JP3454373B2 - Elastic network, manufacturing method and products using the same - Google Patents

Elastic network, manufacturing method and products using the same

Info

Publication number
JP3454373B2
JP3454373B2 JP02798494A JP2798494A JP3454373B2 JP 3454373 B2 JP3454373 B2 JP 3454373B2 JP 02798494 A JP02798494 A JP 02798494A JP 2798494 A JP2798494 A JP 2798494A JP 3454373 B2 JP3454373 B2 JP 3454373B2
Authority
JP
Japan
Prior art keywords
elastic
thermoplastic
resin
melting point
fineness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP02798494A
Other languages
Japanese (ja)
Other versions
JPH07238458A (en
Inventor
英夫 磯田
靖司 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP02798494A priority Critical patent/JP3454373B2/en
Publication of JPH07238458A publication Critical patent/JPH07238458A/en
Application granted granted Critical
Publication of JP3454373B2 publication Critical patent/JP3454373B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Nonwoven Fabrics (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、優れたクッション性と
耐熱耐久性及び振動吸収性とを有し、リサイクルが可能
な弾性網状体と製法および弾性網状体をワディング層に
用いた布団、家具、ベッド、車両用クッション材等の製
品に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a recyclable elastic mesh having excellent cushioning properties, heat resistance durability and vibration absorption, and a method for manufacturing the same, and a futon and furniture using the elastic mesh as a wadding layer. , Beds, cushioning materials for vehicles, etc.

【0002】[0002]

【従来の技術】現在、家具、ベッド、電車、自動車等の
ワディング層やクッション材に、発泡ウレタン、非弾性
捲縮繊維詰綿、及び非弾性捲縮繊維を接着した樹脂綿や
硬綿などが使用されている。
2. Description of the Related Art At present, urethane foam, non-elastic crimped fiber wadding, and resin cotton or hard cotton with non-elastic crimped fiber adhered to wadding layers and cushioning materials of furniture, beds, trains, automobiles, etc. It is used.

【0003】しかしながら、発泡−架橋型ウレタンはワ
ディング層やクッション材としての耐久性は極めて良好
だが、透湿透水性に劣り蓄熱性があるため蒸れやすく、
かつ、熱可塑性では無いためリサイクルが困難となり焼
却される場合、焼却炉の損傷が大きく、かつ、有毒ガス
除去に経費が掛かる。このため埋め立てされることが多
くなったが、地盤の安定化が困難なため埋め立て場所が
限定され経費も高くなっていく問題がある。また、加工
性は優れるが製造中に使用される薬品の公害問題なども
ある。また、熱可塑性ポリエステル繊維詰綿では繊維間
が固定されていないため、使用時形態が崩れたり、繊維
が移動して、かつ、捲縮のへたりで嵩高性の低下や弾力
性の低下が問題になる。
However, although the foamed-crosslinked urethane has very good durability as a wadding layer or a cushioning material, it has poor moisture permeability and heat storage property and is apt to be stuffy.
Moreover, since it is not thermoplastic, it becomes difficult to recycle, and when it is incinerated, the damage to the incinerator is large and the cost for removing the toxic gas is high. For this reason, landfilling has become more frequent, but it is difficult to stabilize the ground, and there is a problem that landfilling sites are limited and costs increase. Further, although it has excellent processability, it also has a problem of pollution of chemicals used during manufacturing. In addition, since the fibers are not fixed in the thermoplastic polyester fiber wadding, the form may collapse during use, the fibers may move, and the crimp may cause a decrease in bulkiness and elasticity. become.

【0004】ポリエステル繊維を接着剤で接着した樹脂
綿、例えば接着剤にゴム系を用いたものとして特開昭6
0−11352号公報、特開昭61−141388号公
報、特開昭61−141391号公報等がある。又、架
橋性ウレタンを用いたものとして特開昭61−1377
32号公報等がある。これらのクッション材は耐久性に
劣り、且つ、熱可塑性でなく、単一組成でもないためリ
サイクルも出来ない等の問題、及び加工性の煩雑さや製
造中に使用される薬品の公害問題などもある。
As a resin cotton in which polyester fibers are adhered with an adhesive, for example, a rubber-based adhesive is used, Japanese Patent Application Laid-Open No.
0-11352, JP-A 61-141388, JP-A 61-141391 and the like. Further, as a method using a cross-linkable urethane, JP-A-61-1377
No. 32 publication and the like. These cushion materials have inferior durability, and also have problems such as not being recyclable because they are neither thermoplastic nor single composition, and there are problems such as complexity of processability and pollution of chemicals used during manufacturing. .

【0005】ポリエステル硬綿、例えば特開昭58−3
1150号公報、特開平2−154050号公報、特開
平3−220354号公報等があるが、用いている熱接
着繊維の接着成分が脆い非晶性のポリマ−を用いるため
(例えば特開昭58−136828号公報、特開平3−
249213号公報等)接着部分が脆く、使用中に接着
部分が簡単に破壊されて形態や弾力性が低下するなどの
耐久性に劣る問題がある。改良法として、交絡処理する
方法が特開平4−245965号公報等で提案されてい
るが、接着部分の脆さは解決されず弾力性の低下が大き
い問題がある。また、加工時の煩雑さもある。更には接
着部分が変形しにくくソフトなクッション性を付与しに
くい問題もある。このため、接着部分を柔らかい、且つ
ある程度変形しても回復するポリエステルエラストマ−
を用い、芯成分に非弾性ポリエステルを用いた熱接着繊
維が特開平4−240219号公報で、同繊維を用いた
クッション材がWO−91/19032号公報、特開平
5−156561号公報、特開平5−163654号公
報等で提案されている。この繊維構造物に使われる接着
成分がポリエステルエラストマ−のソフトセグメントと
してはポリアルキレングリコ−ルの含有量が30〜50
重量%、ハ−ドセグメントの酸成分にテレフタル酸を5
0〜80モル%含有し、他の酸成分組成として特公昭6
0−1404号公報に記載された繊維と同様にイソフタ
ル酸を含有して非晶性が増すことになり、融点も180
℃以下となり低溶融粘度として熱接着部分の形成を良く
してアメーバー状の接着部を形成しているが塑性変形し
やいため、及び芯成分が非弾性ポリエステルのため、特
に加熱下での塑性変形が著しくなり、耐熱抗圧縮性が低
下する問題点がある。これらの改良法として、特開平5
−163654号公報にシ−ス成分にイソフタル酸を含
有するポリエステルエラストマ−、コア成分に非弾性ポ
リエステルを用いた熱接着複合繊維のみからなる構造体
が提案されているが上述の理由で加熱下での塑性変形が
著しくなり、耐熱抗圧縮性が低下し、ワディング層やク
ッション材に使用するには問題がある。他方、硬綿の母
材にシリコ−ン油剤を付与して繊維の摩擦係数を下げて
耐久性を向上し、風合いを良くする方法が特開昭63−
158094号公報で提案されている。が、熱接着繊維
の接着性に問題があり、耐久性が劣るのでワディング層
やクッション材に使用するには好ましくない。
Polyester hard cotton, for example, JP-A-58-3
1150, JP-A-2-154050, JP-A-3-220354, etc., but since an amorphous polymer having a brittle adhesive component of the heat-bonding fiber used is used (for example, JP-A-58). -136828, Japanese Patent Application Laid-Open No. 3-
However, there is a problem in that durability is poor such that the bonded portion is brittle and the bonded portion is easily broken during use and the form and elasticity are reduced. As an improved method, a method of entanglement treatment has been proposed in Japanese Patent Laid-Open No. 4-245965, but there is a problem that the brittleness of the bonded portion is not solved and the elasticity is largely reduced. In addition, there is complexity during processing. Further, there is a problem that the bonded portion is hard to be deformed and soft cushioning is hard to be imparted. For this reason, the polyester elastomer that is soft even at the bonded portion and recovers even if it is deformed to some extent
A heat-bonding fiber using a non-elastic polyester as a core component is disclosed in JP-A-4-240219, and a cushion material using the fiber is disclosed in WO-91 / 19032, JP-A-5-155651. It is proposed in Japanese Patent Laid-Open No. 5-163654. The adhesive component used in this fiber structure has a polyalkylene glycol content of 30 to 50 as a soft segment of polyester elastomer.
Wt%, 5% terephthalic acid as the acid component of the hard segment
It contains 0 to 80 mol% and is used as another acid component composition
As in the fiber described in Japanese Patent Publication No. 0-1404, isophthalic acid is contained to increase the amorphous property, and the melting point is 180.
The temperature is below ℃, and the heat-bonded part is well formed with a low melt viscosity to form an ameber-shaped bonded part, but it is easy to plastically deform, and because the core component is an inelastic polyester, plastic deformation especially under heating Becomes remarkable, and there is a problem that the heat resistance and compression resistance are lowered. As an improved method for these, Japanese Patent Laid-Open No.
No. 163654 proposes a structure consisting only of a polyester elastomer containing isophthalic acid as a sheath component and a heat-bonding composite fiber using an inelastic polyester as a core component. Plastic deformation becomes significant, the heat resistance and compression resistance deteriorate, and there is a problem in using it for a wadding layer or a cushion material. On the other hand, there is a method in which a silicone oil is added to a base material of hard cotton to lower the friction coefficient of fibers to improve the durability and improve the texture.
It is proposed in Japanese Patent No. 158094. However, there is a problem with the adhesiveness of the heat-adhesive fiber and the durability is poor, so it is not preferable for use in a wadding layer or cushioning material.

【0006】土木工事用に使用する熱可塑性のオレフィ
ン網状体が特開昭47−44839号公報に開示されて
いる。が、細い繊維から構成したクッションとは異なり
表面が凸凹でタッチが悪く、素材がオレフィンのため耐
熱耐久性が著しく劣りワディング層やクッション材には
使用ができないものである。また、特公平3−1766
6号公報には繊度の異なる吐出線条を互いに融着してモ
−ル状物を作る方法があるがクッション材には適さない
網状構造体である。特公平3−55583号公報には、
ごく表面のみ冷却前に回転体等の細化装置で細くする方
法が記載されている。この方法では表面をフラット化で
きず、厚みのある細い線条層を作ることできない。した
がって座り心地の良好なクッション材にはならない。特
開平1−207462号公報では、塩化ビニ−ル製のフ
ロアマットの開示があるが、室温での圧縮回復性が悪
く、耐熱性は著しく悪いので、ワディング材やクッショ
ン材としては好ましくないものである。なお、上述構造
体は振動減衰に関する配慮が全くなされていない。
A thermoplastic olefin network used for civil engineering work is disclosed in JP-A-47-44839. However, unlike a cushion made of fine fibers, the surface is uneven and the touch is poor, and since the material is olefin, the heat resistance durability is extremely poor and it cannot be used as a wadding layer or cushion material. In addition, Japanese Patent Publication No. 3-1766
No. 6 discloses a method in which ejection filaments having different fineness are fused to each other to form a mold, but the mesh structure is not suitable as a cushion material. Japanese Examined Patent Publication No. 3-55583 discloses that
A method of thinning only a very surface with a thinning device such as a rotating body before cooling is described. With this method, the surface cannot be flattened and a thick thin linear layer cannot be formed. Therefore, it does not provide a comfortable cushioning material. Japanese Patent Application Laid-Open No. 1-207462 discloses a vinyl chloride floor mat, but it is not preferable as a wadding material or a cushioning material because it has poor compression recovery at room temperature and remarkably poor heat resistance. is there. Note that no consideration is given to vibration damping in the above-mentioned structure.

【0007】[0007]

【発明が解決しようとする課題】上記問題点を解決し、
振動を遮断し、耐熱耐久性、形態保持性、クッション性
の優れた蒸れ難い、クッション用ワディング材に適した
弾性網状体と製法及び弾性網状体をワディング材として
用いた布団、家具、ベッド、車両用クッション等の製品
と製法を提供することを目的とする。
To solve the above problems,
An elastic mesh body that is suitable for a cushioning wadding material and a manufacturing method and a futon that uses the elastic mesh body as a wading material, which is vibration resistant, has excellent heat resistance and durability, shape retention, and cushioning properties The purpose is to provide products such as cushions and manufacturing methods.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するため
の手段、即ち本発明は、繊度が50デニ−ルから100
00デニ−ルのゴム弾性を有する熱可塑性弾性樹脂から
なる連続した線条を曲がりくねらせ互いに接触させて該
接触部の大部分が融着した3次元立体構造体であり、
構造体の両表面が実質的にフラット化されており、厚み
が2〜50mmであり、50%圧縮時反発力が40kgf/
φ150mm以下である弾性網状体、複数のオリフィスを
持つ多列ノズルよりゴム弾性を有する熱可塑性弾性樹脂
をその融点より10〜60℃高い溶融温度で、該ノズル
より下方に向けて吐出させ、溶融状態で互いに接触させ
て融着させ3次元構造を形成しつつ、該構造体両面を
引取り装置で挟み込み、該構造体の両面の溶融状態の曲
がりくねった吐出線条を45°以上折り曲げて変形させ
て表面をフラット化すると同時に曲げられていない吐出
線条との接触点を接着して構造を形成後、冷却槽で冷却
せしめることにより、50%圧縮時反発力が40kgf/
φ150mm以下の弾性網状体を得る製法および前記弾性
網状体を用いた製品である。
[Means for Solving the Problems] Means for solving the above problems, that is, the present invention, has a fineness of 50 denier to 100.
00 denier - a three-dimensional structure that the majority of in contact with each other so Magarikunera a continuous filament of a thermoplastic elastic resin the contact portion is fused having rubber elasticity Le, the
Both surfaces of the structure are substantially flattened, the thickness is 2 to 50 mm, and the repulsive force at 50% compression is 40 kgf /
Elastic mesh of φ150 mm or less, thermoplastic elastic resin having rubber elasticity from a multi-row nozzle having a plurality of orifices is melted at a melting temperature which is 10 to 60 ° C. higher than its melting point, and is discharged downward from the nozzle. in while forming a three-dimensional structure by fusing in contact with each other, sandwiching the structure both sides with <br/> taking device, song molten state both sides of the structure
Bend the twisted discharge line by 45 ° or more to deform it.
Discharge that is not bent at the same time as the surface is flattened
After the structure is formed by adhering the contact points with the filaments and then cooling it in a cooling tank, the repulsive force at 50% compression is 40 kgf /
A method for producing an elastic net having a diameter of 150 mm or less and a product using the elastic net.

