JP3454374B2 - Laminated net, manufacturing method and product using the same - Google Patents
Laminated net, manufacturing method and product using the sameInfo
- Publication number
- JP3454374B2 JP3454374B2 JP2977794A JP2977794A JP3454374B2 JP 3454374 B2 JP3454374 B2 JP 3454374B2 JP 2977794 A JP2977794 A JP 2977794A JP 2977794 A JP2977794 A JP 2977794A JP 3454374 B2 JP3454374 B2 JP 3454374B2
- Authority
- JP
- Japan
- Prior art keywords
- laminated
- elastic resin
- thermoplastic elastic
- melting point
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Laminated Bodies (AREA)
- Artificial Filaments (AREA)
- Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
- Nonwoven Fabrics (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、優れたクッション性と
耐熱耐久性及び振動吸収性とを有し、リサイクルが可能
な不織布で補強された積層網状体と製法および積層網状
体を用いた布団、家具、ベッド、車両用クッション材等
の製品と製法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a laminated reticulated body having excellent cushioning properties, heat resistance and vibration absorption and reinforced with a recyclable non-woven fabric, a manufacturing method and a futon using the laminated reticulated body. , Furniture, beds, cushioning materials for vehicles, etc. and manufacturing method.
【0002】[0002]
【従来の技術】現在、家具、ベッド、電車、自動車等の
クッション材に、発泡ウレタン、非弾性捲縮繊維詰綿、
及び非弾性捲縮繊維を接着した樹脂綿や硬綿などが使用
されている。2. Description of the Related Art At present, as a cushion material for furniture, beds, trains, automobiles, etc., urethane foam, non-elastic crimped fiber wadding,
In addition, resin cotton or hard cotton to which non-elastic crimped fibers are adhered is used.
【0003】しかしながら、発泡−架橋型ウレタンはワ
ディング層やクッション材としての耐久性は極めて良好
だが、透湿透水性に劣り蓄熱性があるため蒸れやすく、
かつ、熱可塑性では無いためリサイクルが困難となり焼
却される場合、焼却炉の損傷が大きく、かつ、有毒ガス
除去に経費が掛かる。このため埋め立てされることが多
くなったが、地盤の安定化が困難なため埋め立て場所が
限定され経費も高くなっていく問題がある。また、加工
性は優れるが製造中に使用される薬品の公害問題なども
ある。また、熱可塑性ポリエステル繊維詰綿では繊維間
が固定されていないため、使用時形態が崩れたり、繊維
が移動して、かつ、捲縮のへたりで嵩高性の低下や弾力
性の低下が問題になる。However, although the foamed-crosslinked urethane has very good durability as a wadding layer or a cushioning material, it has poor moisture permeability and heat storage property and is apt to be stuffy.
Moreover, since it is not thermoplastic, it becomes difficult to recycle, and when it is incinerated, the damage to the incinerator is large and the cost for removing the toxic gas is high. For this reason, landfilling has become more frequent, but it is difficult to stabilize the ground, and there is a problem that landfilling sites are limited and costs increase. Further, although it has excellent processability, it also has a problem of pollution of chemicals used during manufacturing. In addition, since the fibers are not fixed in the thermoplastic polyester fiber wadding, the form may collapse during use, the fibers may move, and the crimp may cause a decrease in bulkiness and elasticity. become.
【0004】ポリエステル繊維を接着剤で接着した樹脂
綿、例えば接着剤にゴム系を用いたものとして特開昭6
0−11352号公報、特開昭61−141388号公
報、特開昭61−141391号公報等がある。又、架
橋性ウレタンを用いたものとして特開昭61−1377
32号公報等がある。これらのクッション材は耐久性に
劣り、且つ、熱可塑性でなく、単一組成でもないためリ
サイクルも出来ない等の問題、及び加工性の煩雑さや製
造中に使用される薬品の公害問題などもある。As a resin cotton in which polyester fibers are adhered with an adhesive, for example, a rubber-based adhesive is used, Japanese Patent Application Laid-Open No.
0-11352, JP-A 61-141388, JP-A 61-141391 and the like. Further, as a method using a cross-linkable urethane, JP-A-61-1377
No. 32 publication and the like. These cushion materials have inferior durability, and also have problems such as not being recyclable because they are neither thermoplastic nor single composition, and there are problems such as complexity of processability and pollution of chemicals used during manufacturing. .
【0005】ポリエステル硬綿、例えば特開昭58−3
1150号公報、特開平2−154050号公報、特開
平3−220354号公報等があるが、用いている熱接
着繊維の接着成分が脆い非晶性のポリマ−を用いるため
(例えば特開昭58−136828号公報、特開平3−
249213号公報等)接着部分が脆く、使用中に接着
部分が簡単に破壊されて形態や弾力性が低下するなどの
耐久性に劣る問題がある。改良法として、交絡処理する
方法が特開平4−245965号公報等で提案されてい
るが、接着部分の脆さは解決されず弾力性の低下が大き
い問題がある。また、加工時の煩雑さもある。更には接
着部分が変形しにくくソフトなクッション性を付与しに
くい問題もある。このため、接着部分を柔らかい、且つ
ある程度変形しても回復するポリエステルエラストマ−
を用い、芯成分に非弾性ポリエステルを用いた熱接着繊
維が特開平4−240219号公報で、同繊維を用いた
クッション材がWO−91/19032号公報、特開平
5−156561号公報、特開平5−163654号公
報等で提案されている。この繊維構造物に使われる接着
成分がポリエステルエラストマ−のソフトセグメントと
してはポリアルキレングリコ−ルの含有量が30〜50
重量%、ハ−ドセグメントの酸成分にテレフタル酸を5
0〜80モル%含有し、他の酸成分組成として特公昭6
0−1404号公報に記載された繊維と同様にイソフタ
ル酸を含有して非晶性が増すことになり、融点も180
℃以下となり低溶融粘度として熱接着部分の形成を良く
してアメーバー状の接着部を形成しているが塑性変形し
やいため、及び芯成分が非弾性ポリエステルのため、特
に加熱下での塑性変形が著しくなり、耐熱抗圧縮性が低
下する問題点がある。これらの改良法として、特開平5
−163654号公報にシ−ス成分にイソフタル酸を含
有するポリエステルエラストマ−、コア成分に非弾性ポ
リエステルを用いた熱接着複合繊維のみからなる構造体
が提案されているが上述の理由で加熱下での塑性変形が
著しくなり、耐熱抗圧縮性が低下し、ワディング層やク
ッション材に使用するには問題がある。他方、硬綿の母
材にシリコ−ン油剤を付与して繊維の摩擦係数を下げて
耐久性を向上し、風合いを良くする方法が特開昭63−
158094号公報で提案されている。が、熱接着繊維
の接着性に問題があり、耐久性が劣るのでワディング層
やクッション材に使用するには好ましくない。Polyester hard cotton, for example, JP-A-58-3
1150, JP-A-2-154050, JP-A-3-220354, etc., but since an amorphous polymer having a brittle adhesive component of the heat-bonding fiber used is used (for example, JP-A-58). -136828, Japanese Patent Application Laid-Open No. 3-
However, there is a problem in that durability is poor such that the bonded portion is brittle and the bonded portion is easily broken during use and the form and elasticity are reduced. As an improved method, a method of entanglement treatment has been proposed in Japanese Patent Laid-Open No. 4-245965, but there is a problem that the brittleness of the bonded portion is not solved and the elasticity is largely reduced. In addition, there is complexity during processing. Further, there is a problem that the bonded portion is hard to be deformed and soft cushioning is hard to be imparted. For this reason, the polyester elastomer that is soft even at the bonded portion and recovers even if it is deformed to some extent
A heat-bonding fiber using a non-elastic polyester as a core component is disclosed in JP-A-4-240219, and a cushion material using the fiber is disclosed in WO-91 / 19032, JP-A-5-155651. It is proposed in Japanese Patent Laid-Open No. 5-163654. The adhesive component used in this fiber structure has a polyalkylene glycol content of 30 to 50 as a soft segment of polyester elastomer.
Wt%, 5% terephthalic acid as the acid component of the hard segment
It contains 0 to 80 mol% and is used as another acid component composition
As in the fiber described in Japanese Patent Publication No. 0-1404, isophthalic acid is contained to increase the amorphous property, and the melting point is 180.
The temperature is below ℃, and the heat-bonded part is well formed with a low melt viscosity to form an ameber-shaped bonded part, but it is easy to plastically deform, and because the core component is an inelastic polyester, plastic deformation especially under heating Becomes remarkable, and there is a problem that the heat resistance and compression resistance are lowered. As an improved method for these, Japanese Patent Laid-Open No.
No. 163654 proposes a structure consisting only of a polyester elastomer containing isophthalic acid as a sheath component and a heat-bonding composite fiber using an inelastic polyester as a core component. Plastic deformation becomes significant, the heat resistance and compression resistance deteriorate, and there is a problem in using it for a wadding layer or a cushion material. On the other hand, there is a method in which a silicone oil is added to a base material of hard cotton to lower the friction coefficient of fibers to improve the durability and improve the texture.
It is proposed in Japanese Patent No. 158094. However, there is a problem with the adhesiveness of the heat-adhesive fiber and the durability is poor, so it is not preferable for use in a wadding layer or cushioning material.
【0006】土木工事用に使用する熱可塑性のオレフィ
ン網状体が特開昭47−44839号公報に開示されて
いる。が、細い繊維から構成したクッションとは異なり
表面が凸凹でタッチが悪く、素材がオレフィンのため耐
熱耐久性が著しく劣りワディング層やクッション材には
使用ができないものである。また、特公平3−1766
6号公報には繊度の異なる吐出線条を互いに融着してモ
−ル状物を作る方法があるがクッション材には適さない
網状構造体である。特公平3−55583号公報には、
ごく表面のみ冷却前に回転体等の細化装置で細くする方
法が記載されている。この方法では表面をフラット化で
きず、厚みのある細い線条層を作ることできない。した
がって座り心地の良好なクッション材にはならない。特
開平1−207462号公報では、塩化ビニ−ル製のフ
ロアマットの開示があるが、室温での圧縮回復性が悪
く、耐熱性は著しく悪いので、ワディング材やクッショ
ン材としては好ましくないものである。なお、上述構造
体は振動減衰に関する配慮が全くなされていない。A thermoplastic olefin network used for civil engineering work is disclosed in JP-A-47-44839. However, unlike a cushion made of fine fibers, the surface is uneven and the touch is poor, and since the material is olefin, the heat resistance durability is extremely poor and it cannot be used as a wadding layer or cushion material. In addition, Japanese Patent Publication No. 3-1766
No. 6 discloses a method in which ejection filaments having different fineness are fused to each other to form a mold, but the mesh structure is not suitable as a cushion material. Japanese Examined Patent Publication No. 3-55583 discloses that
A method of thinning only a very surface with a thinning device such as a rotating body before cooling is described. With this method, the surface cannot be flattened and a thick thin linear layer cannot be formed. Therefore, it does not provide a comfortable cushioning material. Japanese Patent Application Laid-Open No. 1-207462 discloses a vinyl chloride floor mat, but it is not preferable as a wadding material or a cushioning material because it has poor compression recovery at room temperature and remarkably poor heat resistance. is there. Note that no consideration is given to vibration damping in the above-mentioned structure.
【0007】[0007]
【発明が解決しようとする課題】上記問題点を解決し、
振動を遮断し、耐熱耐久性、形態保持性、クッション性
の優れた蒸れ難い、不織布で補強されたクッション材に
適した積層網状体と製法及び積層網状体を用いた布団、
家具、ベッド、車両用クッション等の製品と製法を提供
することを目的とする。To solve the above problems,
Laminated netting suitable for cushion material reinforced with non-woven fabric, which is excellent in heat resistance and durability, shape retention, cushioning property, and vibration, and a futon using the laminated netting,
It aims to provide products and manufacturing methods such as furniture, beds, and cushions for vehicles.
【0008】[0008]
【課題を解決するための手段】上記課題を解決するため
の手段、即ち、本発明は、線条の断面形状が中空断面又
は異形断面であり、繊度が100〜100000デニ−
ルの熱可塑性弾性樹脂からなる連続した線条を曲がりく
ねらせ互いに接触させて該接触部の大部分が融着した3
次元立体構造体を形成し、表面が実質的にフラット化さ
れた網状体の片面に連続繊維からなる不織布が接合され
た密度が0.01g/cm3 から0.2g/cm3 の積層網
状体、中空断面又は異型断面形成性の複数のオリフィス
を持つ多列ノズルより熱可塑性弾性樹脂をその融点より
20〜80℃高い溶融温度で、該ノズルより下方に向け
て吐出させ、溶融状態で互いに接触させて融着させ3次
元構造体を形成しつつ、かつ該構造体の片面に連続繊維
からなる不織布を接合させて引取り装置で挟み込み、該
構造体の両面の溶融状態の曲がりくねった吐出線条を4
5°以上折り曲げて変形させて表面をフラット化すると
同時に曲げられていない吐出線条との接触点を接着して
3次元構造体と不織布との積層構造を形成後、冷却槽で
冷却せしめる積層網状体の製法および前記積層網状体を
用いた製品である。[Means for Solving the Problems] Means for solving the above-mentioned problems, that is, the present invention, the cross-sectional shape of the filament is a hollow cross-section or
Is a modified cross section with a fineness of 100 to 100,000 denier
3 continuous filaments made of thermoplastic elastic resin are bent and brought into contact with each other, and most of the contact portions are fused.
Forming a dimensional steric structure, surface substantially flattened reticulated laminated mesh body density nonwoven is bonded consisting continuous fibers on one side of 0.01 g / cm 3 of 0.2 g / cm 3 of , A thermoplastic elastic resin is discharged downward from the nozzle at a melting temperature 20 to 80 ° C. higher than its melting point than a multi-row nozzle having a plurality of orifices with a hollow cross section or atypical cross section forming , and they are in contact with each other in a molten state. While being fused to form a three-dimensional structure , a nonwoven fabric made of continuous fibers is bonded to one surface of the structure and sandwiched by a take-up device.
4 melted winding windings on both sides of the structure
If the surface is flattened by bending it 5 ° or more and deforming it
At the same time glue the contact points with the unbent discharge line
It is a method for producing a laminated net body in which a laminated structure of a three-dimensional structure and a nonwoven fabric is formed and then cooled in a cooling tank, and a product using the laminated net body.
