしては、
従来公知のポリイソシアネ−トを用いることができる
が、ジフェニルメタン4・4’ジイソシアネ−トを主体
としたイソシアネ−トを用い、必要に応じ従来公知のト
リイソシアネ−ト等を微量添加使用してもよい。(C)
のポリアミンとしては、エチレンジアミン、1・2プロ
ピレンジアミン等公知のジアミンを主体とし、必要に応
じて微量のトリアミン、テトラアミンを併用してもよ
い。これらのポリウレタン系エラストマ−は単独又は2
種類以上混合して用いてもよい。なお、本発明の熱可塑
性弾性樹脂の融点は耐熱耐久性が保持できる140℃以
上が好ましく、160℃以上のものを用いると耐熱耐久
性が向上するのでより好ましい。なお、必要に応じ、抗
酸化剤や耐光剤等を添加して耐久性を向上させることが
できる。本発明の目的である振動や応力の吸収機能をも
たせる成分を構成する熱可塑性弾性樹脂のソフトセグメ
ント含有量は好ましくは15重量%以上、より好ましく
は30重量%以上であり、耐熱耐へたり性からは80重
量%以下が好ましく、より好ましくは70重量%以下で
ある。即ち、本発明の弾性網状体の振動や応力の吸収機
能をもたせる成分のソフトセグメント含有量は好ましく
は15重量%以上80重量%以下であり、より好ましく
は30重量%以上70重量%以下である。
The thermoplastic elastic resin in the present invention means, as the soft segment, an ether type glycol, a polyester type glycol, a polycarbonate type glycol or a long chain hydrocarbon having a molecular weight of 300 to 5,000. Polyester elastomer obtained by block-copolymerizing an olefinic compound having a carboxylic acid or a hydroxyl group at the terminal, a polyamide elastomer, a polyurethane elastomer,
Examples include polyolefin elastomers. By using a thermoplastic elastic resin, it becomes possible to regenerate by remelting, and thus recycling becomes easy. For example, as the polyester elastomer, a polyester ether block copolymer having a thermoplastic polyester as a hard segment and a polyalkylenediol as a soft segment, or a polyester ester having an aliphatic polyester as a soft segment A block copolymer can be illustrated. More specific examples of the polyester ether block copolymer include aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid, naphthalene 2.6 dicarboxylic acid, naphthalene 2.7 dicarboxylic acid, and diphenyl 4.4'dicarboxylic acid. At least one of alicyclic dicarboxylic acids such as 1,4-cyclohexanedicarboxylic acid, aliphatic dicarboxylic acids such as succinic acid, adipic acid, sebacic acid dimer acid, and dicarboxylic acids selected from ester-forming derivatives thereof Seeds and aliphatic diols such as 1.4 butanediol, ethylene glycol, trimethylene glycol, tetremethylene glycol, pentamethylene glycol and hexamethylene glycol, 1.1 cyclohexane Alicyclic diols such as dimethanol and 1,4-cyclohexane dimethanol, or these Of at least one diole component selected from the ester-forming derivatives thereof and polyethylene glycol having an average molecular weight of about 300 to 5,000.
It is a ternary block copolymer composed of at least one of polyalkylenediol such as propylene, polypropylene glycol, polytetramethylene glycol, and ethylene oxide-propylene oxide copolymer. The polyester ester block copolymer is a ternary block copolymer composed of at least one of the above dicarboxylic acids, diol, and polyester diol such as polylactone having an average molecular weight of about 300 to 5,000. .
Considering heat adhesion, hydrolysis resistance, stretchability, heat resistance, etc., terephthalic acid as dicarboxylic acid, or naphthalene 2.6 dicarboxylic acid, 1.4 butanediol as diole component, and poly The alkylene diol is particularly preferably a terpolymer block copolymer of polytetramethylene glycol or the terpolymer block copolymer of polylactone as the polyester diol. In a special case,
You can also use a kotatsu that has a polysiloxane-based soft segment introduced. Also, the thermoplastic elastomer resin of the present invention includes those obtained by blending the above elastomer with a non-elastomer component, those obtained by copolymerization, those obtained by softening the polyolefin component, and the like. As a polyamide elastomer, the hard segment includes nylon 6, nylon 66, nylon 610, nylon 612,
Polyethylene glycol, polypropylene glycol, polytetramethylene glycol having an average molecular weight of about 300 to 5000 is used as the soft segment in the skeleton of nylon 11, nylon 12, etc. and their copolymerized nylon.
A block copolymer composed of at least one kind of polyalkylenediol such as ethylene oxide-propylene oxide copolymer may be used alone or in combination of two or more kinds. Furthermore, blends of non-elastomer components and copolymers thereof can be used in the present invention.
The polyurethane-based elastomer is (A) number average molecular weight of 1000 to 60 in the presence or absence of a usual solvent (dimethylformamide, dimethylacetamide, etc.).
00 has a hydroxyl group-terminated polyether and / or polyester, and (B) an organic diisocyanate-based polyisocyanate as a main component.
As a typical example, a polyurethane elastomer in which a chain-extended polyamine having a diamine (C) as a main component is added to a prepolymer which is a group having a hydroxyl group can be exemplified. The polyester or polyether of (A) has an average molecular weight of about 1,000.
To 6000, preferably 1300 to 5000, polybutylene adipate copolyester, polyethylene glycol, polypropylene glycol, polytetramethylene glycol, glycol composed of ethylene oxide-propylene oxide copolymer, etc. Polyalkylenedio-
Are preferred, and as the polyisocyanate of (B),
Although a conventionally known polyisocyanate can be used, an isocyanate mainly composed of diphenylmethane 4,4 ′ diisocyanate may be used, and if necessary, a conventionally known triisocyanate and the like may be added in a small amount. (C)
As the polyamine, a known diamine such as ethylenediamine or 1.2-propylenediamine is mainly used, and if necessary, a trace amount of triamine or tetraamine may be used in combination. These polyurethane elastomers are used alone or
You may use it in mixture of 2 or more types. The melting point of the thermoplastic elastic resin of the present invention is preferably 140 ° C. or higher at which heat resistance and durability can be maintained, and it is more preferable to use a resin having a melting point of 160 ° C. or higher because heat resistance and durability are improved. If necessary, an antioxidant, a light-proofing agent or the like may be added to improve durability. The soft segment content of the thermoplastic elastic resin constituting the component having the function of absorbing vibration and stress, which is the object of the present invention, is preferably 15% by weight or more, more preferably 30% by weight or more, and heat resistance and sag resistance Therefore, it is preferably 80% by weight or less, and more preferably 70% by weight or less. That is, the soft segment content of the component having the function of absorbing vibrations and stress of the elastic network of the present invention is preferably 15% by weight or more and 80% by weight or less, more preferably 30% by weight or more and 70% by weight or less. .

【0010】本発明の多層網状体を構成する熱可塑性弾
性樹脂からなる成分は、示差走査型熱量計にて測定した
融解曲線において、融点以下に吸熱ピ−クを有するのが
好ましい。融点以下に吸熱ピ−クを有するものは、耐熱
耐へたり性が吸熱ピ−クを有しないものより著しく向上
する。例えば、本発明の好ましいポリエステル系熱可塑
性樹脂として、ハ−ドセグメントの酸成分に剛直性のあ
るテレフタル酸やナフタレン2・6ジカルボン酸などを
90モル%以上含有するもの、より好ましくはテレフタ
ル酸やナフタレン2・6ジカルボン酸の含有量は95モ
ル%以上、特に好ましくは100モル%とグリコ−ル成
分をエステル交換後、必要な重合度まで重合し、次い
で、ポリアルキレンジオ−ルとして、好ましくは平均分
子量が500以上5000以下、特に好ましくは100
0以上3000以下のポリテトラメチレングリコ−ルを
15重量%以上70重量%以下、より好ましくは30重
量%以上60重量%以下共重合量させた場合、ハ−ドセ
グメントの酸成分に剛直性のあるテレフタル酸やナフタ
レン2・6ジカルボン酸の含有量が多いとハ−ドセグメ
ントの結晶性が向上し、塑性変形しにくく、かつ、耐熱
抗へたり性が向上するが、溶融熱接着後更に融点より少
なくとも10℃以上低い温度でアニ−リング処理すると
より耐熱抗へたり性が向上する。圧縮歪みを付与してか
らアニ−リングすると更に耐熱抗へたり性が向上する。
このような処理をした網状構造体の線条を示差走査型熱
量計で測定した融解曲線に室温以上融点以下の温度で吸
熱ピークをより明確に発現する。なおアニ−リングしな
い場合は融解曲線に室温以上融点以下に吸熱ピ−クを発
現しない。このことから類推するに、アニ−リングによ
り、ハ−ドセグメントが再配列され、疑似結晶化様の架
橋点が形成され、耐熱抗へたり性が向上しているのでは
ないかとも考えられる。(この処理を疑似結晶化処理と
定義する)この疑似結晶化処理効果は、ポリアミド系弾
性樹脂やポリウレタン系弾性樹脂にも有効である。
The component composed of the thermoplastic elastic resin constituting the multilayer reticulate body of the present invention preferably has an endothermic peak below the melting point in the melting curve measured by a differential scanning calorimeter. Those having an endothermic peak below the melting point have significantly improved heat resistance and sag resistance than those having no endothermic peak. For example, a preferable polyester-based thermoplastic resin of the present invention contains 90 mol% or more of terephthalic acid or naphthalene 2.6 dicarboxylic acid having rigidity in the acid component of the hard segment, more preferably terephthalic acid or The content of naphthalene 2.6 dicarboxylic acid is 95 mol% or more, particularly preferably 100 mol%, and after transesterification of the glycol component, polymerization is carried out to a required degree of polymerization, and then, as a polyalkylene diol, preferably The average molecular weight is 500 or more and 5000 or less, particularly preferably 100.
When 0 to 3000 polytetramethylene glycol is copolymerized in an amount of 15 to 70% by weight, more preferably 30 to 60% by weight, the acid component of the hard segment is rigid. When the content of a certain terephthalic acid or naphthalene 2.6 dicarboxylic acid is high, the crystallinity of the hard segment is improved, the plastic deformation is less likely to occur, and the heat resistance and sag resistance are improved, but the melting point is further increased after the melt heat bonding. When the annealing treatment is performed at a temperature lower by at least 10 ° C. or more, the heat resistance and sag resistance is further improved. If annealing is performed after applying compressive strain, heat resistance and sag resistance are further improved.
The endothermic peak is more clearly expressed in the melting curve measured by a differential scanning calorimeter of the linear structure of the network structure treated as described above at a temperature of room temperature or higher and melting point or lower. If annealing is not performed, no endothermic peak appears in the melting curve above room temperature and below the melting point. By analogy with this, it is considered that the annealing causes rearrangement of the hard segments and formation of pseudo-crystallization-like cross-linking points to improve the heat resistance and sag resistance. (This treatment is defined as pseudo crystallization treatment.) This pseudo crystallization treatment effect is also effective for polyamide elastic resin and polyurethane elastic resin.

【0011】本発明における熱可塑性非弾性樹脂とは、
ポリエステル、ポリアミド、ポリオレフィン等が例示で
きる。なお、本発明ではガラス転移点温度が少なくとも
40℃以上のものを使用するのが好ましい。例えば、ポ
リエステルでは、ポリエチレンテレフタレ−ト(PE
T)、ポリエチレンナフタレ−ト(PEN)、ポリシク
ロヘキシレンジメチレンテレフタレ−ト(PCHD
T)、ポリシクロヘキシレンジメチレンナフタレ−ト
(PCHDN)、ポリブチレンテレフタレ−ト(PB
T)、ポリブチレンナフタレ−ト(PBN)、ポリアリ
レ−ト等、及びそれらの共重合ポリエステル等が例示で
きる。ポリアミドでは、ポリカプロラクタム(NY
6)、ポリヘキサメチレンアジパミド(NY66)、ポ
リヘキサメチレンセバカミド(NY6−10)等が例示
できる。ポリオレフィンとしては、ポリプロピレン(P
P)、ポリブテン・1(PB・1)等が例示できる。本
発明に用いる熱可塑性非弾性樹脂としては、クッション
材の側地にポリエステルを用いる場合が多いので、廃棄
する場合に分離せずにリサイクルが可能なクッション素
材として、耐熱性も良好なPET、PEN、PBN、P
CHDT等のポリエステルが特に好ましい。更には、P
ET、PEN、PBN、PCHDT等と重縮合して燐含
有エステル形成性化合物を共重合または燐含有難燃剤を
含有してなる難燃性ポリエステル(以下難燃性ポリエス
テルと略す)が好ましく、例えば、特開昭51−823
92号公報、特開昭55−7888号公報、特公昭55
−41610号公報等に例示されたものが挙げられる。
なお、塩化ビニ−ルは自己消火性を有するが燃焼すると
有毒ガスを多く発生するので本発明に用いるのは好まし
くない。
The thermoplastic non-elastic resin in the present invention means
Examples thereof include polyester, polyamide and polyolefin. In the present invention, it is preferable to use one having a glass transition temperature of 40 ° C. or higher. For example, for polyester, polyethylene terephthalate (PE
T), polyethylene naphthalate (PEN), polycyclohexylene dimethylene terephthalate (PCHD
T), polycyclohexylene dimethylene naphthalate (PCHDN), polybutylene terephthalate (PB)
Examples thereof include T), polybutylene naphthalate (PBN), polyarylate, and copolymerized polyesters thereof. For polyamide, polycaprolactam (NY
6), polyhexamethylene adipamide (NY66), polyhexamethylene sebacamide (NY6-10) and the like. As polyolefin, polypropylene (P
P), polybutene-1 (PB-1) and the like can be exemplified. As the thermoplastic non-elastic resin used in the present invention, polyester is often used for the side material of the cushion material, and therefore PET and PEN having good heat resistance can be used as a cushion material that can be recycled without being separated when discarded. , PBN, P
Polyesters such as CHDT are particularly preferred. Furthermore, P
A flame-retardant polyester (hereinafter abbreviated as flame-retardant polyester) obtained by polycondensation with ET, PEN, PBN, PCHDT or the like to copolymerize a phosphorus-containing ester forming compound or containing a phosphorus-containing flame retardant is preferable. JP-A-51-823
92, JP-A-55-7888, JP-B-55
-41610 and the like are exemplified.
Although vinyl chloride has a self-extinguishing property, it produces a large amount of toxic gas when it is burned, so that it is not preferable to use it in the present invention.