【0009】本発明における熱可塑性弾性樹脂とは、
ム弾性を有する樹脂であり、ソフトセグメントとして分
子量300〜5000のポリエ−テル系グリコ−ル、ポ
リエステル系グリコ−ル、ポリカ−ボネ−ト系グリコ−
ルまたは長鎖の炭化水素末端をカルボン酸または水酸基
にしたオレフィン系化合物等をブロック共重合したポリ
エステル系エラストマ−、ポリアミド系エラストマ−、
ポリウレタン系エラストマ−、ポリオレフィン系エラス
トマ−などが挙げられる。熱可塑性弾性樹脂とすること
で、再溶融により再生が可能となるため、リサイクルが
容易となる。例えば、ポリエステル系エラストマ−とし
ては、熱可塑性ポリエステルをハ−ドセグメントとし、
ポリアルキレンジオ−ルをソフトセグメントとするポリ
エステルエ−テルブロック共重合体、または、脂肪族ポ
リエステルをソフトセグメントとするポリエステルエス
テルブロック共重合体が例示できる。ポリエステルエ−
テルブロック共重合体のより具体的な事例としては、テ
レフタル酸、イソフタル酸、ナフタレン-2,6-ジカル
ボン酸、ナフタレン-2,7-ジカルボン酸、ジフェニル
-4,4'-ジカルボン酸等の芳香族ジカルボン酸、1,
4-シクロヘキサンジカルボン酸等の脂環族ジカルボン
酸、琥珀酸、アジピン酸、セバチン酸ダイマ−酸等の脂
肪族ジカルボン酸または、これらのエステル形成性誘導
体などから選ばれたジカルボン酸の少なくとも1種と、
1,4-ブタンジオ−ル、エチレングリコ−ル、トリメ
チレングリコ−ル、テトレメチレングリコ−ル、ペンタ
メチレングリコ−ル、ヘキサメチレングリコ−ル等の脂
肪族ジオ−ル、1,1-シクロヘキサンジメタノ−ル、
1,4-シクロヘキサンジメタノ−ル等の脂環族ジオ−
ル、またはこれらのエステル形成性誘導体などから選ば
れたジオ−ル成分の少なくとも1種、および平均分子量
が約300〜5000のポリエチレングリコ−ル、ポリ
プロピレングリコ−ル、ポリテトラメチレングリコ−
ル、エチレンオキシド−プロピレンオキシド共重合体等
のポリアルキレンジオ−ルのうち少なくとも1種から構
成される三元ブロック共重合体である。ポリエステルエ
ステルブロック共重合体としては、上記ジカルボン酸と
ジオ−ル及び平均分子量が約300〜5000のポリラ
クトン等のポリエステルジオ−ルのうち少なくとも各1
種から構成される三元ブロック共重合体である。熱接着
性、耐加水分解性、伸縮性、耐熱性等を考慮すると、ジ
カルボン酸としてはテレフタル酸、または、及びナフタ
レン-2,6-ジカルボン酸、ジオ−ル成分としては1,
4-ブタンジオ−ル、ポリアルキレンジオ−ルとしては
ポリテトラメチレングリコ−ルの3元ブロック共重合体
または、ポリエステルジオ−ルとしてポリラクトンの3
元ブロック共重合体が特に好ましい。特殊な例では、ポ
リシロキサン系のソフトセグメントを導入したものも使
うこができる。また、上記エラストマ−に非エラスト
マ−成分をブレンドされたもの、共重合したもの、ポリ
オレフィン系成分をソフトセグメントにしたもの等も本
発明の熱可塑性弾性樹脂に包含される。ポリアミド系エ
ラストマ−としては、ハ−ドセグメントにナイロン6、
ナイロン66、ナイロン610、ナイロン612、ナイ
ロン11、ナイロン12等及びそれらの共重合ナイロン
を骨格とし、ソフトセグメントには、平均分子量が約3
00〜5000のポリエチレングリコ−ル、ポリプロピ
レングリコ−ル、ポリテトラメチレングリコ−ル、エチ
レンオキシド−プロピレンオキシド共重合体等のポリア
ルキレンジオ−ルのうち少なくとも1種から構成される
ブロック共重合体を単独または2種類以上混合して用い
てもよい。更には、非エラストマ−成分をブレンドされ
たもの、共重合したもの等も本発明に使用できる。ポリ
ウレタン系エラストマ−としては、通常の溶媒(ジメチ
ルホルムアミド、ジメチルアセトアミド等)の存在また
は不存在下に、(A)数平均分子量1000〜6000
の末端に水酸基を有するポリエ−テル及び又はポリエス
テルと(B)有機ジイソシアネ−トを主成分とするポリ
イソシアネ−トを反応させた両末端がイソシアネ−ト基
であるプレポリマ−に、(C)ジアミンを主成分とする
ポリアミンにより鎖延長したポリウレタンエラストマ−
を代表例として例示できる。(A)のポリエステル、ポ
リエ−テル類としては、平均分子量が約1000〜60
00、好ましくは1300〜5000のポリブチレンア
ジペ−ト共重合ポリエステルやポリエチレングリコ−
ル、ポリプロピレングリコ−ル、ポリテトラメチレング
リコ−ル、エチレンオキシド−プロピレンオキシド共重
合体等のポリアルキレンジオ−ルが好ましく、(B)の
ポリイソシアネ−トとしては、従来公知のポリイソシア
ネ−トを用いることができるが、ジフェニルメタン-
4,4'-ジイソシアネ−トを主体としたイソシアネ−ト
を用い、必要に応じ従来公知のトリイソシアネ−ト等を
微量添加使用してもよい。(C)のポリアミンとして
は、エチレンジアミン、1,2-プロピレンジアミン等
公知のジアミンを主体とし、必要に応じて微量のトリア
ミン、テトラアミンを併用してもよい。これらのポリウ
レタン系エラストマ−は単独又は2種類以上混合して用
いてもよい。なお、本発明の熱可塑性弾性樹脂の融点は
耐熱耐久性が保持できる140℃以上が好ましく、16
0℃以上のものを用いると耐熱耐久性が向上するのでよ
り好ましい。なお、必要に応じ、抗酸化剤や耐光剤等を
添加して耐久性を向上させることができる。本発明の目
的である振動や応力の吸収機能をもたせる成分を構成す
る熱可塑性弾性樹脂のソフトセグメント含有量は好まし
くは20重量%以上、より好ましくは40重量%以上で
あり、耐熱耐へたり性からは80重量%以下が好まし
く、より好ましくは70重量%以下である。即ち、本発
明の弾性網状体の振動や応力の吸収機能をもたせる成分
のソフトセグメント含有量は好ましくは20重量%以上
80重量%以下であり、より好ましくは40重量%以上
70重量%以下である。
[0009] The thermoplastic elastomeric resin in the present invention, rubber
It is a resin having elastic properties, and as the soft segment, polyether glycol, polyester glycol and polycarbonate glycol having a molecular weight of 300 to 5000.
Polyester elastomers obtained by block-copolymerizing olefinic compounds or the like having carboxylic acids or hydroxyl groups at the ends of hydrocarbon groups of long chains or long chain, polyamide elastomers,
Examples thereof include polyurethane elastomers and polyolefin elastomers. By using a thermoplastic elastic resin, it becomes possible to regenerate by remelting, and thus recycling becomes easy. For example, as a polyester elastomer, a thermoplastic polyester is used as a hard segment,
Examples thereof include a polyester ether block copolymer having polyalkylenediol as a soft segment or a polyester ester block copolymer having an aliphatic polyester as a soft segment. Polyester d
More specific examples of the terblock copolymer include terephthalic acid, isophthalic acid, naphthalene -2,6- dicarboxylic acid, naphthalene- 2,7- dicarboxylic acid and diphenyl.
-Aromatic dicarboxylic acids such as 4,4'- dicarboxylic acid, 1,
At least one of alicyclic dicarboxylic acids such as 4- cyclohexanedicarboxylic acid, aliphatic dicarboxylic acids such as succinic acid, adipic acid, sebacic acid dimer acid or dicarboxylic acids selected from ester-forming derivatives thereof ,
Aliphatic diols such as 1,4- butanediol, ethylene glycol, trimethylene glycol, tetremethylene glycol, pentamethylene glycol and hexamethylene glycol, 1,1- cyclohexanediene Methanol,
Alicyclic di-one such as 1,4- cyclohexane dimethanol
Or at least one diole component selected from these ester-forming derivatives, and polyethylene glycol, polypropylene glycol, polytetramethylene glycol having an average molecular weight of about 300 to 5,000.
It is a ternary block copolymer composed of at least one kind of polyalkylene diol such as ethylene glycol and ethylene oxide-propylene oxide copolymer. As the polyester ester block copolymer, at least one of each of the above dicarboxylic acids and diol and polyester diol such as polylactone having an average molecular weight of about 300 to 5,000 is used.
It is a ternary block copolymer composed of seeds. Considering heat adhesion, hydrolysis resistance, stretchability, heat resistance, etc., terephthalic acid as dicarboxylic acid, or naphthalene -2,6- dicarboxylic acid, and diole component as 1, 1
4- butanediol, polyalkylenemole as the polyalkylenemole terpolymer block copolymer, or polyesterdiol as the polylactone 3
Original block copolymers are particularly preferred. In the special case, it is and this also use those obtained by introducing a soft segment of polysiloxane-based. Also, the thermoplastic elastomer resin of the present invention includes those obtained by blending the above elastomer with a non-elastomer component, those obtained by copolymerization, those obtained by softening the polyolefin component, and the like. As a polyamide elastomer, nylon 6 is used for the hard segment.
Nylon 66, Nylon 610, Nylon 612, Nylon 11, Nylon 12, etc. and their copolymerized nylon are used as the skeletons, and the soft segment has an average molecular weight of about 3
A block copolymer composed of at least one of polyalkylenediols such as polyethylene glycol, polypropylene glycol, polytetramethylene glycol, ethylene oxide-propylene oxide copolymer, etc. Alternatively, two or more kinds may be mixed and used. Furthermore, blends of non-elastomer components and copolymers thereof can be used in the present invention. The polyurethane elastomer is (A) number average molecular weight of 1000 to 6000 in the presence or absence of a usual solvent (dimethylformamide, dimethylacetamide, etc.).
(C) Diamine is added to the prepolymer having both ends of which are isocyanate groups by reacting the polyester and / or polyester having a hydroxyl group at the terminal of (B) with the polyisocyanate containing (B) an organic diisocyanate as a main component. Polyurethane elastomer chain-extended with polyamine as main component
Can be illustrated as a representative example. The polyester or polyether of (A) has an average molecular weight of about 1000 to 60.
00, preferably 1300 to 5000 polybutylene adipate copolyester or polyethylene glycol
Polyalkylenediols such as propylene, polypropylene glycol, polytetramethylene glycol and ethylene oxide-propylene oxide copolymers are preferred, and as the polyisocyanate of (B), conventionally known polyisocyanate is used. but it is, diphenylmethane -
An isocyanate mainly composed of 4,4'- diisocyanate may be used, and if necessary, a trace amount of conventionally known triisocyanate may be added and used. As the polyamine (C), known diamines such as ethylenediamine and 1,2- propylenediamine are mainly used, and if necessary, trace amounts of triamine and tetraamine may be used in combination. These polyurethane elastomers may be used alone or in combination of two or more. The melting point of the thermoplastic elastic resin of the present invention is preferably 140 ° C. or higher at which heat resistance and durability can be maintained.
It is more preferable to use one having a temperature of 0 ° C. or higher because the heat resistance and durability are improved. If necessary, an antioxidant, a light-proofing agent or the like may be added to improve durability. The soft segment content of the thermoplastic elastic resin constituting the component having the function of absorbing vibration and stress, which is the object of the present invention, is preferably 20% by weight or more, more preferably 40% by weight or more, and the heat and sag resistance Therefore, it is preferably 80% by weight or less, and more preferably 70% by weight or less. That is, the soft segment content of the component having the function of absorbing vibrations and stress of the elastic network of the present invention is preferably 20% by weight or more and 80% by weight or less, more preferably 40% by weight or more and 70% by weight or less. .