【0009】本発明における熱可塑性弾性樹脂とは、ゴ
ム弾性を有する樹脂であり、ソフトセグメントとして分
子量300〜5000のポリエ−テル系グリコ−ル、ポ
リエステル系グリコ−ル、ポリカ−ボネ−ト系グリコ−
ルまたは長鎖の炭化水素末端をカルボン酸または水酸基
にしたオレフィン系化合物等をブロック共重合したポリ
エステル系エラストマ−、ポリアミド系エラストマ−、
ポリウレタン系エラストマ−、ポリオレフィン系エラス
トマ−などが挙げられる。熱可塑性弾性樹脂とすること
で、再溶融により再生が可能となるため、リサイクルが
容易となる。例えば、ポリエステル系エラストマ−とし
ては、熱可塑性ポリエステルをハ−ドセグメントとし、
ポリアルキレンジオ−ルをソフトセグメントとするポリ
エステルエ−テルブロック共重合体、または、脂肪族ポ
リエステルをソフトセグメントとするポリエステルエス
テルブロック共重合体が例示できる。ポリエステルエ−
テルブロック共重合体のより具体的な事例としては、テ
レフタル酸、イソフタル酸、ナフタレン-2,6-ジカル
ボン酸、ナフタレン-2,7-ジカルボン酸、ジフェニル
-4,4'-ジカルボン酸等の芳香族ジカルボン酸、1,
4-シクロヘキサンジカルボン酸等の脂環族ジカルボン
酸、琥珀酸、アジピン酸、セバチン酸ダイマ−酸等の脂
肪族ジカルボン酸または、これらのエステル形成性誘導
体などから選ばれたジカルボン酸の少なくとも1種と、
1,4-ブタンジオ−ル、エチレングリコ−ル、トリメ
チレングリコ−ル、テトレメチレングリコ−ル、ペンタ
メチレングリコ−ル、ヘキサメチレングリコ−ル等の脂
肪族ジオ−ル、1,1-シクロヘキサンジメタノ−ル、
1,4-シクロヘキサンジメタノ−ル等の脂環族ジオ−
ル、またはこれらのエステル形成性誘導体などから選ば
れたジオ−ル成分の少なくとも1種、および平均分子量
が約300〜5000のポリエチレングリコ−ル、ポリ
プロピレングリコ−ル、ポリテトラメチレングリコ−
ル、エチレンオキシド−プロピレンオキシド共重合体等
のポリアルキレンジオ−ルのうち少なくとも1種から構
成される三元ブロック共重合体である。ポリエステルエ
ステルブロック共重合体としては、上記ジカルボン酸と
ジオ−ル及び平均分子量が約300〜5000のポリラ
クトン等のポリエステルジオ−ルのうち少なくとも各1
種から構成される三元ブロック共重合体である。熱接着
性、耐加水分解性、伸縮性、耐熱性等を考慮すると、ジ
カルボン酸としてはテレフタル酸、または、及びナフタ
レン-2,6-ジカルボン酸、ジオ−ル成分としては1,
4-ブタンジオ−ル、ポリアルキレンジオ−ルとしては
ポリテトラメチレングリコ−ルの3元ブロック共重合体
または、ポリエステルジオ−ルとしてポリラクトンの3
元ブロック共重合体が特に好ましい。特殊な例では、ポ
リシロキサン系のソフトセグメントを導入したものも使
うことができる。また、上記エラストマ−に非エラスト
マ−成分をブレンドされたもの、共重合したもの、ポリ
オレフィン系成分をソフトセグメントにしたもの等も本
発明の熱可塑性弾性樹脂に包含される。ポリアミド系エ
ラストマ−としては、ハ−ドセグメントにナイロン6、
ナイロン66、ナイロン610、ナイロン612、ナイ
ロン11、ナイロン12等及びそれらの共重合ナイロン
を骨格とし、ソフトセグメントには、平均分子量が約3
00〜5000のポリエチレングリコ−ル、ポリプロピ
レングリコ−ル、ポリテトラメチレングリコ−ル、エチ
レンオキシド−プロピレンオキシド共重合体等のポリア
ルキレンジオ−ルのうち少なくとも1種から構成される
ブロック共重合体を単独または2種類以上混合して用い
てもよい。更には、非エラストマ−成分をブレンドされ
たもの、共重合したもの等も本発明に使用できる。ポリ
ウレタン系エラストマ−としては、通常の溶媒(ジメチ
ルホルムアミド、ジメチルアセトアミド等)の存在また
は不存在下に、(A)数平均分子量1000〜6000
の末端に水酸基を有するポリエ−テル及び又はポリエス
テルと(B)有機ジイソシアネ−トを主成分とするポリ
イソシアネ−トを反応させた両末端がイソシアネ−ト基
であるプレポリマ−に、(C)ジアミンを主成分とする
ポリアミンにより鎖延長したポリウレタンエラストマ−
を代表例として例示できる。(A)のポリエステル、ポ
リエ−テル類としては、平均分子量が約1000〜60
00、好ましくは1300〜5000のポリブチレンア
ジペ−ト共重合ポリエステルやポリエチレングリコ−
ル、ポリプロピレングリコ−ル、ポリテトラメチレング
リコ−ル、エチレンオキシド−プロピレンオキシド共重
合体等のポリアルキレンジオ−ルが好ましく、(B)の
ポリイソシアネ−トとしては、従来公知のポリイソシア
ネ−トを用いることができるが、ジフェニルメタン-
4,4'-ジイソシアネ−トを主体としたイソシアネ−ト
を用い、必要に応じ従来公知のトリイソシアネ−ト等を
微量添加使用してもよい。(C)のポリアミンとして
は、エチレンジアミン、1,2-プロピレンジアミン等
公知のジアミンを主体とし、必要に応じて微量のトリア
ミン、テトラアミンを併用してもよい。これらのポリウ
レタン系エラストマ−は単独又は2種類以上混合して用
いてもよい。なお、本発明の熱可塑性弾性樹脂の融点は
耐熱耐久性が保持できる140℃以上が好ましく、16
0℃以上のものを用いると耐熱耐久性が向上するのでよ
り好ましい。なお、必要に応じ、抗酸化剤や耐光剤等を
添加して耐久性を向上させることができる。本発明の目
的である振動や応力の吸収機能をもたせる成分を構成す
る熱可塑性弾性樹脂のソフトセグメント含有量は好まし
くは20重量%以上、より好ましくは40重量%以上で
あり、耐熱耐へたり性からは80重量%以下が好まし
く、より好ましくは70重量%以下である。即ち、本発
明の弾性網状体の振動や応力の吸収機能をもたせる成分
のソフトセグメント含有量は好ましくは20重量%以上
80重量%以下であり、より好ましくは40重量%以上
70重量%以下である。[0009] The thermoplastic elastomeric resin in the present invention, rubber
It is a resin having elastic properties, and as the soft segment, polyether glycol, polyester glycol and polycarbonate glycol having a molecular weight of 300 to 5000.
Polyester elastomers obtained by block-copolymerizing olefinic compounds or the like having carboxylic acids or hydroxyl groups at the ends of hydrocarbon groups of long chains or long chain, polyamide elastomers,
Examples thereof include polyurethane elastomers and polyolefin elastomers. By using a thermoplastic elastic resin, it becomes possible to regenerate by remelting, and thus recycling becomes easy. For example, as a polyester elastomer, a thermoplastic polyester is used as a hard segment,
Examples thereof include a polyester ether block copolymer having polyalkylenediol as a soft segment or a polyester ester block copolymer having an aliphatic polyester as a soft segment. Polyester d
More specific examples of the terblock copolymer include terephthalic acid, isophthalic acid, naphthalene -2,6- dicarboxylic acid, naphthalene- 2,7- dicarboxylic acid and diphenyl.
-Aromatic dicarboxylic acids such as 4,4'- dicarboxylic acid, 1,
At least one of alicyclic dicarboxylic acids such as 4- cyclohexanedicarboxylic acid, aliphatic dicarboxylic acids such as succinic acid, adipic acid, sebacic acid dimer acid or dicarboxylic acids selected from ester-forming derivatives thereof ,
Aliphatic diols such as 1,4- butanediol, ethylene glycol, trimethylene glycol, tetremethylene glycol, pentamethylene glycol and hexamethylene glycol, 1,1- cyclohexanediene Methanol,
Alicyclic di-one such as 1,4- cyclohexane dimethanol
Or at least one diole component selected from these ester-forming derivatives, and polyethylene glycol, polypropylene glycol, polytetramethylene glycol having an average molecular weight of about 300 to 5,000.
It is a ternary block copolymer composed of at least one kind of polyalkylene diol such as ethylene glycol and ethylene oxide-propylene oxide copolymer. As the polyester ester block copolymer, at least one of each of the above dicarboxylic acids and diol and polyester diol such as polylactone having an average molecular weight of about 300 to 5,000 is used.
It is a ternary block copolymer composed of seeds. Considering heat adhesion, hydrolysis resistance, stretchability, heat resistance, etc., terephthalic acid as dicarboxylic acid, or naphthalene -2,6- dicarboxylic acid, and diole component as 1, 1
4- butanediol, polyalkylenemole as the polyalkylenemole terpolymer block copolymer, or polyesterdiol as the polylactone 3
Original block copolymers are particularly preferred. In the special case, it is and this also use those obtained by introducing a soft segment of polysiloxane-based. Also, the thermoplastic elastomer resin of the present invention includes those obtained by blending the above elastomer with a non-elastomer component, those obtained by copolymerization, those obtained by softening the polyolefin component, and the like. As a polyamide elastomer, nylon 6 is used for the hard segment.
Nylon 66, Nylon 610, Nylon 612, Nylon 11, Nylon 12, etc. and their copolymerized nylon are used as the skeletons, and the soft segment has an average molecular weight of about 3
A block copolymer composed of at least one of polyalkylenediols such as polyethylene glycol, polypropylene glycol, polytetramethylene glycol, ethylene oxide-propylene oxide copolymer, etc. Alternatively, two or more kinds may be mixed and used. Furthermore, blends of non-elastomer components and copolymers thereof can be used in the present invention. The polyurethane elastomer is (A) number average molecular weight of 1000 to 6000 in the presence or absence of a usual solvent (dimethylformamide, dimethylacetamide, etc.).
(C) Diamine is added to the prepolymer having both ends of which are isocyanate groups by reacting the polyester and / or polyester having a hydroxyl group at the terminal of (B) with the polyisocyanate containing (B) an organic diisocyanate as a main component. Polyurethane elastomer chain-extended with polyamine as main component
Can be illustrated as a representative example. The polyester or polyether of (A) has an average molecular weight of about 1000 to 60.
00, preferably 1300 to 5000 polybutylene adipate copolyester or polyethylene glycol
Polyalkylenediols such as propylene, polypropylene glycol, polytetramethylene glycol and ethylene oxide-propylene oxide copolymers are preferred, and as the polyisocyanate of (B), conventionally known polyisocyanate is used. but it is, diphenylmethane -
An isocyanate mainly composed of 4,4'- diisocyanate may be used, and if necessary, a trace amount of conventionally known triisocyanate may be added and used. As the polyamine (C), known diamines such as ethylenediamine and 1,2- propylenediamine are mainly used, and if necessary, trace amounts of triamine and tetraamine may be used in combination. These polyurethane elastomers may be used alone or in combination of two or more. The melting point of the thermoplastic elastic resin of the present invention is preferably 140 ° C. or higher at which heat resistance and durability can be maintained.
It is more preferable to use one having a temperature of 0 ° C. or higher because the heat resistance and durability are improved. If necessary, an antioxidant, a light-proofing agent or the like may be added to improve durability. The soft segment content of the thermoplastic elastic resin constituting the component having the function of absorbing vibration and stress, which is the object of the present invention, is preferably 20% by weight or more, more preferably 40% by weight or more, and the heat and sag resistance Therefore, it is preferably 80% by weight or less, and more preferably 70% by weight or less. That is, the soft segment content of the component having the function of absorbing vibrations and stress of the elastic network of the present invention is preferably 20% by weight or more and 80% by weight or less, more preferably 40% by weight or more and 70% by weight or less. .
【0010】本発明の複合網状体を構成する熱可塑性弾
性樹脂からなる線条は、示差走査型熱量計にて測定した
融解曲線において、融点以下に吸熱ピ−クを有するのが
好ましい。融点以下に吸熱ピ−クを有するものは、耐熱
耐へたり性が吸熱ピ−クを有しないものより著しく向上
する。例えば、本発明の好ましいポリエステル系熱可塑
性樹脂として、ハ−ドセグメントの酸成分に剛直性のあ
るテレフタル酸やナフタレン-2,6-ジカルボン酸など
を90モル%以上含有するもの、より好ましくはテレフ
タル酸やナフタレン-2,6-ジカルボン酸の含有量は9
5モル%以上、特に好ましくは100モル%とグリコ−
ル成分をエステル交換後、必要な重合度まで重合し、次
いで、ポリアルキレンジオ−ルとして、好ましくは平均
分子量が500以上5000以下、特に好ましくは10
00以上3000以下のポリテトラメチレングリコ−ル
を15重量%以上70重量%以下、より好ましくは30
重量%以上60重量%以下共重合させた場合、ハ−ドセ
グメントの酸成分に剛直性のあるテレフタル酸やナフタ
レン-2,6-ジカルボン酸の含有量が多いとハ−ドセグ
メントの結晶性が向上し、塑性変形しにくく、かつ、耐
熱抗へたり性が向上するが、溶融熱接着後更に融点より
少なくとも10℃以上低い温度でアニ−リング処理する
とより耐熱抗へたり性が向上する。圧縮歪みを付与して
からアニ−リングすると更に耐熱抗へたり性が向上す
る。このような処理をした網状構造体の線条を示差走査
型熱量計で測定した融解曲線に室温以上融点以下の温度
で吸熱ピークをより明確に発現する。なおアニ−リング
しない場合は融解曲線に室温以上融点以下に吸熱ピ−ク
を発現しない。このことから類推するに、アニ−リング
により、ハ−ドセグメントが再配列され、疑似結晶化様
の架橋点が形成され、耐熱抗へたり性が向上しているの
ではないかとも考えられる。(この処理を疑似結晶化処
理と定義する)この疑似結晶化処理効果は、ポリアミド
系弾性樹脂やポリウレタン系弾性樹脂にも有効である。It is preferable that the filament made of the thermoplastic elastic resin constituting the composite network of the present invention has an endothermic peak below the melting point in the melting curve measured by a differential scanning calorimeter. Those having an endothermic peak below the melting point have significantly improved heat resistance and sag resistance than those having no endothermic peak. For example, as a preferable polyester-based thermoplastic resin of the present invention, one containing 90 mol% or more of terephthalic acid or naphthalene -2,6- dicarboxylic acid having rigidity in the acid component of the hard segment, more preferably terephthalic acid The content of acid and naphthalene -2,6- dicarboxylic acid is 9
5 mol% or more, particularly preferably 100 mol% and glyco-
After transesterification of the monomer component, polymerization is performed to a required degree of polymerization, and then, as the polyalkylene diol, the average molecular weight is preferably 500 or more and 5000 or less, particularly preferably 10
00 to 3000 polytetramethylene glycol in an amount of 15% to 70% by weight, more preferably 30% by weight.