【0012】本発明は、繊度が100000デニ−ル以
下の連続線条を曲がりくねらせ互いに接触させて該接触
部の大部分が融着した3次元立体構造体を形成した熱可
塑性弾性樹脂層と熱可塑性非弾性樹脂層とを融着接合し
た表面側の熱可塑性弾性樹脂層面が実質的にフラット化
された網状体の裏面に連続繊維からなる不織布が接合さ
れた密度が0.01g/cm3 から0.2g/cm3 の多層
網状体である。クッション材の機能は、クッション層は
基本の繊度を太くして少し硬くして体型保持を受け持つ
層と振動減衰性の良い成分で密度を少し高くした振動吸
収して振動を遮断する層で構成し、表面層はやや繊度を
細くし構成線条本数を多くした少し柔らかな層として適
度の沈み込みにより快適な臀部のタッチを与えて臀部の
圧力分布を均一分散化させると共にクッション層で吸収
できなかった振動を吸収して人体の共振部分の振動を遮
断する層が一体化されることで、応力や振動を一体で変
形し吸収させ座り心地を向上させることができる。さら
に、フレ−ムと接する面を補強材で補強してクッション
層と一体化し、クッション材を支える面(補強層)と
し、クッションの形態保持をはかることにより座り心地
と耐久性の良い座席となる。本発明では、クッション層
の機能を繊度が100000デニ−ル以下の連続線条を
曲がりくねらせ互いに接触させて該接触部の大部分が融
着した3次元立体構造体を形成した熱可塑性弾性樹脂層
と熱可塑性非弾性樹脂層とを融着接合した表面側の熱可
塑性弾性樹脂層面が実質的にフラット化された網状体に
持たせ、補強層の機能を連続繊維からなる不織布に持た
せ、上記の好ましいクッション機能を発現する多層網状
体である。本発明の多層網状体は、クッション層の補強
材として薄くても強く補強効果の高い連続繊維からなる
不織布を接合一体化している。クッション層と接合され
ていないとクッション層の補強効果が無くなるので好ま
しくない。補強材が単繊維不織布の場合は不織布の厚み
当たりの補強効果が悪いので重量が重くなり好ましくな
い。本発明の好ましい不織布はスパンボンド不織布であ
り、目付けが20g/m2 〜500g/m2 である。目
付けが20g/m2 未満では補強効果がわるくなり、5
00g/m2 を越えると成形性が劣るので好ましくな
い。連続繊維の繊度は形態保持が可能な1デニ−ル以
上、成形性を損なわない範囲から100デニ−ル以下が
好ましい。連続繊維からなる補強層は、形態維持のため
にニ−ドルパンチされたり、さらに熱エンボス接着や接
着剤で強固に補強された不織布を用いるのが好ましい。
なお、クッション層と補強層の素材は例えばポリエステ
ルに統一すると座席のリサイクル時に分別する必要がな
いので好ましい。更には、難燃性素材を用いるのがより
好ましい。他方、クッション層機能を持つ網状体は、連
続線条が3次元立体構造体を形成し接触部の大部分で融
着一体化された熱可塑性弾性樹脂層と熱可塑性非弾性樹
脂層が積層されて両面が実質的にフラット化されてお
り、裏面は補強層機能を持つ連続繊維からなる不織布と
面で接合されているのでクッション層の形態を保持し
て、外部から与えられた振動を熱可塑性弾性樹脂の振動
吸収機能で大部分の振動を吸収減衰して振動遮断層とし
て働く。又、局部的に大きい変形応力を与えられた場合
でも変形応力を網状体の表面が実質的にフラット化され
接触部の大部分が融着した熱可塑性弾性樹脂からなる網
状体の面で変形応力を受け止め変形応力を分散させ、熱
可塑性弾性樹脂層で変形を生じて融着一体化した構造体
全体が変形してエネルギ−変換して大部分の変形応力を
吸収し、熱可塑性弾性樹脂層で吸収出来なかった変形
は、熱可塑性弾性樹脂層を介して融着一体化した3次元
網状構造体が補強層で形態を保持しつつ全体で変形して
熱可塑性非弾性樹脂で構成した層での個々の線条への応
力集中を回避できるので熱可塑性非弾性樹脂線条の弾性
限界内でも応力を吸収し易くなり、熱可塑性非弾性樹脂
が抗圧縮性を示しつつ弾性限界を越えない範囲で変形
し、応力が解除されると熱可塑性非弾性樹脂線条の層も
弾性回復し、熱可塑性弾性樹脂層もゴム弾性を発現し容
易に元の形態に回復するので耐へたり性が良好であると
共に圧縮時の応力に対する変形歪みが直線的に変化し、
座ったとき、低い反発力で臀部を支えつつ適度の沈み込
みを生じるので床つき感を与えず体型保持機能を発現す
る。熱可塑性弾性樹脂のみからなる網状体では柔らか過
ぎて沈み込みがやや大きくなる欠点を本発明は解決し体
型保持機能を向上できた。公知の非弾性樹脂のみからな
る線条で構成した網状体では、表面層で吸収できない大
きい変形を受けるとゴム弾性を持たないので圧縮変形に
より塑性変形を生じて回復しなくなり耐久性が劣る。網
状体の表面が実質的にフラット化されてない場合、局部
的な外力は、表面の線条及び接着点部分までに選択的に
伝達され、応力集中が発生する場合があり、このような
外力に対しては応力集中による疲労が発生して耐へたり
性が低下する場合がある。なお、外部から変形応力を伝
達される層が熱可塑性弾性樹脂からなる場合は3次元構
造部分で構造全体が変形するので応力集中は緩和される
が、非弾性樹脂のみからなる場合では、そのまま応力が
接着点に集中して構造破壊を生じ回復しなくなる。更に
は、表面が実質的にフラット化されてなく凸凹があると
座った時臀部に異物感を与えるため座り心地が悪くなり
好ましくない。なお、線状が連続していない場合は、繊
度が太い網状体では接着点が応力の伝達点となるため接
着点に著しい応力集中が起こり構造破壊を生じ耐熱耐久
性が劣り好ましくない。融着していない場合は、形態保
持が出来ず、構造体が一体で変形しないため、応力集中
による疲労現象が起こり耐久性が劣ると同時に、形態が
変形して体型保持ができなくなるので好ましくない。本
発明のより好ましい融着の程度は、線条が接触している
部分の大半が融着した状態であり、もっとも好ましくは
接触部分が全て融着した状態である。かくして、連続線
条の接触部が大部分融着した3次元立体構造体を形成し
融着一体化した振動吸収性と弾性回復性の良い熱可塑性
弾性樹脂の層と抗圧縮性をもつ熱可塑性非弾性樹脂の層
が積層融着し一体化され、表面が実質的にフラット化さ
れたクッション層機能を持つ網状体は、表面層から伝達
される変形応力を面で受け止め応力の分散を良くし、個
々の線状に掛かる応力を少なくして、補強層が形態を保
持しつつ構造全体が変形して変形応力を吸収し、且つ臀
部を支えるクッション性も向上させ、応力が解除される
と回復し、補強層を介してフレ−ムから伝わる振動も振
動吸収性と弾性回復性の良い熱可塑性弾性樹脂部分が吸
収して人体の共振部分の振動を遮断するため座り心地と
耐久性を向上させることができる。この目的から、本発
明の網状体を形成する線条の繊度は熱可塑性弾性樹脂層
及び熱可塑性非弾性樹脂層共に100000デニ−ル以
下である。見掛け密度を0.2g/cm 3 以下にした場
合、100000デニ−ルを越えると構成本数が少なく
なり、密度斑を生じて部分的に耐久性の悪い構造がで
き、応力集中による疲労が大きくなり耐久性が低下する
ので好ましくない。本発明の網状体を構成する線条の繊
度は、繊度が細すぎると抗圧縮性が低くなり過ぎて変形
による応力吸収性が低下するので100デニ−ル以上で
ある。熱可塑性弾性樹脂層の好ましい範囲は抗圧縮性の
効果が出やすい300デニ−ル以上、構成本数の低下に
よる構造面の緻密性を損なわない50000デニ−ル以
下である。より好ましくは500デニ−ル以上、100
00デニ−ル以下である。熱可塑性非弾性樹脂層の好ま
しい範囲は抗圧縮性の効果が出やすい500デニ−ル以
上、構成本数の低下による構造面の緻密性を損なわない
50000デニ−ル以下である。より好ましくは100
0デニ−ル以上、10000デニ−ル以下である。本発
明の網状体の見掛け密度は、熱可塑性弾性樹脂層及び熱
可塑性非弾性樹脂層共に0.005g/cm3 では反発力
が失われ、振動吸収能力や変形応力吸収能力が不充分と
なりクッション機能を発現させにくくなる場合があり、
0.25g/cm3 以上では反発力が高すぎて座り心地が
悪くなる場合があるので、振動吸収能力や変形応力吸収
機能が生かせてクッション体としての機能が発現されや
すい0.01g/cm3 以上0.20g/cm3以下が好ま
しく、より好ましくは0.03g/cm3 以上0.08g
/cm3 以下である。本発明における網状体は繊度の異な
る線状を見掛け密度との組合せで最適な構成とする異繊
度積層構造とする方法も好ましい実施形態として選択で
きる。本発明の網状体の厚みは特に限定されないが、熱
可塑性弾性樹脂層の厚みは5mm未満では応力吸収機能と
応力分散機能が低下するので、好ましい厚みは力の分散
をする面機能と振動や変形応力吸収機能が発現できる厚
みとして10mm以上であり、より好ましくは20mm以上
である。熱可塑性非弾性樹脂層の厚みは、体型保持性が
発現できる5mm以上、網状体の厚みが50mmとした場
合、熱可塑性弾性樹脂層の機能が発現できる厚みを残し
て30mm以下が好ましく、より好ましくは10mm以上、
20mm未満である。本発明の網状体と連続繊維からなる
不織布が融着接合された多層網状体としての見掛け密度
は0.01g/cm3 から0.2g/cm 3 である。0.0
1g/cm3 未満では体型保持や振動吸収などのクッショ
ン機能が低下するので好ましくない。0.2g/cm3
越えると反発弾性が大きくなり座り心地が悪くなるので
好ましくない。好ましい見掛け密度は0.02g/cm3
〜0.1g/cm3 であり、より好ましくは0.03g/
cm3 〜0.06g/cm3である。網状体と不織布が接合
一体化されていない場合は、ずり変形を受けると、補強
層の形態保持機能のサポ−トがないのでフレ−ムとの接
合が不良になり、熱可塑性非弾性層が破壊する場合があ
り好ましくない。
The present invention has a fineness of 100,000 denier or less.
The lower continuous filaments are bent and brought into contact with each other
A heat-sensitive structure that forms a three-dimensional structure in which most of the parts are fused
The plastic elastic resin layer and the thermoplastic inelastic resin layer are fusion-bonded to each other.
Substantially flat surface of thermoplastic elastic resin layer
A non-woven fabric made of continuous fibers is bonded to the back surface of the reticulated body.
The density is 0.01 g / cm3To 0.2 g / cm3Multi-layer
It is a mesh. The function of the cushion material is that the cushion layer
The basic fineness is made thicker and made a little harder, and it is responsible for body shape retention
Vibration absorption with a slightly higher density due to layers and components with good vibration damping
It is composed of a layer that collects and blocks vibrations, and the surface layer has a slightly fineness.
Suitable as a slightly soft layer with a large number of thin lines
Depth of degree gives a comfortable buttocks touch to the buttocks
Uniformly distributes pressure distribution and absorbs with cushion layer
It absorbs vibrations that could not be made and blocks vibrations in the resonant parts of the human body.
By integrating the layers to be disconnected, stress and vibration can be changed together.
It can be shaped and absorbed to improve sitting comfort. Furthermore
In addition, the surface in contact with the frame is reinforced with a reinforcing material to cushion it.
The surface that is integrated with the layer and supports the cushioning material (reinforcing layer)
And the cushion keeps its shape to keep you comfortable
And it will be a durable seat. In the present invention, the cushion layer
The function of the continuous filament with fineness of 100,000 denier or less
Most of the contact parts are melted by bending and making contact with each other.
Thermoplastic elastic resin layer forming a worn three-dimensional structure
And the thermoplastic non-elastic resin layer are fusion bonded to each other
The plastic elastic resin layer surface has a substantially flat mesh surface.
Having the function of a reinforcing layer in a nonwoven fabric made of continuous fibers
And a multi-layer reticulated structure exhibiting the above-mentioned preferable cushioning function.
It is the body. The multilayer reticulate body of the present invention is for reinforcing the cushion layer.
Made of continuous fiber that is strong and has a strong reinforcing effect even if it is thin
Non-woven fabric is bonded and integrated. Bonded with cushion layer
If not, the cushioning layer reinforcement effect will be lost, so it is preferable.
Not good. Nonwoven fabric thickness when the reinforcing material is monofilament nonwoven fabric
Since the reinforcing effect of the hit is bad, the weight becomes heavy and it is not preferable.
Yes. The preferred nonwoven fabric of the present invention is a spunbond nonwoven fabric.
And the basis weight is 20 g / m2~ 500g / m2Is. Eye
Attached 20g / m2If it is less than 5, the reinforcing effect will be poor and 5
00 g / m2If it exceeds, the moldability is deteriorated, which is not preferable.
Yes. The fineness of continuous fiber is less than 1 denier that can maintain shape.
Above 100 denier from the range that does not impair the moldability.
preferable. Reinforcing layer made of continuous fibers to maintain shape
Needle punching, heat embossing and bonding.
It is preferable to use a non-woven fabric strongly reinforced with a binder.
The material of the cushion layer and the reinforcement layer is, for example, polyester.
If you unify all the seats, you will have to sort them when recycling the seats.
Therefore, it is preferable. Furthermore, it is better to use flame-retardant materials.
preferable. On the other hand, the mesh body having a cushion layer function is
The connecting line forms a three-dimensional structure and melts at most of the contact area.
Thermoplastic elastic resin layer and thermoplastic inelastic resin integrated
The fat layer is laminated so that both sides are substantially flat.
The back side is a non-woven fabric made of continuous fibers with a reinforcing layer function.
Since the surfaces are joined together, the shape of the cushion layer is retained.
The vibration given from the outside is the vibration of the thermoplastic elastic resin.
Most of the vibrations are absorbed and damped by the absorption function to create a vibration isolation layer.
Work. When a large deformation stress is applied locally
However, the deformation stress causes the net surface to be substantially flattened.
A net made of thermoplastic elastic resin with most of the contact part fused.
The deformation stress is received by the surface of the body and dispersed,
A structure in which a plastic elastic resin layer is deformed and fused and integrated.
The whole is deformed, energy is converted, and most of the deformation stress is
Deformation that was absorbed and could not be absorbed by the thermoplastic elastic resin layer
Is a three-dimensional fusion-integrated structure with a thermoplastic elastic resin layer
The net-like structure is deformed as a whole while maintaining the shape with the reinforcement layer.
Response to individual filaments in layers composed of thermoplastic inelastic resin
Elasticity of thermoplastic inelastic resin filaments can be avoided because force concentration can be avoided
A thermoplastic non-elastic resin that easily absorbs stress even within the limit
Deforms as long as it exhibits anti-compression but does not exceed the elastic limit
However, when the stress is released, the thermoplastic inelastic resin filament layer also
Elastic recovery, and the thermoplastic elastic resin layer also exhibits rubber elasticity
It easily recovers to its original form, so it has good sag resistance.
In both cases, the deformation strain with respect to the stress during compression changes linearly,
When sitting, it supports the buttocks with a low repulsive force and moderately sinks.
It does not give a feeling of being on the floor because it causes
It A mesh made of only thermoplastic elastic resin has a softness
The present invention solves the problem that the subduction is slightly increased.
The mold holding function was improved. Only made of known inelastic resin
A mesh composed of linear filaments cannot be absorbed by the surface layer.
It does not have rubber elasticity when subjected to threshold deformation
The plastic deformation is more likely to occur and the recovery is lost, resulting in poor durability. network
If the surface of the body is not substantially flattened,
External force is selectively applied to the surface line and the adhesive point.
Transmission and stress concentration may occur.
Fatigue caused by stress concentration due to external force
There is a case where the sex is deteriorated. Note that the deformation stress is transmitted from the outside.
If the layer to be reached is made of thermoplastic elastic resin, it has a three-dimensional structure.
Stress concentration is relaxed because the entire structure is deformed in the building part
However, if it consists of non-elastic resin only, the stress
Concentrated at the bonding point, structural destruction occurs and recovery is not possible. Further
The surface is not substantially flat and has
When you sit down, you feel uncomfortable in your buttocks
Not preferable. If the line is not continuous,
In the case of a thick net, the adhesion point becomes the stress transmission point and
Extreme stress concentration at the point of contact causes structural destruction and heat resistance and durability
It is inferior in properties and is not preferable. If not fused, keep the shape
Since it cannot be held and the structure does not deform integrally, stress concentration
Fatigue phenomenon occurs due to
It is not preferable because it is deformed and the body shape cannot be maintained. Book
The more preferred degree of fusion of the invention is that the filaments are in contact
Most of the part is fused, most preferably
All the contact parts are in a fused state. Thus, continuous line
Forming a three-dimensional three-dimensional structure in which the contact portions of the stripes are mostly fused.
Thermoplastic with good vibration absorption and elastic recovery integrated with fusion
A layer of elastic resin and a layer of thermoplastic inelastic resin with anti-compression properties
Are laminated and fused together to form a flat surface.
The mesh with the cushion layer function is transmitted from the surface layer.
The deformation stress that is generated is received on the surface and the dispersion of stress is improved,
The stress applied to each line is reduced and the reinforcement layer maintains its shape.
The entire structure deforms while holding it, absorbs the deformation stress, and
The cushioning that supports the parts is also improved, and the stress is released
The vibration transmitted from the frame through the reinforcing layer is also recovered.
The thermoplastic elastic resin part with good dynamic absorption and elastic recovery absorbs
It sits comfortably in order to cut off the vibration of the resonance part of the human body.
The durability can be improved. From this purpose,
The fineness of the filaments forming the bright mesh is determined by the thermoplastic elastic resin layer.
And thermoplastic non-elastic resin layer for both 100,000 denier or less
Below. Apparent density 0.2g / cm 3If you
If the number exceeds 100,000 denier, the number of components will be small.
Structure, resulting in uneven density and partial poor durability.
Fatigue due to stress concentration, resulting in reduced durability.
It is not preferable. Fibers of filaments that form the mesh body of the present invention
As for the degree, if the fineness is too fine, the compression resistance becomes too low and the deformation
As the stress absorbability due to
is there. The preferred range of the thermoplastic elastic resin layer is anti-compression.
More than 300 denier, which is effective, to reduce the number of components
50,000 denier or less, which does not impair the structural precision
Below. More preferably 500 denier or more, 100
It is not more than 00 denier. Thermoplastic inelastic resin layer preferred
The new range is less than 500 denier, where the effect of anti-compression property is easy to appear.
In addition, the structure does not lose its compactness due to the decrease in the number of components.
It is below 50,000 denier. More preferably 100
It is 0 denier or more and 10,000 denier or less. Starting
The apparent density of the bright mesh is determined by the thermoplastic elastic resin layer and the
0.005 g / cm for both plastic and inelastic resin layers3Then repulsive force
Is lost and the vibration absorption capacity and deformation stress absorption capacity are insufficient.
It may become difficult to develop the cushion function,
0.25g / cm3Above, the repulsive force is too high and the sitting comfort
As it may worsen, vibration absorption capacity and deformation stress absorption
The function as a cushion body is expressed by utilizing the function.
0.01 g / cm30.20 g / cm or more3I like the following
And more preferably 0.03 g / cm30.08g or more
/cm3It is the following. The reticulate body in the present invention has different fineness.
Different fibers that have an optimal configuration in combination with the apparent linear density
A method of forming a laminated structure can be selected as a preferred embodiment.
Wear. The thickness of the reticulate body of the present invention is not particularly limited,
If the thickness of the plastic elastic resin layer is less than 5 mm, it has a stress absorbing function.
Since the stress distribution function is reduced, the preferred thickness is the distribution of force.
A thickness that can develop the surface function to perform vibration and the function to absorb vibration and deformation stress
Only 10 mm or more, more preferably 20 mm or more
Is. The thickness of the thermoplastic inelastic resin layer is
When the thickness is 5 mm or more, and the thickness of reticulate body is 50 mm,
In this case, leave a thickness that allows the function of the thermoplastic elastic resin layer to be expressed.
Is preferably 30 mm or less, more preferably 10 mm or more,
It is less than 20 mm. Consisting of the reticulate body of the present invention and continuous fibers
Apparent Density as a Multi-Layered Mesh Formed by Fusion Bonding Nonwoven Fabrics
Is 0.01 g / cm3To 0.2 g / cm 3Is. 0.0
1 g / cm3If less than, cushioning such as body shape retention and vibration absorption
It is not preferable because it will reduce the function. 0.2 g / cm3To
If you exceed it, the impact resilience will increase and you will feel uncomfortable.
Not preferable. Preferred apparent density is 0.02g / cm3
~ 0.1g / cm3And more preferably 0.03 g /
cm3~ 0.06g / cm3Is. Mesh and non-woven fabric are joined
If not integrated, reinforced when subjected to shear deformation
Since there is no support for the shape retention function of the layer, it can be connected to the frame.
May become defective and the thermoplastic inelastic layer may break.
Less preferred.