【0010】本発明の複合網状体を構成する熱可塑性弾
性樹脂からなる線条は、示差走査型熱量計にて測定した
融解曲線において、融点以下に吸熱ピ−クを有するのが
好ましい。融点以下に吸熱ピ−クを有するものは、耐熱
耐へたり性が吸熱ピ−クを有しないものより著しく向上
する。例えば、本発明の好ましいポリエステル系熱可塑
性樹脂として、ハ−ドセグメントの酸成分に剛直性のあ
るテレフタル酸やナフタレン-2,6-ジカルボン酸など
を90モル%以上含有するもの、より好ましくはテレフ
タル酸やナフタレン-2,6-ジカルボン酸の含有量は9
5モル%以上、特に好ましくは100モル%とグリコ−
ル成分をエステル交換後、必要な重合度まで重合し、次
いで、ポリアルキレンジオ−ルとして、好ましくは平均
分子量が500以上5000以下、特に好ましくは10
00以上3000以下のポリテトラメチレングリコ−ル
を15重量%以上70重量%以下、より好ましくは30
重量%以上60重量%以下共重合させた場合、ハ−ドセ
グメントの酸成分に剛直性のあるテレフタル酸やナフタ
レン-2,6-ジカルボン酸の含有量が多いとハ−ドセグ
メントの結晶性が向上し、塑性変形しにくく、かつ、耐
熱抗へたり性が向上するが、溶融熱接着後更に融点より
少なくとも10℃以上低い温度でアニ−リング処理する
とより耐熱抗へたり性が向上する。圧縮歪みを付与して
からアニ−リングすると更に耐熱抗へたり性が向上す
る。このような処理をした網状構造体の線条を示差走査
型熱量計で測定した融解曲線に室温以上融点以下の温度
で吸熱ピークをより明確に発現する。なおアニ−リング
しない場合は融解曲線に室温以上融点以下に吸熱ピ−ク
を発現しない。このことから類推するに、アニ−リング
により、ハ−ドセグメントが再配列され、疑似結晶化様
の架橋点が形成され、耐熱抗へたり性が向上しているの
ではないかとも考えられる。(この処理を疑似結晶化処
理と定義する)この疑似結晶化処理効果は、ポリアミド
系弾性樹脂やポリウレタン系弾性樹脂にも有効である。
It is preferable that the filament made of the thermoplastic elastic resin constituting the composite network of the present invention has an endothermic peak below the melting point in the melting curve measured by a differential scanning calorimeter. Those having an endothermic peak below the melting point have significantly improved heat resistance and sag resistance than those having no endothermic peak. For example, as a preferable polyester-based thermoplastic resin of the present invention, one containing 90 mol% or more of terephthalic acid or naphthalene -2,6- dicarboxylic acid having rigidity in the acid component of the hard segment, more preferably terephthalic acid The content of acid and naphthalene -2,6- dicarboxylic acid is 9
5 mol% or more, particularly preferably 100 mol% and glyco-
After transesterification of the monomer component, polymerization is performed to a required degree of polymerization, and then, as the polyalkylene diol, the average molecular weight is preferably 500 or more and 5000 or less, particularly preferably 10
00 to 3000 polytetramethylene glycol in an amount of 15% to 70% by weight, more preferably 30% by weight.
When copolymerized in an amount of not less than 60% by weight and not more than 60% by weight, if the content of terephthalic acid or naphthalene -2,6- dicarboxylic acid, which has rigidity in the acid component of the hard segment, is large, the crystallinity of the hard segment becomes large. The heat resistance and sag resistance are improved, but the heat resistance and sag resistance are improved. However, the heat resistance and sag resistance is further improved by annealing at a temperature lower than the melting point by at least 10 ° C. or more after melt heat bonding. If annealing is performed after applying compressive strain, heat resistance and sag resistance are further improved. The endothermic peak is more clearly expressed in the melting curve measured by a differential scanning calorimeter of the linear structure of the network structure treated as described above at a temperature of room temperature or higher and melting point or lower. If annealing is not performed, no endothermic peak appears in the melting curve above room temperature and below the melting point. By analogy with this, it is considered that the annealing causes rearrangement of the hard segments and formation of pseudo-crystallization-like cross-linking points to improve the heat resistance and sag resistance. (This treatment is defined as pseudo crystallization treatment.) This pseudo crystallization treatment effect is also effective for polyamide elastic resin and polyurethane elastic resin.

【0011】本発明は、繊度が50デニ−ルから100
00デニ−ルのゴム弾性を有する熱可塑性弾性樹脂から
なる連続した線条を曲がりくねらせ互いに接触させて該
接触部の大部分が融着した3次元立体構造体を形成し、
表面が実質的にフラット化された厚みが2mm以上50
mm以下である網状体の50%圧縮時反発力が40kgf/
φ150mm以下である弾性網状体である。本発明の弾性
網状体は熱可塑性弾性樹脂からなる連続した線条が接触
部の大部分が融着した3次元立体構造体を形成し融着一
体化され、表面が実質的にフラット化されており、ワ
ディング層として使用された場合、外部から与えられた
振動を熱可塑性弾性樹脂の振動吸収機能で大部分の振動
を吸収減衰し、局部的に大きい変形応力を与えられた場
合でも弾性網状体の面が実質的にフラット化され接触部
の大部分が融着しているので、弾性網状体の面で変形応
力を受け止め変形応力を分散させ、熱可塑性弾性樹脂か
らなる線条が3次元立体構造体を形成し融着一体化され
ているので、容易に構造体全体が変形してエネルギ−変
換により変形応力を吸収し、変形応力が解除されると熱
可塑性弾性樹脂のゴム弾性で容易に元の形態に回復する
機能がある。このため、体型保持機能を持つクッション
層の表面にワディング層として本発明の弾性網状体を積
層または積層接着して座席に形成すれば、座ったときの
沈み込みが適度で、振動を受けたときの上下運動による
応力変化を床つき感がなく適度に沈み込み臀部を低い反
発力で支える好ましいショックアブソ−バ−の働きを発
現できるクッション材としては好ましい特性を付与でき
る。更には、本発明の弾性網状体はクッション層への力
学的な負担を大きく逓減できるので座席に良好な耐へた
り性も付与できる。公知の非弾性樹脂のみからなる線条
で構成した網状体では、タッチを良好するため細い繊度
の線条とすると圧縮変形による塑性変形を生じて回復し
なくなり耐久性が劣る。弾性網状体の表面が実質的にフ
ラット化されてない場合、表面に局部的な外力が掛かる
と、表面の線条及び接着点部分までに選択的に応力集中
が発生する場合があり、このような外力に対しては応力
集中による疲労が発生して耐へたり性が低下する場合が
ある。なお、該線条が熱可塑性弾性樹脂からなる場合は
3次元構造部分で構造全体が変形するので応力集中は緩
和されるが、非弾性樹脂では、そのまま応力が接着点に
集中して構造破壊を生じ回復しなくなる。なお、線状が
連続していない場合は、接着点が応力の伝達点となるた
め接着点に著しい応力集中が起こり構造破壊を生じ前記
従来技術にも例示した特開昭60−11352号公報、
特開昭61−137732号公報、WO91−1903
2号公報等に開示された構造体の如く耐熱耐久性が劣り
好ましくない。融着していない場合は、形態保持が出来
ず、構造体が一体で変形しないため、応力集中による疲
労現象が起こり耐久性が劣ると同時に、形態が変形して
クッション層に大きいダメ−ジを与え座席の耐久性を低
下させるので好ましくない。本発明のより好ましい融着
の程度は、線条が接触している部分の大半が融着した状
態であり、もっとも好ましくは接触部分が全て融着した
状態である。なお、クッション材の機能は、クッション
層は基本の繊度を太くして少し硬くして体型保持を受け
持つ層と振動減衰性の良い成分で密度を少し高くした振
動吸収して振動を遮断する層で構成し、表面層はやや繊
度を細くし構成線条本数を多くした少し柔らかな層とし
て適度の沈み込みにより快適な臀部のタッチを与えて臀
部の圧力分布を均一分散化させると共にクッション層で
吸収できなかった振動を吸収して人体の共振部分の振動
を遮断する層が一体化されることで、応力や振動を一体
で変形し吸収させ座り心地を向上させることができる。
しかして、本発明弾性網状体は、上記表面層の機能を付
与するのが目的であり、線条の繊度を細くし、タッチを
柔らかくして、密度はやや高くして構成本数を多くし線
条の一本が受ける応力を少なくして応力の分散を良く
し、且つ臀部を支えるクッション性も向上させ、クッシ
ョン層で吸収できなかった振動を吸収して人体の共振部
分の振動を遮断するため振動吸収性と弾性回復性の良い
熱可塑性弾性樹脂で構成することで座り心地と耐久性を
向上させることができる。この目的から、本発明の弾性
網状体を形成する線条の繊度は50デニ−ル未満では抗
圧縮性が低くなり過ぎて変形による応力吸収性が低下す
るので好ましくなく、10000デニ−ルを越えると
形しにくくなると共に、構成本数の低下による面の緻密
性を損ない応力吸収機能と応力分散機能が低下するので
好ましくない。好ましい弾性網状体の線状の繊度は50
デニ−ル以上、8000デニ−ル以下、より好ましくは
100デニ−ル以上、6000デニ−ル以下である。本
発明の弾性網状体の厚みは2mm以上50mm以下である。
厚みが2mm未満では応力吸収機能と応力分散機能が低下
するので好ましくない。線状の繊度が同一の弾性網状体
では、50mmを越えると表面層の機能を保持する柔らか
な特性が逆に過度の沈み込みを生じ、快適な座り心地を
損なうので好ましくない。線状の繊度が同一の場合の本
発明の弾性網状体の好ましい厚みは力の分散をする面機
能と振動や変形応力吸収機能が発現できる厚みとして5
mm以上40mm以下とするのが好ましく、より好ましくは
10mm以上30mm以下である。なお、厚い表面層を必要
とする場合は、本発明においては繊度の異なる線状を見
掛け密度との組合せで最適な構成とする異繊度積層構造
とする方法も好ましい実施形態として選択できる。本発
明の弾性網状体は、適度の沈み込みによる臀部への快適
なタッチを与えるために、φ150mmの圧縮板で厚みの
50%圧縮した時の抗圧縮性を示す反発力が40kgf/
φ150mm以下にする必要がある。厚みの50%圧縮時
の反発力が40kgf/φ150mmを越えると反発力が大
きくなり、適度の沈み込みによる臀部への快適なタッチ
を与えられないので好ましくない。本発明の好ましい5
0%圧縮時の反発力は2kgf/φ150mm以上、30kg
f/φ150mmであり、より好ましくは5kgf/φ15
0mm以上、20kgf/φ150mmである。繊度を細くし
た場合は見掛け密度をやや高くして好ましい抗圧縮性を
付与できる。本発明の弾性網状体の平均の見掛け密度は
特に限定されないが、0.005g/cm3 では反発力が
失われ、振動吸収能力や変形応力吸収能力が不充分とな
りクッション機能を発現させにくくなる場合があり、
0.20g/cm3 以上では反発力が高すぎて座り心地が
悪くなる場合があるので、好ましい見掛け密度は振動吸
収能力や変形応力吸収機能が生かせてクッション体とし
ての機能が発現されやすい0.01g/cm3 以上0.1
5g/cm3 以下、より好ましくは0.03g/cm3 以上
0.08g/cm3 以下である。
The present invention has a fineness of 50 denier to 100.
A continuous linear filament made of a thermoplastic elastic resin having a rubber elasticity of 00 denier is bent and brought into contact with each other to form a three-dimensional three-dimensional structure in which most of the contact portions are fused.
Both surfaces are substantially flat with a thickness of 2 mm or more 50
Repulsive force of 50% compression of reticulate body of mm or less is 40 kgf /
An elastic mesh body having a diameter of 150 mm or less. The elastic network of the present invention forms a three-dimensional three-dimensional structure in which continuous filaments made of a thermoplastic elastic resin are fused at most of the contact portions, and they are fused and integrated, and both surfaces are substantially flattened. When used as a wadding layer, the external vibration is absorbed by the vibration absorption function of the thermoplastic elastic resin, and most of the vibration is absorbed and attenuated. Since the surface of the body is substantially flattened and most of the contact part is fused, the elastic mesh surface receives the deformation stress and disperses the deformation stress, and the filament made of thermoplastic elastic resin is three-dimensional. Since the three-dimensional structure is formed and fused and integrated, the entire structure is easily deformed and the deformation stress is absorbed by energy conversion, and when the deformation stress is released, the rubber elasticity of the thermoplastic elastic resin makes it easy. The ability to recover to its original form A. For this reason, if the elastic mesh body of the present invention is laminated or laminated and adhered to the surface of the cushion layer having a body shape holding function as a wadding layer to form a seat, the depression when sitting is moderate and when the seat is subjected to vibration. It is possible to impart preferable characteristics as a cushioning material capable of exhibiting a preferable shock absorber function of supporting the buttocks with a low repulsive force by appropriately sinking the stress change due to the vertical movement of the body without feeling a floor. Further, since the elastic mesh body of the present invention can greatly reduce the mechanical load on the cushion layer, it is possible to provide the seat with good sag resistance. In the case of a net-like body composed of known filaments made of only non-elastic resin, if the filaments have a fineness in order to improve the touch, plastic deformation due to compressive deformation will occur and recovery will be poor, resulting in poor durability. When the surface of the elastic mesh is not substantially flattened, when a local external force is applied to the surface, stress concentration may occur selectively up to the lines and bonding points of the surface. With respect to such external force, fatigue due to stress concentration may occur and sag resistance may decrease. When the filaments are made of thermoplastic elastic resin, the entire structure is deformed in the three-dimensional structure portion, so stress concentration is relieved. However, in the non-elastic resin, stress is concentrated at the bonding point and structural damage is caused. It will not occur and will not recover. When the linear shape is not continuous, the adhesion point serves as a stress transmission point, so that significant stress concentration occurs at the adhesion point and structural destruction occurs.
JP-A-61-137732, WO91-1903
It is not preferable because it has poor heat resistance and durability like the structure disclosed in Japanese Patent Publication No. 2 or the like. If they are not fused, the structure cannot be retained and the structure does not deform integrally, resulting in a fatigue phenomenon due to stress concentration and poor durability, and at the same time, the morphology deforms and a large damage occurs on the cushion layer. It is not preferable because it reduces the durability of the seat. The more preferable degree of fusion in the present invention is that most of the portions where the filaments are in contact are fused, and most preferably all the contact portions are in fusion. The function of the cushion material is that the cushion layer is a layer that thickens the basic fineness and makes it a little harder and is responsible for body shape maintenance, and a layer with a slightly higher density with a component with good vibration damping properties that absorbs vibration and blocks vibration. The surface layer is made slightly finer and the number of filaments is increased as a slightly soft layer to give a comfortable buttocks touch by moderate subduction to evenly disperse the buttocks pressure distribution and absorb with the cushion layer. By integrating the layer that absorbs the vibration that could not be performed and blocks the vibration of the resonance part of the human body, stress and vibration can be integrally deformed and absorbed to improve the sitting comfort.
Thus, the elastic mesh body of the present invention is intended to impart the function of the surface layer, and the fineness of the filaments is reduced, the touch is softened, the density is slightly increased, and the number of constituents is increased to increase the number of lines. To reduce the stress received by one of the strips to improve the dispersion of the stress, improve the cushioning property to support the buttocks, and absorb the vibration that could not be absorbed by the cushion layer to block the vibration of the resonance part of the human body. By using a thermoplastic elastic resin having good vibration absorption and elastic recovery, it is possible to improve the sitting comfort and durability. For this purpose, if the fineness of the filaments forming the elastic network of the present invention is less than 50 denier, the anti-compression property becomes too low and the stress absorbability due to deformation deteriorates, which is not preferable and exceeds 10,000 denier. It is not preferable because it becomes difficult to deform and the surface density is impaired due to the decrease in the number of constituents and the stress absorption function and the stress dispersion function are deteriorated. The preferred linear fineness of the elastic mesh is 50.
Denier or more and 8000 denier or less, more preferably 100 denier or more and 6000 denier or less. The elastic mesh body of the present invention has a thickness of 2 mm or more and 50 mm or less.
When the thickness is less than 2 mm, the stress absorbing function and the stress dispersing function are deteriorated, which is not preferable. In the case of an elastic mesh body having the same linear fineness, if it exceeds 50 mm, the soft property for retaining the function of the surface layer will cause excessive depression and adversely affect comfortable sitting comfort. When the linear fineness is the same, the preferable thickness of the elastic mesh body of the present invention is 5 as a thickness capable of exhibiting a surface function for dispersing force and a vibration or deformation stress absorbing function.
It is preferably not less than mm and not more than 40 mm, more preferably not less than 10 mm and not more than 30 mm. When a thick surface layer is required, in the present invention, a method of forming a different-fineness laminated structure in which linear shapes having different finenesses are combined with an apparent density to provide an optimal configuration can be selected as a preferred embodiment. The elastic reticulate body of the present invention has a repulsive force of 40 kgf / 40% when compressed with a compression plate of φ150 mm at 50% of the thickness in order to give a comfortable touch to the buttocks due to an appropriate depression.
φ150mm or less is required. If the repulsive force at 50% compression of the thickness exceeds 40 kgf / φ150 mm, the repulsive force becomes large, and it is not preferable because a comfortable touch cannot be given to the buttocks due to an appropriate depression. Preferred 5 of the present invention
Repulsion force at 0% compression is 2kgf / φ150mm or more, 30kg
f / φ150 mm, more preferably 5 kgf / φ15
It is 0 mm or more and 20 kgf / φ150 mm. When the fineness is made small, the apparent density can be made slightly high to impart preferable anti-compression property. The average apparent density of the elastic reticulate body of the present invention is not particularly limited, but at 0.005 g / cm 3 , the repulsive force is lost, and the vibration absorbing ability and the deformation stress absorbing ability become insufficient and it becomes difficult to develop the cushion function. There is
If it is 0.20 g / cm 3 or more, the repulsive force is too high and the sitting comfort may be poor, so the preferable apparent density is that the function as a cushion body is easily expressed by utilizing the vibration absorbing ability and the deformation stress absorbing function. 01 g / cm 3 or more 0.1
It is 5 g / cm 3 or less, more preferably 0.03 g / cm 3 or more and 0.08 g / cm 3 or less.