When copolymerized in an amount of not less than 60% by weight and not more than 60% by weight, if the content of terephthalic acid or naphthalene -2,6- dicarboxylic acid, which has rigidity in the acid component of the hard segment, is large, the crystallinity of the hard segment becomes large. The heat resistance and sag resistance are improved, but the heat resistance and sag resistance are improved. However, the heat resistance and sag resistance is further improved by annealing at a temperature lower than the melting point by at least 10 ° C. or more after melt heat bonding. If annealing is performed after applying compressive strain, heat resistance and sag resistance are further improved. The endothermic peak is more clearly expressed in the melting curve measured by a differential scanning calorimeter of the linear structure of the network structure treated as described above at a temperature of room temperature or higher and melting point or lower. If annealing is not performed, no endothermic peak appears in the melting curve above room temperature and below the melting point. By analogy with this, it is considered that the annealing causes rearrangement of the hard segments and formation of pseudo-crystallization-like cross-linking points to improve the heat resistance and sag resistance. (This treatment is defined as pseudo crystallization treatment.) This pseudo crystallization treatment effect is also effective for polyamide elastic resin and polyurethane elastic resin.
【0011】本発明は、線条の断面形状が中空断面又は
異形断面であり、繊度が100〜100000デニ−ル
の熱可塑性弾性樹脂からなる連続した線条を曲がりくね
らせ互いに接触させて該接触部の大部分が融着した3次
元立体構造体を形成し、表面が実質的にフラット化され
た網状体の裏面に連続繊維からなる不織布が接合された
密度が0.01g/cm3 から0.2g/cm3 の積層網状
体である。本発明の積層網状体は線条の断面形状が中空
断面又は異形断面であり、かつ熱可塑性弾性樹脂からな
る連続した線条が接触部の大部分が融着した3次元立体
構造体を形成し融着一体化され、表面が実質的にフラッ
ト化されており、裏面に連続繊維からなる不織布が接合
されているので、外部から与えられた振動を熱可塑性弾
性樹脂の振動吸収機能で大部分の振動を吸収減衰し、局
部的に大きい変形応力を与えられた場合でも積層網状体
の表面が実質的にフラット化され接触部の大部分が融着
しており、裏面は裏面に連続繊維からなる不織布が接合
されているので、積層網状体の面で変形応力を受け止め
変形応力を分散させ、熱可塑性弾性樹脂からなる線条が
3次元立体構造体を形成し融着一体化されているので、
容易に構造体全体が変形してエネルギ−変換により変形
応力を吸収し、変形応力が解除されると熱可塑性弾性樹
脂のゴム弾性で容易に元の形態に回復する機能があるの
で耐へたり性が良好である。公知の非弾性樹脂のみから
なる線条で構成した網状体では、ゴム弾性を持たないの
で圧縮変形により塑性変形を生じて回復しなくなり耐久
性が劣る。積層網状体の表面が実質的にフラット化され
てない場合、表面に局部的な外力が掛かると、表面の線
条及び接着点部分までに選択的に応力集中が発生する場
合があり、このような外力に対しては応力集中による疲
労が発生して耐へたり性が低下する場合がある。なお、
該線条が熱可塑性弾性樹脂からなる場合は3次元構造部
分で構造全体が変形するので応力集中は緩和されるが、
非弾性樹脂では、そのまま応力が接着点に集中して構造
破壊を生じ回復しなくなる。更には、表面が実質的にフ
ラット化されてなく凸凹があると座った時臀部に異物感
を与えるため座り心地が悪くなり好ましくない。なお、
線状が連続していない場合は、接着点が応力の伝達点と
なるため接着点に著しい応力集中が起こり構造破壊を生
じ前記従来技術にも例示した特開昭60−11352号
公報、特開昭61−137732号公報、WO91−1
9032号公報等に開示された構造体の如く耐熱耐久性
が劣り好ましくない。融着していない場合は、形態保持
が出来ず、構造体が一体で変形しないため、応力集中に
よる疲労現象が起こり耐久性が劣ると同時に、形態が変
形して体型保持ができなくなるので好ましくない。本発
明のより好ましい融着の程度は、線条が接触している部
分の大半が融着した状態であり、もっとも好ましくは接
触部分が全て融着した状態である。なお、クッション材
の機能は、クッション層は基本の繊度を太くして少し硬
くして体型保持を受け持つ層と振動減衰性の良い成分で
密度を少し高くした振動吸収して振動を遮断する層で構
成し、表面層はやや繊度を細くし構成線条本数を多くし
た少し柔らかな層として適度の沈み込みにより快適な臀
部のタッチを与えて臀部の圧力分布を均一分散化させる
と共にクッション層で吸収できなかった振動を吸収して
人体の共振部分の振動を遮断する層が一体化されること
で、応力や振動を一体で変形し吸収させ座り心地を向上
させることができる。さらに、フレ−ムと接する面を補
強材で補強してクッション層と一体化し、クッション材
を支える面(補強層)とし、クッションの形態保持をは
かることにより座り心地と耐久性の良い座席となる。し
かして、本発明積層網状体は、上記クッション層と補強
層の機能を併せ持つクッション材を提供するのも目的で
あり、クッション層の補強材として薄くても強く補強効
果の高い連続繊維からなる不織布を接合一体化してい
る。クッション層と接合されていないとクッション層の
補強効果が無くなるので好ましくない。補強材が単繊維
不織布の場合は不織布の厚み当たりの補強効果が悪いの
で重量が重くなり好ましくない。本発明の好ましい不織
布はスパンボンド不織布であり、目付けが20g/m2
〜500g/m2 である。目付けが20g/m2 未満で
は補強効果がわるくなり、500g/m2 を越えると成
形性が劣るので好ましくない。なお、クッション層と補
強層の素材は例えばポリエステルに統一すると座席のリ
サイクル時に分別する必要がないので好ましい。かくし
て、振動吸収性と弾性回復性の良い熱可塑性弾性樹脂か
らなる連続した線条が接触部の大部分が融着した3次元
立体構造体を形成し融着一体化され表面が実質的にフラ
ット化されたクッション層とクッション層の裏面に補強
層が一体接合した積層網状体は、表面層は面で変形応力
を受け止め応力の分散を良くし、個々の線状に掛かる応
力を少なくして補強層で支えられた構造全体が変形して
変形応力を吸収し、且つ臀部を支えるクッション性も向
上させ、応力が解除されると回復し、フレ−ムから伝わ
る振動も振動吸収性と弾性回復性の良い熱可塑性弾性樹
脂からなるクッション層が吸収して人体の共振部分の振
動を遮断するため座り心地と耐久性を向上させることが
できる。この目的から、本発明の積層網状体を形成する
振動吸収性と弾性回復性の良い熱可塑性弾性樹脂からな
る線条の繊度は100〜100000デニ−ルである。
見掛け密度を0.2g/cm3 以下にした場合、1000
00デニ−ルを越えると構成本数が少なくなり、密度斑
を生じて部分的に耐久性の悪い構造ができ、応力集中に
よる疲労が大きくなり耐久性が低下するので好ましくな
い。本発明の熱可塑性弾性樹脂からなる線条の繊度は、
繊度が細すぎると抗圧縮性が低くなり過ぎて変形による
応力吸収性が低下するので100デニ−ル以上であり、
構成本数の低下による構造面の緻密性を損なわない50
000デニ−ル以下である。より好ましくは500デニ
−ル以上、10000デニ−ル以下である。本発明の積
層網状体の平均の見掛け密度は、0.005g/cm3 で
は反発力が失われ、振動吸収能力や変形応力吸収能力が
不充分となりクッション機能を発現させにくくなる場合
があり、0.25g/cm3 以上では反発力が高すぎて座
り心地が悪くなる場合があるので、振動吸収能力や変形
応力吸収機能が生かせてクッション体としての機能が発
現されやすい0.01g/cm3 以上0.20g/cm3 以
下であり、好ましくは0.03g/cm3 以上0.08g
/cm3 以下である。本発明においては繊度の異なる線状
を見掛け密度との組合せで最適な構成とする異繊度積層
構造とする方法も好ましい実施形態として選択できる。
本発明の積層網状体の厚みは特に限定されないが、厚み
が5mm未満では応力吸収機能と応力分散機能が低下する
ので、好ましい厚みは力の分散をする面機能と振動や変
形応力吸収機能が発現できる厚みとして10mm以上であ
り、より好ましくは20mm以上である。According to the present invention, the filament has a hollow cross-section or a hollow cross-section.
A continuous linear filament made of a thermoplastic elastic resin having a modified cross section and a fineness of 100 to 100,000 denier is bent and brought into contact with each other to form a three-dimensional solid structure in which most of the contact portions are fused. A nonwoven fabric made of continuous fibers is joined to the back surface of a mesh whose surface is substantially flattened to form a laminated mesh having a density of 0.01 g / cm 3 to 0.2 g / cm 3 . In the laminated reticulate body of the present invention, the cross-sectional shape of the filament is hollow.
Continuous filaments having a cross-section or a modified cross-section and made of a thermoplastic elastic resin form a three-dimensional three-dimensional structure in which most of the contact portions are fused and fused and integrated, and the surface is substantially flattened. In addition, since a nonwoven fabric made of continuous fibers is bonded to the back surface, most of the vibration applied from the outside is absorbed and attenuated by the vibration absorption function of the thermoplastic elastic resin, giving a large deformation stress locally. Even if the surface of the laminated reticulate body is substantially flattened and most of the contact portion is fused, the back surface is bonded to the back surface with a nonwoven fabric made of continuous fibers, It receives the deformation stress and disperses the deformation stress, and the filaments made of thermoplastic elastic resin form a three-dimensional solid structure and are fused and integrated.
The entire structure is easily deformed and the deformation stress is absorbed by energy conversion, and when the deformation stress is released, the rubber elasticity of the thermoplastic elastic resin easily restores the original shape, so there is no sag resistance. Is good. Since the known mesh-like body composed of filaments made only of non-elastic resin does not have rubber elasticity, it is plastically deformed by compressive deformation and does not recover, resulting in poor durability. When the surface of the laminated net is not substantially flattened, when a local external force is applied to the surface, stress concentration may be selectively generated up to the lines and bonding points of the surface. With respect to such external force, fatigue due to stress concentration may occur and sag resistance may decrease. In addition,
When the filaments are made of thermoplastic elastic resin, the entire structure is deformed in the three-dimensional structure, so that stress concentration is relieved.
In the case of non-elastic resin, stress concentrates on the bonding point as it is, causing structural destruction and cannot be recovered. Furthermore, if the surface is not substantially flattened and has irregularities, the buttocks feel a foreign substance when sitting, which is unfavorable for sitting. In addition,
When the linear shape is not continuous, the adhesion point serves as a stress transmission point, so that the stress is remarkably concentrated at the adhesion point and structural destruction occurs. JP 61-137732, WO 91-1
It is not preferable because the heat resistance and durability like the structure disclosed in Japanese Patent No. 9032 are poor. If they are not fused, the shape cannot be maintained and the structure does not deform integrally, resulting in a fatigue phenomenon due to stress concentration and poor durability, and at the same time deforming the shape and making it impossible to maintain the body shape, which is not preferable. . The more preferable degree of fusion in the present invention is that most of the portions where the filaments are in contact are fused, and most preferably all the contact portions are in fusion. The function of the cushion material is that the cushion layer is a layer that thickens the basic fineness and makes it a little harder and is responsible for body shape maintenance, and a layer with a slightly higher density with a component with good vibration damping properties that absorbs vibration and blocks vibration. The surface layer is made slightly finer and the number of filaments is increased as a slightly soft layer to give a comfortable buttocks touch by moderate subduction to evenly disperse the buttocks pressure distribution and absorb with the cushion layer. By integrating the layer that absorbs the vibration that could not be performed and blocks the vibration of the resonance part of the human body, stress and vibration can be integrally deformed and absorbed to improve the sitting comfort. Further, the surface in contact with the frame is reinforced with a reinforcing material to be integrated with the cushion layer to form a surface (reinforcing layer) for supporting the cushion material, and by maintaining the shape of the cushion, a comfortable and durable seat can be obtained. . Therefore, the laminated network of the present invention is also intended to provide a cushioning material having the functions of both the cushion layer and the reinforcing layer, and a nonwoven fabric made of continuous fibers which is thin but has a high reinforcing effect as a reinforcing material for the cushioning layer. Are joined and integrated. If it is not joined to the cushion layer, the reinforcing effect of the cushion layer will be lost, which is not preferable. If the reinforcing material is a monofilament non-woven fabric, the reinforcing effect per thickness of the non-woven fabric is poor and the weight becomes heavy, which is not preferable. The preferred nonwoven fabric of the present invention is a spunbonded nonwoven fabric having a basis weight of 20 g / m 2.