【0013】本発明の網状体の線条の断面形状は特には
限定されないが、中空断面や異形断面にすることで好ま
しい抗圧縮性(反発力)やタッチを付与することができ
るので特に好ましい。抗圧縮性は繊度や用いる素材のモ
ジュラスにより調整して、繊度を細くしたり、柔らかい
素材では中空率や異形度を高くし初期圧縮応力の勾配を
調整できるし、繊度をやや太くしたり、ややモジュラス
の高い素材では中空率や異形度を低くして座り心地が良
好な抗圧縮性を付与する。中空断面や異形断面の他の効
果として中空率や異形度を高くすることで、同一の抗圧
縮性を付与した場合、より軽量化が可能となり、自動車
等の座席に用いると省エネルギ−化ができ、布団などの
場合は、上げ下ろし時の取扱性が向上する。好ましい抗
圧縮性(反発力)やタッチを付与することができる他の
好ましい方法として、本発明の網状体の線条を複合構造
とする方法がある。複合構造としては、シ−スコア構造
またはサイドバイサイド構造及びそれらの組合せ構造な
どが挙げられる。が、特には熱可塑性弾性樹脂層が大変
形してもエネルギ−変換できない振動や変形応力をエネ
ルギ−変換して回復できる立体3次元構造とするために
線状の表面の50%以上を柔らかい熱可塑性弾性樹脂が
占めるシ−スコア構造またはサイドバイサイド構造及び
それらの組合せ構造などが挙げられる。すなわち、シ−
スコア構造ではシ−ス成分は振動や変形応力をエネルギ
−変換が容易なソフトセグメント含有量が多い熱可塑性
弾性樹脂とし、コア成分はソフトセグメント含有量の少
ない熱可塑性弾性樹脂とし、抗圧縮性を付与することで
適度の沈み込みによる臀部への快適なタッチを与えるこ
とができる。サイドバイサイド構造では振動や変形応力
をエネルギ−変換が容易なソフトセグメント含有量が多
い熱可塑性弾性樹脂の溶融粘度を抗圧縮性を示すソフト
セグメント含有量の少ない熱可塑性弾性樹脂の溶融粘度
より低くして線状の表面を占めるソフトセグメント含有
量が多い熱可塑性弾性樹脂の割合を多くした構造(比喩
的には偏芯シ−ス・コア構造のシ−スに熱可塑性弾性樹
脂を配した様な構造)として線状の表面を占めるソフト
セグメント含有量が多い熱可塑性弾性樹脂の割合を80
%以上としたものが特に好ましく、最も好ましくは線状
の表面を占めるソフトセグメント含有量が多い熱可塑性
弾性樹脂の割合を100%としたシ−スコアである。ソ
フトセグメント含有量が多い熱可塑性弾性樹脂の線状の
表面を占める割合が多くなると、溶融して融着するとき
の流動性が高いので接着が強固になる効果があり、構造
が一体で変形する場合、接着点の応力集中に対する耐疲
労性が向上し、耐熱性や耐久性がより向上する。
The cross-sectional shape of the filaments of the reticulate body of the present invention is not particularly limited, but a hollow cross-section or a deformed cross-section is particularly preferable because it can impart preferable anti-compression property (repulsive force) and touch. The anti-compression property can be adjusted by the fineness and the modulus of the material used to make the fineness fine, or in the soft material the hollowness and the irregularity can be increased to adjust the gradient of the initial compression stress, and the fineness can be made slightly thicker or slightly. A material with a high modulus lowers the hollow ratio and the degree of irregularity to provide anti-compression property with a comfortable sitting feeling. As another effect of the hollow cross section and the irregular cross section, by increasing the hollow ratio and the degree of irregularity, if the same anti-compression property is given, the weight can be further reduced, and the energy saving can be achieved when it is used for the seat of an automobile or the like. If it is a futon or the like, it will be easier to handle when raising and lowering. As another preferable method for imparting preferable anti-compression property (repulsive force) and touch, there is a method of forming the filament of the reticulated body of the present invention into a composite structure. Examples of the composite structure include a score core structure, a side-by-side structure, and a combination structure thereof. However, in particular, 50% or more of the linear surface is softly heat-treated in order to form a three-dimensional three-dimensional structure capable of energy-converting and recovering vibration and deformation stress that cannot be energy-converted even if the thermoplastic elastic resin layer is largely deformed. Examples thereof include a sheath core structure or a side-by-side structure occupied by a plastic elastic resin, and a combination thereof. That is, see
In the score structure, the sheath component is a thermoplastic elastic resin with a large soft segment content that facilitates energy conversion of vibrations and deformation stresses, and the core component is a thermoplastic elastic resin with a small soft segment content to provide anti-compression properties. By giving it, it is possible to give a comfortable touch to the buttocks due to a proper depression. In the side-by-side structure, the melt viscosity of a thermoplastic elastic resin with a high soft segment content that facilitates energy conversion of vibration and deformation stress is made lower than that of a thermoplastic elastic resin with a low soft segment content that exhibits anti-compressibility. A structure in which the proportion of thermoplastic elastic resin occupying a linear surface and having a large amount of soft segment is increased (metaphorically, a structure in which a thermoplastic elastic resin is arranged in an eccentric sheath-core structure) ), The proportion of the thermoplastic elastic resin occupying the linear surface and having a large soft segment content is 80
% Or more is particularly preferable, and most preferably, it is a sheath core in which the proportion of the thermoplastic elastic resin having a large soft segment content occupying the linear surface is 100%. When the proportion of the thermoplastic elastic resin with a large soft segment content that occupies the linear surface is large, the flowability when melting and fusing is high, so there is the effect of strengthening the adhesion, and the structure deforms as a unit. In this case, the fatigue resistance against stress concentration at the bonding points is improved, and the heat resistance and durability are further improved.

【0014】熱可塑性弾性樹脂層と熱可塑性非弾性樹脂
層とが融着接合した多層網状体は実質的に表面がフラッ
ト化されて、接触部の大部分が融着していること、及び
裏面が補強効果の高い連続繊維からなる不織布を接合一
体化しており、両面が実質的にフラット化されているの
で、多層網状体と他の網状体、不織布、編織物、硬綿、
フイルム、発泡体、金属等の被熱接着体とを接着するの
に、他の熱接着成分(熱接着不織布、熱接着繊維、熱接
着フィルム、熱接着レジン等)や接着剤等を用いて一体
積層構造体化し、車両用座席、船舶用座席、車両用、船
舶用、病院用等の業務用及び家庭用ベット、家具用椅
子、事務用椅子、布団類等の製品を得る場合、被接着体
面との接触面積を広くできるので、接着面積が広くなり
強固に接着した接着耐久性も良好な製品を得ることがで
きる。なお、多層網状体形成段階から製品化される任意
の段階で上述の疑似結晶化処理を施すことにより、構造
体中の熱可塑性弾性樹脂成分を示差走査型熱量計で測定
した融解曲線に室温以上融点以下の温度に吸熱ピークを
持つようにすると製品の耐熱耐久性が格段に向上するの
でより好ましい。本発明の多層網状体の熱可塑性弾性樹
脂層の線条を複合構造化して、振動や変形応力をエネル
ギ−変換が容易なソフトセグメント含有量が多い低融点
の熱可塑性弾性樹脂を熱接着成分、形態保持成分にソフ
トセグメント含有量の少ない熱可塑性弾性樹脂とするこ
とで熱接着機能を付与できる。好ましい熱接着機能付与
には、例えば、シ−スコア構造ではシ−ス成分の振動や
変形応力をエネルギ−変換が容易なソフトセグメント含
有量が多い熱可塑性弾性樹脂を熱接着成分とし、コア成
分にソフトセグメント含有量の少ない熱可塑性弾性樹脂
を網状形態の保持機能をもたせるための高融点成分とす
る構成で、熱接着成分の融点を高融点樹脂の融点より1
0℃以上低くしたものを用いることにより熱接着層の機
能が付与できる。好ましい熱接着成分の融点は高融点成
分の融点より15℃から50℃低い融点であり、より好
ましくは20℃から40℃低い融点である。好ましい実
施形態である熱接着機能を持つ本発明の多層網状体は実
質的に表面がフラット化されて、接触部の大部分が融着
していることで、網状体、不織布、編織物、硬綿、フイ
ルム、発泡体、金属等の被熱接着体面との接触面積を広
くできるので、熱接着面積が広くなり、強固に熱接着し
た新たな成形体及び車両用座席、船舶用座席、車両用、
船舶用、病院用等の業務用及び家庭用ベット、家具用椅
子、事務用椅子、布団類になった製品を得ることができ
る。なお、新たな成形体及び製品が製品化されるまでの
任意の段階で疑似結晶化処理を施すことにより、構造体
中の熱可塑性弾性樹脂からなる線条を示差走査型熱量計
で測定した融解曲線に室温以上融点以下の温度に吸熱ピ
ークを持つようにすると製品の耐熱耐久性が格段に向上
したものを提供できるのでより好ましい。熱接着時に被
接着体を伸張した状態で接着すると、被接着体は接着層
のゴム弾性で伸張された状態が緩和しないので張りのあ
る、皺になりにくい成形体とすることもできる。
The multilayer reticulate body in which the thermoplastic elastic resin layer and the thermoplastic non-elastic resin layer are fusion-bonded has a substantially flat surface, and most of the contact portions are fused, and the back surface is Is a bonded and integrated non-woven fabric made of continuous fibers having a high reinforcing effect, and since both sides are substantially flattened, the multi-layer net and other nets, non-woven fabric, knitted fabric, hard cotton,
In order to bond the film, foam, metal, etc. to be heat-bonded, it is integrated by using other heat-bonding components (heat-bonding nonwoven fabric, heat-bonding fiber, heat-bonding film, heat-bonding resin, etc.) and adhesives. When a laminated structure is used to obtain products such as vehicle seats, ship seats, vehicle seats, ship seats, hospital beds and other commercial and household beds, furniture chairs, office chairs, futons, etc. Since the contact area with the can be widened, the adhesive area can be widened, and a product with strong adhesion and good adhesion durability can be obtained. In addition, by performing the above-mentioned pseudo-crystallization treatment at any stage of commercialization from the multilayer network forming step, the thermoplastic elastic resin component in the structure has a melting curve measured by a differential scanning calorimeter at room temperature or higher. Having an endothermic peak at a temperature equal to or lower than the melting point is more preferable because the heat resistance and durability of the product is remarkably improved. The linear structure of the thermoplastic elastic resin layer of the multilayer reticulate body of the present invention has a composite structure, and a low melting point thermoplastic elastic resin having a large soft segment content that facilitates energy conversion of vibrations and deformation stresses is a thermal adhesive component, By using a thermoplastic elastic resin having a low content of the soft segment as the shape-retaining component, a heat-adhesion function can be imparted. In order to impart a preferable heat-adhesive function, for example, in a sheath-core structure, a thermoplastic elastic resin having a large soft segment content that facilitates energy conversion of vibration and deformation stress of a sheath component is used as a heat-adhesive component and a core component is used. A thermoplastic elastic resin with a low soft segment content is used as a high melting point component to have a net-like shape holding function.
The function of the heat-bonding layer can be imparted by using the one whose temperature is lowered by 0 ° C. or more. The melting point of the heat-bonding component is preferably 15 ° C. to 50 ° C. lower than the melting point of the high melting point component, and more preferably 20 ° C. to 40 ° C. lower. The multilayer reticulate body of the present invention having a heat-bonding function, which is a preferred embodiment, has a substantially flat surface, and most of the contact portions are fused, so that the reticulate body, the nonwoven fabric, the knitted fabric, the hard fabric Since the contact area with the surface of the heat-bonded material such as cotton, film, foam, metal, etc. can be widened, the heat-bonded area becomes wider, and a new molded article with strong heat-bonding and seats for vehicles, seats for ships, vehicles ,
Products such as commercial and domestic beds for ships and hospitals, furniture chairs, office chairs, and futons can be obtained. In addition, by performing pseudo crystallization at any stage until new molded products and products are commercialized, the filaments made of the thermoplastic elastic resin in the structure are melted by a differential scanning calorimeter. It is more preferable to make the curve have an endothermic peak at a temperature of room temperature or higher and melting point or lower because a product with significantly improved heat resistance and durability can be provided. When the adherend is adhered in a stretched state at the time of heat-bonding, the adhered body does not relax the stretched state due to the rubber elasticity of the adhesive layer, so that the adherend can be a molded body having tension and less likely to wrinkle.