【0012】本発明の弾性網状体の線条の断面形状は特
には限定されないが、中空断面や異形断面にすることで
好ましい抗圧縮性(反発力)やタッチを付与することが
できるので特に好ましい。抗圧縮性は繊度や用いる素材
のモジュラスにより調整して、繊度を細くしたり、柔ら
かい素材では中空率や異形度を高くし初期圧縮応力の勾
配を調整できるし、繊度をやや太くしたり、ややモジュ
ラスの高い素材では中空率や異形度を低くして座り心地
が良好な抗圧縮性を付与する。中空断面や異形断面の他
の効果として中空率や異形度を高くすることで、同一の
抗圧縮性を付与した場合、より軽量化が可能となり、自
動車等の座席に用いると省エネルギ−化ができ、布団な
どの場合は、上げ下ろし時の取扱性が向上する。好まし
い抗圧縮性(反発力)やタッチを付与することができる
他の好ましい方法として、本発明の弾性網状体の線条を
複合構造とする方法がある。複合構造としては、シ−ス
コア構造またはサイドバイサイド構造及びそれらの組合
せ構造などが挙げられる。が、特にはクッション層が大
変形してもエネルギ−変換できない振動や変形応力をエ
ネルギ−変換して回復できる立体3次元構造とするため
に線状の表面の50%以上を柔らかい熱可塑性弾性樹脂
が占めるシ−スコア構造またはサイドバイサイド構造及
びそれらの組合せ構造などが挙げられる。すなわち、シ
−スコア構造ではシ−ス成分は振動や変形応力をエネル
ギ−変換が容易なソフトセグメント含有量が多い熱可塑
性弾性樹脂とし、コア成分は抗圧縮性を示すソフトセグ
メント含有量が少ない熱可塑性弾性樹脂で構成し適度の
沈み込みによる臀部への快適なタッチを与えることがで
きる。サイドバイサイド構造では振動や変形応力をエネ
ルギ−変換が容易なソフトセグメント含有量が多い熱可
塑性弾性樹脂の溶融粘度をソフトセグメント含有量が少
ない抗圧縮性を示す熱可塑性弾性樹脂の溶融粘度より低
くして線状の表面を占めるソフトセグメント含有量が多
い熱可塑性弾性樹脂の割合を多くした構造(比喩的には
偏芯シ−ス・コア構造のシ−スに熱可塑性弾性樹脂を配
した様な構造)として線状の表面を占めるソフトセグメ
ント含有量が多い熱可塑性弾性樹脂の割合を80%以上
としたものが特に好ましく、最も好ましくは線状の表面
を占めるソフトセグメント含有量が多い熱可塑性弾性樹
脂の割合を100%としたシ−スコアである。ソフトセ
グメント含有量が多い熱可塑性弾性樹脂の線状の表面を
占める割合が多くなると、溶融して融着するときの流動
性が高いので接着が強固になる効果があり、構造が一体
で変形する場合、接着点の応力集中に対する耐疲労性が
向上し、耐熱性や耐久性がより向上する。
The cross-sectional shape of the filaments of the elastic reticulate body of the present invention is not particularly limited, but a hollow section or a deformed section can provide a preferable anti-compression property (repulsive force) and a touch, which is particularly preferable. . The anti-compression property can be adjusted by the fineness and the modulus of the material used to make the fineness fine, or in the soft material the hollowness and the irregularity can be increased to adjust the gradient of the initial compression stress, and the fineness can be made slightly thicker or slightly. A material with a high modulus lowers the hollow ratio and the degree of irregularity to provide anti-compression property with a comfortable sitting feeling. As another effect of the hollow cross section and the irregular cross section, by increasing the hollow ratio and the degree of irregularity, if the same anti-compression property is given, the weight can be further reduced, and the energy saving can be achieved when it is used for the seat of an automobile or the like. If it is a futon or the like, it will be easier to handle when raising and lowering. As another preferable method capable of imparting preferable anti-compression property (repulsive force) and touch, there is a method of forming the filament of the elastic mesh body of the present invention into a composite structure. Examples of the composite structure include a score core structure, a side-by-side structure, and a combination structure thereof. However, in particular, 50% or more of the linear surface is made of a soft thermoplastic elastic resin in order to obtain a three-dimensional structure in which vibration and deformation stress that cannot be energy-converted even if the cushion layer is largely deformed can be energy-converted and recovered. And a side-by-side structure and a combination thereof. That is, in the sheath core structure, the sheath component is a thermoplastic elastic resin having a large content of soft segments that can easily convert energy into vibration and deformation stress, and the core component is a thermoelastic resin having a small content of soft segments exhibiting anti-compression properties. Composed of a plastic elastic resin, it can give a comfortable touch to the buttocks due to an appropriate depression. With the side-by-side structure, the melt viscosity of a thermoplastic elastic resin with a high soft segment content that facilitates energy conversion of vibration and deformation stress is lower than the melt viscosity of a thermoplastic elastic resin with a low soft segment content that exhibits anti-compression properties. A structure in which the proportion of thermoplastic elastic resin occupying a linear surface and having a large amount of soft segment is increased (metaphorically, a structure in which a thermoplastic elastic resin is arranged in an eccentric sheath-core structure) It is particularly preferable that the ratio of the thermoplastic elastic resin having a large soft segment content occupying the linear surface is 80% or more, and most preferably the thermoplastic elastic resin having a large soft segment content occupying the linear surface. Is a score with the ratio of 100% as 100%. When the proportion of the thermoplastic elastic resin with a large soft segment content that occupies the linear surface is large, the flowability when melting and fusing is high, so there is the effect of strengthening the adhesion, and the structure deforms as a unit. In this case, the fatigue resistance against stress concentration at the bonding points is improved, and the heat resistance and durability are further improved.

【0013】ゴム弾性を有する熱可塑性弾性樹脂からな
る線条で構成された弾性網状体は実質的に面がフラッ
ト化されて、接触部の大部分が融着していることで、弾
性複合網状体と他の網状体、不織布、編織物、硬綿、フ
イルム、発泡体、金属等の被熱接着体とを接着するの
に、他の熱接着成分(熱接着不織布、熱接着繊維、熱接
着フィルム、熱接着レジン等)や接着剤等を用いて一体
積層構造体化し、車両用座席、船舶用座席、車両用、船
舶用、病院用等の業務用及び家庭用ベッ、家具用椅
子、事務用椅子、布団類等の製品を得る場合、被接着体
面との接触面積を広くできるので、接着面積が広くなり
強固に接着した接着耐久性も良好な製品を得ることがで
きる。なお、弾性網状体形成段階から製品化される任意
の段階で上述の疑似結晶化処理を施すことにより、構造
体中の熱可塑性弾性樹脂からなる線条を示差走査型熱量
計で測定した融解曲線に室温以上融点以下の温度に吸熱
ピークを持つようにすると製品の耐熱耐久性が格段に向
上するのでより好ましい。本発明の弾性網状体の線条を
複合構造とした場合、弾性網状体に熱接着層の機能も付
与できる。例えば、シ−スコア構造ではシ−ス成分の振
動や変形応力をエネルギ−変換が容易なソフトセグメン
ト含有量が多い熱可塑性弾性樹脂を熱接着成分とし、コ
ア成分の抗圧縮性を示すソフトセグメント含有量が少な
い熱可塑性弾性樹脂を網状形態の保持機能をもたせるた
めの高融点成分とする構成で、熱接着成分の融点を高融
点樹脂の融点より10℃以上低くしたものを用いること
により熱接着層の機能も付与できる。熱接着層の機能を
発現させるに好ましい弾性網状体中の線条を形成する熱
接着成分の融点は高融点成分の融点より15℃から50
℃低い融点であり、より好ましくは20℃から40℃低
い融点である。熱接着機能を持つ本発明の弾性網状体は
実質的に面がフラット化されて、接触部の大部分が融着
していることで、網状体、不織布、編織物、硬綿、フイ
ルム、発泡体、金属等の被熱接着体面との接触面積を広
くできるので、熱接着面積が広くなり、強固に熱接着し
た新たな成形体及び車両用座席、船舶用座席、車両用、
船舶用、病院用等の業務用及び家庭用ベッ、家具用椅
子、事務用椅子、布団類になった製品を得ることができ
る。なお、新たな成形体及び製品が製品化されるまでの
任意の段階で疑似結晶化処理を施すことにより、構造体
中の熱可塑性弾性樹脂からなる線条を示差走査型熱量計
で測定した融解曲線に室温以上融点以下の温度に吸熱ピ
ークを持つようにすると製品の耐熱耐久性が格段に向上
したものを提供できるのでより好ましい。熱接着時に被
接着体を伸張した状態で接着すると、被接着体は接着層
のゴム弾性で伸張された状態が緩和しないので張りのあ
る、皺になりにくい成形体とすることもできる。
[0013] Thermoplastic elastomeric made of resin filament in the configured elastic mesh body having rubber elasticity is substantially both sides are flattened, by the majority of the contact portion is fused, elastic composite Other heat-bonding components (heat-bonding nonwoven fabric, heat-bonding fiber, heat adhesive film integrally laminated structure conjugated with a heat adhesive resin, etc.) or an adhesive, a vehicle seat, marine seats, vehicle, marine, industrial and household beds de such hospital chair furniture When obtaining products such as office chairs and duvets, the contact area with the surface to be adhered can be widened, so that the adhesive area can be widened and a product with strong adhesion and good adhesion durability can be obtained. In addition, by performing the above-mentioned pseudo crystallization treatment at any stage after the step of forming the elastic network, the melting curve of the filament made of the thermoplastic elastic resin in the structure measured by the differential scanning calorimeter It is more preferable to have an endothermic peak at a temperature of room temperature or higher and melting point or lower, because the heat resistance and durability of the product is remarkably improved. When the filaments of the elastic network of the present invention have a composite structure, the elastic network can also be provided with the function of a thermal adhesive layer. For example, in the sheath core structure, a thermoplastic elastic resin containing a large amount of soft segment that facilitates energy conversion of vibration and deformation stress of the sheath component is used as a heat-adhesive component, and a soft segment containing the compressive property of the core component is contained. A thermoplastic adhesive resin having a small amount is used as a high melting point component to have a function of holding a net-like shape, and the melting point of the thermal bonding component is lower than the melting point of the high melting point resin by 10 ° C. or more. The function of can be added. The melting point of the heat-bonding component forming the filaments in the elastic mesh body, which is preferable for expressing the function of the heat-bonding layer, is 15 ° C. to 50 ° C. higher than the melting point of the high-melting component.
The melting point is lower by 0 ° C., more preferably 20 ° C. to 40 ° C. lower. The elastic mesh body of the present invention having a heat-bonding function has a substantially flat surface, and most of the contact portions are fused, so that the mesh body, the non-woven fabric, the knitted fabric, the hard cotton, the film, and the foam. Since the contact area with the body to be heat-bonded, such as metal, can be widened, the heat-bonded area is widened, and a new heat-bonded molded body and vehicle seat, ship seat, vehicle,
Marine, it is possible to obtain commercial and household beds de such as for hospitals, furniture chairs, office chairs, the product became futons. In addition, by performing pseudo crystallization at any stage until new molded products and products are commercialized, the filaments made of the thermoplastic elastic resin in the structure are melted by a differential scanning calorimeter. It is more preferable to make the curve have an endothermic peak at a temperature of room temperature or higher and melting point or lower because a product with significantly improved heat resistance and durability can be provided. When the adherend is adhered in a stretched state at the time of heat-bonding, the adhered body does not relax the stretched state due to the rubber elasticity of the adhesive layer, so that the adherend can be a molded body having tension and less likely to wrinkle.