~ 500 g / m 2 . If the basis weight is less than 20 g / m 2 , the reinforcing effect will be poor, and if it exceeds 500 g / m 2 , the formability will be poor, such being undesirable. It is preferable that the cushion layer and the reinforcing layer are made of polyester, for example, because it is not necessary to separate them when the seat is recycled. Thus, continuous filaments made of a thermoplastic elastic resin having good vibration absorption and elastic recovery form a three-dimensional three-dimensional structure in which most of the contact portions are fused, and the fusion is integrated so that the surface is substantially flat. The laminated mesh body in which the cushion layer and the reinforcement layer are integrally bonded to the back surface of the cushion layer is received by the surface layer to improve the dispersion of stress by receiving deformation stress on the surface and reduce the stress applied to each linear The entire structure supported by the layers deforms to absorb the deformation stress, and also improves the cushioning property to support the buttocks, recovers when the stress is released, and the vibration transmitted from the frame is also vibration absorption and elastic recovery The cushioning layer made of a good thermoplastic elastic resin absorbs the vibrations at the resonance part of the human body and blocks the vibrations of the human body, so that sitting comfort and durability can be improved. For this purpose, the fineness of the filament made of thermoplastic elastic resin having good vibration absorption and elastic recovery forming the laminated network of the present invention is 100 to 100,000 denier.
If the apparent density is 0.2g / cm 3 or less, 1000
If it exceeds 00 denier, the number of constituents is reduced, density unevenness is generated, and a structure with poor durability is partially formed, and fatigue due to stress concentration increases and durability deteriorates, which is not preferable. The fineness of the filament made of the thermoplastic elastic resin of the present invention is
If the fineness is too fine, the compression resistance becomes too low and the stress absorbability due to deformation decreases, so it is 100 denier or more,
Does not impair the structure's compactness due to a decrease in the number of components 50
It is less than 000 denier. More preferably, it is at least 500 denier and at most 10,000 denier. When the average apparent density of the laminated reticulate body of the present invention is 0.005 g / cm 3 , the repulsive force is lost, and the vibration absorbing ability and the deformation stress absorbing ability become insufficient, so that the cushioning function may not be easily exhibited. If it is 0.25 g / cm 3 or more, the repulsive force may be too high and the sitting comfort may be poor, so 0.01 g / cm 3 or more that the function as a cushion body is easily expressed by utilizing the vibration absorbing ability and the deformation stress absorbing function. 0.20 g / cm 3 or less, preferably 0.03 g / cm 3 or more and 0.08 g
/ Cm 3 or less. In the present invention, a method of forming a different fineness laminated structure in which a linear shape having a different fineness is combined with an apparent density to have an optimum configuration can be selected as a preferred embodiment.
The thickness of the laminated reticulate body of the present invention is not particularly limited, but if the thickness is less than 5 mm, the stress absorbing function and the stress dispersing function are deteriorated, so a preferable thickness is a surface function for dispersing force and a vibration or deformation stress absorbing function. The thickness that can be achieved is 10 mm or more, and more preferably 20 mm or more.
【0012】本発明の積層網状体の線条の断面形状は、
中空断面や異形断面であるので好ましい抗圧縮性(反発
力)やタッチを付与することができる。抗圧縮性は繊度
や用いる素材のモジュラスにより調整して、繊度を細く
したり、柔らかい素材では中空率や異形度を高くし初期
圧縮応力の勾配を調整できるし、繊度をやや太くした
り、ややモジュラスの高い素材では中空率や異形度を低
くして座り心地が良好な抗圧縮性を付与する。中空断面
や異形断面の他の効果として中空率や異形度を高くする
ことで、同一の抗圧縮性を付与した場合、より軽量化が
可能となり、自動車等の座席に用いると省エネルギ−化
ができ、布団などの場合は、上げ下ろし時の取扱性が向
上する。好ましい抗圧縮性(反発力)やタッチを付与す
ることができる他の好ましい方法として、本発明の積層
網状体の線条を複合構造とする方法がある。複合構造と
しては、シ−スコア構造またはサイドバイサイド構造及
びそれらの組合せ構造などが挙げられる。が、特にはク
ッション層が大変形してもエネルギ−変換できない振動
や変形応力をエネルギ−変換して回復できる立体3次元
構造とするために線状の表面の50%以上を柔らかい熱
可塑性弾性樹脂が占めるシ−スコア構造またはサイドバ
イサイド構造及びそれらの組合せ構造などが挙げられ
る。すなわち、シ−スコア構造ではシ−ス成分は振動や
変形応力をエネルギ−変換が容易なソフトセグメント含
有量が多い熱可塑性弾性樹脂とし、コア成分は抗圧縮性
を示すソフトセグメント含有量が少ない熱可塑性弾性樹
脂で構成し適度の沈み込みによる臀部への快適なタッチ
を与えることができる。サイドバイサイド構造では振動
や変形応力をエネルギ−変換が容易なソフトセグメント
含有量が多い熱可塑性弾性樹脂の溶融粘度をソフトセグ
メント含有量が少ない抗圧縮性を示す熱可塑性弾性樹脂
の溶融粘度より低くして線状の表面を占めるソフトセグ
メント含有量が多い熱可塑性弾性樹脂の割合を多くした
構造(比喩的には偏芯シ−ス・コア構造のシ−スに熱可
塑性弾性樹脂を配した様な構造)として線状の表面を占
めるソフトセグメント含有量が多い熱可塑性弾性樹脂の
割合を80%以上としたものが特に好ましく、最も好ま
しくは線状の表面を占めるソフトセグメント含有量が多
い熱可塑性弾性樹脂の割合を100%としたシ−スコア
である。ソフトセグメント含有量が多い熱可塑性弾性樹
脂の線状の表面を占める割合が多くなると、溶融して融
着するときの流動性が高いので接着が強固になる効果が
あり、構造が一体で変形する場合、接着点の応力集中に
対する耐疲労性が向上し、耐熱性や耐久性がより向上す
る。The cross-sectional shape of the filaments of the laminated network of the present invention is
In which the hollow cross-section or an irregular cross-sectional Preferred anti compressibility can impart (repulsive force) and touch. The anti-compression property can be adjusted by the fineness and the modulus of the material used to make the fineness fine, or in the soft material the hollowness and the irregularity can be increased to adjust the gradient of the initial compression stress, and the fineness can be made slightly thicker or slightly. A material with a high modulus lowers the hollow ratio and the degree of irregularity to provide anti-compression property with a comfortable sitting feeling. As another effect of the hollow cross section and the irregular cross section, by increasing the hollow ratio and the degree of irregularity, if the same anti-compression property is given, the weight can be further reduced, and the energy saving can be achieved when it is used for the seat of an automobile or the like. If it is a futon or the like, it will be easier to handle when raising and lowering. As another preferable method capable of imparting preferable anti-compression property (repulsive force) and touch, there is a method of forming the filament of the laminated network of the present invention into a composite structure. Examples of the composite structure include a score core structure, a side-by-side structure, and a combination structure thereof. However, in particular, 50% or more of the linear surface is made of a soft thermoplastic elastic resin in order to obtain a three-dimensional structure in which vibration and deformation stress that cannot be energy-converted even if the cushion layer is largely deformed can be energy-converted and recovered. And a side-by-side structure and a combination thereof. That is, in the sheath core structure, the sheath component is a thermoplastic elastic resin having a large content of soft segments that can easily convert energy into vibration and deformation stress, and the core component is a thermoelastic resin having a small content of soft segments exhibiting anti-compression properties. Composed of a plastic elastic resin, it can give a comfortable touch to the buttocks due to an appropriate depression. With the side-by-side structure, the melt viscosity of a thermoplastic elastic resin with a high soft segment content that facilitates energy conversion of vibration and deformation stress is lower than the melt viscosity of a thermoplastic elastic resin with a low soft segment content that exhibits anti-compression properties. A structure in which the proportion of thermoplastic elastic resin occupying a linear surface and having a large amount of soft segment is increased (metaphorically, a structure in which a thermoplastic elastic resin is arranged in an eccentric sheath-core structure) It is particularly preferable that the ratio of the thermoplastic elastic resin having a large soft segment content occupying the linear surface is 80% or more, and most preferably the thermoplastic elastic resin having a large soft segment content occupying the linear surface. Is a score with the ratio of 100% as 100%. When the proportion of the thermoplastic elastic resin with a large soft segment content that occupies the linear surface is large, the flowability when melting and fusing is high, so there is the effect of strengthening the adhesion, and the structure deforms as a unit. In this case, the fatigue resistance against stress concentration at the bonding points is improved, and the heat resistance and durability are further improved.
【0013】熱可塑性弾性樹脂からなる線条で構成され
た積層網状体は実質的に表面がフラット化されて、接触
部の大部分が融着していること、及び裏面が補強効果の
高い連続繊維からなる不織布を接合一体化しており、両
面が実質的にフラット化されているので、積層網状体と
他の網状体、不織布、編織物、硬綿、フイルム、発泡
体、金属等の被熱接着体とを接着するのに、他の熱接着
成分(熱接着不織布、熱接着繊維、熱接着フィルム、熱
接着レジン等)や接着剤等を用いて一体積層構造体化
し、車両用座席、船舶用座席、車両用、船舶用、病院用
等の業務用及び家庭用ベット、家具用椅子、事務用椅
子、布団類等の製品を得る場合、被接着体面との接触面
積を広くできるので、接着面積が広くなり強固に接着し
た接着耐久性も良好な製品を得ることができる。なお、
積層網状体形成段階から製品化される任意の段階で上述
の疑似結晶化処理を施すことにより、構造体中の熱可塑
性弾性樹脂からなる線条を示差走査型熱量計で測定した
融解曲線に室温以上融点以下の温度に吸熱ピークを持つ
ようにすると製品の耐熱耐久性が格段に向上するのでよ
り好ましい。本発明の積層網状体の線条を複合構造とし
た場合、積層網状体に熱接着機能も付与できる。例え
ば、シ−スコア構造ではシ−ス成分の振動や変形応力を
エネルギ−変換が容易なソフトセグメント含有量が多い
熱可塑性弾性樹脂を熱接着成分とし、コア成分の抗圧縮
性を示すソフトセグメント含有量が少ない熱可塑性弾性
樹脂を網状形態の保持機能をもたせるための高融点成分
とする構成で、熱接着成分の融点を高融点樹脂の融点よ
り10℃以上低くしたものを用いることにより熱接着層
の機能も付与できる。また、本発明の積層網状体の表面
層を振動や変形応力をエネルギ−変換が容易なソフトセ
グメント含有量が多い低融点の熱可塑性弾性樹脂を熱接
着成分とし積層することでも熱接着機能を付与できる。
熱接着機能を発現させるに好ましい積層網状体中の線条
を形成する熱接着成分の融点は高融点成分の融点より1
5℃から50℃低い融点であり、より好ましくは20℃
から40℃低い融点である。熱接着機能を持つ本発明の
積層網状体は実質的に表面がフラット化されて、接触部
の大部分が融着していることで、網状体、不織布、編織
物、硬綿、フイルム、発泡体、金属等の被熱接着体面と
の接触面積を広くできるので、熱接着面積が広くなり、
強固に熱接着した新たな成形体及び車両用座席、船舶用
座席、車両用、船舶用、病院用等の業務用及び家庭用ベ
ット、家具用椅子、事務用椅子、布団類になった製品を
得ることができる。なお、新たな成形体及び製品が製品
化されるまでの任意の段階で疑似結晶化処理を施すこと
により、構造体中の熱可塑性弾性樹脂からなる線条を示
差走査型熱量計で測定した融解曲線に室温以上融点以下
の温度に吸熱ピークを持つようにすると製品の耐熱耐久
性が格段に向上したものを提供できるのでより好まし
い。熱接着時に被接着体を伸張した状態で接着すると、
被接着体は接着層のゴム弾性で伸張された状態が緩和し
ないので張りのある、皺になりにくい成形体とすること
もできる。The surface of the laminated reticulate body composed of filaments made of thermoplastic elastic resin is substantially flattened, most of the contact portions are fused, and the back surface is continuous with a high reinforcing effect. Nonwoven fabric made of fibers is joined and integrated, and both sides are substantially flattened, so laminated nets and other nets, non-woven fabrics, knitted fabrics, hard cotton, films, foams, metals, etc. can be heated. In order to bond with the adhesive body, another thermal adhesive component (thermal adhesive nonwoven fabric, thermal adhesive fiber, thermal adhesive film, thermal adhesive resin, etc.) or an adhesive agent is used to form an integrated laminated structure, for vehicle seats, ships. Seats, vehicles, boats, hospitals, and other commercial and household beds, furniture chairs, office chairs, duvets, etc. Made of wide area and strong adhesion with good adhesion durability It is possible to obtain. In addition,
By performing the above-mentioned pseudo-crystallization treatment at any stage from the step of forming the laminated network to the product, the filaments made of the thermoplastic elastic resin in the structure are subjected to the melting curve measured by the differential scanning calorimeter at room temperature. It is more preferable to have an endothermic peak at a temperature equal to or higher than the melting point, because the heat resistance and durability of the product is remarkably improved. When the filaments of the laminated network of the present invention have a composite structure, the laminated network can also be provided with a thermal adhesion function. For example, in the sheath core structure, a thermoplastic elastic resin containing a large amount of soft segment that facilitates energy conversion of vibration and deformation stress of the sheath component is used as a heat-adhesive component, and a soft segment containing the compressive property of the core component is contained. A thermoplastic adhesive resin having a small amount is used as a high melting point component to have a function of holding a net-like shape, and the melting point of the thermal bonding component is lower than the melting point of the high melting point resin by 10 ° C. or more. The function of can be added. Further, the surface layer of the laminated reticulate body of the present invention is also imparted with a heat-adhesive function by laminating a low-melting point thermoplastic elastic resin containing a large amount of soft segments which can easily convert energy of vibration and deformation stress into a heat-adhesive component. it can.
The melting point of the heat-adhesive component forming the filaments in the laminated reticulate body, which is preferable for exhibiting the heat-adhesive function, is 1 than the melting point of the high-melting component.
5 to 50 ° C lower melting point, more preferably 20 ° C
To 40 ° C lower melting point. The laminated reticulated body of the present invention having a heat-bonding function has a substantially flat surface, and most of the contact portions are fused, so that the reticulated body, non-woven fabric, knitted fabric, hard cotton, film, foam Since the contact area with the body to be heat-bonded such as metal can be widened, the heat-bonded area becomes wider,
Strongly heat-bonded new molded products and commercial seats such as vehicle seats, ship seats, vehicle seats, ship seats, hospital beds etc., home chairs, furniture chairs, office chairs, futons, etc. Obtainable. In addition, by performing pseudo crystallization at any stage until new molded products and products are commercialized, the filaments made of the thermoplastic elastic resin in the structure are melted by a differential scanning calorimeter. It is more preferable to make the curve have an endothermic peak at a temperature of room temperature or higher and melting point or lower because a product with significantly improved heat resistance and durability can be provided. When the adherend is adhered in a stretched state during thermal adhesion,
Since the adhered body does not relax the stretched state due to the rubber elasticity of the adhesive layer, it can be made into a molded body with tension and less likely to wrinkle.