【0015】次に、本発明の製法を述べる。本発明の製
法は複数のオリフィスを持つ多列ノズルより熱可塑性弾
性樹脂と熱可塑性非弾性樹脂とを各層にできる様に各ノ
ズルオリフィスに分配し、該熱可塑性樹脂の融点より1
0℃以上、120℃未満高い溶融温度で、該ノズルより
下方に向けて吐出させ、溶融状態で互いに接触させて融
着させ3次元構造を形成しつつ、片面に連続繊維からな
る不織布を接合させて引取り装置で挟み込み冷却槽で冷
却せしめる多層網状体の製法である。網状体はの製法で
ある。網状体は、一般的な多成分押出機を用い、熱可塑
性弾性樹脂と熱可塑性非弾性樹脂を各単独成分毎に別々
に溶融し、ノズル背面で熱可塑性弾性樹脂を網状体の片
面又は両面を構成するように分配し、熱可塑性非弾性樹
脂を他の部分に分配してオリフィスより下方へ吐出す
る。シ−スコアでは、コア成分を中心から供給し、その
回りからシ−ス成分を合流させ吐出する。サイドバイサ
イドでは左右又は前後から各成分を合流させ吐出する。
本発明の好ましい実施形態では、例えば、長手方向の有
効幅50mm、ノズルの幅方向の列の孔間ピッチは10mm
一定、列間のピッチが5mm一定の丸断面のオリフィス形
状の場合、熱可塑性弾性樹脂層を、片面に配する場合は
1列目〜7列目、両面に配する場合は1列目〜6列目と
10列目〜11列目に分配し、熱可塑性非弾性樹脂を他
の列に分配して、好ましくは、各成分の融点より10℃
以上、120℃以下の同一の溶融温度で、各成分の層が
所望の見掛け密度になる吐出量、例えば、単孔吐出量
は、熱可塑性弾性樹脂層の部分は2.5g/分、熱可塑
性非弾性樹脂層となる部分は2g/分のように、好まし
くは、各成分を各ギヤポンプにてノズルへ溶融状態の熱
可塑性樹脂を送り、下方に向けて各オリフィスより吐出
させる。この時の溶融温度は、熱可塑性樹脂の融点より
10℃〜120℃高い温度である。低融点成分の融点よ
り120℃を越える高い溶融温度にすると熱分解が著し
くなり熱可塑性樹脂の特性が低下するので好ましくな
い。他方、高融点成分の融点より10℃以上高くしない
とメルトフラクチャ−を発生し正常な線条形成が出来な
くなり、また、吐出後ル−プ形成しつつ接触させ融着さ
せる際、線条の温度が低下して線条同士が融着しなくな
り接着が不充分な網状体となる場合があり好ましくな
い。好ましい溶融温度は低融点成分の融点より20℃か
ら100℃高い温度、より好ましくは融点より30℃か
ら80℃高い温度であり、高融点成分の融点より15℃
から40℃高い温度、より好ましくは融点より20℃か
ら30℃高い温度となる同一の溶融温度で吐出する。し
かして、本発明では、溶融状態の線状を互いに接触させ
て融着させ3次元構造を形成しつつ、片面に連続繊維か
らなる不織布を接合させるため、溶融状態の線状を互に
融着させうる温度より5℃以上高くしないと不織布と線
状の融着接合が不充分になる。好ましい溶融温度は低融
点成分の融点より20℃から100℃高い温度、より好
ましくは融点より30℃から80℃高い温度であり、高
融点成分の融点より15℃から40℃高い温度、より好
ましくは融点より20℃から30℃高い温度となる同一
の溶融温度で吐出させる。複合紡糸の場合は合流直前の
溶融温度差は10℃以下にしないと異常流動を発生し複
合形態の形成が損なわれる場合がある。オリフィスの形
状は特に限定されないが、中空断面(例えば三角中空、
丸型中空、突起つきの中空等となるよう形状)及び、又
は異形断面(例えば三角形、Y型、星型等の断面二次モ
−メントが高くなる形状)とすることで前記効果以外に
溶融状態の吐出線条が形成する3次元構造が流動緩和し
難くし、逆に接触点での流動時間を長く保持して接着点
を強固にできるので特に好ましい。特開平1−2075
号公報に記載の接着のための加熱をする場合、3次元構
造が緩和し易くなり平面的構造化し、3次元立体構造化
が困難となるので好ましくない。網状体の特性向上効果
としては、見掛けの嵩を高くでき軽量化になり、また抗
圧縮性が向上し、弾発性も改良できへたり難くなる。中
空断面では中空率が80%を越えると断面が潰れ易くな
るので、好ましくは軽量化の効果が発現できる10%以
上70%以下、より好ましくは20%以上60%以下で
ある。オリフィスの孔間ピッチは線状が形成するル−プ
が充分接触できるピッチとする必要がある。緻密な構造
にするには孔間ピッチを短くし、粗密な構造にするには
孔間ピッチを長くする。本発明の孔間ピッチは好ましく
は3mm〜20mm、より好ましくは5mm〜10mmである。
本発明のより好ましい実施形態からは、構成本数を熱可
塑性弾性樹脂層で増やす場合、例えば、1列目から6列
目の孔間ピッチを5mm、10列目と11列目の孔間ピッ
チを6.67mmに変更して各成分の全吐出量を同一で吐
出させれば、熱可塑性弾性樹脂層の見掛け密度を0.0
55g/cm3 、及び0.067g/cm3 、熱可塑性非弾
性樹脂層の見掛け密度を0.041g/cm3 のまま変え
ずに構成本数を2倍、及び約1.5倍に増加させた緻密
な熱可塑性弾性樹脂層にできる。勿論、熱可塑性非弾性
樹脂層の特定部分の孔密度をかえて、クッション特性を
最適化することができる。本発明では所望に応じ異密度
化や異繊度化もできる。列間のピッチ又は孔間のピッチ
も変えた構成、及び列間と孔間の両方のピッチも変える
方法などで異密度層を形成できる。また、オリフィスの
断面積を変えて吐出時の圧力損失差を付与すると、溶融
した熱可塑性樹脂を同一ノズルから一定の圧力で押し出
される吐出量が圧力損失の大きいオリフィスほど少なく
なる原理を用いると列内、列間で異繊度線条からなる網
状構造体も製造できる。例えば上述のように7列目から
9列目に熱可塑性非弾性樹脂を分配する場合、7列目か
ら8列目のオリフィス径を0.7mm、孔間ピッチを5mm
とし、他の列のオリフィス径を1.0mmとすることで非
弾性樹脂の層を2層形成して座り心地や変形応力の分散
を良くすることができる。次いで、該ノズルより下方に
向けて吐出させ、ル−プを形成させつつ溶融状態で互い
に接触させて融着させ3次元構造を形成しつつ、片面に
連続繊維からなる不織布を連続的に供給し、溶融状態の
3次元立体構造体と接合させた、線状が溶融状態の多層
網状構造体両面を引取りネットで挟み込み、網状体の表
面の溶融状態の曲がりくねった吐出線条を45°以上折
り曲げて変形させて表面をフラット化すると同時に曲げ
られていない吐出線条との接触点を接着して構造を形成
後、連続して冷却媒体(通常は室温の水を用いるのが冷
却速度を早くでき、コスト面でも安くなるので好まし
い)で急冷して本発明の3次元立体網状構造体化した積
層網状体を得る。ノズル面と引取り点の距離は少なくと
も40cm以下にすることで吐出線条が冷却され接触部が
融着しなくなることを防ぐのが好ましい。吐出線条の吐
出量5g/分孔以上と多い場合は10cm〜40cmが好ま
しく、吐出線条の吐出量5g/分孔未満と少ない場合は
5cm〜20cmが好ましい。積層網状体の厚みは溶融状態
の3次元立体構造体両面を挟み込む引取りネットの開口
幅(引取りネット間の間隔)で決まる。本発明では上述
の理由から引取りネットの開口幅は5mm以上とする。次
いで水切り乾燥するが冷却媒体中に界面活性剤等を添加
すると、水切りや乾燥がしにくくなったり、熱可塑性弾
性樹脂が膨潤することもあり好ましくない。次いで所望
の長さまたは形状に切断してクッション材に用いる。
尚、ノズル面と樹脂を固化させる冷却媒体上に設置した
引取りコンベアとの距離、樹脂の溶融粘度、オリフィス
の孔径と吐出量などにより所望のループ径や線径をきめ
られる。冷却媒体上に設置した間隔が調整可能な一対の
引取りコンベアで溶融状態の吐出線条を挟み込み停留さ
せることで互いに接触した部分を融着させつつ連続的に
供給される連続繊維からなる不織布とも接合融着させ、
連続して冷却媒体中に引込み固化させ網状構造体を形成
する時、上記コンベアの間隔を調整することで、融着し
た網状体が溶融状態でいる間で厚み調節が可能となり、
所望の厚みのものが得られる。コンベア速度も速すぎる
と、接触点の形成が不充分になったり、融着点が充分に
形成されるまでに冷却され、接触部の融着が不充分にな
る場合がある。また、速度が遅過ぎると溶融物が滞留し
過ぎ、密度が高くなるので、所望の見掛け密度に適した
コンベア速度を設定する必要がある。なお、連続的に供
給される連続繊維からなる不織布の供給速度は引取りコ
ンベアの表面速度と同一にしないと引きつれや弛みを生
じクッションの補強機能が低下するので好ましくない。
本発明の好ましい方法としては、一旦冷却後、一体成形
して製品化に至る任意の工程で熱可塑性弾性樹脂の融点
より少なくとも10℃以下の温度でアニ−リングよる疑
似結晶化処理を行い多層網状体又は製品を得るのがより
好ましい製法である。疑似結晶化処理温度は、少なくと
も融点(Tm)より10℃以上低く、Tanδのα分散
立ち上がり温度(Tαcr)以上で行う。この処理で、
融点以下に吸熱ピ−クを持ち、疑似結晶化処理しないも
の(吸熱ピ−クを有しないもの)より耐熱耐へたり性が
著しく向上する。本発明の好ましい疑似結晶化処理温度
は(Tαcr+10℃)から(Tm−20℃)である。
単なる熱処理により疑似結晶化させると耐熱耐へたり性
が向上する。が更には、10%以上の圧縮変形を付与し
てアニ−リングすることで耐熱耐へたり性が著しく向上
するのでより好ましい。また、一旦冷却後、乾燥工程を
経する場合、乾燥温度をアニ−リング温度とすることで
同時に疑似結晶化処理を行うができる。また、製品化す
る工程で別途疑似結晶化処理を行うができる。
Next, the manufacturing method of the present invention will be described. In the manufacturing method of the present invention, a thermoplastic elastic resin and a thermoplastic inelastic resin are distributed to each nozzle orifice so as to form each layer from a multi-row nozzle having a plurality of orifices.
A non-woven fabric made of continuous fibers is bonded on one side while being discharged from the nozzle downward at a melting temperature higher than 0 ° C. and lower than 120 ° C., contacting each other in a molten state and fusing to form a three-dimensional structure. It is a method of manufacturing a multi-layer mesh body that is sandwiched by a take-up device and cooled in a cooling tank. The reticulated body is a manufacturing method of. The reticulated body uses a general multi-component extruder to melt the thermoplastic elastic resin and the thermoplastic non-elastic resin separately for each individual component, and the thermoplastic elastic resin is applied to one or both sides of the reticulated body on the back surface of the nozzle. The thermoplastic inelastic resin is distributed to other parts and discharged downward from the orifice. In the sheath core, the core component is supplied from the center, and the sheath component is merged and discharged from around the core component. On the side-by-side, the components are merged and discharged from the left and right or the front and back.
In a preferred embodiment of the present invention, for example, the effective width in the longitudinal direction is 50 mm, and the pitch between the holes in the rows in the width direction is 10 mm.
In the case of a circular cross-section orifice shape with a constant pitch of 5 mm between rows, the thermoplastic elastic resin layer is arranged in one row to the seventh row when arranged on one side, and in the first row to six rows when arranged on both sides. Distribute into the 10th to 11th rows and the thermoplastic non-elastic resin into the other rows, preferably 10 ° C from the melting point of each component.
As described above, at the same melting temperature of 120 ° C. or less, the discharge amount at which the layers of the respective components have the desired apparent density, for example, the single hole discharge amount is 2.5 g / min for the thermoplastic elastic resin layer portion, The portion which becomes the non-elastic resin layer is preferably 2 g / min, and each component is preferably fed with a molten thermoplastic resin to the nozzle by each gear pump and discharged downward from each orifice. The melting temperature at this time is 10 ° C. to 120 ° C. higher than the melting point of the thermoplastic resin. When the melting temperature is higher than the melting point of the low-melting point component and exceeds 120 ° C., thermal decomposition is remarkable and the characteristics of the thermoplastic resin are deteriorated, which is not preferable. On the other hand, unless the temperature is higher than the melting point of the high-melting point component by 10 ° C. or more, melt fracture occurs and normal filament formation becomes impossible, and the temperature of the filament when contacting and fusing while forming loop after discharge. May decrease, and the filaments may not be fused to each other, resulting in a network with insufficient adhesion, which is not preferable. A preferable melting temperature is 20 ° C. to 100 ° C. higher than the melting point of the low melting point component, more preferably 30 ° C. to 80 ° C. higher than the melting point, and 15 ° C. higher than the melting point of the high melting point component.
To 40 ° C. higher, more preferably 20 ° C. to 30 ° C. higher than the melting point, at the same melting temperature. According to the present invention, however, since the melted linear shapes are brought into contact with each other and fused to form a three-dimensional structure, the nonwoven fabric made of continuous fibers is bonded to one surface of the melted linear shapes. If the temperature is not higher than the temperature that can be applied by 5 ° C. or more, the linear fusion bonding with the nonwoven fabric becomes insufficient. The preferred melting temperature is 20 ° C. to 100 ° C. higher than the melting point of the low melting point component, more preferably 30 ° C. to 80 ° C. higher than the melting point, and 15 ° C. to 40 ° C. higher than the melting point of the high melting point component, more preferably Discharge at the same melting temperature, which is 20 ° C. to 30 ° C. higher than the melting point. In the case of composite spinning, unless the difference in melting temperature immediately before joining is 10 ° C. or less, abnormal flow may occur and the formation of composite morphology may be impaired. The shape of the orifice is not particularly limited, but a hollow cross section (for example, triangular hollow,
In addition to the above effects, the melted state can be achieved by using a round hollow shape, a hollow shape with protrusions, etc.) This is particularly preferable because the three-dimensional structure formed by the discharge line makes it difficult to relax the flow, and conversely holds the flow time at the contact point for a long time to strengthen the adhesion point. Japanese Patent Laid-Open No. 1-2075
In the case of heating for adhesion as described in Japanese Patent Publication, it is not preferable because the three-dimensional structure is likely to be relaxed, a planar structure is formed, and a three-dimensional three-dimensional structure becomes difficult. As an effect of improving the properties of the reticulate body, the apparent bulk can be increased, the weight can be reduced, the anti-compression property can be improved, and the elasticity can be improved, which is difficult to obtain. In the hollow cross section, if the hollow ratio exceeds 80%, the cross section tends to be crushed. Therefore, it is preferably 10% or more and 70% or less, more preferably 20% or more and 60% or less, which can exhibit the effect of weight reduction. The pitch between the holes of the orifice needs to be a pitch with which the loop formed by the line can sufficiently contact. The pitch between holes is shortened for a dense structure, and the pitch between holes is lengthened for a coarse structure. The pitch between the holes of the present invention is preferably 3 mm to 20 mm, more preferably 5 mm to 10 mm.
According to a more preferred embodiment of the present invention, when the number of constituents is increased by the thermoplastic elastic resin layer, for example, the hole pitch in the first to sixth rows is 5 mm, and the hole pitch in the tenth and eleventh rows is If the total discharge amount of each component is made to be the same while changing to 6.67 mm, the apparent density of the thermoplastic elastic resin layer becomes 0.0
55 g / cm 3, and 0.067 g / cm 3, increased the apparent density of the thermoplastic non-elastic resin layer 2 fold configuration number without changing leave 0.041 g / cm 3, and about 1.5 times A dense thermoplastic elastic resin layer can be formed. Of course, the cushion characteristics can be optimized by changing the pore density of a specific portion of the thermoplastic non-elastic resin layer. In the present invention, different densities and different fineness can be obtained as desired. The different density layer can be formed by a configuration in which the pitch between rows or the pitch between holes is also changed, or a method in which the pitch between both rows and holes is also changed. In addition, if the difference in pressure loss at the time of discharge is given by changing the cross-sectional area of the orifice, the discharge amount of the molten thermoplastic resin extruded from the same nozzle at a constant pressure will decrease as the orifice with the larger pressure loss is used. It is also possible to manufacture a net-like structure composed of filaments of different fineness between the rows. For example, when the thermoplastic inelastic resin is distributed in the 7th to 9th rows as described above, the orifice diameter in the 7th to 8th rows is 0.7 mm, and the hole pitch is 5 mm.
By setting the orifice diameters of the other rows to 1.0 mm, two layers of inelastic resin can be formed to improve sitting comfort and dispersion of deformation stress. Then, it is discharged downward from the nozzle, and while forming a loop, they are brought into contact with each other in a molten state and fused to form a three-dimensional structure, and a nonwoven fabric made of continuous fibers is continuously supplied to one surface. , Both sides of the multi-layer network structure in which the linear state is melted, joined to a three-dimensional three-dimensional structure in the molten state, are sandwiched by a take-up net, and the winding twisted discharge line on the surface of the network body is bent by 45 ° or more. To flatten the surface at the same time to form a structure by adhering the contact points with the discharge line that is not bent, to form a structure, and then continuously use a cooling medium (usually water at room temperature can increase the cooling rate. However, it is preferable in terms of cost), so that the three-dimensional three-dimensional net-structured laminated net body of the present invention is obtained. The distance between the nozzle surface and the take-off point is preferably at least 40 cm or less to prevent the discharge filament from being cooled and the contact portion not being fused. When the discharge amount of the discharge line is large at 5 g / min or more, 10 cm to 40 cm is preferable, and when the discharge amount of the discharge line is less than 5 g / min hole, 5 cm to 20 cm is preferable. The thickness of the laminated network is determined by the opening width of the take-up net (interval between the take-up nets) that sandwiches both surfaces of the three-dimensional structure in the molten state. In the present invention, the opening width of the take-up net is set to 5 mm or more for the above reason. Next, it is drained and dried, but if a surfactant or the like is added to the cooling medium, draining and drying may be difficult, or the thermoplastic elastic resin may swell, which is not preferable. Then, it is cut into a desired length or shape and used as a cushion material.
The desired loop diameter and wire diameter can be determined by the distance between the nozzle surface and the take-up conveyor installed on the cooling medium for solidifying the resin, the melt viscosity of the resin, the orifice hole diameter and the discharge amount, and the like. A non-woven fabric composed of continuous fibers that are continuously supplied while fusing the portions in contact with each other by sandwiching and holding the discharge filaments in a molten state with a pair of take-up conveyors with adjustable spacing installed on the cooling medium. Fusion bonding,
When forming a net-like structure by continuously drawing and solidifying in a cooling medium, by adjusting the interval of the conveyor, it is possible to adjust the thickness while the fused net-like body is in a molten state,
A desired thickness is obtained. If the conveyor speed is too high, the formation of contact points may be insufficient, or the contact point may be cooled until the fusion point is sufficiently formed, resulting in insufficient fusion of the contact portion. Further, if the speed is too slow, the melt will stay too much and the density will increase, so it is necessary to set the conveyor speed suitable for the desired apparent density. It should be noted that if the supply speed of the nonwoven fabric made of continuous fibers is not the same as the surface speed of the take-up conveyor, pulling or loosening will occur and the reinforcing function of the cushion will deteriorate, which is not preferable.
As a preferred method of the present invention, after cooling once, pseudo-crystallization treatment by annealing is performed at a temperature of at least 10 ° C. or lower than the melting point of the thermoplastic elastic resin in any step leading to product formation into a product to obtain a multi-layer network. Obtaining a body or product is a more preferred method of preparation. The pseudo-crystallization treatment temperature is at least 10 ° C. lower than the melting point (Tm), and is higher than the α dispersion rising temperature (Tαcr) of Tan δ. In this process,
It has an endothermic peak below the melting point, and its heat resistance and sag resistance are remarkably improved as compared with those without pseudo-crystallization treatment (without endothermic peak). The preferred pseudo-crystallization treatment temperature of the present invention is (Tαcr + 10 ° C) to (Tm-20 ° C).
If it is pseudo-crystallized by simple heat treatment, heat resistance and sag resistance are improved. However, it is more preferable to impart compressive deformation of 10% or more and anneal to significantly improve the heat resistance and sag resistance. When the drying step is performed after cooling once, the pseudo crystallization treatment can be performed at the same time by setting the drying temperature to the annealing temperature. Also, a pseudo crystallization treatment can be separately performed in the process of commercialization.

【0016】本発明の多層網状体をクッション用いる場
合、その使用目的、使用部位により使用する樹脂、繊
度、ル−プ径、嵩密度を選択する必要がある。例えば、
ソフトなタッチと適度の沈み込みと張りのある膨らみを
付与するためには、低密度で細い繊度、細かいル−プ径
にするのが好ましく、中層のクッション機能も発現させ
るには、共振振動数を低くし、適度の硬さと圧縮時のヒ
ステリシスを直線的に変化させて体型保持性を良くし、
耐久性を保持させるために、中密度で太い繊度、やや大
きいル−プ径の層と低密度で細い繊度、細かいル−プ径
の層を積層一体化した構造にするのが好ましい。また、
3次元構造を損なわない程度に成形型等を用いて使用目
的にあった形状に成形して側地を被せ車両用座席、船舶
用座席、ベット、椅子、家具等に用いることができる。
勿論、用途との関係で要求性能に合うべく他の素材、例
えば、異なる網状体、短繊維集合体からなる硬綿クッシ
ョン材、不織布等と組合せて用いることも可能である。
また、樹脂製造過程以外でも性能を低下させない範囲で
製造過程から成形体に加工し、製品化する任意の段階で
難燃化、防虫抗菌化、耐熱化、撥水撥油化、着色、芳香
等の機能付与を薬剤添加等の処理加工ができる。
When the multilayer reticulate body of the present invention is used as a cushion, it is necessary to select a resin to be used, a fineness, a loop diameter and a bulk density depending on the purpose of use and the site of use. For example,
In order to give a soft touch, moderate depression and bulging with tension, it is preferable to have a low density, fine fineness, and a fine loop diameter, and in order to develop the cushion function of the middle layer, the resonance frequency Is lowered, and moderate hardness and hysteresis at the time of compression are changed linearly to improve body retention.
In order to maintain durability, it is preferable to have a structure in which a layer having a medium density and a large fineness, a layer having a relatively large loop diameter and a layer having a low density and a fineness and a fine loop diameter are laminated and integrated. Also,
It can be used for vehicle seats, boat seats, beds, chairs, furniture, etc. by molding it into a shape suitable for the purpose of use by using a molding die or the like to the extent that the three-dimensional structure is not impaired.
Of course, it is also possible to use it in combination with other materials such as a different mesh body, a hard cotton cushion material composed of a short fiber aggregate, a non-woven fabric or the like so as to meet the required performance in relation to the application.
In addition, other than the resin manufacturing process, the molded product is processed from the manufacturing process to the extent that performance is not deteriorated, and at any stage of commercialization, it becomes flame retardant, insecticidal, antibacterial, heat resistant, water / oil repellent, colored, aroma, etc. It is possible to perform the processing such as the addition of chemicals to add the function.

【0017】[0017]

【実施例】以下に実施例で本発明を詳述する。EXAMPLES The present invention will be described in detail below with reference to examples.

【0018】なお、実施例中の評価は以下の方法で行っ
た。 融点(Tm)および融点以下の吸熱ピ−ク 島津製作所製TA50,DSC50型示差熱分析計を使
用し、昇温速度20℃/分で測定した吸発熱曲線から吸
熱ピ−ク(融解ピ−ク)温度を求めた。 Tαcr ポリマ−を融点+10℃に加熱して、厚み約300μm
のフイルムを作成して、オリエンテック社製バイブロン
DDVII型を用い、110Hz、昇温速度1℃/分で測
定したTanδ(虚数弾性率M”と弾性率の実数部分
M’との比M”/M’)のゴム弾性領域から融解領域へ
の転移点温度に相当するα分散の立ち上がり温度。 見掛け密度 試料を15cm×15cmの大きさに切断し、4か所の高さ
を測定し、体積を求め試料の重さを体積で徐した値で示
す。(n=4の平均値) 線条の繊度 試料を10箇所から各線条部分を切り出し、アクリル樹
脂で包埋して断面を削り出し切片を作成して断面写真を
得る。各部分の断面写真より各部の断面積(Si)を求
める。また、同様にして得た切片をアセトンでアクリル
樹脂を溶解し、真空脱泡して密度勾配管を用いて40℃
にて測定した比重(SGi)を求める。ついで次式より
線状の9000mの重さを求める。(単位cgs) 繊度=〔(1/n)ΣSi×SGi〕×900000 融着 試料を目視判断で融着しているか否かを接着している繊
維同士を手で引っ張って外れないか否かで外れないもの
を融着していると判断する。 補強効果 試料を30cm×30cmの大きさに切り出し、直径24cm
の鉄球に鎖を接続した鉄球が30cm上から試料の上に自
由落下できる装置にて、0.5Hzのサイクルで100回
鉄球を試料の中央上に落下させて、試料の損傷の程度を
以下の基準で判定した。◎:損傷なし。○:損傷軽度。
△:構造が部分的に破壊した。×:構造が殆ど破壊して
る。(n=3の平均値) 耐熱耐久性(70℃残留歪) 試料を15cm×15cmの大きさに切断し、50%圧縮し
て70℃乾熱中22時間放置後冷却して圧縮歪みを除き
1日放置後の厚み(b)を求め、処理前の厚み(a)か
ら次式、即ち(a−b)/a×100より算出する。単
位%(n=3の平均値) 繰返し圧縮歪 試料を15cm×15cmの大きさに切断し、島津製作所製
サ−ボパルサ−にて、25℃65%RH室内にて50%
の厚みまで1Hzのサイクルで圧縮回復を繰り返し2万
回後の試料を1日放置後の厚み(b)を求め、処理前の
厚み(a)から次式、即ち(a−b)/a×100より
算出する。単位%(n=3の平均値) 座り心地 常法により公知の複合紡糸機にて、後述する熱可塑性弾
性樹脂A−1をシ−ス成分、A−2をコア成分となるよ
うに個々に溶融してオリフィス直前で分配し、各吐出量
を50/50重量比で、単孔当たり1.6g/分孔
(0.8g/分:0.8g/分)として紡糸温度245
℃にて吐出し、紡糸速度3500m/分にて得た繊度が
4.1デニ−ル、乾熱160℃での収縮率8%の糸を収
束してトウ状でクリンパ−にて機械巻縮を付与し、64
mmに切断してシ−スコア断面の熱可塑性弾性樹脂からな
る熱接着繊維を得た。母材繊維は、常法により、極限粘
度0.63と0.56のPETを重量比50/50にて
分配し、単孔当たりの吐出量3.0g/分(1.5g/
分:1.5g/分)として紡糸温度285℃にてC型オ
リフィスより吐出し、紡糸速度1300m/分で複合紡
糸し、次いで70℃及び180℃にて2段延伸して得た
延伸糸を64mmに切断し、乾熱160℃にて巻縮を発現
させて得た6デニ−ル、初期引張り抵抗度38g/デニ
−ルの立体巻縮糸を得た。得られた熱接着繊維(30重
量%)及び母材繊維(70重量%)を混合しオ−プナ−
にて予備開繊した後カ−ドで開繊して得たウエッブを目
付け500g/m2 に積層したカ−ドウエッブを、バケ
ットシ−トの形状に切断した多層網状体の表面側に、成
形したクッションの見掛けの嵩密度を0.05g/cm3
となるように積層して熱成形用雌金型に入れ、牡金型で
圧縮して詰め込み200℃の熱風にて5分間熱接着成形
してバケットシ−ト状に成形したクッションに東洋紡績
製ハイムからなるポリエステルモケットの側地を被っ
て、座席用フレ−ムにセットして座部は4か所、背部は
6か所の側地止めを入れた座席を作成し、30℃RH7
5%室内で作成した座席にパネラ−を座らせ以下の評価
をおこなった。(n=5) (1) 床つき感:座ったときの「どすん」と床に当たった
感じの程度を感覚的に定性評価した。感じない;◎、殆
ど感じない;○、やや感じる;△、感じる;× (2) 蒸れ感:2時間座っていて、臀部やふと股の内側の
座席と接する部分が蒸れた感じを感覚的に定性評価し
た。殆ど感じない:◎、僅かに蒸れを感じる;○、やや
蒸れを感じる;△、蒸れを著しく感じる;× (3) 8時間以内でどの程度我慢して座席に座っていられ
るか:1時間以内;×、2時間以内;△、4時間以内;
○、4時間以上;◎ (4) 4時間座席に座らせたときの腰の疲れ程度を感覚的
に定性評価した。無し;◎、殆ど疲れない;○、やや疲
れる;△、非常に疲れる;× (5) 総合評価: (1)から(4) までの評価の◎を4点、○
を3点、△を2点、×を1点として12点以上で△を含
まないもの;非常に良い(◎)、12点以上で△を含む
もの;良い(○)、10点以上で×を含まないもの;や
や悪い(△)、×を含むもの;悪い(×)として評価し
た。
The evaluations in the examples were carried out by the following methods. Melting point (Tm) and endothermic peak below melting point TA50, DSC50 type differential thermal analyzer manufactured by Shimadzu Corporation was used, and the endothermic peak (melting peak) was measured from the endothermic curve measured at a temperature rising rate of 20 ° C./min. ) The temperature was determined. Tαcr polymer is heated to the melting point + 10 ° C and the thickness is about 300 μm.
Film was prepared and measured using a Vibron DDVII type manufactured by Orientec Co., Ltd. at a rate of 110 Hz and a heating rate of 1 ° C./min. Tan δ (the ratio of the imaginary elastic modulus M ″ to the real part M ′ of the elastic modulus M ″ / The rising temperature of α dispersion corresponding to the transition temperature from the rubber elastic region to the melting region of M ′). The apparent density sample is cut into a size of 15 cm × 15 cm, the heights at four locations are measured, the volume is determined, and the weight of the sample is divided by the volume. (Average value of n = 4) Each fine line sample is cut out from 10 places of fine line fineness, embedded with an acrylic resin, a cross section is cut out, and a section is prepared to obtain a cross section photograph. The cross-sectional area (Si) of each part is obtained from the cross-sectional photograph of each part. In addition, a piece obtained in the same manner was dissolved in acrylic resin with acetone, degassed in vacuum, and a density gradient tube was used to 40 ° C.
Determine the specific gravity (SGi) measured in. Then, a linear weight of 9000 m is obtained from the following equation. (Unit: cgs) Fineness = [(1 / n) ΣSi × SGi] × 900000 Whether or not the fusion-bonded sample is fused by visual judgment is determined by whether or not the fibers adhering to each other can be pulled out by hand and removed. It is determined that something that does not come off is fused. Reinforcing effect Sample is cut into a size of 30 cm x 30 cm, and the diameter is 24 cm.
The degree of damage of the sample by dropping the iron ball 100 times with 0.5Hz cycle on the center of the sample with the device that the iron ball with the chain connected to the Was judged according to the following criteria. ⊚: No damage. ○: Slight damage.
Δ: The structure was partially destroyed. X: The structure is almost destroyed. (Average value of n = 3) Heat resistance durability (70 ° C residual strain) A sample was cut into a size of 15 cm x 15 cm, compressed by 50%, left at 70 ° C in dry heat for 22 hours, and then cooled to remove compression strain. The thickness (b) after standing for a day is obtained, and is calculated from the thickness (a) before the treatment by the following formula, that is, (ab) / a × 100. Unit% (average value of n = 3) Cyclic compression strain sample is cut into a size of 15 cm x 15 cm, and is 50% in a RH room at 25 ° C and 65% in a Shimadzu Servo Pulser.
The thickness (b) after leaving the sample for 20,000 times after repeating compression recovery at a cycle of 1 Hz up to the thickness of 1 is calculated from the thickness (a) before the treatment, that is, (ab) / ax Calculated from 100. Unit% (average value of n = 3) By a conventional composite spinning machine by a conventional sitting comfort method, the thermoplastic elastic resin A-1 described below is individually used as a sheath component and A-2 as a core component. Melt and distribute immediately before the orifice, and the discharge amount is 50/50 by weight, and the spinning temperature is 245, with 1.6 g / min per hole (0.8 g / min: 0.8 g / min).
At a spinning rate of 3500 m / min, the yarn having a fineness of 4.1 denier and a shrinkage rate of 8% at a dry heat of 160 ° is converged into a tow-shaped crimp. Is given, 64
It was cut into mm to obtain a heat-bonding fiber made of a thermoplastic elastic resin having a cross section of sheath core. As the base material fiber, PET having an intrinsic viscosity of 0.63 and 0.56 was distributed at a weight ratio of 50/50 by a conventional method, and the discharge amount per single hole was 3.0 g / min (1.5 g / min.
Min: 1.5 g / min) at a spinning temperature of 285 ° C., discharged from a C type orifice, composite spinning at a spinning speed of 1300 m / min, and then drawn in two stages at 70 ° C. and 180 ° C. to obtain a drawn yarn. A three-dimensional crimped yarn having a denier of 6 denier and an initial tensile resistance of 38 g / denier was obtained by cutting into 64 mm and causing crimping at a dry heat of 160 ° C. The resulting heat-bonded fiber (30% by weight) and the base material fiber (70% by weight) were mixed to form an opener.
A web obtained by pre-opening with a card and opening with a card and having a basis weight of 500 g / m 2 was laminated to form a carded web on the surface side of a multi-layer mesh body cut into the shape of a bucket sheet. The apparent bulk density of the cushion is 0.05 g / cm 3
To be laminated into a thermoforming female mold, compressed with an oyster mold, and packed and heat-bonded with hot air at 200 ° C for 5 minutes to form a bucket sheet-shaped cushion. Cover the side of polyester moquette consisting of, and set it on the seat frame to create a seat with 4 side seats and 6 side backs and 30 ° C RH7
5% A paneler was allowed to sit on the seat created in the room and the following evaluation was performed. (N = 5) (1) Feeling on the floor: The degree of "dosun" when sitting and the feeling of hitting the floor were qualitatively and qualitatively evaluated. Not felt; ◎, hardly felt; ○, slightly felt; △, felt; × (2) Feeling of stuffiness: Feeling stuffy when sitting for 2 hours and the buttocks and the part of the crotch that contacts the seat inside the crotch Qualitatively evaluated. Almost no feeling: ◎, slightly stuffy; ○, slightly stuffy; △, significantly stuffy; × (3) How long you can sit in the seat within 8 hours: within 1 hour; × within 2 hours; △ within 4 hours;
○ 4 hours or more; ◎ (4) A qualitative qualitative evaluation was performed on the degree of waist fatigue when the user sat in the seat for 4 hours. None; ◎, hardly tired; ○, slightly tired; △, very tired; × (5) Overall evaluation: 4 points from ◎ of the evaluations from (1) to (4), ○
3 points, △ is 2 points, × is 1 point and does not include Δ with 12 points or more; very good (⊚), that with 12 points or more; Good (○), 10 points or more is x It was evaluated as those which did not contain; those which were somewhat bad (Δ) and those which contained x; bad (x).