【0014】次に、本発明の製法を述べる。本発明の製
法は複数のオリフィスを持つ多列ノズルより熱可塑性弾
性樹脂をその融点より10℃以上高く、80℃未満高い
溶融温度で、該ノズルより下方に向けて吐出させ、溶融
状態で互いに接触させて融着させ3次元構造を形成しつ
つ、引取り装置で挟み込み冷却槽で冷却せしめる弾性網
状体の製法である。熱可塑性弾性樹脂を一般的な溶融押
出機を用いて溶融し、複数のオリフィスを持つ多列ノズ
ルに供給し、オリフィスより下方へ吐出する。この時の
溶融温度は、熱可塑性弾性樹脂の融点より80℃を越え
る高い溶融温度にすると熱分解が著しくなり熱可塑性弾
性樹脂のゴム弾性特性が低下するので好ましくない。他
方、熱可塑性弾性樹脂の融点より10℃以上高くしない
とメルトフラクチャ−を発生し正常な線条形成が出来な
くなり、また、吐出後ル−プ形成しつつ接触させ融着さ
せる際、線条の温度が低下して線条同士が融着しなくな
り接着が不充分な弾性複合網状体となる場合があり好ま
しくない。好ましい溶融温度は融点より20℃から60
℃高い温度、より好ましくは融点より15℃から40℃
高い温度である。オリフィスの形状は特に限定されない
が、中空断面(例えば三角中空、丸型中空、突起つきの
中空等となるよう形状)及び、又は異形断面(例えば三
角形、Y型、星型等の断面二次モ−メントが高くなる形
状)とすることで前記効果以外に溶融状態の吐出線条が
形成する3次元構造が流動緩和し難くし、逆に接触点で
の流動時間を長く保持して接着点を強固にできるので特
に好ましい。特開平1−2075号公報に記載の接着の
ための加熱をする場合、3次元構造が緩和し易くなり平
面的構造化し、3次元立体構造化が困難となるので好ま
しくない。弾性網状体の特性向上効果としては、見掛け
の嵩を高くでき軽量化になり、また抗圧縮性が向上し、
弾発性も改良できへたり難くなる。中空断面では中空率
が80%を越えると断面が潰れ易くなるので、好ましく
は軽量化の効果が発現できる10%以上70%以下、よ
り好ましくは20%以上60%以下である。オリフィス
の孔間ピッチは線状が形成するル−プが充分接触できる
ピッチとする必要がある。緻密な構造にするには孔間ピ
ッチを短くし、粗密な構造にするには孔間ピッチを長く
する。本発明の孔間ピッチは好ましくは3mm〜20mm、
より好ましくは5mm〜10mmである。本発明では所望に
応じ異密度化や異繊度化もできる。列間のピッチ又は孔
間のピッチも変えた構成、及び列間と孔間の両方のピッ
チも変える方法などで異密度層を形成できる。また、オ
リフィスの断面積を変えて吐出時の圧力損失差を付与す
ると、溶融した熱可塑性弾性樹脂を同一ノズルから一定
の圧力で押し出される吐出量が圧力損失の大きいオリフ
ィスほど少なくなる原理を使って長手方向の区間でオリ
フィスの断面積が異なる列を少なくとも複数有するノズ
ルを用い異繊度線条からなる網状構造体を製造すること
ができる。本発明では、このような方法または単孔吐出
量を少なくして細い線条で緻密な網状構造体とするのが
特に好ましい。次いで、該ノズルより下方に向けて吐出
させ、ル−プを形成させつつ溶融状態で互いに接触させ
て融着させ3次元構造を形成し、引取りネットで溶融状
態の3次元立体構造体両面を挟み込み、網状体の両面の
溶融状態の曲がりくねった吐出線条を45°以上折り曲
げて変形させて表面をフラット化すると同時に曲げられ
ていない吐出線条との接触点を接着して構造を形成後、
連続して冷却媒体(通常は室温の水を用いるのが冷却速
度を早くでき、コスト面でも安くなるので好ましい)で
急冷して本発明の3次元立体網状構造体化した弾性複合
網状体を得る。ノズル面と引取り点の距離は少なくとも
40cm以下にすることで吐出線条が冷却され接触部が融
着しなくなることを防ぐのが好ましい。吐出線条の吐出
量5g/分孔以上と多い場合は10cm〜40cmが好まし
く、吐出線条の吐出量5g/分孔未満と少ない場合は5
cm〜20cmが好ましい。弾性網状体の厚みは溶融状態の
3次元立体構造体両面を挟み込む引取りネットの開口幅
(引取りネット間の間隔)で決まる。本発明では上述の
理由から引取りネットの開口幅は3mm以上50mm以下と
する。次いで水切り乾燥するが冷却媒体中に界面活性剤
等を添加すると、水切りや乾燥がしにくくなったり、熱
可塑性弾性樹脂が膨潤することもあり好ましくない。本
発明の好ましい方法としては、一旦冷却後、一体成形し
て製品化に至る任意の工程で熱可塑性弾性樹脂の融点よ
り少なくとも10℃以下の温度でアニ−リングよる疑似
結晶化処理を行い熱接着複合網状体又は製品を得るのが
より好ましい製法である。疑似結晶化処理温度は、少な
くとも融点(Tm)より10℃以上低く、Tanδのα
分散立ち上がり温度(Tαcr)以上で行う。この処理
で、融点以下に吸熱ピ−クを持ち、疑似結晶化処理しな
いもの(吸熱ピ−クを有しないもの)より耐熱耐へたり
性が著しく向上する。本発明の好ましい疑似結晶化処理
温度は(Tαcr+10℃)から(Tm−20℃)であ
る。単なる熱処理により疑似結晶化させると耐熱耐へた
り性が向上する。が更には、10%以上の圧縮変形を付
与してアニ−リングすることで耐熱耐へたり性が著しく
向上するのでより好ましい。また、一旦冷却後、乾燥工
程を経する場合、乾燥温度をアニ−リング温度とするこ
とで同時に疑似結晶化処理を行うができる。また、製品
化する工程で別途疑似結晶化処理を行うができる。次い
で所望の長さまたは形状に切断してクッション材に用い
る。尚、ノズル面と樹脂を固化させる冷却媒体上に設置
した引取りコンベアとの距離、樹脂の溶融粘度、オリフ
ィスの孔径と吐出量などにより所望のループ径や線径を
きめられる。冷却媒体上に設置した間隔が調整可能な一
対の引取りコンベアで溶融状態の吐出線条を挟み込み停
留させることで互いに接触した部分を融着させ、連続し
て冷却媒体中に引込み固化させ網状構造体を形成する
時、上記コンベアの間隔を調整することで、融着した網
状体が溶融状態でいる間で厚み調節が可能となり、所望
の厚みのものが得られる。コンベア速度も速すぎると、
接触点の形成が不充分になったり、融着点が充分に形成
されるまでに冷却され、接触部の融着が不充分になる場
合がある。また、速度が遅過ぎると溶融物が滞留し過
ぎ、密度が高くなるので、所望の見掛け密度に適したコ
ンベア速度を設定する必要がある。
Next, the manufacturing method of the present invention will be described. According to the manufacturing method of the present invention, a thermoplastic elastic resin is discharged downward from the nozzle at a melting temperature higher than its melting point by 10 ° C. or more and less than 80 ° C. than a multi-row nozzle having a plurality of orifices, and they are in contact with each other in a molten state. It is a method of producing an elastic mesh body that is sandwiched by a take-up device and cooled in a cooling tank while being fused and fused to form a three-dimensional structure. The thermoplastic elastic resin is melted using a general melt extruder, supplied to a multi-row nozzle having a plurality of orifices, and discharged below the orifices. If the melting temperature at this time is higher than the melting point of the thermoplastic elastic resin by more than 80 ° C., the thermal decomposition is remarkable and the rubber elastic property of the thermoplastic elastic resin is deteriorated, which is not preferable. On the other hand, unless the temperature is higher than the melting point of the thermoplastic elastic resin by 10 ° C. or more, melt fracture occurs and normal filament formation cannot be performed. Further, when the filament is formed by looping after discharge and is brought into contact and fused. The temperature may decrease and the filaments may not fuse together, resulting in an elastic composite network with insufficient adhesion, which is not preferable. The preferred melting temperature is 20 ° C to 60 ° C above the melting point
℃ higher temperature, more preferably 15 ℃ to 40 ℃ above the melting point
It is a high temperature. The shape of the orifice is not particularly limited, but may be a hollow cross section (for example, a triangular hollow shape, a round hollow shape, a shape with a protrusion, etc.) and / or an irregular cross section (for example, a triangular, Y-shaped, star-shaped cross-section secondary mode). In addition to the above effects, it is difficult for the three-dimensional structure formed by the discharge filaments in the molten state to relax the flow, and on the contrary, the flow time at the contact point is maintained for a long time to strengthen the adhesion point. It is particularly preferable because it can be When heating for adhesion as described in Japanese Patent Application Laid-Open No. 1-2075, the three-dimensional structure is easily relaxed, a planar structure is formed, and a three-dimensional three-dimensional structure becomes difficult, which is not preferable. As an effect of improving the properties of the elastic mesh, the apparent bulk can be increased and the weight can be reduced, and the anti-compression property can be improved.
The resilience can also be improved, making it difficult to lose weight. In the hollow cross section, if the hollow ratio exceeds 80%, the cross section tends to be crushed. Therefore, it is preferably 10% or more and 70% or less, more preferably 20% or more and 60% or less, which can exhibit the effect of weight reduction. The pitch between the holes of the orifice needs to be a pitch with which the loop formed by the line can sufficiently contact. The pitch between holes is shortened for a dense structure, and the pitch between holes is lengthened for a coarse structure. The hole pitch of the present invention is preferably 3 mm to 20 mm,
More preferably, it is 5 mm to 10 mm. In the present invention, different densities and different fineness can be obtained as desired. The different density layer can be formed by a configuration in which the pitch between rows or the pitch between holes is also changed, or a method in which the pitch between both rows and holes is also changed. Also, if the pressure loss difference at the time of discharge is given by changing the cross-sectional area of the orifice, the principle that the discharged amount of molten thermoplastic elastic resin extruded from the same nozzle at a constant pressure becomes smaller for the orifice with larger pressure loss, is used. It is possible to manufacture a reticulated structure composed of filaments of different fineness by using a nozzle having at least a plurality of rows having different cross-sectional areas of orifices in a section in the longitudinal direction. In the present invention, it is particularly preferable to use such a method or to reduce the single-hole discharge amount to form a fine net-like structure with fine filaments. Then, the liquid is discharged downward from the nozzle, and while forming a loop, they are brought into contact with each other in a molten state and fused to form a three-dimensional structure. After sandwiching and bending the melted and twisted discharge filaments on both sides of the mesh body by 45 ° or more to flatten the surface and at the same time bond the contact points with the unbent discharge filaments to form the structure,
Continuously quenching with a cooling medium (usually water at room temperature is preferable because the cooling rate can be increased and the cost is also reduced) to obtain the elastic composite network body of the present invention in the form of a three-dimensional three-dimensional network structure. . The distance between the nozzle surface and the take-off point is preferably at least 40 cm or less to prevent the discharge filament from being cooled and the contact portion not being fused. 10 cm to 40 cm is preferable when the discharge amount of the discharge line is 5 g / min or more, and 5 when the discharge amount of the discharge line is less than 5 g / min.
cm to 20 cm is preferred. The thickness of the elastic netting is determined by the opening width (interval between the take-up nets) of the take-up net sandwiching both surfaces of the three-dimensional structure in the molten state. In the present invention, the opening width of the take-up net is set to 3 mm or more and 50 mm or less for the above reason. Next, it is drained and dried, but if a surfactant or the like is added to the cooling medium, draining and drying may be difficult, or the thermoplastic elastic resin may swell, which is not preferable. As a preferred method of the present invention, after cooling once, pseudo-crystallization treatment by annealing is carried out at a temperature of at least 10 ° C. or lower than the melting point of the thermoplastic elastic resin in any step leading to product formation by integral molding and thermal bonding. A more preferred method is to obtain a composite network or product. The pseudo-crystallization treatment temperature is at least 10 ° C. lower than the melting point (Tm), and the tan α
The temperature is higher than the dispersion rising temperature (Tαcr). By this treatment, the heat-resistant sag resistance is remarkably improved as compared with the one having no endothermic peak (having no endothermic peak) having an endothermic peak below the melting point. The preferred pseudo-crystallization treatment temperature of the present invention is (Tαcr + 10 ° C) to (Tm-20 ° C). If it is pseudo-crystallized by simple heat treatment, heat resistance and sag resistance are improved. However, it is more preferable to impart compressive deformation of 10% or more and anneal to significantly improve the heat resistance and sag resistance. When the drying step is performed after cooling once, the pseudo crystallization treatment can be performed at the same time by setting the drying temperature to the annealing temperature. Also, a pseudo crystallization treatment can be separately performed in the process of commercialization. Then, it is cut into a desired length or shape and used as a cushion material. The desired loop diameter and wire diameter can be determined by the distance between the nozzle surface and the take-up conveyor installed on the cooling medium for solidifying the resin, the melt viscosity of the resin, the orifice hole diameter and the discharge amount, and the like. A pair of take-up conveyors with adjustable spacing installed on the cooling medium sandwiches and holds the melted discharge filaments to fuse the parts that are in contact with each other, and continuously draw in the cooling medium to solidify them. By adjusting the distance between the conveyors when forming the body, the thickness can be adjusted while the fused net-like body is in a molten state, and a desired thickness can be obtained. If the conveyor speed is too fast,
In some cases, the contact points may be insufficiently formed, or the contact points may be cooled by sufficient cooling until the fusion points are sufficiently formed. Further, if the speed is too slow, the melt will stay too much and the density will increase, so it is necessary to set the conveyor speed suitable for the desired apparent density.