【0014】次に、本発明の製法を述べる。本発明の製
法は中空断面又は異型断面形成性の複数のオリフィスを
持つ多列ノズルより熱可塑性弾性樹脂をその融点より2
0℃以上高く、80℃未満高い溶融温度で、該ノズルよ
り下方に向けて吐出させ、溶融状態で互いに接触させて
融着させ3次元構造を形成しつつ、片面に連続繊維から
なる不織布を接合させて引取り装置で挟み込み冷却槽で
冷却せしめる積層網状体の製法である。熱可塑性弾性樹
脂を一般的な溶融押出機を用いて溶融し、複数のオリフ
ィスを持つ多列ノズルに供給し、オリフィスより下方へ
吐出する。この時の溶融温度は、熱可塑性弾性樹脂の融
点より20〜80℃高い温度である。熱可塑性弾性樹脂
の融点より80℃を越える高い溶融温度にすると熱分解
が著しくなり熱可塑性弾性樹脂のゴム弾性特性が低下す
るので好ましくない。他方、熱可塑性弾性樹脂の融点よ
り10℃以上高くしないとメルトフラクチャ−を発生し
正常な線条形成が出来なくなり、また、吐出後ル−プ形
成しつつ接触させ融着させる際、線条の温度が低下して
線条同士が融着しなくなり接着が不充分な積層複合網状
体となる場合があり好ましくない。しかして、本発明で
は、溶融状態の線状を互いに接触させて融着させ3次元
構造を形成しつつ、片面に連続繊維からなる不織布を接
合させるため、溶融状態の線状を互に融着させうる温度
より5℃以上高くしないと不織布と線状の融着接合が不
充分になる。好ましい溶融温度は融点より20℃から6
0℃高い温度、より好ましくは融点より25℃から40
℃高い温度である。オリフィスの形状は、中空断面(例
えば三角中空、丸型中空、突起つきの中空等となるよう
形状)及び、又は異形断面(例えば三角形、Y型、星型
等の断面二次モ−メントが高くなる形状)とすることで
前記効果以外に溶融状態の吐出線条が形成する3次元構
造が流動緩和し難くし、逆に接触点での流動時間を長く
保持して接着点を強固にできる。特開平1−2075号
公報に記載の接着のための加熱をする場合、3次元構造
が緩和し易くなり平面的構造化し、3次元立体構造化が
困難となるので好ましくない。積層網状体の特性向上効
果としては、見掛けの嵩を高くでき軽量化になり、また
抗圧縮性が向上し、弾発性も改良できへたり難くなる。
中空断面では中空率が80%を越えると断面が潰れ易く
なるので、好ましくは軽量化の効果が発現できる10%
以上70%以下、より好ましくは20%以上60%以下
である。オリフィスの孔間ピッチは線状が形成するル−
プが充分接触できるピッチとする必要がある。緻密な構
造にするには孔間ピッチを短くし、粗密な構造にするに
は孔間ピッチを長くする。本発明の孔間ピッチは好まし
くは3mm〜20mm、より好ましくは5mm〜10mmであ
る。本発明では所望に応じ異密度化や異繊度化もでき
る。列間のピッチ又は孔間のピッチも変えた構成、及び
列間と孔間の両方のピッチも変える方法などで異密度層
を形成できる。また、オリフィスの断面積を変えて吐出
時の圧力損失差を付与すると、溶融した熱可塑性弾性樹
脂を同一ノズルから一定の圧力で押し出される吐出量が
圧力損失の大きいオリフィスほど少なくなる原理を使っ
て長手方向の区間でオリフィスの断面積が異なる列を少
なくとも複数有するノズルを用い異繊度線条からなる網
状構造体を製造することができる。次いで、該ノズルよ
り下方に向けて吐出させ、ル−プを形成させつつ溶融状
態で互いに接触させて融着させ3次元構造を形成しつ
つ、片面に連続繊維からなる不織布を連続的に供給し、
溶融状態の3次元立体構造体と接合させた、線状が溶融
状態の積層網状構造体両面を引取りネットで挟み込み、
網状体の表面の溶融状態の曲がりくねった吐出線条を4
5°以上折り曲げて変形させて表面をフラット化すると
同時に曲げられていない吐出線条との接触点を接着して
構造を形成後、連続して冷却媒体(通常は室温の水を用
いるのが冷却速度を早くでき、コスト面でも安くなるの
で好ましい)で急冷して本発明の3次元立体網状構造体
化した積層網状体を得る。ノズル面と引取り点の距離は
少なくとも40cm以下にすることで吐出線条が冷却され
接触部が融着しなくなることを防ぐのが好ましい。吐出
線条の吐出量5g/分孔以上と多い場合は10cm〜40
cmが好ましく、吐出線条の吐出量5g/分孔未満と少な
い場合は5cm〜20cmが好ましい。積層網状体の厚みは
溶融状態の3次元立体構造体両面を挟み込む引取りネッ
トの開口幅(引取りネット間の間隔)で決まる。本発明
では上述の理由から引取りネットの開口幅は5mm以上と
する。次いで水切り乾燥するが冷却媒体中に界面活性剤
等を添加すると、水切りや乾燥がしにくくなったり、熱
可塑性弾性樹脂が膨潤することもあり好ましくない。本
発明の好ましい方法としては、一旦冷却後、一体成形し
て製品化に至る任意の工程で熱可塑性弾性樹脂の融点よ
り少なくとも10℃以下の温度でアニ−リングよる疑似
結晶化処理を行い積層網状体又は製品を得るのがより好
ましい製法である。疑似結晶化処理温度は、少なくとも
融点(Tm)より10℃以上低く、Tanδのα分散立
ち上がり温度(Tαcr)以上で行う。この処理で、融
点以下に吸熱ピ−クを持ち、疑似結晶化処理しないもの
(吸熱ピ−クを有しないもの)より耐熱耐へたり性が著
しく向上する。本発明の好ましい疑似結晶化処理温度は
(Tαcr+10℃)から(Tm−20℃)である。単
なる熱処理により疑似結晶化させると耐熱耐へたり性が
向上する。が更には、10%以上の圧縮変形を付与して
アニ−リングすることで耐熱耐へたり性が著しく向上す
るのでより好ましい。また、一旦冷却後、乾燥工程を経
する場合、乾燥温度をアニ−リング温度とすることで同
時に疑似結晶化処理を行うができる。また、製品化する
工程で別途疑似結晶化処理を行うことができる。次いで
所望の長さまたは形状に切断してクッション材に用い
る。尚、ノズル面と樹脂を固化させる冷却媒体上に設置
した引取りコンベアとの距離、樹脂の溶融粘度、オリフ
ィスの孔径と吐出量などにより所望のループ径や線径を
きめられる。冷却媒体上に設置した間隔が調整可能な一
対の引取りコンベアで溶融状態の吐出線条を挟み込み停
留させることで互いに接触した部分を融着させつつ連続
的に供給される連続繊維からなる不織布とも接合融着さ
せ、連続して冷却媒体中に引込み固化させ網状構造体を
形成する時、上記コンベアの間隔を調整することで、融
着した網状体が溶融状態でいる間で厚み調節が可能とな
り、所望の厚みのものが得られる。コンベア速度も速す
ぎると、接触点の形成が不充分になったり、融着点が充
分に形成されるまでに冷却され、接触部の融着が不充分
になる場合がある。また、速度が遅過ぎると溶融物が滞
留し過ぎ、密度が高くなるので、所望の見掛け密度に適
したコンベア速度を設定する必要がある。なお、連続的
に供給される連続繊維からなる不織布の供給速度は引取
りコンベアの表面速度と同一にしないと引きつれや弛み
を生じクッションの補強機能が低下するので好ましくな
い。Next, the manufacturing method of the present invention will be described. The manufacturing method of the present invention uses a multi-row nozzle having a plurality of orifices capable of forming a hollow cross section or atypical cross section and a thermoplastic elastic resin at a melting point of 2 or more.
A non-woven fabric made of continuous fibers is bonded on one side while discharging downward from the nozzle at a melting temperature higher than 0 ° C. and higher than 80 ° C., contacting each other in a molten state and fusing to form a three-dimensional structure. This is a method for producing a laminated mesh body which is sandwiched by a take-up device and cooled in a cooling tank. The thermoplastic elastic resin is melted using a general melt extruder, supplied to a multi-row nozzle having a plurality of orifices, and discharged below the orifices. The melting temperature at this time is 20 to 80 ° C. higher than the melting point of the thermoplastic elastic resin. If the melting temperature is higher than 80 ° C. higher than the melting point of the thermoplastic elastic resin, thermal decomposition becomes remarkable and the rubber elastic properties of the thermoplastic elastic resin deteriorate, which is not preferable. On the other hand, unless the temperature is higher than the melting point of the thermoplastic elastic resin by 10 ° C. or more, melt fracture occurs and normal filament formation cannot be performed. Further, when the filament is formed by looping after discharge and is brought into contact and fused. The temperature may decrease and the filaments may not fuse together, resulting in a laminated composite network with insufficient adhesion, which is not preferable. According to the present invention, however, since the melted linear shapes are brought into contact with each other and fused to form a three-dimensional structure, the nonwoven fabric made of continuous fibers is bonded to one surface of the melted linear shapes. If the temperature is not higher than the temperature that can be applied by 5 ° C. or more, the linear fusion bonding with the nonwoven fabric becomes insufficient. The preferred melting temperature is 20 ° C to 6 ° C above the melting point.
0 ° C higher temperature, more preferably 25 ° C to 40 ° C above melting point
℃ is a high temperature. The shape of the orifice is hollow (for example, triangular hollow, round hollow, or hollow with protrusions) and / or irregular cross-section (for example, triangular, Y-shaped, star-shaped, etc.) In addition to the above effect, the three-dimensional structure formed by the discharge filaments in the molten state is less likely to flow-relaxation by adopting the shape, and conversely, the flow time at the contact point can be maintained for a long time to strengthen the adhesion point. When heating for adhesion as described in Japanese Patent Application Laid-Open No. 1-2075, the three-dimensional structure is easily relaxed, a planar structure is formed, and a three-dimensional three-dimensional structure becomes difficult, which is not preferable. As an effect of improving the properties of the laminated reticulate body, the apparent bulk can be increased, the weight can be reduced, the anti-compression property can be improved, and the elasticity can be improved, which is difficult to achieve.
In the case of a hollow cross section, if the hollow ratio exceeds 80%, the cross section tends to be crushed, so that it is preferable that the weight reduction effect is 10%.
Or more and 70% or less, more preferably 20% or more and 60% or less. The pitch between the holes of the orifice is the rule formed by the linear shape.
It is necessary to make the pitch so that the bumps can make sufficient contact. The pitch between holes is shortened for a dense structure, and the pitch between holes is lengthened for a coarse structure. The pitch between the holes of the present invention is preferably 3 mm to 20 mm, more preferably 5 mm to 10 mm. In the present invention, different densities and different fineness can be obtained as desired. The different density layer can be formed by a configuration in which the pitch between rows or the pitch between holes is also changed, or a method in which the pitch between both rows and holes is also changed. Also, if the pressure loss difference at the time of discharge is given by changing the cross-sectional area of the orifice, the principle that the discharged amount of molten thermoplastic elastic resin extruded from the same nozzle at a constant pressure becomes smaller for the orifice with larger pressure loss, is used. It is possible to manufacture a reticulated structure composed of filaments of different fineness by using a nozzle having at least a plurality of rows having different cross-sectional areas of orifices in a section in the longitudinal direction. Then, it is discharged downward from the nozzle, and while forming a loop, they are brought into contact with each other in a molten state and fused to form a three-dimensional structure, and a nonwoven fabric made of continuous fibers is continuously supplied to one surface. ,
Both sides of the laminated net-like structure, which is in the molten state and is bonded to the three-dimensional structure in the molten state, are sandwiched by a take-up net,
The number of twisted discharge lines on the surface of the mesh is 4
Bend over 5 ° to deform and flatten the surface, and at the same time form a structure by adhering the contact points with the unbent discharge line, and then continuously form a cooling medium (usually water at room temperature is used for cooling). It is preferable because the speed can be increased and the cost can be reduced). Thus, the three-dimensional three-dimensional network structure of the present invention is rapidly cooled to obtain the laminated network. The distance between the nozzle surface and the take-off point is preferably at least 40 cm or less to prevent the discharge filament from being cooled and the contact portion not being fused. If the discharge amount of the discharge line is 5g / hole or more, 10cm-40
cm is preferable, and 5 cm to 20 cm is preferable when the discharge amount of the discharge filament is less than 5 g / hole. The thickness of the laminated network is determined by the opening width of the take-up net (interval between the take-up nets) that sandwiches both surfaces of the three-dimensional structure in the molten state. In the present invention, the opening width of the take-up net is set to 5 mm or more for the above reason. Next, it is drained and dried, but if a surfactant or the like is added to the cooling medium, draining and drying may be difficult, or the thermoplastic elastic resin may swell, which is not preferable. A preferred method of the present invention is to perform a pseudo crystallization treatment by annealing at a temperature of at least 10 ° C. or lower than the melting point of the thermoplastic elastic resin in any step from once cooling to integral molding to commercialization and forming a laminated network. Obtaining a body or product is a more preferred method of preparation. The pseudo-crystallization treatment temperature is at least 10 ° C. lower than the melting point (Tm), and is higher than the α dispersion rising temperature (Tαcr) of Tan δ. By this treatment, the heat-resistant sag resistance is remarkably improved as compared with the one having no endothermic peak (having no endothermic peak) having an endothermic peak below the melting point. The preferred pseudo-crystallization treatment temperature of the present invention is (Tαcr + 10 ° C) to (Tm-20 ° C). If it is pseudo-crystallized by simple heat treatment, heat resistance and sag resistance are improved. However, it is more preferable to impart compressive deformation of 10% or more and anneal to significantly improve the heat resistance and sag resistance. When the drying step is performed after cooling once, the pseudo crystallization treatment can be performed at the same time by setting the drying temperature to the annealing temperature. Further, it is possible to perform a separate pseudo-crystallization treatment in the process of commercialization. Then, it is cut into a desired length or shape and used as a cushion material. The desired loop diameter and wire diameter can be determined by the distance between the nozzle surface and the take-up conveyor installed on the cooling medium for solidifying the resin, the melt viscosity of the resin, the orifice hole diameter and the discharge amount, and the like. A non-woven fabric composed of continuous fibers that are continuously supplied while fusing the portions in contact with each other by sandwiching and holding the discharge filaments in a molten state with a pair of take-up conveyors with adjustable spacing installed on the cooling medium. When forming a net-like structure by fusion-bonding and continuously drawing into a cooling medium to solidify, by adjusting the interval of the conveyor, it becomes possible to adjust the thickness while the fused net-like body is in a molten state. A desired thickness can be obtained. If the conveyor speed is too high, the formation of contact points may be insufficient, or the contact point may be cooled until the fusion point is sufficiently formed, resulting in insufficient fusion of the contact portion. Further, if the speed is too slow, the melt will stay too much and the density will increase, so it is necessary to set the conveyor speed suitable for the desired apparent density. It should be noted that if the supply speed of the nonwoven fabric made of continuous fibers is not the same as the surface speed of the take-up conveyor, pulling or loosening will occur and the reinforcing function of the cushion will deteriorate, which is not preferable.