【0019】実施例1〜2 ポリエステル系エラストマ−として、ジメチルテレフタ
レ−ト(DMT)又は、ジメチルナフタレ−ト(DM
N)と1・4ブタンジオ−ル(1・4BD)を少量の触
媒と仕込み、常法によりエステル交換後、ポリテトラメ
チレングリコ−ル(PTMG)を添加して昇温減圧しつ
つ重縮合せしめポリエ−テルエステルブロック共重合エ
ラストマ−を生成させ、次いで抗酸化剤2%を添加混合
練込み後ペレット化し、50℃48時間真空乾燥して得
られた熱可塑性弾性樹脂原料の処方を表1に示す。
Examples 1 and 2 Dimethyl terephthalate (DMT) or dimethyl naphthalate (DM) was used as the polyester elastomer.
N) and 1.4 butanediol (1.4 BD) were charged with a small amount of a catalyst, and after transesterification by a conventional method, polytetramethylene glycol (PTMG) was added and polycondensation was performed while heating and depressurizing. -Formation of terester block copolymer elastomer, then addition and mixing of 2% of antioxidant, kneading, pelletizing, and vacuum drying at 50 ° C for 48 hours are shown in Table 1. .

【0020】[0020]

【表1】 [Table 1]

【0021】幅50cm、長さ5cmのノズル有効面に幅方
向の孔間ピッチを1列から6列を5mm、7列から9列を
10mm,10列と11列を6.67mmとし、長さ方向の
孔間ピッチ5mmの千鳥配列としたオリフィス形状は外径
2mm、内径1.6mmでトリプルブリッジの中空形成性断
面としたノズルに、得られた熱可塑性弾性樹脂原料(A
−1及びA−2)と極限粘度0.63のPETとを3本
の押出機にて別々に溶融し、A−1とA−2をオリフィ
ス直前でA−1をシ−ス成分に、A−2をコア成分とな
るように(シ−ス/コア:50/50重量比)1列目か
ら6列目と10列目と11列目に分配し、PETを7列
目から9列目に分配し、溶融温度280℃にて、1列目
から6列目の吐出量を758g/分、7列目から9列目
の吐出量を304g/分、10列目と11列目の吐出量
を253g/分にてノズル下方に吐出させ、ノズル面1
0cm下に冷却水を配し、幅60cmのステンレス製エンド
レスネットを平行に5cm間隔で一対の引取りコンベアを
水面上に一部出るように配して、該溶融状態の吐出線状
を曲がりくねらせル−プを形成して接触部分を融着させ
つつ3次元網状構造を形成し、一方のコンベアにニップ
しながら、幅50cmにスリットしたPET繊維からなる
目付け100g/m2 のスパンボンド不織布を連続的に
片側から供給した上に該溶融状態の吐出線状を引取り、
接触部分を融着させつつ、スパンボンド不織布とも融着
させ、片側がスパンボンド不織布からなる網状構造を形
成した積層体の両面を挟み込みつつ毎分1mの速度で2
5℃の冷却水中へ引込み固化させ、次いで100℃の熱
風乾燥機中で20分疑似結晶化処理した後、所定の大き
さに切断して得られた多層網状体の特性を表2に示す。
実施例1の表面の熱可塑性弾性樹脂層の網状体は断面形
状がシ−スコア構造の三角おむすび型中空断面で中空率
が38%、繊度が5600デニ−ルの線条で形成してお
り、平均の見掛け密度が0.055g/cm3 、裏面側の
熱可塑性弾性樹脂層の網状体は断面形状がシ−スコア構
造の三角おむすび型中空断面で中空率が38%、繊度が
7500デニ−ルの線条で形成しており、平均の見掛け
密度が0.067g/cm3 、中間の熱可塑性非弾性樹脂
層の網状体は断面形状が三角おむすび型の中空断面で中
空率が40%、繊度が9000デニ−ルの線条で形成し
ており、平均の見掛け密度が0.041g/cm3 で、ス
パンボンド不織布とも融着一体化した多層網状体全体の
平均見掛け密度は0.056g/cm3 であった。表2で
明らかなごとく、実施例1は柔らかい弾性樹脂の特性と
やや硬い弾性樹脂の特性を生かせた積層網状構造のため
耐熱性、常温での耐久性、座り心地ともに優れたクッシ
ョン材で補強効果も実用使用に耐えるものであった。評
価用に作成した座席も性能が優れていることが判る。
On the effective surface of the nozzle having a width of 50 cm and a length of 5 cm, the pitch between the holes in the width direction is set to 5 mm for 1 to 6 rows, 10 mm for 7 to 9 rows, and 6.67 mm for 10 and 11 rows. The orifice shape of the staggered arrangement with the hole-to-hole pitch of 5 mm in the direction of 2 mm is the outer diameter of 2 mm and the inner diameter is 1.6 mm.
-1 and A-2) and PET having an intrinsic viscosity of 0.63 are separately melted by three extruders, A-1 and A-2 are immediately before the orifice, and A-1 is a sheath component. A-2 is distributed as the core component (seeds / core: 50/50 weight ratio) from the 1st to 6th rows, the 10th to 11th rows, and the PET from 7th to 9th rows. Distributing to the eyes, and at a melting temperature of 280 ° C., the discharge rate of the first to sixth rows is 758 g / min, the discharge rate of the seventh to ninth rows is 304 g / min, and the tenth and eleventh rows. Discharge to the lower side of the nozzle at a discharge rate of 253 g / min.
Cooling water is placed below 0 cm, and a pair of take-up conveyors with a width of 60 cm are arranged in parallel at intervals of 5 cm so that a part of the pair of take-up conveyors appears on the water surface. A spunbonded non-woven fabric with a basis weight of 100 g / m 2 made of PET fibers slit into a width of 50 cm while forming a loop to form a three-dimensional network structure while fusing the contact portions and nipping it on one conveyor. Continuously supply from one side, then draw the molten discharge line shape,
While fusing the contact part, it is also fused with the spunbonded non-woven fabric, sandwiching both sides of the laminate having a net-like structure composed of the spunbonded non-woven fabric on one side, and at a speed of 1 m / min.
Table 2 shows the properties of the multilayer reticulate body obtained by pulling into cooling water at 5 ° C. to solidify, then performing pseudo crystallization treatment for 20 minutes in a hot air dryer at 100 ° C., and cutting into a predetermined size.
The reticulate body of the thermoplastic elastic resin layer on the surface of Example 1 is formed by a linear stripe having a triangular rice ball type hollow cross section having a cross core structure with a hollow ratio of 38% and a fineness of 5,600 denier. The average apparent density is 0.055 g / cm 3 , and the reticulate body of the thermoplastic elastic resin layer on the back side is a triangular rice ball type hollow cross section having a cross-section structure with a hollow ratio of 38% and a fineness of 7,500 denier. The average apparent density is 0.067 g / cm 3 , and the mesh of the thermoplastic non-elastic resin layer in the middle is a triangular rice ball type hollow cross section with a hollow ratio of 40% and a fineness. Is formed of 9000 denier filaments, the average apparent density is 0.041 g / cm 3 , and the average apparent density of the entire multilayer reticulated body fused and integrated with the spunbond nonwoven fabric is 0.056 g / cm 3. Was 3 . As is clear from Table 2, in Example 1, the cushioning material is excellent in heat resistance, durability at room temperature, and sitting comfort due to the laminated net structure that makes use of the characteristics of the soft elastic resin and the characteristics of the slightly hard elastic resin. Was also able to withstand practical use. It can be seen that the seat created for evaluation also has excellent performance.

【0022】[0022]

【表2】 [Table 2]

【0023】実施例2 ジメチルイソフタレ−ト(DMI)20モル%とDMT
80モル%及び1・4ブタンジオ−ル(1・4BD)を
少量の触媒と仕込み、実施例1の方法と同様にして得た
ポリエステル系熱可塑性弾性樹脂の処方を表1に示す。
得られたA−3をシ−ス成分とし、オリフィスの孔形状
を孔径φ1mmの丸断面としたノズルを孔形状を孔径φ1
mmの丸断面とし、幅方向の孔間ピッチを10mm、長さ方
向の孔間ピッチを5mmの千鳥配列としたノズルを用い、
熱可塑性弾性樹脂にA−3を用い、1列目から7列目に
分配し吐出量710g/分にて吐出し、熱可塑性非弾性
樹脂としてPETを用いて8列目から11列目に分配
し、吐出量410g/分にて吐出した以外実施例1と同
様にして得た多層網状体のA−3層の網状体は中実丸断
面で繊度9000デニ−ル、平均の見掛け密度が0.0
44g/cm3 で、PET層の網状体は中実丸断面で繊度
9100デニ−ル、平均の見掛け密度が0.047g/
cm3 で、補強層と融着一体化した平均の見掛け密度は
0.048g/cm 3 の多層網状体の特性を表2に示す。
表2で明らかなごとく、実施例2は耐熱性と常温での耐
久性は実用上使用可能で、体型保持性が改善され、座り
心地の優れたクッション材であり、補強効果は実用使用
が可能なものであった。評価用に作成した座席も優れて
いることが判る。
Example 2 20 mol% of dimethyl isophthalate (DMI) and DMT
80 mol% and 1.4 butanediol (1.4 BD)
Obtained in the same manner as in Example 1 except that a small amount of catalyst was charged.
Table 1 shows the formulation of the polyester-based thermoplastic elastic resin.
The obtained A-3 is used as the sheath component, and the hole shape of the orifice
Nozzle with a round cross section with a hole diameter of 1 mm
mm cross section with 10 mm pitch between holes in width direction
Using a nozzle with a staggered arrangement with a hole-to-hole pitch of 5 mm,
A-3 is used as the thermoplastic elastic resin for the 1st to 7th rows
Dispensed and discharged at a rate of 710 g / min, thermoplastic inelastic
Distributing from the 8th row to the 11th row using PET as the resin
The same as Example 1 except that the discharge rate was 410 g / min.
The multi-layer reticulate body obtained in this manner had a layer A-3 reticulate solid circle
Surface has a fineness of 9000 denier and an average apparent density of 0.0
44 g / cm3The PET layer mesh has a solid round cross section and fineness.
9100 denier, average apparent density 0.047 g /
cm3So, the average apparent density when fused and integrated with the reinforcement layer is
0.048g / cm 3Table 2 shows the characteristics of the multi-layer reticulate body.
As is clear from Table 2, Example 2 has heat resistance and room temperature resistance.
Persistence is practically usable, body retention is improved, and sitting
It is a cushioning material with excellent comfort, and the reinforcing effect is practically used.
Was possible. The seats created for evaluation are also excellent
I know that

【0024】実施例4 ポリウレタン系エラストマ−として、4・4’ジフェニ
ルメタンジイソシアネ−ト(MDI)とPTMG及び鎖
延長剤として1・4BDを添加して重合し次いで抗酸化
剤2%を添加混合練込み後ペレット化し真空乾燥してポ
リエ−テル系ウレタンポリマ−の処方を表3に示す。
Example 4 As a polyurethane elastomer, 4,4'-diphenylmethane diisocyanate (MDI), PTMG and 1.4BD as a chain extender were added and polymerized, and then 2% of an antioxidant was added and mixed. Table 3 shows the formulation of the polyether urethane polymer after kneading, pelletizing and vacuum drying.

【0025】[0025]

【表3】 [Table 3]

【0026】得られた熱可塑性弾性樹脂をシ−ス成分に
B−1,コア成分にB−2を用いた以外実施例1と同様
にして得た多層網状体の特性を表2に示す。実施例3は
B−1とB−2の複合化した熱可塑性弾性樹脂層の表面
側の線状の断面形状はシ−スコア構造の三角おむすび型
中空断面で中空率40%、繊度は6200デニ−ル、平
均の見掛け密度が0.055g/cm3 で、裏面側は線条
の断面形状がシ−スコア構造の三角おむすび型の中空断
面で中空率40%、繊度が8300デニ−ル、平均の見
掛け密度が0.066g/cm3 で、中間のPET層は繊
度が9000デニ−ル、平均の見掛け密度が0.041
g/cm3 で、補強材と融着一体化した網状体全体の平均
の見掛け密度が0.056g/cm3 であった。なお、B
−1をシ−ス成分に、B−2をコア成分とし、紡糸温度
を200℃とした以外座り心地の評価で作成した熱接着
繊維の製法と同様にして得た、繊度が4.5デニ−ル、
150℃での収縮率が9%の熱接着繊維を用いた以外座
り心地の評価法と同様にして座り心地を評価した。実施
例4は熱可塑性弾性樹脂にウレタンを用いた多層網状体
で耐熱性、常温での耐久性、座り心地ともに優れたクッ
ション材で、補強効果も実用使用に耐えるものであっ
た。評価用に作成した座席も優れていることが判る。
Table 2 shows the characteristics of the multilayer reticulate body obtained in the same manner as in Example 1 except that B-1 was used as the sheath component and B-2 was used as the core component in the obtained thermoplastic elastic resin. In Example 3, the linear cross-sectional shape of the surface side of the composite thermoplastic elastic resin layer of B-1 and B-2 is a triangular rice ball type hollow cross-section with a sheath core structure, the hollow ratio is 40%, and the fineness is 6200 denier. -The average apparent density is 0.055 g / cm 3 , and the back side is a triangular rice ball type hollow cross-section with a linear cross-section. The hollow ratio is 40%, the fineness is 8300 denier, average. Has an apparent density of 0.066 g / cm 3 , and the intermediate PET layer has a fineness of 9000 denier and an average apparent density of 0.041.
In g / cm 3, the average apparent density of the whole reinforcement and fused integral net-like body was 0.056 g / cm 3. In addition, B
-1 was used as the sheath component, B-2 was used as the core component, and the spinning temperature was 200 ° C. -Le,
The sitting comfort was evaluated in the same manner as in the sitting comfort evaluation method except that a heat-bonding fiber having a shrinkage ratio at 150 ° C. of 9% was used. Example 4 is a cushioning material which is a multilayer reticulate body using urethane as a thermoplastic elastic resin and which is excellent in heat resistance, durability at room temperature, and sitting comfort, and has a reinforcing effect that can be used practically. It can be seen that the seat created for evaluation is also excellent.

【0027】比較例1〜2 比較例1は相対粘度1.0のPBTを1列目から7列目
に、固有粘度0.63のPETを8列目から11列目に
分配し、溶融温度280℃にて吐出し、比較例2はメル
トインデクス5のポリエチレンを1列目から7列目に、
メルトインデックス12のPPを8列目から11列目に
分配し、溶融温度を240℃とし、比較例2はPP製ス
パンボンドを使用し、疑似結晶化処理しなかった以外、
実施例2と同様にして得た多層網状体の特性を表2に示
す。比較例1の網状体は、PBT層の網状体は中実丸断
面で繊度8900デニ−ル、平均の見掛け密度が0.0
44g/cm3 で、PET層の網状体は中実丸断面で繊度
9000デニ−ル、平均の見掛け密度が0.047g/
cm3 で、補強層と融着一体化した網状体の平均の見掛け
密度は0.048g/cm3 であった。比較例2の網状体
は、PE層の網状体は中実丸断面で繊度21000デニ
−ル、平均の見掛け密度が0.043g/cm 3 で、PP
層の網状体は中実丸断面で繊度25000デニ−ル、平
均の見掛け密度が0.046g/cm3 で、補強層とも融
着一体化した網状体の平均の見掛け密度は0.051g
/cm3 であった。比較例1は非弾性ポリエステルからな
る網状体のため耐熱耐久性が悪く、硬くて座り心地も悪
いクッション材で補強効果の試験では構造体がかなり破
壊した例である。比較例2は繊度がやや太い非弾性オレ
フィンからなる網状体のため、耐熱耐久性が悪く、硬い
クッション材で、補強効果の試験では構造体が完全に破
壊した例である。
Comparative Examples 1-2 In Comparative Example 1, PBT having a relative viscosity of 1.0 is used in the first to seventh rows.
And PET with an intrinsic viscosity of 0.63 from the 8th row to the 11th row
Dispense and discharge at a melting temperature of 280 ° C.
Toindex 5 polyethylene in rows 1 to 7,
Melt index 12 PP from 8th row to 11th row
Distributing and setting the melting temperature to 240 ° C.
Except for using pan bond and not performing pseudo crystallization,
The characteristics of the multilayer reticulate body obtained in the same manner as in Example 2 are shown in Table 2.
You The reticulate body of Comparative Example 1 is a solid round cross-section of the PBT layer reticulate body.
Surface has a fineness of 8900 denier and an average apparent density of 0.0
44 g / cm3The PET layer mesh has a solid round cross section and fineness.
9000 denier, average apparent density 0.047 g /
cm3The average appearance of the net body fused and integrated with the reinforcing layer
Density is 0.048g / cm3Met. Reticulated body of Comparative Example 2
The PE layer mesh has a solid round cross section with a fineness of 21,000 denier.
-Le, average apparent density is 0.043g / cm 3And PP
The layer mesh has a solid round cross section with a fineness of 25,000 denier and flat
Uniform apparent density of 0.046 g / cm3And the fusion with the reinforcement layer
The average apparent density of the reticulated body integrated by wearing is 0.051 g.
/cm3Met. Comparative Example 1 is made of non-elastic polyester
Since it is a net-like body that has a poor heat resistance and durability, it is hard and comfortable to sit on.
In the test of the reinforcement effect with a cushioning material, the structure was considerably damaged.
This is a broken example. Comparative Example 2 has a slightly finer inelasticity.
Since it is a net consisting of fins, it has poor heat resistance and durability
With the cushion material, the structure is completely broken in the test of the reinforcement effect.
This is a broken example.

【0028】比較例3 ノズル面60cm下に引取りコンベアネットを配して引き
取ったあと疑似結晶化処理をしなかった以外、実施例2
と同様の方法で得た網状体の特性の一部を表2に示す。
なお、接着状態が不良で不織布とも接着せず形態保持が
悪いため、50%圧縮時反発力、見掛け密度、補強効
果、70℃残留歪、繰返圧縮歪み、及び座り心地の評価
はしていない。比較例3は形態が固定されていないので
クッション材に適さない例である。
Comparative Example 3 Example 2 was repeated except that a take-up conveyor net was placed 60 cm below the nozzle surface and no pseudo crystallization treatment was performed after the take-up conveyor net was taken out.
Table 2 shows a part of the properties of the reticulate body obtained by the same method as described above.
In addition, since the adhesive state is poor and the non-woven fabric does not adhere and the shape retention is poor, the repulsive force at 50% compression, apparent density, reinforcing effect, residual strain at 70 ° C., repeated compressive strain, and sitting comfort are not evaluated. . Comparative Example 3 is an example that is not suitable for a cushioning material because its shape is not fixed.

【0029】比較例4 ノズル面25cm下に引取りコンベアネットを配して、ス
パンボンド不織布を供給しないで網状体を形成し、疑似
結晶化処理しない以外、実施例2と同様にして得た線条
の繊度は9100デニ−ル、平均の見掛け密度は0.0
45g/cm3 の積層網状体の特性を表2に示す。比較例
4は熱可塑性弾性樹脂層を積層しているので座り心地は
良いが、耐熱性と耐久性が劣り、補強材がないので網状
構造の形態保持が不良なクッション材としては好ましく
ない例である。
Comparative Example 4 A wire obtained in the same manner as in Example 2 except that a take-up conveyor net was placed 25 cm below the nozzle surface to form a net without supplying spunbonded nonwoven fabric and no pseudo-crystallization treatment was performed. The fineness of the strip is 9100 denier, and the average apparent density is 0.0.
The properties of the laminated network of 45 g / cm 3 are shown in Table 2. In Comparative Example 4, the thermoplastic elastic resin layer is laminated, so that it is comfortable to sit on, but it is inferior in heat resistance and durability and lacks a reinforcing material, so it is not preferable as a cushioning material with poor shape retention of the mesh structure. is there.

【0030】比較例5 幅50cm、長さ5cmのノズル有効面に幅方向の孔間ピッ
チ10mm、長さ方向の孔間ピッチ20mmの千鳥配列とし
たオリフィス径φ2mmとしたノズルを用いて、1〜3列
目にA−3を、4〜7列目にPETを分配し、単孔当た
りの吐出量25g/分にて吐出させて、ノズル面30cm
下に引取りコンベアネットを配して1m/分にて引き取
り、疑似結晶化処理しなかった以外、実施例2と同様に
して得た線条の繊度は113000デニ−ルで、平均の
見掛け密度は0.157g/cm3の多層網状体の特性を
表2に示す。比較例5は繊度が著しく太く密度斑のある
多層網状体のため、耐熱耐久性が悪くなり、座り心地も
やや悪くなるクッション材で、補強材の形態保持性も劣
る例である。
Comparative Example 5 A nozzle having a width of 50 cm and a length of 5 cm and having a staggered arrangement of 10 mm in the width direction and a pitch of 20 mm in the length direction on the effective surface of the nozzle and having orifice diameters of 2 mm were used. Distribute A-3 on the 3rd row and PET on the 4th to 7th rows, and discharge at a discharge rate of 25 g / min per single hole, and the nozzle surface is 30 cm.
The fineness of the filaments obtained in the same manner as in Example 2 was 113,000 denier, except that a take-up conveyor net was placed below and taken up at 1 m / min, and no pseudo-crystallization treatment was performed, with an average apparent density. Table 2 shows the characteristics of 0.157 g / cm 3 of the multilayer network. Comparative Example 5 is a cushion material having a remarkably fineness and a thick multi-layered mesh having density unevenness, resulting in poor heat resistance durability and slightly poor sitting comfort, and also an example of poor shape retention of the reinforcing material.

【0031】比較例6 引取りコンベアネットの間隔(開口幅)を15cmとし、
引取りコンベアネットの片側のスパンボンド不織布を供
給しない側には溶融した吐出線状が接触しないように配
し、疑似結晶化処理しない以外実施例2と同様にして作
成したA−3層の網状体は中実丸断面で繊度9000デ
ニ−ル、平均の見掛け密度が0.038g/cm3 で、P
ET層の網状体は中実丸断面で繊度9100デニ−ル、
平均の見掛け密度が0.036g/cm3 で、補強層と融
着一体化した網状体の平均の見掛け密度は0.037g
/cm3 の表面が実質的にフラット化されていない多層網
状体の特性を表−2に示す。比較例6は網状体の表面が
凹凸になっているため、見掛け密度が低いのに耐久性が
劣り、表面層との熱接着が不充分になり、少し異物感を
感じる座り心地のやや劣るクッション材で、補強材の形
態保持性も劣る例である。
Comparative Example 6 The spacing (opening width) of the take-up conveyor net was 15 cm,
One side of the take-up conveyor net is arranged so that the melted discharge line does not come into contact with the side to which the spunbonded non-woven fabric is not supplied, and the A-3 layer mesh formed in the same manner as in Example 2 except that the pseudo crystallization treatment is not performed. The body has a solid round cross section with a fineness of 9000 denier, an average apparent density of 0.038 g / cm 3 , and P
The net of the ET layer has a solid round cross section with a fineness of 9100 denier,
The average apparent density is 0.036 g / cm 3 , and the average apparent density of the net body fused and integrated with the reinforcing layer is 0.037 g.
The properties of the multilayer network in which the surface of / cm 3 is not substantially flattened are shown in Table 2. In Comparative Example 6, since the surface of the net-like body is uneven, the apparent density is low, but the durability is poor, the thermal adhesion with the surface layer is insufficient, and the cushion feels a little inferior and is slightly inferior in sitting comfort. This is an example in which the shape retention of the reinforcing material is poor.

【0032】比較例7 単孔当たりの吐出量3g/分にて吐出させ、引取りコン
ベアネットの速度を0.3m/分とし、疑似結晶化処理
しなかった以外実施例2と同様して得たA−3層は線条
繊度が13000デニ−ル、見掛け密度が0.22g/
cm3 PET層は線条繊度が13000デニ−ル、見掛け
密度が0.23g/cm3 で、融着一体化した網状体の平
均の見掛け密度が0.223g/cm3 の多層網状体の特
性を表2に示す。比較例7は見掛け密度が高いため、座
り心地がやや劣り、耐熱性、耐久性が不充分なクッショ
ン材で、補強材の形態保持性も劣る例である。
Comparative Example 7 Obtained in the same manner as in Example 2 except that the amount of discharge per single hole was 3 g / min, the speed of the take-up conveyor net was 0.3 m / min, and no pseudo-crystallization treatment was performed. The A-3 layer has a filament fineness of 13,000 denier and an apparent density of 0.22 g /
cm 3 PET layer streak fineness 13000 denier - le, with an apparent density of 0.23 g / cm 3, an apparent density of the average of the fused integral mesh body is a multilayer mesh of 0.223 g / cm 3 Characteristics Is shown in Table 2. Comparative Example 7 is a cushion material having a slightly poorer sitting comfort, insufficient heat resistance and durability because of its high apparent density, and also an example of the shape retention of the reinforcing material being poor.

【0033】実施例5 常法により公知の複合紡糸機にて、実施例1で得た熱可
塑性弾性樹脂A−1をシ−ス成分、A−2をコア成分と
なるように個々に溶融してオリフィス直前で分配し、各
吐出量を50/50重量比で、単孔当たり1.6g/分
孔(0.8g/分:0.8g/分)として紡糸温度24
5℃にて吐出し、紡糸速度3500m/分にて得た繊度
が4.1デニ−ル、乾熱160℃での収縮率10%の糸
を収束してトウ状でクリンパ−にて機械巻縮を付与し、
64mmに切断してシ−スコア断面の熱可塑性弾性樹脂か
らなる熱接着繊維を得た。母材繊維は、常法により、極
限粘度0.63と0.56のPETを重量比50/50
に分配して単孔当たり3.0g/分孔(1g/分:1g
/分)として紡糸温度265℃にてC型オリフィスより
吐出し、紡糸速度1300m/分で複合紡糸し、次い
で、70℃及び180℃にて2段延伸して得た延伸糸を
64mmに切断し170℃にてフリ−熱処理して立体捲縮
を発現させ、中空断面で中空率32%のシ−スコア構造
の繊度6デニ−ル、初期引張り抵抗度38g/デニ−
ル、捲縮度20%、捲縮数18個/インチの母材繊維を
得た。得られた熱接着繊維と母材繊維を40/60重量
比で混合し、オ−プナ−にて予備開繊した後カ−ドで開
繊して得たウエッブを目付け1000g/m2 に積層
し、実施例1で得た多層網状体を長さ120cmに切断し
た網状体表面に積層し、見掛け密度が0.05g/cm3
となるように圧縮し、180℃の熱風にて5分間熱処理
後冷却して両面がフラットな不織布積層網状体を得た。
次いで厚みの10%圧縮して、100℃の熱風にて20
分疑似結晶化処理して厚み7cmのクッションを4枚作成
した。得られたクッションを厚み7cm、幅120cm、長
さ50cm毎にキルティングした幅120cm、長さ200
cmの側地に入れマットレスを作成した。このマットレス
をベッドに設置し、25℃RH65%室内にてパネラ−
4人に7時間使用させて寝心地を官能評価した。なお、
ベットにはシーツを掛け、掛け布団は1.8kgのダウン
/フェザ−:90/10を中綿にしたもの、枕はパネラ
−が毎日使用しているものを着用させた。評価結果は、
床つき感がなく、沈み込みが適度で、蒸れを感じない快
適な寝心地のベットであった。比較のため、密度0.0
4g/cm3 で厚み10cmの発泡ウレタン板状体で同様の
マットレスを作成し、ベットに設置して寝心地を評価し
た結果、床つき感は少ないが沈み込みが大きくやや蒸れ
を感じる寝心地の悪いベットであった。
Example 5 The thermoplastic elastic resin A-1 obtained in Example 1 was individually melted so as to be the sheath component and A-2 to be the core component by a known composite spinning machine by a conventional method. At a weight ratio of 50/50, with 1.6 g / min per hole (0.8 g / min: 0.8 g / min) as the spinning temperature.
A yarn having a fineness of 4.1 denier obtained at a spinning speed of 3500 m / min at a spinning speed of 3500 m and a shrinkage rate of 10% at a dry heat of 160 ° is converged into a tow shape and mechanically wound by a crimper. Give contraction,
It was cut into 64 mm to obtain a heat-bonded fiber made of a thermoplastic elastic resin having a sheath core cross section. As the base material fiber, PET having an intrinsic viscosity of 0.63 and 0.56 is used in a weight ratio of 50/50 by a conventional method.
3.0g / min per hole (1g / min: 1g
/ Min) is discharged from a C-shaped orifice at a spinning temperature of 265 ° C., composite spinning is performed at a spinning speed of 1300 m / min, and then the drawn yarn obtained by two-stage drawing at 70 ° C. and 180 ° C. is cut into 64 mm. Free heat treatment at 170 ° C. to develop three-dimensional crimps, fineness 6 denier with a sheath core structure having a hollow ratio of 32% in hollow section, initial tensile resistance 38 g / denier
A base material fiber having a crimp degree of 20% and a crimp number of 18 / inch was obtained. The heat-bonded fibers thus obtained and the base material fibers were mixed at a weight ratio of 40/60, pre-opened with an opener and then opened with a card, and the web obtained was laminated to have a basis weight of 1000 g / m 2 . Then, the multilayer net body obtained in Example 1 was laminated on the surface of the net body cut to a length of 120 cm to give an apparent density of 0.05 g / cm 3.
It was compressed so that it was heated to 180 ° C. for 5 minutes and then cooled to obtain a nonwoven fabric laminated mesh body having flat both sides.
Then, compress it by 10% of its thickness, and heat it with hot air at 100 ° C for 20
Pseudo cushioning with a thickness of 7 cm was prepared by pseudo crystallization. The cushion obtained is quilted every 7 cm in thickness, 120 cm in width and 50 cm in length, and the width is 120 cm and the length is 200 cm.
I put it in the lateral area of cm and made a mattress. This mattress is installed on the bed and the panel is placed in a room at 25 ° C and RH 65%.
Sensory evaluation of sleeping comfort was carried out by allowing 4 people to use it for 7 hours. In addition,
The bed was covered with sheets, the comforter was a 1.8 kg down / feather: 90/10 batting, and the pillow was a paneler's daily use. The evaluation result is
It was a bed with no feeling of flooring, moderate subsidence, and a comfortable feeling of sleep without stuffiness. For comparison, density 0.0
A similar mattress was made from a urethane foam plate with a thickness of 4 g / cm 3 and a thickness of 10 cm, and the mattress was placed on a bed and the sleeping comfort was evaluated. Met.

【0034】実施例6 実施例1で得た多層網状体を実施例5と同様にして不織
布積層網状体を作成し、幅38cm、長さ40cmでコ−ナ
−をア−ル10cmとした形状に切断し、座り心地評価用
に用いたポリエステルモケットを側地にして事務椅子フ
レ−ムに設置し、市販のポリウレタンをクッションに使
用した事務椅子と対比させて、座り心地を4時間座らせ
評価した結果、蒸れ感、床つき感、座ったまま我慢でき
る時間は、本発明の不織布を積層した多層網状体を用い
たものが著しく優れていた。
Example 6 A non-woven fabric laminated network was prepared from the multilayer network obtained in Example 1 in the same manner as in Example 5 and had a width of 38 cm, a length of 40 cm and a corner of 10 cm. Cut into pieces and set it on the office chair frame with the polyester moquette used for sitting comfort evaluation as the side, and compare it with the office chair using commercially available polyurethane as a cushion, and let it sit for 4 hours for evaluation. As a result, the feeling of dampness, the feeling of flooring, and the time during which the patient can stand while sitting were remarkably excellent in those using the multilayer net body laminated with the nonwoven fabric of the present invention.

【0035】[0035]

【発明の効果】連続線条が3次元網状構造を形成し融着
一体化した、振動や応力吸収性の良い熱可塑性弾性樹脂
層と抗圧縮性をもつ熱可塑性非弾性樹脂層が融着接合し
た表面の熱可塑性弾性樹脂層が実質的にフラット化さ
れ、裏面に連続繊維の不織布を補強した本発明の多層網
状体は、振動遮断性、耐熱耐久性、嵩高性、座り心地の
より改善された、蒸れにくいクッション材であり、他の
素材との併用による上記の好ましい特性を付与した車両
用座席、船舶用座席、車両用、船舶用、病院やホテル等
の業務用ベット、家具用クッション、寝装用品等の製品
を提供できる。更には、車両用や建築資材としての内装
材や断熱材等にも有用なものである。
EFFECTS OF THE INVENTION A thermoplastic elastic resin layer having good absorption of vibrations and stress and a thermoplastic non-elastic resin layer having anti-compression property, which are formed by fusion-bonding continuous filaments forming a three-dimensional network structure, are fusion bonded. The multilayered reticulate body of the present invention, in which the thermoplastic elastic resin layer on the front surface is substantially flattened and the back surface is reinforced with a nonwoven fabric of continuous fibers, is further improved in vibration isolation, heat resistance durability, bulkiness, and sitting comfort. Also, it is a cushioning material that does not easily get damp, and is provided with the above-mentioned preferable characteristics by using it together with other materials.Vehicle seats, boat seats, vehicles, boats, commercial beds such as hospitals and hotels, and cushions for furniture, Products such as bedding products can be provided. Furthermore, it is also useful as an interior material and a heat insulating material for vehicles and building materials.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI // D01F 6/00 D01F 6/00 A 6/62 303 6/62 303D 6/86 301 6/86 301B (56)参考文献 特開 昭55−17527(JP,A) 特開 平1−213454(JP,A) 特開 昭58−109670(JP,A) 特開 昭58−149362(JP,A) 実開 平1−16326(JP,U) 実開 平2−18300(JP,U) 実開 平2−18371(JP,U) (58)調査した分野(Int.Cl.7,DB名) D04H 1/00 - 18/00 B68G 1/00 - 15/00 B32B 1/00 - 35/00 D01D 1/00 - 13/02 D01F 1/00 - 13/04 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI // D01F 6/00 D01F 6/00 A 6/62 303 303 6/62 303D 6/86 301 6/86 301B (56) References JP 55-17527 (JP, A) JP 1-213454 (JP, A) JP 58-109670 (JP, A) JP 58-149362 (JP, A) SAIHAI 1-16326 (JP, U) Actual development 2-18300 (JP, U) Actual development 2-18371 (JP, U) (58) Fields investigated (Int.Cl. 7 , DB name) D04H 1 / 00-18 / 00 B68G 1/00-15/00 B32B 1/00-35/00 D01D 1/00-13/02 D01F 1/00-13/04

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 繊度が100〜100000デニ−ルの
連続した線条を曲がりくねらせ互いに接触させて該接触
部の大部分が融着した3次元立体構造体を形成した熱可
塑性弾性樹脂層と熱可塑性非弾性樹脂層とが積層融着し
ており、前記熱可塑性弾性樹脂層面は実質的にフラット
化されており該熱可塑性弾性樹脂層の片面に連続繊維か
らなる不織布が接合されている密度が0.01g/cm3
から0.2g/cm3 の多層網状体。
1. A thermoplastic elastic resin layer having a three-dimensional three-dimensional structure in which continuous filaments having a fineness of 100 to 100,000 denier are bent and brought into contact with each other to fuse most of the contact portions to each other. A thermoplastic non-elastic resin layer is laminated and fused, the thermoplastic elastic resin layer surface is substantially flattened, and a nonwoven fabric made of continuous fibers is bonded to one surface of the thermoplastic elastic resin layer. Is 0.01 g / cm 3
To 0.2 g / cm 3 of multi-layer mesh.
【請求項2】 連続した線条の断面形状が中空断面又は
及び異形断面である請求項1記載の多層網状体。
2. The multi-layer mesh body according to claim 1, wherein the cross-sectional shape of the continuous filaments is a hollow cross section and / or a modified cross section.
【請求項3】 連続した線条を構成する熱可塑性弾性樹
脂が示差走査型熱量計で測定した融解曲線に室温以上融
点以下の温度に吸熱ピークを有する請求項1記載の多層
網状体。
3. The multilayer reticulated body according to claim 1, wherein the thermoplastic elastic resin forming the continuous filament has an endothermic peak at a temperature of room temperature or higher and melting point or lower in a melting curve measured by a differential scanning calorimeter.
【請求項4】 複数のオリフィスを持つ多列ノズルより
熱可塑性弾性樹脂と熱可塑性非弾性樹脂を各層となるよ
うに各ノズルオリフィスに分配し、該熱可塑性樹脂の融
点より10〜120℃高い溶融温度で、該ノズルより下
方に向けて吐出させ、溶融状態で互いに接触させて融着
させ3次元構造を形成しつつ、片面に連続繊維からなる
不織布を接合させて引取り装置で挟み込み冷却槽で冷却
せしめる多層網状体の製法。
4. A thermoplastic elastic resin and a thermoplastic inelastic resin are distributed to each nozzle orifice so as to form each layer from a multi-row nozzle having a plurality of orifices, and the melting point is 10 to 120 ° C. higher than the melting point of the thermoplastic resin. At a temperature, it is discharged downward from the nozzle, and in a molten state, they are brought into contact with each other and fused to form a three-dimensional structure, and a nonwoven fabric made of continuous fibers is joined on one side and sandwiched by a take-up device in a cooling tank. A method for producing a multi-layer mesh body that can be cooled.
【請求項5】 冷却後から一体成形して製品化に至る工
程で熱可塑性弾性樹脂の融点より少なくとも10℃以下
の温度でアニ−リングする請求項4に記載の多層網状体
の製法。
5. The method for producing a multilayer reticulate body according to claim 4, wherein annealing is performed at a temperature of at least 10 ° C. or lower than the melting point of the thermoplastic elastic resin in the step of integrally molding after cooling and commercialization.
【請求項6】 請求項1に記載の多層網状体を用いた車
両用座席、船舶用座席、車両用、船舶用、病院用等の業
務用及び家庭用ベット、家具用椅子、事務用椅子および
布団のいずれかに記載の製品。
6. A vehicular seat, a vehicular seat, a vehicular, a marine, a hospital, etc. commercial and household bed, a furniture chair, an office chair, and the like, which use the multilayer mesh body according to claim 1. The product described on one of the futons.
JP8852294A 1994-04-26 1994-04-26 Multilayer net, manufacturing method and products using the same Expired - Lifetime JP3444375B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8852294A JP3444375B2 (en) 1994-04-26 1994-04-26 Multilayer net, manufacturing method and products using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8852294A JP3444375B2 (en) 1994-04-26 1994-04-26 Multilayer net, manufacturing method and products using the same

Publications (2)

Publication Number Publication Date
JPH07300757A JPH07300757A (en) 1995-11-14
JP3444375B2 true JP3444375B2 (en) 2003-09-08

Family

ID=13945173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8852294A Expired - Lifetime JP3444375B2 (en) 1994-04-26 1994-04-26 Multilayer net, manufacturing method and products using the same

Country Status (1)

Country Link
JP (1) JP3444375B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3108770A4 (en) * 2014-02-23 2017-10-18 C-Eng Co., Ltd. Core material for cushion, and cushion

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69738870D1 (en) * 1996-09-06 2008-09-11 Chisso Corp NONWOVEN COMPOSITE WELDING AND ASSOCIATED METHOD OF MANUFACTURING
JP4794161B2 (en) * 2004-11-30 2011-10-19 ダイワボウホールディングス株式会社 Reticulated body and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3108770A4 (en) * 2014-02-23 2017-10-18 C-Eng Co., Ltd. Core material for cushion, and cushion

Also Published As

Publication number Publication date
JPH07300757A (en) 1995-11-14

Similar Documents

Publication Publication Date Title
JP3454373B2 (en) Elastic network, manufacturing method and products using the same
JP3473710B2 (en) Mixed fineness reticulated body, manufacturing method and products using it
JP3444375B2 (en) Multilayer net, manufacturing method and products using the same
JP3430444B2 (en) Netting structure for cushion, manufacturing method thereof and cushion product
JP3431097B2 (en) Multilayer laminated net, manufacturing method and product using the same
JP3444368B2 (en) Nonwoven laminated net, manufacturing method and product using the same
JP3444374B2 (en) Multilayer laminated net, manufacturing method and product using the same
JP3430445B2 (en) Composite net, its manufacturing method and products using it
JP3454375B2 (en) Nonwoven laminated structure, manufacturing method and product using the same
JP3430446B2 (en) Composite elastic network, its production method and products using it
JP3431098B2 (en) Flame-retardant reinforced mesh, manufacturing method and products using the same
JP3431090B2 (en) Nonwoven laminated net, manufacturing method and product using the same
JP3430449B2 (en) Nonwoven laminated net, manufacturing method and product using the same
JP3430447B2 (en) Laminated elastic structure, manufacturing method and product using the same
JP3430448B2 (en) Laminated structure, manufacturing method and products using the same
JP3444369B2 (en) Laminated net, manufacturing method and product using the same
JP3454374B2 (en) Laminated net, manufacturing method and product using the same
JP3444372B2 (en) Multilayer laminated net, manufacturing method and product using the same
JP3431091B2 (en) Nonwoven laminated net, manufacturing method and product using the same
JP3431096B2 (en) Nonwoven laminated net, manufacturing method and product using the same
JP3444371B2 (en) Multilayer laminated net, manufacturing method and product using the same
JP3431092B2 (en) Nonwoven laminated net, manufacturing method and product using the same
JP3444370B2 (en) Multilayer laminated net, manufacturing method and product using the same
JPH07300760A (en) Nonwoven fabric laminated network material, its production and product using the same
JPH07289756A (en) Nonwoven laminated net shaped body manufacturing method and products made therefrom

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080627

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080627

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090627

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20090627

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100627

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20100627

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20110627

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120627

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20130627

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130627

Year of fee payment: 10

EXPY Cancellation because of completion of term