【0015】本発明の弾性網状体をクッションのワディ
ング層に用いる場合、その使用目的、使用部位により使
用する樹脂、繊度、ル−プ径、嵩密度を選択する必要が
ある。例えば、ソフトなタッチと適度の沈み込みと張り
のある膨らみを付与するためには、低密度で細い繊度、
細かいル−プ径にするのが好ましく、中層のクッション
体機能も併用させるには、共振振動数を低くし、適度の
硬さと圧縮時のヒステリシスを直線的に変化させて体型
保持性を良くし、耐久性を保持させるために、中密度で
太い繊度、やや大きいル−プ径の層と低密度で細い繊
度、細かいル−プ径の層を積層一体化した構造にするの
が好ましい。また、3次元構造を損なわない程度に成形
型等を用いて使用目的にあった形状に成形して側地を被
せ車両用座席、船舶用座席、ベット、椅子、家具等に用
いることができる。勿論、用途との関係で要求性能に合
うべく他の素材、例えば中層のクッション体機能をもつ
網状体、短繊維集合体からなる硬綿クッション材、不織
布等と組合せて用いることも可能である。また、樹脂製
造過程以外でも性能を低下させない範囲で製造過程から
成形体に加工し、製品化する任意の段階で難燃化、防虫
抗菌化、耐熱化、撥水撥油化、着色、芳香等の機能付与
を薬剤添加等の処理加工ができる。
When the elastic network of the present invention is used for a wadding layer of a cushion, it is necessary to select a resin to be used, a fineness, a loop diameter and a bulk density depending on the purpose of use and the site of use. For example, in order to give a soft touch and moderate depression and tension bulge, low density and fine fineness,
It is preferable to make the loop diameter small, and in order to use the cushioning function of the middle layer together, lower the resonance frequency and linearly change the appropriate hardness and the hysteresis at the time of compression to improve the body shape retention. In order to maintain durability, it is preferable to have a structure in which a layer having a medium density and a large fineness, a layer having a slightly large loop diameter and a layer having a low density and a fineness and a fine loop diameter are laminated and integrated. Further, it can be used for vehicle seats, boat seats, beds, chairs, furniture, etc. by molding it into a shape suitable for the purpose of use by using a molding die or the like to the extent that the three-dimensional structure is not impaired. Of course, it is also possible to use it in combination with other materials such as a net-like body having a cushioning body function in the middle layer, a hard cotton cushioning material made of short fiber aggregate, and a non-woven fabric so as to meet the required performance in relation to the application. In addition, other than the resin manufacturing process, the molded product is processed from the manufacturing process to the extent that performance is not deteriorated, and at any stage of commercialization, it becomes flame retardant, insecticidal, antibacterial, heat resistant, water / oil repellent, colored, aroma, etc. It is possible to perform the processing such as the addition of chemicals to add the function.

【0016】[0016]

【実施例】以下に実施例で本発明を詳述する。EXAMPLES The present invention will be described in detail below with reference to examples.

【0017】なお、実施例中の評価は以下の方法で行っ
た。 融点(Tm)および融点以下の吸熱ピ−ク 島津製作所製TA50,DSC50型示差熱分析計を使
用し、昇温速度20℃/分で測定した吸発熱曲線から吸
熱ピ−ク(融解ピ−ク)温度を求めた。 Tαcr ポリマ−を融点+10℃に加熱して、厚み約300μm
のフイルムを作成して、オリエンテック社製バイブロン
DDVII型を用い、110Hz、昇温速度1℃/分で測
定したTanδ(虚数弾性率M”と弾性率の実数部分
M’との比M”/M’)のゴム弾性領域から融解領域へ
の転移点温度に相当するα分散の立ち上がり温度。 見掛け密度 試料を15cm×15cmの大きさに切断し、4か所の高さ
を測定し、体積を求め試料の重さを体積で徐した値で示
す。(n=4の平均値) 線条の繊度 試料を10箇所から各線条部分を切り出し、アクリル樹
脂で包埋して断面を削り出し切片を作成して断面写真を
得る。各部分の断面写真より各部の断面積(Si)を求
める。また、同様にして得た切片をアセトンでアクリル
樹脂を溶解し、真空脱泡して密度勾配管を用いて40℃
にて測定した比重(SGi)を求める。ついで次式より
線状の9000mの重さを求める。(単位cgs) 繊度=〔(1/n)ΣSi×SGi〕×900000 融着 試料を目視判断で融着しているか否かを接着している繊
維同士を手で引っ張って外れないか否かで外れないもの
を融着していると判断する。 50%圧縮時反発力 試料を30cm×30cmの大きさに切り出し、オリエンテ
ック社製テンシロンにて、圧縮ロ−ドセルを繋いだφ1
50mmの円盤で1cm/分の速度にて試料の中心を65%
まで圧縮したときの圧縮圧力を連続して測定し、50%
圧縮時の圧縮圧力を求め、50%圧縮時の反発力とし
た。(n=3の平均値) 耐熱耐久性(70℃残留歪) 試料を15cm×15cmの大きさに切断し、50%圧縮し
て70℃乾熱中22時間放置後冷却して圧縮歪みを除き
1日放置後の厚み(b)を求め、処理前の厚み(a)か
ら次式、即ち(a−b)/a×100より算出する:単
位%(n=3の平均値) 繰返し圧縮歪 試料を15cm×15cmの大きさに切断し、島津製作所製
サ−ボパルサ−にて、25℃65%RH室内にて50%
の厚みまで1Hzのサイクルで圧縮回復を繰り返し2万
回後の試料を1日放置後の厚み(b)を求め、処理前の
厚み(a)から次式、即ち(a−b)/a×100より
算出する:単位%(n=3の平均値) 座り心地 東洋紡績製熱接着繊維4−64−TE5と東洋紡績製立
体巻縮ステープル10−64−745を30/70重量
比で混合開繊して得たカ−ドウエッブを見掛けの密度が
0.05g/cm3 となるように熱成形用雌金型に入れ、
牡金型で圧縮して詰め込み200℃の熱風にて10分間
熱接着成形してバケットシ−ト状に成形した硬綿をクッ
ション材の芯として、バケットシ−トのワディング層と
して作成した弾性網状体を硬綿の芯を包みこめるように
バケットシ−トの形状に切断して積層し、クレハテック
社製の融点120℃の熱接着性ポリエステル不織布にて
芯材とワディング層とを130℃の熱風で熱接着したク
ッションに東洋紡績製ハイムからなるポリエステルモケ
ットの側地を被って、座席用フレ−ムにセットして座部
は4か所、背部は6か所の側地止めを入れた座席を作成
し、30℃RH75%室内で作成した座席にパネラ−を
座らせ以下の評価をおこなった。(n=5) (1) 床つき感:座ったときの「どすん」と床に当たった
感じの程度を感覚的に定性評価した。感じない;◎、殆
ど感じない;○、やや感じる;△、感じる;× (2) 蒸れ感:2時間座っていて、臀部やふと股の内側の
座席と接する部分が蒸れた感じを感覚的に定性評価し
た。殆ど感じない:◎、僅かに蒸れを感じる;○、やや
蒸れを感じる;△、蒸れを著しく感じる;× (3) 8時間以内でどの程度我慢して座席に座っていられ
るか:1時間以内;×、2時間以内;△、4時間以内;
○、4時間以上;◎ (4) 4時間座席に座らせたときの腰の疲れ程度を感覚的
に定性評価した。無し;◎、殆ど疲れない;○、やや疲
れる;△、非常に疲れる;× (5) 総合評価: (1)から(4) までの評価の◎を4点、○
を3点、△を2点、×を1点として12点以上で△を含
まないもの;非常に良い(◎)、12点以上で△を含む
もの;良い(○)、10点以上で×を含まないもの;や
や悪い(△)、×を含むもの;悪い(×)として評価し
た。
The evaluations in the examples were carried out by the following methods. Melting point (Tm) and endothermic peak below melting point TA50, DSC50 type differential thermal analyzer manufactured by Shimadzu Corporation was used, and the endothermic peak (melting peak) was measured from the endothermic curve measured at a temperature rising rate of 20 ° C./min. ) The temperature was determined. Tαcr polymer is heated to the melting point + 10 ° C and the thickness is about 300 μm.
Film was prepared and measured using a Vibron DDVII type manufactured by Orientec Co., Ltd. at a rate of 110 Hz and a heating rate of 1 ° C./min. Tan δ (the ratio of the imaginary elastic modulus M ″ to the real part M ′ of the elastic modulus M ″ / The rising temperature of α dispersion corresponding to the transition temperature from the rubber elastic region to the melting region of M ′). The apparent density sample is cut into a size of 15 cm × 15 cm, the heights at four locations are measured, the volume is determined, and the weight of the sample is divided by the volume. (Average value of n = 4) Each fine line sample is cut out from 10 places of fine line fineness, embedded with an acrylic resin, a cross section is cut out, and a section is prepared to obtain a cross section photograph. The cross-sectional area (Si) of each part is obtained from the cross-sectional photograph of each part. In addition, a piece obtained in the same manner was dissolved in acrylic resin with acetone, degassed in vacuum, and a density gradient tube was used to 40 ° C.
Determine the specific gravity (SGi) measured in. Then, a linear weight of 9000 m is obtained from the following equation. (Unit: cgs) Fineness = [(1 / n) ΣSi × SGi] × 900000 Whether or not the fusion-bonded sample is fused by visual judgment is determined by whether or not the fibers adhering to each other can be pulled out by hand and removed. It is determined that something that does not come off is fused. A repulsive force sample at 50% compression was cut into a size of 30 cm × 30 cm, and a compression load cell was connected with a Tensilon manufactured by Orientec Co., Ltd. φ1
The center of the sample is 65% at a speed of 1 cm / min with a 50 mm disc.
The compression pressure when compressed up to 50% is continuously measured.
The compression pressure at the time of compression was determined and used as the repulsive force at the time of 50% compression. (Average value of n = 3) Heat resistance durability (70 ° C residual strain) A sample was cut into a size of 15 cm x 15 cm, compressed by 50%, left at 70 ° C in dry heat for 22 hours, and then cooled to remove compression strain. The thickness (b) after standing for a day is calculated, and calculated from the thickness (a) before treatment by the following formula, that is, (ab) / a × 100: Unit% (average value of n = 3) Repeated compressive strain sample Is cut into a size of 15 cm x 15 cm, and it is 50% in a RH room at 25 ° C and 65% in a Shimadzu Servo Pulser.
The thickness (b) after leaving the sample for 20,000 times after repeating compression recovery at a cycle of 1 Hz up to the thickness of 1 is calculated from the thickness (a) before the treatment, that is, (ab) / ax Calculated from 100: Unit% (average value of n = 3) Sit comfort Toyobo's thermal bonding fiber 4-64-TE5 and Toyobo's three-dimensional crimp staple 10-64-745 are mixed and opened at a weight ratio of 30/70. The carded web obtained by fiberizing was placed in a female mold for thermoforming so that the apparent density was 0.05 g / cm 3 ,
An elastic mesh formed by compressing with an oyster mold and filling with hot air at 200 ° C. for 10 minutes and heat-bonding and molding into a bucket sheet-like hard cotton as a cushioning material core and a wadding layer of the bucket sheet. Cut into a bucket sheet shape so as to wrap the core of hard cotton and stack them, and heat bond the core material and the wading layer with hot air at 130 ° C using a thermoadhesive polyester nonwoven fabric with a melting point of 120 ° C manufactured by Kurehatech Co., Ltd. The cushion was covered with polyester moquette made of Toyobo Co., Ltd., and set on the seat frame to create a seat with 4 side seats and 6 side back stops. A paneler was placed on a seat prepared in a room at 30 ° C and RH of 75%, and the following evaluation was performed. (N = 5) (1) Feeling on the floor: The degree of "dosun" when sitting and the feeling of hitting the floor were qualitatively and qualitatively evaluated. Not felt; ◎, hardly felt; ○, slightly felt; △, felt; × (2) Feeling of stuffiness: Feeling stuffy when sitting for 2 hours and the buttocks and the part of the crotch that contacts the seat inside the crotch Qualitatively evaluated. Almost no feeling: ◎, slightly stuffy; ○, slightly stuffy; △, significantly stuffy; × (3) How long you can sit in the seat within 8 hours: within 1 hour; × within 2 hours; △ within 4 hours;
○ 4 hours or more; ◎ (4) A qualitative qualitative evaluation was performed on the degree of waist fatigue when the user sat in the seat for 4 hours. None; ◎, hardly tired; ○, slightly tired; △, very tired; × (5) Overall evaluation: 4 points from ◎ of the evaluations from (1) to (4), ○
3 points, △ is 2 points, × is 1 point and does not include Δ with 12 points or more; very good (⊚), that with 12 points or more; Good (○), 10 points or more is x It was evaluated as those which did not contain; those which were somewhat bad (Δ) and those which contained x; bad (x).

【0018】実施例1〜2 ポリエステル系エラストマ−として、ジメチルテレフタ
レ−ト(DMT)又は、ジメチルナフタレ−ト(DM
N)と1・4ブタンジオ−ル(1・4BD)を少量の触
媒と仕込み、常法によりエステル交換後、ポリテトラメ
チレングリコ−ル(PTMG)を添加して昇温減圧しつ
つ重縮合せしめポリエ−テルエステルブロック共重合エ
ラストマ−を生成させ、次いで抗酸化剤2%を添加混合
練込み後ペレット化し、50℃48時間真空乾燥して得
られた熱可塑性弾性樹脂原料の処方を表1に示す。
Examples 1 and 2 Dimethyl terephthalate (DMT) or dimethyl naphthalate (DM) was used as the polyester elastomer.
N) and 1.4 butanediol (1.4 BD) were charged with a small amount of a catalyst, and after transesterification by a conventional method, polytetramethylene glycol (PTMG) was added and polycondensation was performed while heating and depressurizing. -Formation of terester block copolymer elastomer, then addition and mixing of 2% of antioxidant, kneading, pelletizing, and vacuum drying at 50 ° C for 48 hours are shown in Table 1. .

【0019】[0019]

【表1】 [Table 1]

【0020】幅50cm、長さ3.2cmのノズル有効面に
幅方向の孔間ピッチ5mm、長さ方向の孔間ピッチ4mmの
千鳥配列としたオリフィス形状は外径2mm、内径1.6
mmでトリプルブリッジの中空形成性断面としたノズル
に、得られた熱可塑性弾性樹脂原料A−1及びA−2を
溶融温度210℃及び245℃にて単孔当たりの吐出量
0.8g/分にてノズル下方に吐出させ、ノズル面12
cm下に冷却水を配し、幅60cmのステンレス製エンドレ
スネットを平行に3cm間隔で一対の引取りコンベアを水
面上に一部出るように配した上に引取り、接触部分を融
着させつつ、両面を挟み込みつつ毎分1mの速度で25
℃の冷却水中へ引込み固化させ、次いで100℃の熱風
乾燥機中で20分疑似結晶化処理した後、所定の大きさ
に切断して得られた弾性複合網状体の特性を表2に示
す。実施例1の弾性網状体は断面形状が三角おむすび型
の中空断面で中空率が40%、繊度が3600デニ−ル
の線条で形成しており、平均の見掛け密度が0.045
g/cm3 であった。実施例2も断面形状が三角おむすび
型の中空断面で中空率が38%、繊度が3500デニ−
ルの線条から形成されており、網状体の平均の見掛け密
度が0.045g/cm3であった。表2で明らかなごと
く、実施例1は柔らかい弾性樹脂の特性が生かせた緻密
な網状構造のため耐熱性、常温での耐久性、座り心地と
もに優れたクッション材用ワディング層であった。実施
例2はやや硬い弾性樹脂の特性が生かせた緻密な網状構
造のため耐熱性、常温での耐久性、座り心地ともに優れ
たクッション材用ワディング層であった。評価用に作成
した座席も性能が優れていることが判る。
Orifice shapes having a staggered arrangement with a hole-to-hole pitch of 5 mm in the width direction and a hole-to-hole pitch of 4 mm on the effective surface of a nozzle having a width of 50 cm and a length of 3.2 cm have an outer diameter of 2 mm and an inner diameter of 1.6.
The resulting thermoplastic elastic resin raw materials A-1 and A-2 were melted at a melting temperature of 210 ° C. and 245 ° C. into a nozzle having a triple bridge hollow forming cross section of 0.8 mm / min. Is discharged below the nozzle at
Cooling water is placed under the cm, and stainless steel endless nets with a width of 60 cm are arranged in parallel at intervals of 3 cm so that a pair of take-up conveyors are partially exposed above the water surface, and are taken out while fusing the contact parts. , 25 at a speed of 1 m / min while sandwiching both sides
Table 2 shows the properties of the elastic composite reticulate body obtained by pulling it into cooling water at 0 ° C to solidify it, then performing pseudo-crystallization treatment for 20 minutes in a hot air dryer at 100 ° C, and then cutting it into a predetermined size. The elastic mesh body of Example 1 has a triangular cross-sectional shape of a hollow rice ball and has a hollow ratio of 40% and fineness of 3600 denier, and has an average apparent density of 0.045.
It was g / cm 3 . In Example 2 as well, the cross-sectional shape is a triangular rice ball type hollow cross section with a hollow ratio of 38% and a fineness of 3500 denier.
The average apparent density of the reticulate body was 0.045 g / cm 3 . As is clear from Table 2, Example 1 was a wadding layer for a cushioning material, which was excellent in heat resistance, durability at room temperature, and sitting comfort due to the dense mesh structure in which the characteristics of the soft elastic resin were utilized. Example 2 was a wadding layer for a cushioning material, which was excellent in heat resistance, durability at room temperature, and sitting comfort due to the dense mesh structure that took advantage of the characteristics of the slightly hard elastic resin. It can be seen that the seat created for evaluation also has excellent performance.

【0021】[0021]

【表2】 [Table 2]

【0022】実施例3 ジメチルイソフタレ−ト(DMI)20モル%とDMT
80モル%及び1・4ブタンジオ−ル(1・4BD)を
少量の触媒と仕込み、実施例1の方法と同様にして得た
ポリエステル系熱可塑性弾性樹脂(A−3)の処方を表
1に示す。オリフィスの孔形状を孔径φ1mmの丸断面と
したノズルを用い以外実施例1と同様にして得た弾性複
合網状体の特性を表2に示す。なお、中実丸断面の繊度
が3600デニ−ルの線条から形成されており、網状体
の平均の見掛け密度が0.044g/cm3 であった。表
2で明らかなごとく、実施例2は耐熱性と常温での耐久
性は実用上使用可能で、座り心地の優れたクッション用
ワディング層であった。評価用に作成した座席も優れて
いることが判る。
Example 3 20 mol% of dimethyl isophthalate (DMI) and DMT
Table 1 shows the formulation of the polyester-based thermoplastic elastic resin (A-3) obtained in the same manner as in Example 1 by charging 80 mol% and 1.4-butanediol (1.4-BD) with a small amount of a catalyst. Show. Table 2 shows the characteristics of the elastic composite reticulate body obtained in the same manner as in Example 1 except that a nozzle having a circular cross section with a hole diameter of 1 mm was used for the orifice. In addition, the fineness of the solid round cross section was formed from filaments having a denier of 3600, and the average apparent density of the reticulate body was 0.044 g / cm 3 . As is clear from Table 2, Example 2 was a cushioning wadding layer that was practically usable in terms of heat resistance and durability at room temperature, and was excellent in sitting comfort. It can be seen that the seat created for evaluation is also excellent.

【0023】実施例4 ポリウレタン系エラストマ−として、4・4’ジフェニ
ルメタンジイソシアネ−ト(MDI)とPTMG及び鎖
延長剤として1・4BDを添加して重合し次いで抗酸化
剤2%を添加混合練込み後ペレット化し真空乾燥してポ
リエ−テル系ウレタンポリマ−の処方を表3に示す。
Example 4 As a polyurethane elastomer, 4,4'-diphenylmethane diisocyanate (MDI), PTMG and 1.4BD as a chain extender were added and polymerized, and then 2% of an antioxidant was added and mixed. Table 3 shows the formulation of the polyether urethane polymer after kneading, pelletizing and vacuum drying.

【0024】[0024]

【表3】 [Table 3]

【0025】得られた熱可塑性弾性樹脂を溶融温度22
0℃とした以外実施例1と同様にして得た弾性複合網状
体の特性を表2に示す。実施例は線条の断面形状が三
角おむすび型の中空断面で中空率は41%、繊度が39
00デニ−ルの線条から形成されており、網状体の平均
の見掛け密度が0.045g/cm3 であった。実施例
は柔らかいウレタンの特性を生かした緻密な網状体で耐
熱性、常温での耐久性、座り心地ともに優れたクッショ
ン材用のワディング層であった。評価用に作成した座席
も優れていることが判る。
The thermoplastic elastic resin thus obtained is melted at a melting temperature of 22.
Table 2 shows the properties of the elastic composite network obtained in the same manner as in Example 1 except that the temperature was 0 ° C. In Example 4, the filament has a triangular cross-sectional shape of a hollow rice ball and has a hollow ratio of 41% and a fineness of 39.
It was formed from filaments of 00 denier, and the average apparent density of the reticulate body was 0.045 g / cm 3 . Example 4
Was a wadding layer for a cushioning material that is a dense mesh body that takes advantage of the characteristics of soft urethane and has excellent heat resistance, durability at room temperature, and comfort to sit on. It can be seen that the seat created for evaluation is also excellent.

【0026】比較例1〜2 固有粘度0.63のポリエチレンテレフタレ−ト(PE
T)及びメルトインデックス12のポリプロピレン(P
P)を溶融温度を280℃及び250℃とし、疑似結晶
化処理しなかった以外、実施例3と同様にして得た線条
の繊度が比較例1は3600デニ−ル、比較例2は95
00デニ−ルで、平均の見掛け密度が共に0.045g
/cm3 の網状体の特性を表2に示す。比較例1は繊度の
やや低い非弾性ポリエステルからなる網状体のため耐熱
耐久性が悪く、硬くて座り心地も悪いクッション材用ワ
ディング層に適さない例である。比較例2は繊度がやや
太い非弾性オレフィンからなる網状体のため、耐熱耐久
性が悪く、比較例1より少し柔らかいが、座席のワディ
ング層に必要な柔らかさに比較して硬くクッション材用
ワディング層に適さない例である。
Comparative Examples 1-2 Polyethylene terephthalate (PE with an intrinsic viscosity of 0.63)
T) and polypropylene with a melt index of 12 (P
P) had a melting temperature of 280 ° C. and 250 ° C., and the fineness of the filaments obtained in the same manner as in Example 3 was 3600 denier and 95 in Comparative Example 2 except that the pseudo-crystallization treatment was not performed.
00 denier with an average apparent density of 0.045g
Table 2 shows the properties of the reticulate body having a diameter of / cm 3 . Comparative Example 1 is an example which is not suitable for a wadding layer for a cushioning material which is poor in heat resistance and durability and is hard and uncomfortable to sit because it is a reticulate body made of non-elastic polyester having a slightly small fineness. Comparative Example 2 is a reticulate body having a slightly large fineness and made of an inelastic olefin, and therefore has poor heat resistance and durability, and is a little softer than Comparative Example 1, but is harder than the softness necessary for the wadding layer of the seat and is a cushioning wadding. This is an example not suitable for layers.

【0027】比較例3 ノズル面60cm下に引取りコンベアネットを配して引き
取ったあと疑似結晶化処理をしなかった以外、実施例3
と同様の方法で得た弾性網状体の特性の一部を表2に示
す。なお、接着状態が不良で形態保持が悪いため、50
%圧縮時反発力、見掛け密度、70℃残留歪、繰返圧縮
歪み、及び座り心地の評価はしていない。比較例3は形
態が固定されていないのでクッション材用ワディング層
に適さない例である。
Comparative Example 3 Example 3 was repeated except that a take-up conveyor net was placed 60 cm below the nozzle surface and no pseudo-crystallization treatment was performed after the take-up conveyor net was taken.
Table 2 shows some of the properties of the elastic network obtained by the same method as described above. It should be noted that, since the adhesive state is poor and the shape retention is poor, 50
% Repulsive force at compression, apparent density, residual strain at 70 ° C., repeated compressive strain, and sitting comfort were not evaluated. Comparative Example 3 is an example which is not suitable for the cushioning wadding layer because the form is not fixed.

【0028】比較例4 幅50cm、長さ3cmのノズル有効面に長さ方向に列間ピ
ッチを5mm、幅方向に孔間ピッチを10mmとした千鳥配
列で丸断面の直径φ1mmのオリフィスをもつノズルよ
り、単孔当たりの吐出量2.0g/分にて吐出させ、ノ
ズル面25cm下に引取りコンベアネットを配して0.4
0m/分にて引き取り、疑似結晶化処理しない以外、実
施例3と同様にして得た線条の繊度は9100デニ−
ル、平均の見掛け密度は0.11g/cm3 の弾性網状体
の特性を表2に示す。比較例4は50%圧縮時反発力が
67kgfと硬くなり過ぎて座り心地がやや劣りクッショ
ン材用ワディング層としては好ましくない例である。
COMPARATIVE EXAMPLE 4 A nozzle having a width of 50 cm and a length of 3 cm, which has a staggered arrangement with a pitch between rows of 5 mm in the length direction and a pitch of holes of 10 mm in the width direction and has a circular cross section with a diameter of 1 mm. Discharge at a rate of 2.0 g / min per hole, and place a take-up conveyor net under the nozzle surface 25 cm to 0.4
The fineness of the filament obtained in the same manner as in Example 3 was 9100 deniers except that it was collected at 0 m / min and was not subjected to pseudo-crystallization treatment.
Table 2 shows the properties of the elastic reticulate body having an average apparent density of 0.11 g / cm 3 . Comparative Example 4 is an example which is not preferable as a wadding layer for a cushioning material because the repulsive force at 50% compression becomes 67 kgf, which is too hard and the sitting comfort is slightly poor.

【0029】比較例5 単孔当たりの吐出量3g/分にて吐出させて、ノズル面
25cm下に引取りコンベアネットを配して1m/分にて
引き取った以外、比較例4と同様にして得た線条の繊度
は134000デニ−ルで、平均の見掛け密度は0.0
44g/cm3 の弾性網状体の特性を表2に示す。比較例
5は繊度が著しく太く密度斑のある弾性網状体のため、
耐熱耐久性が悪くなり、座り心地もやや悪くなるクッシ
ョン材用ワディング層としては好ましくない例である。
Comparative Example 5 The same as Comparative Example 4 except that the discharge amount per single hole was 3 g / min, and a take-up conveyor net was placed below the nozzle surface 25 cm to take in at 1 m / min. The fineness of the obtained filaments was 134,000 denier, and the average apparent density was 0.0.
The properties of the elastic network of 44 g / cm 3 are shown in Table 2. Since Comparative Example 5 is an elastic mesh body having a remarkably fineness and uneven density,
This is an unfavorable example as a wadding layer for a cushioning material, which has poor heat resistance and a little poor seating comfort.

【0030】比較例6 引取りコンベアネットの間隔(開口幅)を5cmとし、引
取りコンベアネットの速度を1m/分とした以外、比較
例4と同様にして得た線条繊度が9000デニ−ルで、
弾性網状体の平均見掛け密度が0.034g/cm3 の弾
性網状体の特性を表2に示す。比較例6は弾性網状体表
面のフラット化が悪い状態のため、見掛け密度が低いの
に耐久性が劣り、熱接着が不充分になり、少し異物感を
感じる座り心地のやや劣るクッション材用ワディング層
としては好ましくない例である。
Comparative Example 6 The linear fineness obtained in the same manner as in Comparative Example 4 was 9,000 denier except that the spacing (opening width) of the take-up conveyor net was 5 cm and the speed of the take-up conveyor net was 1 m / min. With
Table 2 shows the properties of the elastic network having an average apparent density of 0.034 g / cm 3 . In Comparative Example 6, since the surface of the elastic mesh body was not flattened well, the apparent density was low, but the durability was poor, and the thermal adhesion was insufficient. This is an unfavorable example as a layer.

【0031】比較例7 幅50cm、長さ6cmのノズル有効面に長さ方向に列間ピ
ッチを4mm、幅方向に孔間ピッチを4mmとした千鳥配列
のノズルを用い、単孔当たりの吐出量0.2g/分にて
吐出させて、ノズル面5cm下に引取りコンベアネットを
配して引取りコンベアネットの間隔(開口幅)を6cmと
し、引取りコンベアネットの速度を1m/分とした以
外、比較例4と同様にして得た線条繊度が900デニ−
ルで、弾性網状体の平均見掛け密度が0.014g/cm
3 の弾性網状体の特性を表2に示す。比較例7は繊度が
細く緻密な構造ではあるが、厚みが厚すぎて沈み込みが
大きくなり、床つき感を感じる座り心地の劣るクッショ
ン材用ワディング層としては好ましくない例である。
COMPARATIVE EXAMPLE 7 A nozzle having a width of 50 cm and a length of 6 cm was arranged in a staggered arrangement with a row-to-row pitch of 4 mm in the length direction and a hole-to-hole pitch of 4 mm in the width direction. Discharging was performed at 0.2 g / min, a take-up conveyor net was placed below the nozzle surface 5 cm, the take-up conveyor net spacing (opening width) was 6 cm, and the take-up conveyor net speed was 1 m / min. Other than that, the filament fineness obtained in the same manner as in Comparative Example 4 is 900 deniers.
The average apparent density of the elastic mesh is 0.014 g / cm
Table 2 shows the characteristics of the elastic mesh body of No. 3 . Comparative Example 7 has a fine structure and a fine structure, but is not preferable as a wadding layer for a cushioning material which is too thick and has a large depression, which is inferior in sitting comfort.