【0015】本発明の積層網状体をクッション用いる場
合、その使用目的、使用部位により使用する樹脂、繊
度、ル−プ径、嵩密度を選択する必要がある。例えば、
ソフトなタッチと適度の沈み込みと張りのある膨らみを
付与するためには、低密度で細い繊度、細かいル−プ径
にするのが好ましく、中層のクッション機能も発現させ
るには、共振振動数を低くし、適度の硬さと圧縮時のヒ
ステリシスを直線的に変化させて体型保持性を良くし、
耐久性を保持させるために、中密度で太い繊度、やや大
きいル−プ径の層と低密度で細い繊度、細かいル−プ径
の層を積層一体化した構造にするのが好ましい。また、
3次元構造を損なわない程度に成形型等を用いて使用目
的にあった形状に成形して側地を被せ車両用座席、船舶
用座席、ベット、椅子、家具等に用いることができる。
勿論、用途との関係で要求性能に合うべく他の素材、例
えば、異なる網状体、短繊維集合体からなる硬綿クッシ
ョン材、不織布等と組合せて用いることも可能である。
また、樹脂製造過程以外でも性能を低下させない範囲で
製造過程から成形体に加工し、製品化する任意の段階で
難燃化、防虫抗菌化、耐熱化、撥水撥油化、着色、芳香
等の機能付与を薬剤添加等の処理加工ができる。When the laminated reticulate body of the present invention is used as a cushion, it is necessary to select a resin to be used, a fineness, a loop diameter and a bulk density depending on the purpose of use and the site of use. For example,
In order to give a soft touch, moderate depression and bulging with tension, it is preferable to have a low density, fine fineness, and a fine loop diameter, and in order to develop the cushion function of the middle layer, the resonance frequency Is lowered, and moderate hardness and hysteresis at the time of compression are changed linearly to improve body retention.
In order to maintain durability, it is preferable to have a structure in which a layer having a medium density and a large fineness, a layer having a relatively large loop diameter and a layer having a low density and a fineness and a fine loop diameter are laminated and integrated. Also,
It can be used for vehicle seats, boat seats, beds, chairs, furniture, etc. by molding it into a shape suitable for the purpose of use by using a molding die or the like to the extent that the three-dimensional structure is not impaired.
Of course, it is also possible to use it in combination with other materials such as a different mesh body, a hard cotton cushion material composed of a short fiber aggregate, a non-woven fabric or the like so as to meet the required performance in relation to the application.
In addition, other than the resin manufacturing process, the molded product is processed from the manufacturing process to the extent that performance is not deteriorated, and at any stage of commercialization, it becomes flame retardant, insecticidal, antibacterial, heat resistant, water / oil repellent, colored, aroma, etc. It is possible to perform the processing such as the addition of chemicals to add the function.
【0016】[0016]
【実施例】以下に実施例で本発明を詳述する。EXAMPLES The present invention will be described in detail below with reference to examples.
【0017】なお、実施例中の評価は以下の方法で行っ
た。
融点(Tm)および融点以下の吸熱ピ−ク
島津製作所製TA50,DSC50型示差熱分析計を使
用し、昇温速度20℃/分で測定した吸発熱曲線から吸
熱ピ−ク(融解ピ−ク)温度を求めた。
Tαcr
ポリマ−を融点+10℃に加熱して、厚み約300μm
のフイルムを作成して、オリエンテック社製バイブロン
DDVII型を用い、110Hz、昇温速度1℃/分で測
定したTanδ(虚数弾性率M”と弾性率の実数部分
M’との比M”/M’)のゴム弾性領域から融解領域へ
の転移点温度に相当するα分散の立ち上がり温度。
見掛け密度
試料を15cm×15cmの大きさに切断し、4か所の高さ
を測定し、体積を求め試料の重さを体積で徐した値で示
す。(n=4の平均値)
線条の繊度
試料を10箇所から各線条部分を切り出し、アクリル樹
脂で包埋して断面を削り出し切片を作成して断面写真を
得る。各部分の断面写真より各部の断面積(Si)を求
める。また、同様にして得た切片をアセトンでアクリル
樹脂を溶解し、真空脱泡して密度勾配管を用いて40℃
にて測定した比重(SGi)を求める。ついで次式より
線状の9000mの重さを求める。(単位cgs)
繊度=〔(1/n)ΣSi×SGi〕×900000
融着
試料を目視判断で融着しているか否かを接着している繊
維同士を手で引っ張って外れないか否かで外れないもの
を融着していると判断する。
補強効果
試料を30cm×30cmの大きさに切り出し、直径24cm
の鉄球に鎖を接続した鉄球が30cm上から試料の上に自
由落下できる装置にて、0.5Hzのサイクルで100回
鉄球を試料の中央上に落下させて、試料の損傷の程度を
以下の基準で判定した。◎:損傷なし。○:損傷軽度。
△:構造が部分的に破壊した。×:構造が殆ど破壊して
る。(n=3の平均値)
耐熱耐久性(70℃残留歪)
試料を15cm×15cmの大きさに切断し、50%圧縮し
て70℃乾熱中22時間放置後冷却して圧縮歪みを除き
1日放置後の厚み(b)を求め、処理前の厚み(a)か
ら次式、即ち(a−b)/a×100より算出する:単
位%(n=3の平均値)
繰返し圧縮歪
試料を15cm×15cmの大きさに切断し、島津製作所製
サ−ボパルサ−にて、25℃65%RH室内にて50%
の厚みまで1Hzのサイクルで圧縮回復を繰り返し2万
回後の試料を1日放置後の厚み(b)を求め、処理前の
厚み(a)から次式、即ち(a−b)/a×100より
算出する:単位%(n=3の平均値)
座り心地
東洋紡績製熱接着繊維4−64−TE5と東洋紡績製立
体巻縮ステープル10−64−745を30/70重量
比で混合開繊して得たカ−ドウエッブを、バケットシ−
トの形状に切断した積層網状体の表面側に、成形したク
ッションの見掛けの嵩密度を0.05g/cm3 となるよ
うに積層して熱成形用雌金型に入れ、牡金型で圧縮して
詰め込み170℃の熱風にて10分間熱接着成形してバ
ケットシ−ト状に成形したクッションに東洋紡績製ハイ
ムからなるポリエステルモケットの側地を被って、座席
用フレ−ムにセットして座部は4か所、背部は6か所の
側地止めを入れた座席を作成し、30℃RH75%室内
で作成した座席にパネラ−を座らせ以下の評価をおこな
った。(n=5)
(1) 床つき感:座ったときの「どすん」と床に当たった
感じの程度を感覚的に定性評価した。感じない;◎、殆
ど感じない;○、やや感じる;△、感じる;×
(2) 蒸れ感:2時間座っていて、臀部やふと股の内側の
座席と接する部分が蒸れた感じを感覚的に定性評価し
た。殆ど感じない:◎、僅かに蒸れを感じる;○、やや
蒸れを感じる;△、蒸れを著しく感じる;×
(3) 8時間以内でどの程度我慢して座席に座っていられ
るか:1時間以内;×、2時間以内;△、4時間以内;
○、4時間以上;◎
(4) 4時間座席に座らせたときの腰の疲れ程度を感覚的
に定性評価した。無し;◎、殆ど疲れない;○、やや疲
れる;△、非常に疲れる;×
(5) 総合評価: (1)から(4) までの評価の◎を4点、○
を3点、△を2点、×を1点として12点以上で△を含
まないもの;非常に良い(◎)、12点以上で△を含む
もの;良い(○)、10点以上で×を含まないもの;や
や悪い(△)、×を含むもの;悪い(×)として評価し
た。The evaluations in the examples were carried out by the following methods. Melting point (Tm) and endothermic peak below melting point TA50, DSC50 type differential thermal analyzer manufactured by Shimadzu Corporation was used, and the endothermic peak (melting peak) was measured from the endothermic curve measured at a temperature rising rate of 20 ° C./min. ) The temperature was determined. Tαcr polymer is heated to a melting point of + 10 ° C. to have a thickness of about 300 μm.
Film was prepared and measured using a Vibron DDVII type manufactured by Orientec Co., Ltd. at a rate of 110 Hz and a heating rate of 1 ° C./min. Tan δ (the ratio of the imaginary elastic modulus M ″ to the real part M ′ of the elastic modulus M ″ / The rising temperature of α dispersion corresponding to the transition temperature from the rubber elastic region to the melting region of M ′). The apparent density sample is cut into a size of 15 cm × 15 cm, the heights at four locations are measured, the volume is determined, and the weight of the sample is divided by the volume. (Average value of n = 4) Each fine line sample is cut out from 10 places of fine line fineness, embedded with an acrylic resin, a cross section is cut out, and a section is prepared to obtain a cross section photograph. The cross-sectional area (Si) of each part is obtained from the cross-sectional photograph of each part. In addition, a piece obtained in the same manner was dissolved in acrylic resin with acetone, degassed in vacuum, and a density gradient tube was used to 40 ° C.
Determine the specific gravity (SGi) measured in. Then, a linear weight of 9000 m is obtained from the following equation. (Unit: cgs) Fineness = [(1 / n) ΣSi × SGi] × 900000 Whether or not the fusion-bonded sample is fused by visual judgment is determined by whether or not the fibers adhering to each other can be pulled out by hand and removed. It is determined that something that does not come off is fused. Reinforcing effect Sample is cut into a size of 30 cm x 30 cm, and the diameter is 24 cm.
The degree of damage of the sample by dropping the iron ball 100 times with 0.5Hz cycle on the center of the sample with the device that the iron ball with the chain connected to the Was judged according to the following criteria. ⊚: No damage. ○: Slight damage.
Δ: The structure was partially destroyed. X: The structure is almost destroyed. (Average value of n = 3) Heat resistance durability (70 ° C residual strain) A sample was cut into a size of 15 cm x 15 cm, compressed by 50%, left at 70 ° C in dry heat for 22 hours, and then cooled to remove compression strain. The thickness (b) after standing for a day is calculated, and calculated from the thickness (a) before treatment by the following formula, that is, (ab) / a × 100: Unit% (average value of n = 3) Repeated compressive strain sample Is cut into a size of 15 cm x 15 cm, and it is 50% in a RH room at 25 ° C and 65% in a Shimadzu Servo Pulser.
The thickness (b) after leaving the sample for 20,000 times after repeating compression recovery at a cycle of 1 Hz up to the thickness of 1 is calculated from the thickness (a) before the treatment, that is, (ab) / ax Calculated from 100: Unit% (average value of n = 3) Sit comfort Toyobo's thermal bonding fiber 4-64-TE5 and Toyobo's three-dimensional crimp staple 10-64-745 are mixed and opened at a weight ratio of 30/70. The card web obtained by fiberizing
On the surface side of the laminated net body cut in the shape of a gauze, it is laminated so that the apparent bulk density of the molded cushion is 0.05 g / cm 3 , put in a female mold for thermoforming, and compressed with an oyster mold. Then, the cushion is molded with a hot air of 170 ° C for 10 minutes to form a bucket sheet, and the cushion is molded into a cushion sheet, covered with a polyester moquette made of Toyobo Co., Ltd., and set on the seat frame. Seats with side stoppers were made at four places and six places at the back, and a paneler was placed on the seats made at 30 ° C RH75% room for the following evaluation. (N = 5) (1) Feeling on the floor: The degree of "dosun" when sitting and the feeling of hitting the floor were qualitatively and qualitatively evaluated. Not felt; ◎, hardly felt; ○, slightly felt; △, felt; × (2) Feeling of stuffiness: Feeling stuffy when sitting for 2 hours and the buttocks and the part of the crotch that contacts the seat inside the crotch Qualitatively evaluated. Almost no feeling: ◎, slightly stuffy; ○, slightly stuffy; △, significantly stuffy; × (3) How long you can sit in the seat within 8 hours: within 1 hour; × within 2 hours; △ within 4 hours;
○ 4 hours or more; ◎ (4) A qualitative qualitative evaluation was performed on the degree of waist fatigue when the user sat in the seat for 4 hours. None; ◎, hardly tired; ○, slightly tired; △, very tired; × (5) Overall evaluation: 4 points from ◎ of the evaluations from (1) to (4), ○
3 points, △ is 2 points, × is 1 point and does not include Δ with 12 points or more; very good (⊚), that with 12 points or more; Good (○), 10 points or more is x It was evaluated as those which did not contain; those which were somewhat bad (Δ) and those which contained x; bad (x).
【0018】実施例1〜2
ポリエステル系エラストマ−として、ジメチルテレフタ
レ−ト(DMT)又は、ジメチルナフタレ−ト(DM
N)と1・4ブタンジオ−ル(1・4BD)を少量の触
媒と仕込み、常法によりエステル交換後、ポリテトラメ
チレングリコ−ル(PTMG)を添加して昇温減圧しつ
つ重縮合せしめポリエ−テルエステルブロック共重合エ
ラストマ−を生成させ、次いで抗酸化剤2%を添加混合
練込み後ペレット化し、50℃48時間真空乾燥して得
られた熱可塑性弾性樹脂原料の処方を表1に示す。Examples 1 and 2 Dimethyl terephthalate (DMT) or dimethyl naphthalate (DM) was used as the polyester elastomer.