【0032】比較例8 幅50cm、長さ3.3cmのノズル有効面に長さ方向に列
間ピッチを3mm、幅方向に孔間ピッチを4mmとした千鳥
配列のノズルを用い、単孔当たりの吐出量0.012g
/分にて吐出させて、ノズル面5cm下に引取りコンベア
ネットを配して引取りコンベアネットの間隔(開口幅)
を3cmとし、引取りコンベアネットの速度を1m/分と
した以外、比較例4と同様にして得た線条繊度が40デ
ニ−ルで、弾性網状体の平均見掛け密度が0.012g
/cm3 の弾性網状体の特性を表2に示す。比較例8は繊
度が細く緻密な構造ではあるが、繊度が細過ぎて沈み込
みが大きくなり、床つき感を感じる座り心地のやや劣る
クッション材用ワディング層としては好ましくない例で
ある。
COMPARATIVE EXAMPLE 8 A nozzle having a width of 50 cm and a length of 3.3 cm was arranged in a staggered arrangement on the effective surface of the nozzle with a pitch between rows of 3 mm in the length direction and a pitch of holes of 4 mm in the width direction. Discharge amount 0.012g
Discharge at a rate of 1 minute per minute, and a take-up conveyor net is placed 5 cm below the nozzle surface, and the distance between the take-up conveyor nets (opening width)
Was 3 cm and the speed of the take-up conveyor net was 1 m / min, the filament fineness obtained in the same manner as in Comparative Example 4 was 40 denier, and the average apparent density of the elastic mesh was 0.012 g.
Table 2 shows the properties of the elastic reticulate body having a density of 1 / cm 3 . Although the comparative example 8 has a fine structure with a fineness, it is not preferable as a wadding layer for a cushioning material having a slightly inferior fineness and a large subsidence and a slightly inferior sitting comfort.

【0033】実施例5 東洋紡績製熱接着繊維4−64−TE5と東洋紡績製立
体巻縮ステープル10−64−745を30/70重量
比で混合開繊して得たカ−ドウエッブを厚みが7cmで見
掛け密度が0.05g/cm3 となるように積層圧縮して
200℃の熱風にて10分間一体熱成形して厚み7cmの
クッション芯材を4枚作成した。実施例1で得た複合網
状体を長さ120cmに切断して、クッション芯材の表面
に積層接着して得られたクッションを厚み10cm、幅1
20cm、長さ50cm毎にキルティングした幅120cm、
長さ200cmの側地に入れマットレスを作成した。この
マットレスをベッドに設置し、25℃RH65%室内に
てパネラ−4人に7時間使用させて寝心地を官能評価し
た。なお、ベットにはシ−ツを掛け、掛け布団は1.8
kgのダウン/フェザ−:90/10を中綿にしたもの、
枕はパネラ−が毎日使用しているものを着用させた。評
価結果は、床つき感がなく、沈み込みが適度で、蒸れを
感じない快適な寝心地のベットであった。比較のため、
密度0.04g/cm3 で厚み10cmの発泡ウレタン板状
体で同様のマットレスを作成し、ベットに設置して寝心
地を評価した結果、床つき感は少ないが沈み込みが大き
くやや蒸れを感じる寝心地の悪いベットであった。
Example 5 Cardboard obtained by mixing and opening thermal bonding fiber 4-64-TE5 manufactured by Toyobo and three-dimensional crimp staple 10-64-745 manufactured by Toyobo at a weight ratio of 30/70 was used. Laminate compression was performed at 7 cm so that the apparent density was 0.05 g / cm 3, and thermoforming was performed integrally with hot air at 200 ° C. for 10 minutes to prepare four cushion core materials having a thickness of 7 cm. The composite reticulate body obtained in Example 1 was cut into a length of 120 cm, and the cushion obtained by laminating and adhering to the surface of the cushion core material had a thickness of 10 cm and a width of 1 cm.
20 cm, 120 cm width quilted every 50 cm length,
A mattress was prepared by putting it in a side area having a length of 200 cm. This mattress was placed on a bed, and a paneler-4 person used it for 7 hours in a room at 25 ° C. RH 65% to sensory-evaluate the sleeping comfort. The bed is covered with sheets and the comforter is 1.8.
kg down / feather: 90/10 batting,
The pillow was made to be worn by a paneler every day. As a result of the evaluation, the bed was a bed which had no feeling of flooring, had a moderate depression, and did not feel stuffy and had a comfortable sleeping comfort. For comparison,
A similar mattress was made from a urethane foam plate with a density of 0.04 g / cm 3 and a thickness of 10 cm, and the mattress was placed on a bed and the sleep comfort was evaluated. It was a bad bet.

【0034】[0034]

【発明の効果】振動や応力吸収性の良いソフトセグメン
トの多い熱可塑性弾性樹脂から成る線条が3次元網状構
造を形成し融着一体化した、面が実質的にフラット化さ
れている本発明の弾性網状体は、振動遮断性、耐熱耐久
性、嵩高性、座り心地のより改善された、適度の圧縮反
発力を持ち、蒸れにくいクッション材用ワディング層に
適したリサイクルが容易な弾性網状体及び、他の素材と
の併用による上記の好ましい特性を付与した車両用座
席、船舶用座席、車両用、船舶用、病院やホテル等の業
務用ベット、家具用クッション、寝装用品等の製品を提
供できる。更には、車両用や建築資材としての内装材や
断熱材等にも有用なものである。
Industrial Applicability The present invention in which filaments made of thermoplastic elastic resin having many soft segments having good vibration and stress absorption form a three-dimensional network structure and are fused and integrated, and the surface is substantially flattened. Is an elastic net that has improved vibration isolation, heat resistance and durability, bulkiness, and sitting comfort, has an appropriate compression repulsion force, and is suitable for a wadding layer for cushioning material that does not easily get damp, and is easy to recycle. And products such as vehicle seats, ship seats, vehicle seats, vehicle seats, ship beds for business use in hospitals and hotels, furniture cushions, bedding products, etc. Can be provided. Furthermore, it is also useful as an interior material and a heat insulating material for vehicles and building materials.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI D01F 6/62 303 D01F 6/62 303D 6/86 301 6/86 301B (58)調査した分野(Int.Cl.7,DB名) D04H 1/00 - 18/00 B68G 1/00 - 15/00 D01D 1/00 - 13/02 D01F 1/00 - 13/04 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI D01F 6/62 303 D01F 6/62 303D 6/86 301 6/86 301B (58) Fields investigated (Int.Cl. 7 , DB) Name) D04H 1/00-18/00 B68G 1/00-15/00 D01D 1/00-13/02 D01F 1/00-13/04

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 繊度が50デニ−ルから10000デ
ニ−ルのゴム弾性を有する熱可塑性弾性樹脂からなる連
続した線条を曲がりくねらせ互いに接触させて該接触部
の大部分が融着した3次元立体構造体であり、該構造体
の両表面が実質的にフラット化されており、厚みが2〜
50mmであり、50%圧縮時反発力が40kgf/φ15
0mm以下である弾性網状体。
1. A continuous filament made of a thermoplastic elastic resin having rubber elasticity having a fineness of 50 denier to 10000 denier is bent and brought into contact with each other to fuse most of the contact portion. A three-dimensional structure and the structure
Both surfaces are substantially flattened and have a thickness of 2 to
50 mm, repulsive force at 50% compression is 40 kgf / φ15
Elastic reticulate body of 0 mm or less.
【請求項2】 連続した線条の断面形状が中空断面あ
るいは異形断面である請求項1記載の弾性網状体。
2. The elastic reticulate body according to claim 1, wherein the cross-sectional shape of the continuous filaments is a hollow cross section or an irregular cross section.
【請求項3】 連続した線条を構成する熱可塑性弾性
樹脂が示差走査型熱量計で測定した融解曲線に室温以上
融点以下の温度に吸熱ピークを有する請求項1記載の弾
性網状体。
3. The elastic reticulate body according to claim 1, wherein the thermoplastic elastic resin forming the continuous filaments has an endothermic peak at a temperature of room temperature or higher and melting point or lower in a melting curve measured by a differential scanning calorimeter.
【請求項4】 複数のオリフィスを持つ多列ノズルよ
ゴム弾性を有する熱可塑性弾性樹脂をその融点より1
0〜60℃高い溶融温度で、該ノズルより下方に向けて
吐出させ、溶融状態で互いに接触させて融着させ3次元
構造を形成しつつ、該構造体両面を引取り装置で挟み
込み、該構造体の両面の溶融状態の曲がりくねった吐出
線条を45°以上折り曲げて変形させて表面をフラット
化すると同時に曲げられていない吐出線条との接触点を
接着して構造を形成後、冷却槽で冷却せしめることによ
り、50%圧縮時反発力が40kgf/φ150mm以下の
弾性網状体を得る製法。
4. A thermoplastic elastic resin having rubber elasticity is provided from a multi-row nozzle having a plurality of orifices with a melting point of 1
At 0 to 60 ° C. higher melting temperature, discharged downward from the nozzle, while forming a three-dimensional structure by fusing in contact with each other in a molten state, sandwiching the structure both sides with a take-up device, the A tortuous discharge of the molten state on both sides of the structure
Flatten the surface by bending the wire by 45 ° or more and deforming it
At the same time as the contact point with the discharge line that is not bent
A method for obtaining an elastic mesh body having a repulsive force of 40 kgf / φ150 mm or less at 50% compression after being bonded and forming a structure and then cooled in a cooling tank.
【請求項5】 一旦冷却後、熱可塑性弾性樹脂の融点
より少なくとも10℃以下の温度でアニ−リングする請
求項4に記載の弾性網状体の製法。
5. The method for producing an elastic mesh body according to claim 4, wherein once cooled, annealing is performed at a temperature of at least 10 ° C. or lower than the melting point of the thermoplastic elastic resin.
【請求項6】 請求項1に記載の弾性網状体を用いた
車両用座席、船舶用座席、車両用、船舶用、病院用等の
業務用及び家庭用ベッ、家具用椅子、事務用椅子およ
び布団のいずれかの製品。
6. The method of claim 1 a vehicle seat using an elastic net body according to, marine seats, vehicle, marine, industrial and household beds de such hospital furniture chairs, office chairs And any product of the futon.
JP02798494A 1994-02-25 1994-02-25 Elastic network, manufacturing method and products using the same Expired - Lifetime JP3454373B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02798494A JP3454373B2 (en) 1994-02-25 1994-02-25 Elastic network, manufacturing method and products using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02798494A JP3454373B2 (en) 1994-02-25 1994-02-25 Elastic network, manufacturing method and products using the same

Publications (2)

Publication Number Publication Date
JPH07238458A JPH07238458A (en) 1995-09-12
JP3454373B2 true JP3454373B2 (en) 2003-10-06

Family

ID=12236118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02798494A Expired - Lifetime JP3454373B2 (en) 1994-02-25 1994-02-25 Elastic network, manufacturing method and products using the same

Country Status (1)

Country Link
JP (1) JP3454373B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4590656B2 (en) * 1999-06-04 2010-12-01 東洋紡績株式会社 Protective clothing
JP4835150B2 (en) * 2004-12-21 2011-12-14 東洋紡績株式会社 Elastic network structure with soft resilience
DK1832675T3 (en) * 2004-12-21 2013-06-03 Toyo Boseki Elastic mesh structure
JP2006200120A (en) * 2004-12-21 2006-08-03 Toyobo Co Ltd Elastic net-like structure having excellent cushion characteristics at low temperature
JP2006200117A (en) * 2004-12-21 2006-08-03 Toyobo Co Ltd Elastic net-like structure having excellent light resistance
US10934644B2 (en) 2015-02-04 2021-03-02 Toyobo Co., Ltd. Net-like structure having excellent low resilience characteristics

Also Published As

Publication number Publication date
JPH07238458A (en) 1995-09-12

Similar Documents

Publication Publication Date Title
JP3454373B2 (en) Elastic network, manufacturing method and products using the same
JP3473710B2 (en) Mixed fineness reticulated body, manufacturing method and products using it
JP3430443B2 (en) Netting structure for cushion, method for producing the same, and cushion product
JP3430444B2 (en) Netting structure for cushion, manufacturing method thereof and cushion product
JP3444375B2 (en) Multilayer net, manufacturing method and products using the same
JP3431097B2 (en) Multilayer laminated net, manufacturing method and product using the same
JP3430446B2 (en) Composite elastic network, its production method and products using it
JP3444368B2 (en) Nonwoven laminated net, manufacturing method and product using the same
JP3444374B2 (en) Multilayer laminated net, manufacturing method and product using the same
JP3454375B2 (en) Nonwoven laminated structure, manufacturing method and product using the same
JP3430445B2 (en) Composite net, its manufacturing method and products using it
JP3454374B2 (en) Laminated net, manufacturing method and product using the same
JP3430447B2 (en) Laminated elastic structure, manufacturing method and product using the same
JP3430448B2 (en) Laminated structure, manufacturing method and products using the same
JP3430449B2 (en) Nonwoven laminated net, manufacturing method and product using the same
JP3431090B2 (en) Nonwoven laminated net, manufacturing method and product using the same
JP3431098B2 (en) Flame-retardant reinforced mesh, manufacturing method and products using the same
JP3431091B2 (en) Nonwoven laminated net, manufacturing method and product using the same
JP3444369B2 (en) Laminated net, manufacturing method and product using the same
JP3431092B2 (en) Nonwoven laminated net, manufacturing method and product using the same
JP3444371B2 (en) Multilayer laminated net, manufacturing method and product using the same
JP3431096B2 (en) Nonwoven laminated net, manufacturing method and product using the same
JP3444372B2 (en) Multilayer laminated net, manufacturing method and product using the same
JP3444370B2 (en) Multilayer laminated net, manufacturing method and product using the same
JPH07300760A (en) Nonwoven fabric laminated network material, its production and product using the same

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080725

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080725

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090725

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090725

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100725

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120725

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120725

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130725

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term