N) and 1.4 butanediol (1.4 BD) were charged with a small amount of a catalyst, and after transesterification by a conventional method, polytetramethylene glycol (PTMG) was added and polycondensation was performed while heating and depressurizing. -Formation of terester block copolymer elastomer, then addition and mixing of 2% of antioxidant, kneading, pelletizing, and vacuum drying at 50 ° C for 48 hours are shown in Table 1. .
【0019】[0019]
【表1】 [Table 1]
【0020】幅50cm、長さ5cmのノズル有効面に幅方
向の孔間ピッチ5mm、長さ方向の孔間ピッチ10mmの千
鳥配列としたオリフィス形状は外径2mm、内径1.6mm
でトリプルブリッジの中空形成性断面としたノズルに、
得られた熱可塑性弾性樹脂原料A−1及びA−2を溶融
温度210℃及び245℃にて単孔当たりの吐出量2.
0g/分にてノズル下方に吐出させ、ノズル面12cm下
に冷却水を配し、幅60cmのステンレス製エンドレスネ
ットを平行に5cm間隔で一対の引取りコンベアを水面上
に一部出るように配して、一方のコンベアにニップしな
がら、幅50cmにスリットしたPET繊維からなる目付
け100g/m2 のスパンボンド不織布を連続的に片側
から供給した上に該溶融状態の吐出線状を引取り、接触
部分を融着させつつ、スパンボンド不織布とも融着さ
せ、片側がスパンボンド不織布からなる網状構造を形成
した積層体の両面を挟み込みつつ毎分1mの速度で25
℃の冷却水中へ引込み固化させ、次いで100℃の熱風
乾燥機中で20分疑似結晶化処理した後、所定の大きさ
に切断して得られた積層網状体の特性を表2に示す。実
施例1の積層網状体は断面形状が三角おむすび型の中空
断面で中空率が40%、繊度が9000デニ−ルの線条
で形成しており、平均の見掛け密度が0.047g/cm
3 であった。実施例2も断面形状が三角おむすび型の中
空断面で中空率が38%、繊度が8900デニ−ルの線
条から形成されており、網状体の平均の見掛け密度が
0.047g/cm3 であった。表2で明らかなごとく、
実施例1は柔らかい弾性樹脂の特性が生かせた積層網状
構造のため耐熱性、常温での耐久性、座り心地ともに優
れたクッション材で補強効果も実用使用に耐えるもので
あった。実施例2はやや硬い弾性樹脂の特性が生かせた
積層網状構造のため耐熱性、常温での耐久性、座り心地
ともに優れたクッション材で補強効果も実用使用に耐え
るものであった。評価用に作成した座席も性能が優れて
いることが判る。Orifice shapes having a staggered arrangement with a hole pitch of 5 mm in the width direction and a hole pitch of 10 mm in the length direction on an effective surface of a nozzle of 50 cm in width and 5 cm in length are 2 mm in outer diameter and 1.6 mm in inner diameter.
With a nozzle with a triple bridge hollow forming cross section,
1. Discharge amount of the obtained thermoplastic elastic resin raw materials A-1 and A-2 per single hole at a melting temperature of 210 ° C and 245 ° C.
Discharge at the bottom of the nozzle at 0 g / min, arrange cooling water 12 cm below the nozzle surface, and arrange stainless steel endless nets with a width of 60 cm in parallel at intervals of 5 cm so that a part of the pair of take-up conveyors appears above the water surface. Then, while nipping it on one of the conveyors, a spunbonded non-woven fabric having a basis weight of 100 g / m 2 made of PET fiber slit to a width of 50 cm was continuously supplied from one side, and the discharge line in the molten state was taken out. While fusing the contact part, it is also fused with the spunbonded non-woven fabric, sandwiching both sides of the laminate having a net-like structure composed of the spun-bonded non-woven fabric on one side at a speed of 1 m / min.
Table 2 shows the properties of the laminated reticulate body obtained by pulling into cooling water at 0 ° C to solidify, then performing pseudo-crystallization treatment for 20 minutes in a hot air dryer at 100 ° C, and cutting into a predetermined size. The laminated reticulate body of Example 1 was formed in a linear cross section having a triangular rice ball type hollow cross section with a hollow ratio of 40% and a fineness of 9000 denier, and an average apparent density of 0.047 g / cm.
Was 3 . In Example 2 as well, the cross-sectional shape is a triangular rice ball type hollow cross-section, and the hollow ratio is 38%, the fineness is formed from filaments having a denier of 8900, and the average apparent density of the reticulate body is 0.047 g / cm 3 . there were. As is clear from Table 2,
Example 1 was a cushioning material having excellent heat resistance, durability at room temperature, and sitting comfort due to the laminated network structure making the best use of the characteristics of the soft elastic resin, and the reinforcing effect was also practically usable. Example 2 was a cushioning material excellent in heat resistance, durability at room temperature, and sitting comfort due to the laminated network structure making the best use of the characteristics of a slightly hard elastic resin, and had a reinforcing effect that could be used practically. It can be seen that the seat created for evaluation also has excellent performance.
【0021】[0021]
【表2】 [Table 2]
【0022】参考例
ジメチルイソフタレ−ト(DMI)20モル%とDMT
80モル%及び1・4ブタンジオ−ル(1・4BD)を
少量の触媒と仕込み、実施例1の方法と同様にして得た
ポリエステル系熱可塑性弾性樹脂(A−3)の処方を表
1に示す。オリフィスの孔形状を孔径φ1mmの丸断面と
したノズルを用い以外実施例1と同様にして弾性複合網
状体を得た。なお、中実丸断面の繊度が9000デニ−
ルの線条から形成されており、網状体の平均の見掛け密
度が0.046g/cm3 であった。 Reference Example 20 mol% of dimethyl isophthalate (DMI) and DMT
Table 1 shows the formulation of the polyester-based thermoplastic elastic resin (A-3) obtained in the same manner as in Example 1 by charging 80 mol% and 1.4-butanediol (1.4-BD) with a small amount of a catalyst. Show. An elastic composite reticulate body was obtained in the same manner as in Example 1 except that a nozzle having a circular cross section with a hole diameter of 1 mm was used for the orifice. The fineness of the solid round section is 9000 deniers.
The average apparent density of the reticulate body was 0.046 g / cm 3 .
【0023】実施例4
ポリウレタン系エラストマ−として、4・4’ジフェニ
ルメタンジイソシアネ−ト(MDI)とPTMG及び鎖
延長剤として1・4BDを添加して重合し次いで抗酸化
剤2%を添加混合練込み後ペレット化し真空乾燥してポ
リエ−テル系ウレタンポリマ−の処方を表3に示す。Example 4 As a polyurethane elastomer, 4,4'-diphenylmethane diisocyanate (MDI), PTMG and 1.4BD as a chain extender were added and polymerized, and then 2% of an antioxidant was added and mixed. Table 3 shows the formulation of the polyether urethane polymer after kneading, pelletizing and vacuum drying.
【0024】[0024]
【表3】 [Table 3]
【0025】得られた熱可塑性弾性樹脂を溶融温度22
0℃とした以外実施例1と同様にして得た弾性複合網状
体の特性を表2に示す。実施例4は線条の断面形状が三
角おむすび型の中空断面で中空率は41%、繊度が98
00デニ−ルの線条から形成されており、網状体の平均
の見掛け密度が0.047g/cm3 であった。実施例4
は柔らかいウレタンの特性を生かした積層網状体で耐熱
性、常温での耐久性、座り心地ともに優れたクッション
材で、補強効果も実用使用に耐えるものであった。評価
用に作成した座席も優れていることが判る。The thermoplastic elastic resin thus obtained is melted at a melting temperature of 22.
Table 2 shows the properties of the elastic composite network obtained in the same manner as in Example 1 except that the temperature was 0 ° C. In Example 4, the filament has a triangular cross-sectional shape of a hollow rice ball and has a hollow ratio of 41% and a fineness of 98.
It was formed from filaments of 00 denier, and the average apparent density of the reticulate body was 0.047 g / cm 3 . Example 4
Is a cushioning material that has excellent heat resistance, durability at room temperature, and sitting comfort, making use of the characteristics of soft urethane, and has a reinforcing effect that can be used practically. It can be seen that the seat created for evaluation is also excellent.
【0026】比較例1〜2
固有粘度0.63のポリエチレンテレフタレ−ト(PE
T)及びメルトインデックス12のポリプロピレン(P
P)を溶融温度を280℃及び250℃とし、疑似結晶
化処理しなかった以外、実施例3と同様にして得た線条
の繊度が比較例1は8800デニ−ル、比較例2は23
000デニ−ルで、平均の見掛け密度が共に0.047
g/cm3 の網状体の特性を表2に示す。比較例1は非弾
性ポリエステルからなる網状体のため耐熱耐久性が悪
く、硬くて座り心地も悪いクッション材で補強効果の試
験では構造体が破壊した例である。比較例2は繊度がや
や太い非弾性オレフィンからなる網状体のため、耐熱耐
久性が悪く、硬いクッション材で、補強効果の試験では
構造体が完全に破壊した例である。Comparative Examples 1-2 Polyethylene terephthalate (PE with an intrinsic viscosity of 0.63)
T) and polypropylene with a melt index of 12 (P
P) had a melting temperature of 280 ° C. and 250 ° C., and the fineness of the filaments obtained in the same manner as in Example 3 was 8800 denier and 23 in Comparative Example 2 except that the crystallization treatment was not performed.
000 denier, the average apparent density is 0.047.
The properties of the grit / cm 3 mesh are shown in Table 2. Comparative Example 1 is a cushion material that is poor in heat resistance and durability because it is a net-like body made of non-elastic polyester and is hard and uncomfortable to sit on. Comparative Example 2 is a hard cushion material having poor heat resistance and durability because it is a reticulate body having a slightly large fineness and made of an inelastic olefin, and is an example in which the structure is completely destroyed in the reinforcing effect test.
【0027】比較例3
ノズル面60cm下に引取りコンベアネットを配して引き
取ったあと疑似結晶化処理をしなかった以外、参考例と
同様の方法で得た網状体の特性の一部を表2に示す。な
お、接着状態が不良で不織布とも接着せず形態保持が悪
いため、50%圧縮時反発力、見掛け密度、補強効果、
70℃残留歪、繰返圧縮歪み、及び座り心地の評価はし
ていない。比較例3は形態が固定されていないのでクッ
ション材用ワディング層に適さない例である。Comparative Example 3 A part of the characteristics of the reticulate body obtained by the same method as the reference example is shown except that a take-up conveyor net is placed 60 cm below the nozzle surface and the pseudo-crystallization treatment is not performed. 2 shows. In addition, since the adhesive state is poor and it does not adhere to the nonwoven fabric and the shape retention is poor, the repulsive force at 50% compression, the apparent density, the reinforcing effect,
Residual strain at 70 ° C, repeated compressive strain, and sitting comfort were not evaluated. Comparative Example 3 is an example which is not suitable for the cushioning wadding layer because the form is not fixed.
【0028】比較例4
ノズル面25cm下に引取りコンベアネットを配して、ス
パンボンド不織布を供給しないで網状体を形成し、疑似
結晶化処理しない以外、参考例と同様にして得た線条の
繊度は9100デニ−ル、平均の見掛け密度は0.04
5g/cm3 の網状体の特性を表2に示す。比較例4は熱
可塑性弾性樹脂で構成されているので座り心地は良い
が、耐熱性、耐久性、及び補強材がないので網状構造の
形態保持が不良なクッション材としては好ましくない例
である。Comparative Example 4 A filament obtained in the same manner as in Reference Example except that a take-up conveyor net was placed 25 cm below the nozzle surface to form a mesh without supplying spunbonded nonwoven fabric and no pseudo-crystallization treatment was performed. Has a fineness of 9100 denier and an average apparent density of 0.04
The properties of the 5 g / cm 3 mesh are shown in Table 2. Since Comparative Example 4 is made of a thermoplastic elastic resin, it is comfortable to sit on, but it is an unfavorable example as a cushioning material having poor heat retention, durability, and a reinforcing material, and thus retaining the shape of the network structure.
【0029】比較例5
幅50cm、長さ5cmのノズル有効面に幅方向の孔間ピッ
チ10mm、長さ方向の孔間ピッチ20mmの千鳥配列とし
たオリフィス径φ2mmとしたノズルを用いて単孔当たり
の吐出量25g/分にて吐出させて、ノズル面30cm下
に引取りコンベアネットを配して1m/分にて引き取っ
た以外、比較例3と同様にして得た線条の繊度は113
000デニ−ルで、平均の見掛け密度は0.154g/
cm3 の積層網状体の特性を表2に示す。比較例5は繊度
が著しく太く密度斑のある積層網状体のため、耐熱耐久
性が悪くなり、座り心地もやや悪くなるクッション材
で、補強材の形態保持性も劣る例である。COMPARATIVE EXAMPLE 5 A nozzle having a width of 50 cm and a length of 5 cm and having a staggered arrangement of holes with a pitch of 10 mm in the width direction and a pitch of 20 mm between the holes in the length direction was used as a nozzle having a diameter of 2 mm. The fineness of the filaments obtained in the same manner as in Comparative Example 3 was 113 except that the discharge amount was 25 g / min, the take-up conveyor net was placed 30 cm below the nozzle surface, and the take-up was 1 m / min.
000 denier, the average apparent density is 0.154 g /
The properties of the laminated network of cm 3 are shown in Table 2. Comparative Example 5 is a cushioning material having a remarkably fineness and a density unevenness, which results in poor heat resistance and durability, and a slightly poorer sitting comfort, and inferior shape retention of the reinforcing material.
【0030】比較例6
引取りコンベアネットの間隔(開口幅)を5cmとし、引
取りコンベアネットの片側のスパンボンド不織布を供給
する側には溶融した吐出線状が接触するように配し、速
度を1m/分にて引き取った以外、比較例3と同様にし
て得た線条繊度が9000デニ−ルで、弾性網状体の平
均見掛け密度が0.043g/cm3 の積層網状体の特性
を表2に示す。比較例6は積層網状体表面のフラット化
が悪い状態のため、見掛け密度が低いのに耐久性が劣
り、熱接着が不充分になり、少し異物感を感じる座り心
地のやや劣るクッション材で、補強材の形態保持性も劣
る例である。Comparative Example 6 The spacing (opening width) of the take-up conveyor net was set to 5 cm, and the side of the take-up conveyor net on which the spunbonded nonwoven fabric was supplied was arranged so that the melted discharge line was in contact with the side. Was obtained at the rate of 1 m / min, and the characteristics of the laminated reticulate body obtained in the same manner as in Comparative Example 3 with a linear fineness of 9000 denier and an average apparent density of the elastic reticulate body of 0.043 g / cm 3 were measured. It shows in Table 2. Comparative Example 6 is a cushioning material having a poor flatness of the surface of the laminated reticulate body, which has a low apparent density but is inferior in durability, is insufficient in thermal adhesion, and is a little inferior in sitting comfort, causing a feeling of foreign matter. This is also an example in which the shape retention of the reinforcing material is inferior.
【0031】比較例7
単孔当たりの吐出量3g/分にて吐出させ、引取りコン
ベアネットの速度を0.3m/分とし、疑似結晶化処理
しなかった以外参考例と同様して得た線条繊度が130
00デニ−ルで、弾性網状体の平均見掛け密度が0.2
1g/cm3 の弾性網状体の特性を表2に示す。比較例7
は見掛け密度が高いため座り心地がやや劣り、耐熱性、
耐久性が不充分なクッション材で、補強材の形態保持性
も劣る例である。Comparative Example 7 A sample was obtained in the same manner as the reference example except that the discharge amount per single hole was 3 g / min, the take-up conveyor net speed was 0.3 m / min, and the pseudo crystallization treatment was not performed. Streak fineness is 130
The average apparent density of the elastic mesh body is 0.2 at 00 denier.
The properties of the elastic network of 1 g / cm 3 are shown in Table 2. Comparative Example 7
Has a high apparent density, which makes it slightly uncomfortable to sit in, heat resistance,
This is an example of a cushioning material having insufficient durability and inferior shape retention of the reinforcing material.
【0032】実施例5
実施例1で得た複合網状体を長さ120cmに切断して、
その両面に東洋紡績製熱接着繊維4−64−TE5と東
洋紡績製立体巻縮ステープル10−64−745を30
/70重量比で混合開繊して得たカ−ドウエッブを全体
の0.05g/cm3 となるように表面側に積層圧縮して
200℃の熱風にて10分間一体熱成形して厚み7cmの
クッションを4枚作成した。得られたクッションを厚み
7cm、幅120cm、長さ50cm毎にキルティングした幅
120cm、長さ200cmの側地に入れマットレスを作成
した。このマットレスをベッドに設置し、25℃RH6
5%室内にてパネラ−4人に7時間使用させて寝心地を
官能評価した。なお、ベットにはシ−ツを掛け、掛け布
団は1.8kgのダウン/フェザ−:90/10を中綿に
したもの、枕はパネラ−が毎日使用しているものを着用
させた。評価結果は、床つき感がなく、沈み込みが適度
で、蒸れを感じない快適な寝心地のベットであった。比
較のため、密度0.04g/cm3 で厚み10cmの発泡ウ
レタン板状体で同様のマットレスを作成し、ベットに設
置して寝心地を評価した結果、床つき感は少ないが沈み
込みが大きくやや蒸れを感じる寝心地の悪いベットであ
った。Example 5 The composite reticulate body obtained in Example 1 was cut into a length of 120 cm,
On both sides, 30 pieces of Toyobo's thermal bonding fiber 4-64-TE5 and Toyobo's three-dimensional crimp staple 10-64-745 are used.
A card web obtained by mixing and opening at a weight ratio of / 70 is laminated and compressed on the surface side so that the total weight is 0.05 g / cm 3, and thermoformed integrally with hot air at 200 ° C. for 10 minutes to obtain a thickness of 7 cm. I made 4 cushions. The obtained cushion was quilted at a thickness of 7 cm, a width of 120 cm, and a length of 50 cm, and the mattress was put in a side cloth having a width of 120 cm and a length of 200 cm. This mattress is placed on the bed and at 25 ℃ RH6
The panel comfort was sensory-evaluated by allowing the paneller to be used by 4 people for 7 hours in a 5% room. The bed was covered with sheets, the comforter was 1.8 kg of down / feather: 90/10, and the pillow was the one used by the paneler every day. As a result of the evaluation, the bed was a bed which had no feeling of flooring, had a moderate depression, and did not feel stuffy and had a comfortable sleeping comfort. For comparison, a similar mattress was prepared from a urethane foam plate with a density of 0.04 g / cm 3 and a thickness of 10 cm, and the mattress was placed on a bed and the sleeping comfort was evaluated. It was a bed that made me feel stuffy and didn't feel comfortable to sleep.
【0033】[0033]
【発明の効果】振動や応力吸収性の良い熱可塑性弾性樹
脂から成る線条が3次元網状構造を形成し融着一体化し
た表面が実質的にフラット化され、裏面に連続繊維の不
織布を補強した本発明の積層網状体は、振動遮断性、耐
熱耐久性、嵩高性、座り心地のより改善された、蒸れに
くいクッション材であり、他の素材との併用による上記
の好ましい特性を付与した車両用座席、船舶用座席、車
両用、船舶用、病院やホテル等の業務用ベット、家具用
クッション、寝装用品等の製品を提供できる。更には、
車両用や建築資材としての内装材や断熱材等にも有用な
ものである。EFFECTS OF THE INVENTION A surface made of a thermoplastic elastic resin having a good vibration and stress absorbing property forms a three-dimensional network structure and is fused and integrated so that the surface is substantially flattened and a continuous fiber non-woven fabric is reinforced on the back surface. The laminated reticulate body of the present invention is a cushioning material with improved vibration isolation, heat resistance and durability, bulkiness, and sitting comfort, and is resistant to stuffiness, and is used in combination with other materials to impart the above-mentioned preferred characteristics to vehicles. It is possible to provide products such as seats for cars, seats for ships, vehicles, ships, beds for business use in hospitals and hotels, cushions for furniture, bedding and the like. Furthermore,
It is also useful as an interior material and a heat insulating material for vehicles and building materials.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI D04H 3/00 D04H 3/00 K // D01F 6/00 D01F 6/00 A 6/62 303 6/62 303D 6/86 301 6/86 301B (56)参考文献 特開 昭55−17527(JP,A) 特開 昭58−149362(JP,A) 特開 平5−329281(JP,A) 特開 平5−261184(JP,A) 特開 平1−213454(JP,A) 特開 昭58−109670(JP,A) 実開 平1−16326(JP,U) (58)調査した分野(Int.Cl.7,DB名) D04H 1/00 - 18/00 B68G 1/00 - 15/00 B32B 1/00 - 35/00 D01D 1/00 - 13/02 D01D 1/00 - 13/04 ─────────────────────────────────────────────────── ─── Continued Front Page (51) Int.Cl. 7 Identification FI D04H 3/00 D04H 3/00 K // D01F 6/00 D01F 6/00 A 6/62 303 6/62 303D 6/86 301 6/86 301B (56) Reference JP 55-17527 (JP, A) JP 58-149362 (JP, A) JP 5-329281 (JP, A) JP 5-261184 (JP , A) JP-A-1-213454 (JP, A) JP-A-58-109670 (JP, A) Actual Kaihei 1-16326 (JP, U) (58) Fields investigated (Int.Cl. 7 , DB) Name) D04H 1/00-18/00 B68G 1/00-15/00 B32B 1/00-35/00 D01D 1/00-13/02 D01D 1/00-13/04
Claims (5)
面であり、繊度が100〜100000デニ−ルの熱可
塑性弾性樹脂からなる連続した線条を曲がりくねらせ互
いに接触させて該接触部の大部分が融着した3次元立体
構造体を形成し、表面が実質的にフラット化された網状
体の片面に連続繊維からなる不織布が接合された密度が
0.01g/cm3 から0.2g/cm3 の積層網状体。[Claim 1] The cross-sectional shape of the filament is hollow or irregular
A continuous line made of a thermoplastic elastic resin having a fineness of 100 to 100,000 denier , which is a surface and is made to come into contact with each other to form a three-dimensional three-dimensional structure in which most of the contact portions are fused, surface substantially flattened layered mesh of 0.2 g / cm 3 density nonwoven is bonded consisting continuous fibers on one side of 0.01 g / cm 3 of the mesh body.
脂が示差走査型熱量計で測定した融解曲線に室温以上融
点以下の温度に吸熱ピークを有する請求項1記載の積層
網状体。2. The laminated reticulated body according to claim 1, wherein the thermoplastic elastic resin which forms continuous filaments has an endothermic peak at a temperature of room temperature or higher and melting point or lower in a melting curve measured by a differential scanning calorimeter.
オリフィスを持つ多列ノズルより熱可塑性弾性樹脂をそ
の融点より20〜80℃高い溶融温度で、該ノズルより
下方に向けて吐出させ、溶融状態で互いに接触させて融
着させ3次元構造体を形成しつつ、かつ該構造体の片面
に連続繊維からなる不織布を接合させて引取り装置で挟
み込み、該構造体の両面の溶融状態の曲がりくねった吐
出線条を45°以上折り曲げて変形させて表面をフラッ
ト化すると同時に曲げられていない吐出線条との接触点
を接着して3次元構造体と不織布との積層構造を形成
後、冷却槽で冷却せしめる積層網状体の製法。3. A thermoplastic elastic resin is melted by being discharged downward from the nozzle at a melting temperature 20 to 80 ° C. higher than its melting point than in a multi-row nozzle having a plurality of orifices having a hollow cross section or atypical cross section. one side of contacting with each other in a state while forming a three-dimensional structure are fused, and the structure
A non-woven fabric made of continuous fibers is bonded to the surface of the structure and sandwiched by a take-up device.
Bend the outgoing line 45 ° or more to deform it and to flatten the surface.
Contact point with discharge line that is not bent at the same time
Adheres to form a laminated structure of three-dimensional structure and non-woven fabric
After that, a method for producing a laminated mesh body that can be cooled in a cooling tank.
より少なくとも10℃以下の温度でアニ−リングを行な
う請求項3に記載の積層網状体の製法。4. The method for producing a laminated reticulated body according to claim 3 , wherein after cooling once, annealing is performed at a temperature of at least 10 ° C. or lower than the melting point of the thermoplastic elastic resin.
車両用座席、船舶用座席、車両用、船舶用、病院用等の
業務用及び家庭用ベッド、家具用椅子、事務用椅子およ
び布団のいずれかに記載の製品。5. A method according to claim 1 for a vehicle seat using a laminated net body according to, marine seats, vehicle, marine, industrial and household beds de such hospital furniture chairs, office chairs And the product described in any of the futons.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2977794A JP3454374B2 (en) | 1994-02-28 | 1994-02-28 | Laminated net, manufacturing method and product using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2977794A JP3454374B2 (en) | 1994-02-28 | 1994-02-28 | Laminated net, manufacturing method and product using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07238459A JPH07238459A (en) | 1995-09-12 |
JP3454374B2 true JP3454374B2 (en) | 2003-10-06 |
Family
ID=12285458
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2977794A Expired - Lifetime JP3454374B2 (en) | 1994-02-28 | 1994-02-28 | Laminated net, manufacturing method and product using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3454374B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006097223A (en) * | 2004-09-02 | 2006-04-13 | Jatecx:Kk | Three-dimensional network structure and method for producing three-dimensional network structure |
-
1994
- 1994-02-28 JP JP2977794A patent/JP3454374B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH07238459A (en) | 1995-09-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3454373B2 (en) | Elastic network, manufacturing method and products using the same | |
JP3473710B2 (en) | Mixed fineness reticulated body, manufacturing method and products using it | |
JP3430443B2 (en) | Netting structure for cushion, method for producing the same, and cushion product | |
JP3430444B2 (en) | Netting structure for cushion, manufacturing method thereof and cushion product | |
JP3444375B2 (en) | Multilayer net, manufacturing method and products using the same | |
JP3454374B2 (en) | Laminated net, manufacturing method and product using the same | |
JP3431097B2 (en) | Multilayer laminated net, manufacturing method and product using the same | |
JP3430445B2 (en) | Composite net, its manufacturing method and products using it | |
JP3430446B2 (en) | Composite elastic network, its production method and products using it | |
JP3454375B2 (en) | Nonwoven laminated structure, manufacturing method and product using the same | |
JP3430447B2 (en) | Laminated elastic structure, manufacturing method and product using the same | |
JP3444374B2 (en) | Multilayer laminated net, manufacturing method and product using the same | |
JP3444368B2 (en) | Nonwoven laminated net, manufacturing method and product using the same | |
JP3430448B2 (en) | Laminated structure, manufacturing method and products using the same | |
JP3430449B2 (en) | Nonwoven laminated net, manufacturing method and product using the same | |
JP3431090B2 (en) | Nonwoven laminated net, manufacturing method and product using the same | |
JP3444369B2 (en) | Laminated net, manufacturing method and product using the same | |
JP3431098B2 (en) | Flame-retardant reinforced mesh, manufacturing method and products using the same | |
JP3431091B2 (en) | Nonwoven laminated net, manufacturing method and product using the same | |
JP3431096B2 (en) | Nonwoven laminated net, manufacturing method and product using the same | |
JP3444372B2 (en) | Multilayer laminated net, manufacturing method and product using the same | |
JP3431092B2 (en) | Nonwoven laminated net, manufacturing method and product using the same | |
JP3444371B2 (en) | Multilayer laminated net, manufacturing method and product using the same | |
JP3444370B2 (en) | Multilayer laminated net, manufacturing method and product using the same | |
JPH07300760A (en) | Nonwoven fabric laminated network material, its production and product using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 5 Free format text: PAYMENT UNTIL: 20080725 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 5 Free format text: PAYMENT UNTIL: 20080725 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090725 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090725 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100725 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 8 Free format text: PAYMENT UNTIL: 20110725 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110725 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 9 Free format text: PAYMENT UNTIL: 20120725 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 9 Free format text: PAYMENT UNTIL: 20120725 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130725 Year of fee payment: 10 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |