JP3444372B2 - Multilayer laminated net, manufacturing method and product using the same - Google Patents

Multilayer laminated net, manufacturing method and product using the same

Info

Publication number
JP3444372B2
JP3444372B2 JP8483794A JP8483794A JP3444372B2 JP 3444372 B2 JP3444372 B2 JP 3444372B2 JP 8483794 A JP8483794 A JP 8483794A JP 8483794 A JP8483794 A JP 8483794A JP 3444372 B2 JP3444372 B2 JP 3444372B2
Authority
JP
Japan
Prior art keywords
elastic resin
thermoplastic
layer
thermoplastic elastic
laminated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP8483794A
Other languages
Japanese (ja)
Other versions
JPH07300755A (en
Inventor
英夫 磯田
靖司 山田
忠昭 濱口
光浩 作田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP8483794A priority Critical patent/JP3444372B2/en
Publication of JPH07300755A publication Critical patent/JPH07300755A/en
Application granted granted Critical
Publication of JP3444372B2 publication Critical patent/JP3444372B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Nonwoven Fabrics (AREA)
  • Laminated Bodies (AREA)
  • Artificial Filaments (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、優れたクッション性と
耐熱耐久性及び振動吸収性とを有し、リサイクルが可能
な短繊維硬綿層を積層接合した熱可塑性弾性樹脂と熱可
塑性非弾性樹脂からなる網状体との多層積層網状体と製
法および多層積層網状体を用いた布団、家具、ベッド、
車両用クッション材等の製品と製法に関する。
BACKGROUND OF THE INVENTION The present invention relates to a thermoplastic elastic resin and a thermoplastic inelastic material which have excellent cushioning properties, heat resistance durability and vibration absorption properties, and which are laminated and joined with a recyclable short fiber hard cotton layer. Multilayer laminated net with a net made of a resin and manufacturing method, and a futon, furniture, bed using the multilayer laminated net,
The present invention relates to products such as vehicle cushioning materials and manufacturing methods.

【0002】[0002]

【従来の技術】現在、家具、ベッド、電車、自動車等の
クッション材に、発泡ウレタン、非弾性捲縮繊維詰綿、
及び非弾性捲縮繊維を接着した樹脂綿や硬綿などが使用
されている。
2. Description of the Related Art At present, as a cushion material for furniture, beds, trains, automobiles, etc., urethane foam, non-elastic crimped fiber wadding,
In addition, resin cotton or hard cotton to which non-elastic crimped fibers are adhered is used.

【0003】しかしながら、発泡−架橋型ウレタンはク
ッション材としての耐久性は極めて良好だが、透湿透水
性に劣り蓄熱性があるため蒸れやすく、かつ、熱可塑性
では無いためリサイクルが困難となり焼却される場合、
焼却炉の損傷が大きく、かつ、有毒ガス除去に経費が掛
かる。このため埋め立てされることが多くなったが、地
盤の安定化が困難なため埋め立て場所が限定され経費も
高くなっていく問題がある。また、加工性は優れるが製
造中に使用される薬品の公害問題などもある。また、熱
可塑性ポリエステル繊維詰綿では繊維間が固定されてい
ないため、使用時形態が崩れたり、繊維が移動して、か
つ、捲縮のへたりで嵩高性の低下や弾力性の低下が問題
になる。
However, although the foamed-crosslinked urethane has very good durability as a cushioning material, it is inferior in moisture permeability and water permeability and has a heat storage property, so that it easily steams, and since it is not thermoplastic, it is difficult to recycle and incinerated. If
The incinerator is heavily damaged and the cost of removing toxic gas is high. For this reason, landfilling has become more frequent, but it is difficult to stabilize the ground, and there is a problem that landfilling sites are limited and costs increase. Further, although it has excellent processability, it also has a problem of pollution of chemicals used during manufacturing. In addition, since the fibers are not fixed in the thermoplastic polyester fiber wadding, the form may collapse during use, the fibers may move, and the crimp may cause a decrease in bulkiness and elasticity. become.

【0004】ポリエステル繊維を接着剤で接着した樹脂
綿、例えば接着剤にゴム系を用いたものとして特開昭6
0−11352号公報、特開昭61−141388号公
報、特開昭61−141391号公報等がある。又、架
橋性ウレタンを用いたものとして特開昭61−1377
32号公報等がある。これらのクッション材は耐久性に
劣り、且つ、熱可塑性でなく、単一組成でもないためリ
サイクルも出来ない等の問題、及び加工性の煩雑さや製
造中に使用される薬品の公害問題などもある。
As a resin cotton in which polyester fibers are adhered with an adhesive, for example, a rubber-based adhesive is used, Japanese Patent Application Laid-Open No.
0-11352, JP-A 61-141388, JP-A 61-141391 and the like. Further, as a method using a cross-linkable urethane, JP-A-61-1377
No. 32 publication and the like. These cushion materials have inferior durability, and also have problems such as not being recyclable because they are neither thermoplastic nor single composition, and there are problems such as complexity of processability and pollution of chemicals used during manufacturing. .

【0005】ポリエステル硬綿、例えば特開昭58−3
1150号公報、特開平2−154050号公報、特開
平3−220354号公報等があるが、用いている熱接
着繊維の接着成分が脆い非晶性のポリマ−を用いるため
(例えば特開昭58−136828号公報、特開平3−
249213号公報等)接着部分が脆く、使用中に接着
部分が簡単に破壊されて形態や弾力性が低下するなどの
耐久性に劣る問題がある。改良法として、交絡処理する
方法が特開平4−245965号公報等で提案されてい
るが、接着部分の脆さは解決されず弾力性の低下が大き
い問題がある。また、加工時の煩雑さもある。更には接
着部分が変形しにくくソフトなクッション性を付与しに
くい問題もある。このため、接着部分を柔らかい、且つ
ある程度変形しても回復するポリエステルエラストマ−
を用い、芯成分に非弾性ポリエステルを用いた熱接着繊
維が特開平4−240219号公報で、同繊維を用いた
クッション材がWO−91/19032号公報、特開平
5−156561号公報、特開平5−163654号公
報等で提案されている。この繊維構造物に使われる接着
成分がポリエステルエラストマ−のソフトセグメントと
してはポリアルキレングリコ−ルの含有量が30〜50
重量%、ハ−ドセグメントの酸成分にテレフタル酸を5
0〜80モル%含有し、他の酸成分組成として特公昭6
0−1404号公報に記載された繊維と同様にイソフタ
ル酸を含有して非晶性が増すことになり、融点も180
℃以下となり低溶融粘度として熱接着部分の形成を良く
してアメーバー状の接着部を形成しているが塑性変形し
やいため、及び芯成分が非弾性ポリエステルのため、特
に加熱下での塑性変形が著しくなり、耐熱抗圧縮性が低
下する問題点がある。これらの改良法として、特開平5
−163654号公報にシ−ス成分にイソフタル酸を含
有するポリエステルエラストマ−、コア成分に非弾性ポ
リエステルを用いた熱接着複合繊維のみからなる構造体
が提案されているが上述の理由で加熱下での塑性変形が
著しくなり、耐熱抗圧縮性が低下し、クッション材に使
用するには問題がある。他方、硬綿の母材にシリコ−ン
油剤を付与して繊維の摩擦係数を下げて耐久性を向上
し、風合いを良くする方法が特開昭63−158094
号公報で提案されている。が、熱接着繊維の接着性に問
題があり、耐久性が劣るのでクッション材に使用するに
は好ましくない。
Polyester hard cotton, for example, JP-A-58-3
1150, JP-A-2-154050, JP-A-3-220354, etc., but since an amorphous polymer having a brittle adhesive component of the heat-bonding fiber used is used (for example, JP-A-58). -136828, Japanese Patent Application Laid-Open No. 3-
However, there is a problem in that durability is poor such that the bonded portion is brittle and the bonded portion is easily broken during use and the form and elasticity are reduced. As an improved method, a method of entanglement treatment has been proposed in Japanese Patent Laid-Open No. 4-245965, but there is a problem that the brittleness of the bonded portion is not solved and the elasticity is largely reduced. In addition, there is complexity during processing. Further, there is a problem that the bonded portion is hard to be deformed and soft cushioning is hard to be imparted. For this reason, the polyester elastomer that is soft even at the bonded portion and recovers even if it is deformed to some extent
A heat-bonding fiber using a non-elastic polyester as a core component is disclosed in JP-A-4-240219, and a cushion material using the fiber is disclosed in WO-91 / 19032, JP-A-5-155651. It is proposed in Japanese Patent Laid-Open No. 5-163654. The adhesive component used in this fiber structure has a polyalkylene glycol content of 30 to 50 as a soft segment of polyester elastomer.
Wt%, 5% terephthalic acid as the acid component of the hard segment
It contains 0 to 80 mol% and is used as another acid component composition
As in the fiber described in Japanese Patent Publication No. 0-1404, isophthalic acid is contained to increase the amorphous property, and the melting point is 180.
The temperature is below ℃, and the heat-bonded part is well formed with a low melt viscosity to form an ameber-shaped bonded part, but it is easy to plastically deform, and because the core component is an inelastic polyester, plastic deformation especially under heating Becomes remarkable, and there is a problem that the heat resistance and compression resistance are lowered. As an improved method for these, Japanese Patent Laid-Open No.
No. 163654 proposes a structure consisting only of a polyester elastomer containing isophthalic acid as a sheath component and a heat-bonding composite fiber using an inelastic polyester as a core component. Plastic deformation becomes remarkable, the heat resistance and compression resistance deteriorate, and there is a problem in using it as a cushion material. On the other hand, there is a method in which a silicone oil is added to a base material of hard cotton to lower the friction coefficient of fibers to improve durability and improve the texture.
It has been proposed in the publication. However, there is a problem with the adhesiveness of the heat-adhesive fiber and the durability is poor, so it is not preferable for use as a cushioning material.

【0006】土木工事用に使用する熱可塑性のオレフィ
ン網状体が特開昭47−44839号公報に開示されて
いる。が、細い繊維から構成したクッションとは異なり
表面が凸凹でタッチが悪く、素材がオレフィンのため耐
熱耐久性が著しく劣りワディング層やクッション材には
使用ができないものである。また、特公平3−1766
6号公報には繊度の異なる吐出線条を互いに融着してモ
−ル状物を作る方法があるがクッション材には適さない
網状構造体である。特公平3−55583号公報には、
ごく表面のみ冷却前に回転体等の細化装置で細くする方
法が記載されている。この方法では表面をフラット化で
きず、厚みのある細い線条層を作ることできない。した
がって座り心地の良好なクッション材にはならない。特
開平1−207462号公報では、塩化ビニ−ル製のフ
ロアマットの開示があるが、室温での圧縮回復性が悪
く、耐熱性は著しく悪いので、クッション材としては好
ましくないものである。なお、上述構造体は振動減衰に
関する配慮が全くなされていない。
A thermoplastic olefin network used for civil engineering work is disclosed in JP-A-47-44839. However, unlike a cushion made of fine fibers, the surface is uneven and the touch is poor, and since the material is olefin, the heat resistance durability is extremely poor and it cannot be used as a wadding layer or cushion material. In addition, Japanese Patent Publication No. 3-1766
No. 6 discloses a method in which ejection filaments having different fineness are fused to each other to form a mold, but the mesh structure is not suitable as a cushion material. Japanese Examined Patent Publication No. 3-55583 discloses that
A method of thinning only a very surface with a thinning device such as a rotating body before cooling is described. With this method, the surface cannot be flattened and a thick thin linear layer cannot be formed. Therefore, it does not provide a comfortable cushioning material. JP-A-1-207462 discloses a floor mat made of vinyl chloride, but it is not preferable as a cushioning material because it has poor compression recovery at room temperature and remarkably poor heat resistance. Note that no consideration is given to vibration damping in the above-mentioned structure.

【0007】[0007]

【発明が解決しようとする課題】上記問題点を解決し、
振動を遮断し、耐熱耐久性、形態保持性、クッション性
の優れた蒸れ難い、熱可塑性弾性樹脂層と熱可塑性非弾
性樹脂層が融着一体化された網状体に熱可塑性弾性樹脂
と熱可塑性非弾性樹脂からなる短繊維不織布を積層接合
したクッション材に最適な多層積層網状体と製法及び多
層積層網状体を用いた布団、家具、ベッド、車両用クッ
ション等の製品と製法を提供することを目的とする。
To solve the above problems,
Vibration-proof, heat-resistant durability, shape retention and cushioning properties that prevent stuffiness, thermoplastic elastic resin layer and thermoplastic non-elastic resin layer are fused and integrated To provide a product and a method for manufacturing a multilayer laminated network and a manufacturing method which are optimal for a cushioning material in which short fiber nonwoven fabrics made of an inelastic resin are laminated and bonded, and a product such as a futon, furniture, bed, and vehicle cushion using the multilayer laminated network. To aim.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するため
の手段、即ち本発明は、繊度が100〜100000デ
ニ−ルの連続した線条を曲がりくねらせ互いに接触させ
て該接触部の大部分が融着した3次元立体構造体を形成
した熱可塑性弾性樹脂層と熱可塑性非弾性樹脂層とが積
層融着しており、表面が実質的にフラット化された積層
網状体を形成しており、該積層網状体の熱可塑性弾性樹
脂層面に熱可塑性弾性樹脂と熱可塑性非弾性樹脂からな
る熱接着性短繊維が開繊されて3次元構造化され、接触
部の大部分が熱接着成分により融着一体化し、かつ面が
実質的にフラット化されている不織布が接合一体化され
た密度が0.01g/cm3 から0.2g/cm3 の多層積
層網状体、複数のオリフィスを持つ多列ノズルより熱可
塑性弾性樹脂と熱可塑性非弾性樹脂を各層になるように
各ノズルオリフィスに分配し、該熱可塑性樹脂の融点よ
り10〜120℃高い溶融温度で、該ノズルより下方に
向けて吐出させ、溶融状態で互いに接触させて融着させ
3次元構造を形成しつつ、引取り装置で挟み込み冷却槽
で冷却せしめた後、熱可塑性弾性樹脂層面に熱可塑性弾
性樹脂と熱可塑性非弾性樹脂からなる熱接着性短繊維を
開繊して3次元構造化させたウエッブを積層し、圧縮熱
成形により、接触部の大部分を熱接着成分により融着一
体化する多層積層網状体の製法および前記多層積層網状
体を用いた製品である。
Means for Solving the Problems The means for solving the above problems, that is, the present invention, is to make continuous filaments having a fineness of 100 to 100,000 denier meander and contact with each other, and most of the contact portions are contacted with each other. The thermoplastic elastic resin layer and the thermoplastic non-elastic resin layer forming the three-dimensional three-dimensional structure fused to each other are laminated and fused to each other to form a laminated net having a substantially flat surface. , Thermo-adhesive short fibers made of a thermoplastic elastic resin and a thermoplastic non-elastic resin are opened on the surface of the thermoplastic elastic resin layer of the laminated network to form a three-dimensional structure, and most of the contact portion is formed by the heat-adhesive component. Non-woven fabrics that are fused and integrated and whose surfaces are substantially flat are joined and integrated to form a multi-layer laminated mesh body having a density of 0.01 g / cm 3 to 0.2 g / cm 3 and a plurality of orifices having a plurality of orifices. Heatable with thermoplastic elastic resin from the row nozzle Non-elastic resin is distributed to each nozzle orifice so as to form each layer, and is discharged downward from the nozzle at a melting temperature 10 to 120 ° C. higher than the melting point of the thermoplastic resin, and they are brought into contact with each other in a molten state. After being fused and forming a three-dimensional structure, sandwiched by a take-up device and cooled in a cooling tank, the thermo-adhesive short fibers made of a thermoplastic elastic resin and a thermoplastic non-elastic resin are opened on the thermoplastic elastic resin layer surface. And a product using the multilayer laminated net body, in which webs having a three-dimensional structure are laminated, and by compression thermoforming, most of the contact portions are fused and integrated with a thermal adhesive component. is there.

【0009】本発明における熱可塑性弾性樹脂とは、ソ
フトセグメントとして分子量300〜5000のポリエ
−テル系グリコ−ル、ポリエステル系グリコ−ル、ポリ
カ−ボネ−ト系グリコ−ルまたは長鎖の炭化水素末端を
カルボン酸または水酸基にしたオレフィン系化合物等を
ブロック共重合したポリエステル系エラストマ−、ポリ
アミド系エラストマ−、ポリウレタン系エラストマ−、
ポリオレフィン系エラストマ−などが挙げられる。熱可
塑性弾性樹脂とすることで、再溶融により再生が可能と
なるため、リサイクルが容易となる。例えば、ポリエス
テル系エラストマ−としては、熱可塑性ポリエステルを
ハ−ドセグメントとし、ポリアルキレンジオ−ルをソフ
トセグメントとするポリエステルエ−テルブロック共重
合体、または、脂肪族ポリエステルをソフトセグメント
とするポリエステルエステルブロック共重合体が例示で
きる。ポリエステルエ−テルブロック共重合体のより具
体的な事例としては、テレフタル酸、イソフタル酸、ナ
フタレン2・6ジカルボン酸、ナフタレン2・7ジカル
ボン酸、ジフェニル4・4’ジカルボン酸等の芳香族ジ
カルボン酸、1・4シクロヘキサンジカルボン酸等の脂
環族ジカルボン酸、琥珀酸、アジピン酸、セバチン酸ダ
イマ−酸等の脂肪族ジカルボン酸または、これらのエス
テル形成性誘導体などから選ばれたジカルボン酸の少な
くとも1種と、1・4ブタンジオ−ル、エチレングリコ
−ル、トリメチレングリコ−ル、テトレメチレングリコ
−ル、ペンタメチレングリコ−ル、ヘキサメチレングリ
コ−ル等の脂肪族ジオ−ル、1・1シクロヘキサンジメ
タノ−ル、1・4シクロヘキサンジメタノ−ル等の脂環
族ジオ−ル、またはこれらのエステル形成性誘導体など
から選ばれたジオ−ル成分の少なくとも1種、および平
均分子量が約300〜5000のポリエチレングリコ−
ル、ポリプロピレングリコ−ル、ポリテトラメチレング
リコ−ル、エチレンオキシド−プロピレンオキシド共重
合体からなるグリコ−ル等のポリアルキレンジオ−ルの
うち少なくとも1種から構成される三元ブロック共重合
体である。ポリエステルエステルブロック共重合体とし
ては、上記ジカルボン酸とジオ−ル及び平均分子量が約
300〜5000のポリラクトン等のポリエステルジオ
−ルのうち少なくとも各1種から構成される三元ブロッ
ク共重合体である。熱接着性、耐加水分解性、伸縮性、
耐熱性等を考慮すると、ジカルボン酸としてはテレフタ
ル酸、または、及びナフタレン2・6ジカルボン酸、ジ
オ−ル成分としては1・4ブタンジオ−ル、ポリアルキ
レンジオ−ルとしてはポリテトラメチレングリコ−ルの
3元ブロック共重合体または、ポリエステルジオ−ルと
してポリラクトンの3元ブロック共重合体が特に好まし
い。特殊な例では、ポリシロキサン系のソフトセグメン
トを導入したものも使うこたができる。また、上記エラ
ストマ−に非エラストマ−成分をブレンドされたもの、
共重合したもの、ポリオレフィン系成分をソフトセグメ
ントにしたもの等も本発明の熱可塑性弾性樹脂に包含さ
れる。ポリアミド系エラストマ−としては、ハ−ドセグ
メントにナイロン6、ナイロン66、ナイロン610、
ナイロン612、ナイロン11、ナイロン12等及びそ
れらの共重合ナイロンを骨格とし、ソフトセグメントに
は、平均分子量が約300〜5000のポリエチレング
リコ−ル、ポリプロピレングリコ−ル、ポリテトラメチ
レングリコ−ル、エチレンオキシド−プロピレンオキシ
ド共重合体からなるグリコ−ル等のポリアルキレンジオ
−ルのうち少なくとも1種から構成されるブロック共重
合体を単独または2種類以上混合して用いてもよい。更
には、非エラストマ−成分をブレンドされたもの、共重
合したもの等も本発明に使用できる。ポリウレタン系エ
ラストマ−としては、通常の溶媒(ジメチルホルムアミ
ド、ジメチルアセトアミド等)の存在または不存在下
に、(A)数平均分子量1000〜6000の末端に水
酸基を有するポリエ−テル及び又はポリエステルと
(B)有機ジイソシアネ−トを主成分とするポリイソシ
アネ−トを反応させた両末端がイソシアネ−ト基である
プレポリマ−に、(C)ジアミンを主成分とするポリア
ミンにより鎖延長したポリウレタンエラストマ−を代表
例として例示できる。(A)のポリエステル、ポリエ−
テル類としては、平均分子量が約1000〜6000、
好ましくは1300〜5000のポリブチレンアジペ−
ト共重合ポリエステルやポリエチレングリコ−ル、ポリ
プロピレングリコ−ル、ポリテトラメチレングリコ−
ル、エチレンオキシド−プロピレンオキシド共重合体か
らなるグリコ−ル等のポリアルキレンジオ−ルが好まし
く、(B)のポリイソシアネ−トとしては、従来公知の
ポリイソシアネ−トを用いることができるが、ジフェニ
ルメタン4・4’ジイソシアネ−トを主体としたイソシ
アネ−トを用い、必要に応じ従来公知のトリイソシアネ
−ト等を微量添加使用してもよい。(C)のポリアミン
としては、エチレンジアミン、1・2プロピレンジアミ
ン等公知のジアミンを主体とし、必要に応じて微量のト
リアミン、テトラアミンを併用してもよい。これらのポ
リウレタン系エラストマ−は単独又は2種類以上混合し
て用いてもよい。なお、本発明の熱可塑性弾性樹脂の融
点は耐熱耐久性が保持できる140℃以上が好ましく、
160℃以上のものを用いると耐熱耐久性が向上するの
でより好ましい。なお、必要に応じ、抗酸化剤や耐光剤
等を添加して耐久性を向上させることができる。本発明
の目的である振動や応力の吸収機能をもたせる成分を構
成する熱可塑性弾性樹脂のソフトセグメント含有量は好
ましくは15重量%以上、より好ましくは30重量%以
上であり、耐熱耐へたり性からは80重量%以下が好ま
しく、より好ましくは70重量%以下である。即ち、本
発明の多層積層網状体の振動や応力の吸収機能をもたせ
る成分のソフトセグメント含有量は好ましくは15重量
%以上80重量%以下であり、より好ましくは30重量
%以上70重量%以下である。
The thermoplastic elastic resin in the present invention means, as the soft segment, an ether type glycol, a polyester type glycol, a polycarbonate type glycol or a long chain hydrocarbon having a molecular weight of 300 to 5,000. Polyester elastomer obtained by block-copolymerizing an olefinic compound having a carboxylic acid or a hydroxyl group at the terminal, a polyamide elastomer, a polyurethane elastomer,
Examples include polyolefin elastomers. By using a thermoplastic elastic resin, it becomes possible to regenerate by remelting, and thus recycling becomes easy. For example, as the polyester elastomer, a polyester ether block copolymer having a thermoplastic polyester as a hard segment and a polyalkylenediol as a soft segment, or a polyester ester having an aliphatic polyester as a soft segment A block copolymer can be illustrated. More specific examples of the polyester ether block copolymer include aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid, naphthalene 2.6 dicarboxylic acid, naphthalene 2.7 dicarboxylic acid, and diphenyl 4.4'dicarboxylic acid. At least one of alicyclic dicarboxylic acids such as 1,4-cyclohexanedicarboxylic acid, aliphatic dicarboxylic acids such as succinic acid, adipic acid, sebacic acid dimer acid, and dicarboxylic acids selected from ester-forming derivatives thereof Seeds and aliphatic diols such as 1.4 butanediol, ethylene glycol, trimethylene glycol, tetremethylene glycol, pentamethylene glycol and hexamethylene glycol, 1.1 cyclohexane Alicyclic diols such as dimethanol and 1,4-cyclohexane dimethanol, or these Of at least one diole component selected from the ester-forming derivatives thereof and polyethylene glycol having an average molecular weight of about 300 to 5,000.
Is a ternary block copolymer composed of at least one kind of polyalkylenediol such as glycol, polypropylene glycol, polytetramethylene glycol, and glycol made of ethylene oxide-propylene oxide copolymer. . The polyester ester block copolymer is a ternary block copolymer composed of at least one of the above dicarboxylic acids, diol, and polyester diol such as polylactone having an average molecular weight of about 300 to 5,000. . Thermal adhesion, hydrolysis resistance, stretchability,
Considering heat resistance and the like, terephthalic acid is used as the dicarboxylic acid, or naphthalene 2.6 dicarboxylic acid, 1.4 butanediol is used as the diole component, and polytetramethylene glycol is used as the polyalkylenediol. The terpolymer block copolymer or the terpolymer block copolymer of polylactone as the polyester diol is particularly preferable. In a special case, it is possible to use the one in which a polysiloxane-based soft segment is introduced. In addition, the above elastomer is blended with a non-elastomer component,
Those obtained by copolymerization and those obtained by softening the polyolefin component are also included in the thermoplastic elastic resin of the present invention. As a polyamide elastomer, the hard segment is nylon 6, nylon 66, nylon 610,
Polyethylene glycol, polypropylene glycol, polytetramethylene glycol, ethylene oxide having an average molecular weight of about 300 to 5000 is used as the soft segment in the skeleton of nylon 612, nylon 11, nylon 12, etc. and their copolymerized nylon. -A block copolymer composed of at least one kind of polyalkylenediol such as glycol composed of propylene oxide copolymer may be used alone or in combination of two or more kinds. Furthermore, blends of non-elastomer components and copolymers thereof can be used in the present invention. Examples of the polyurethane elastomer include (A) a polyester and / or a polyester having a hydroxyl group at the terminal with a number average molecular weight of 1000 to 6000 in the presence or absence of a usual solvent (dimethylformamide, dimethylacetamide, etc.). ) A typical example is a polyurethane elastomer obtained by reacting a polyisocyanate containing an organic diisocyanate as a main component with a prepolymer having isocyanate groups at both ends and (C) extending the chain with a polyamine containing a diamine as a main component. Can be illustrated as (A) Polyester, Polyester
The tellers have an average molecular weight of about 1000 to 6000,
Preferably from 1300 to 5000 polybutylene adipates
Copolyester, polyethylene glycol, polypropylene glycol, polytetramethylene glycol
Polyalkylenediol such as glycol and ethylene oxide-propylene oxide copolymer glycol is preferable, and as the polyisocyanate of (B), a conventionally known polyisocyanate can be used. An isocyanate mainly composed of 4'diisocyanate may be used, and if necessary, a trace amount of conventionally known triisocyanate may be added and used. As the polyamine (C), known diamines such as ethylenediamine and 1.2 propylenediamine are mainly used, and if necessary, trace amounts of triamine and tetraamine may be used in combination. These polyurethane elastomers may be used alone or in combination of two or more. The melting point of the thermoplastic elastic resin of the present invention is preferably 140 ° C. or higher at which heat resistance and durability can be maintained,
It is more preferable to use a material having a temperature of 160 ° C. or higher because the heat resistance and durability are improved. If necessary, an antioxidant, a light-proofing agent or the like may be added to improve durability. The soft segment content of the thermoplastic elastic resin constituting the component having the function of absorbing vibration and stress, which is the object of the present invention, is preferably 15% by weight or more, more preferably 30% by weight or more, and heat resistance and sag resistance Therefore, it is preferably 80% by weight or less, and more preferably 70% by weight or less. That is, the soft segment content of the component having the function of absorbing vibrations and stress of the multilayer laminated network of the present invention is preferably 15% by weight or more and 80% by weight or less, more preferably 30% by weight or more and 70% by weight or less. is there.

【0010】本発明の多層積層網状体を構成する熱可塑
性弾性樹脂からなる成分は、示差走査型熱量計にて測定
した融解曲線において、融点以下に吸熱ピ−クを有する
のが好ましい。融点以下に吸熱ピ−クを有するものは、
耐熱耐へたり性が吸熱ピ−クを有しないものより著しく
向上する。例えば、本発明の好ましいポリエステル系熱
可塑性樹脂として、ハ−ドセグメントの酸成分に剛直性
のあるテレフタル酸やナフタレン2・6ジカルボン酸な
どを90モル%以上含有するもの、より好ましくはテレ
フタル酸やナフタレン2・6ジカルボン酸の含有量は9
5モル%以上、特に好ましくは100モル%とグリコ−
ル成分をエステル交換後、必要な重合度まで重合し、次
いで、ポリアルキレンジオ−ルとして、好ましくは平均
分子量が500以上5000以下、特に好ましくは10
00以上3000以下のポリテトラメチレングリコ−ル
を15重量%以上70重量%以下、より好ましくは30
重量%以上60重量%以下共重合量させた場合、ハ−ド
セグメントの酸成分に剛直性のあるテレフタル酸やナフ
タレン2・6ジカルボン酸の含有量が多いとハ−ドセグ
メントの結晶性が向上し、塑性変形しにくく、かつ、耐
熱抗へたり性が向上するが、溶融熱接着後更に融点より
少なくとも10℃以上低い温度でアニ−リング処理する
とより耐熱抗へたり性が向上する。圧縮歪みを付与して
からアニ−リングすると更に耐熱抗へたり性が向上す
る。このような処理をした多層積層網状体を示差走査型
熱量計で測定した融解曲線に室温以上融点以下の温度で
吸熱ピークをより明確に発現する。なおアニ−リングし
ない場合は融解曲線に室温以上融点以下に吸熱ピ−クを
発現しない。このことから類推するに、アニ−リングに
より、ハ−ドセグメントが再配列され、疑似結晶化様の
架橋点が形成され、耐熱抗へたり性が向上しているので
はないかとも考えられる。(この処理を疑似結晶化処理
と定義する)この疑似結晶化処理効果は、ポリアミド系
弾性樹脂やポリウレタン系弾性樹脂にも有効である。
The component comprising the thermoplastic elastic resin constituting the multilayer laminated network of the present invention preferably has an endothermic peak below the melting point in the melting curve measured by a differential scanning calorimeter. Those having an endothermic peak below the melting point,
Heat resistance and sag resistance are remarkably improved as compared with those having no endothermic peak. For example, a preferable polyester-based thermoplastic resin of the present invention contains 90 mol% or more of terephthalic acid or naphthalene 2.6 dicarboxylic acid having rigidity in the acid component of the hard segment, more preferably terephthalic acid or The content of naphthalene 2.6 dicarboxylic acid is 9
5 mol% or more, particularly preferably 100 mol% and glyco-
After transesterification of the monomer component, polymerization is performed to a required degree of polymerization, and then, as the polyalkylene diol, the average molecular weight is preferably 500 or more and 5000 or less, particularly preferably 10
00 to 3000 polytetramethylene glycol in an amount of 15% to 70% by weight, more preferably 30% by weight.
When the amount of copolymerization is not less than 60% by weight and not less than 60% by weight, the crystallinity of the hard segment is improved when the content of terephthalic acid or naphthalene 2.6 dicarboxylic acid, which has rigidity in the acid component of the hard segment, is large. However, plastic deformation is less likely to occur and the heat resistance and sag resistance is improved, but the heat resistance and sag resistance is further improved by performing annealing treatment at a temperature lower than the melting point by at least 10 ° C. or more after melt heat bonding. If annealing is performed after applying compressive strain, heat resistance and sag resistance are further improved. The endothermic peak is more clearly expressed in the melting curve measured by the differential scanning calorimeter of the multilayer laminated network treated as described above at a temperature of room temperature or higher and melting point or lower. If annealing is not performed, no endothermic peak appears in the melting curve above room temperature and below the melting point. By analogy with this, it is considered that the annealing causes rearrangement of the hard segments and formation of pseudo-crystallization-like cross-linking points to improve the heat resistance and sag resistance. (This treatment is defined as pseudo crystallization treatment.) This pseudo crystallization treatment effect is also effective for polyamide elastic resin and polyurethane elastic resin.

【0011】本発明における熱可塑性非弾性樹脂とは、
ポリエステル、ポリアミド、ポリオレフィン等が例示で
きる。なお、本発明ではガラス転移点温度が少なくとも
40℃以上のものを使用するのが好ましい。例えば、ポ
リエステルでは、ポリエチレンテレフタレ−ト(PE
T)、ポリエチレンナフタレ−ト(PEN)、ポリシク
ロヘキシレンジメチレンテレフタレ−ト(PCHD
T)、ポリシクロヘキシレンジメチレンナフタレ−ト
(PCHDN)、ポリブチレンテレフタレ−ト(PB
T)、ポリブチレンナフタレ−ト(PBN)、ポリアリ
レ−ト等、及びそれらの共重合ポリエステル等が例示で
きる。ポリアミドでは、ポリカプロラクタム(NY
6)、ポリヘキサメチレンアジパミド(NY66)、ポ
リヘキサメチレンセバカミド(NY6−10)等が例示
できる。ポリオレフィンとしては、ポリプロピレン(P
P)、ポリブテン・1(PB・1)等が例示できる。本
発明に用いる熱可塑性非弾性樹脂としては、クッション
材の側地にポリエステルを用いる場合が多いので、廃棄
する場合に分離せずにリサイクルが可能なクッション素
材として、耐熱性も良好なPET、PEN、PBN、P
CHDT等のポリエステルが特に好ましい。更には、P
ET、PEN、PBN、PCHDT等と重縮合して燐含
有エステル形成性化合物を共重合または燐含有難燃剤を
含有してなる難燃性ポリエステル(以下難燃性ポリエス
テルと略す)が好ましく、例えば、特開昭51−823
92号公報、特開昭55−7888号公報、特公昭55
−41610号公報等に例示されたものが挙げられる。
なお、塩化ビニ−ルは自己消火性を有するが燃焼すると
有毒ガスを多く発生するので本発明に用いるのは好まし
くない。
The thermoplastic non-elastic resin in the present invention means
Examples thereof include polyester, polyamide and polyolefin. In the present invention, it is preferable to use one having a glass transition temperature of 40 ° C. or higher. For example, for polyester, polyethylene terephthalate (PE
T), polyethylene naphthalate (PEN), polycyclohexylene dimethylene terephthalate (PCHD
T), polycyclohexylene dimethylene naphthalate (PCHDN), polybutylene terephthalate (PB)
Examples thereof include T), polybutylene naphthalate (PBN), polyarylate, and copolymerized polyesters thereof. For polyamide, polycaprolactam (NY
6), polyhexamethylene adipamide (NY66), polyhexamethylene sebacamide (NY6-10) and the like. As polyolefin, polypropylene (P
P), polybutene-1 (PB-1) and the like can be exemplified. As the thermoplastic non-elastic resin used in the present invention, polyester is often used for the side material of the cushion material, and therefore PET and PEN having good heat resistance can be used as a cushion material that can be recycled without being separated when discarded. , PBN, P
Polyesters such as CHDT are particularly preferred. Furthermore, P
A flame-retardant polyester (hereinafter abbreviated as flame-retardant polyester) obtained by polycondensation with ET, PEN, PBN, PCHDT or the like to copolymerize a phosphorus-containing ester forming compound or containing a phosphorus-containing flame retardant is preferable. JP-A-51-823
92, JP-A-55-7888, JP-B-55
-41610 and the like are exemplified.
Although vinyl chloride has a self-extinguishing property, it produces a large amount of toxic gas when it is burned, so that it is not preferable to use it in the present invention.

【0012】本発明は、繊度が100〜100000デ
ニ−ルの連続した線条を曲がりくねらせ互いに接触させ
て該接触部の大部分が融着した3次元立体構造体を形成
した熱可塑性弾性樹脂層と熱可塑性非弾性樹脂層からな
る両面が実質的にフラット化された網状体の熱可塑性弾
性樹脂層面に熱可塑性弾性樹脂と熱可塑性非弾性樹脂か
らなる短繊維が開繊されて3次元構造化され、接触部の
大部分が熱接着成分により融着一体化した面が実質的に
フラット化された不織布が接合一体化された密度が0.
01g/cm3 から0.2g/cm3 の多層積層網状体であ
る。クッション材の機能は、クッション層は基本の繊度
を太くして少し硬くして体型保持を受け持つ層と振動減
衰性の良い成分で密度を少し高くし振動を吸収して振動
を遮断する層で構成し、表面層は繊度を細くし構成繊維
本数を多くした柔らかな層として適度の沈み込みにより
快適な臀部のタッチを与えて臀部の圧力分布を均一分散
化させると共にクッション層で吸収できなかった振動を
吸収して人体の共振部分の振動を遮断する層が一体化さ
れることで、応力や振動を一体で変形し吸収させ座り心
地を向上させることができる。本発明では、クッション
層の機能を熱可塑性弾性樹脂層と熱可塑性非弾性樹脂層
からなる融着した3次元立体構造体を形成した網状体に
持たせ、表面層の機能を熱可塑性弾性樹脂と熱可塑性非
弾性樹脂からなる短繊維が開繊されて3次元構造化さ
れ、接触部の大部分が熱可塑性弾性樹脂により融着一体
化した面が実質的にフラット化された不織布(短繊維不
織布)に持たせ、接合一体化して好ましいクッション材
の機能を付与できる積層積層網状体である。本発明の積
層積層網状体を構成する表面層機能を持つ短繊維不織布
は柔らかな層として適度の沈み込みにより快適な臀部の
タッチを与えるため、熱接着成分が熱可塑性弾性樹脂か
らなる(好ましくは、振動吸収機能と変形応力吸収機能
が充足できる40重量%以上、70重量%を越えると短
繊維の形態保持性が低下し、沈み込みが大きくなるので
70重量%以下)形態保持機能を持たせる熱可塑性非弾
性樹脂からなる繊度が20デニ−ル以下の短繊維が開繊
されて3次元構造化され、接触部の大部分が熱接着成分
により融着一体化した面が実質的にフラット化された不
織布で構成する。熱接着繊維の繊度が20デニ−ルを越
えると短繊維不織布の見掛け密度を好ましい表面層機能
を付与できる0.01g/cm3以上0.05g/cm3
下にする場合、構成本数が少なくなり、緻密な構造体と
しての特徴が出ず快適なタッチを損なうので好ましくな
い。また、熱接着繊維は繊度が太くなるほど構成本数が
少なくなり、熱接着点が減少して変形応力の分散が悪く
なり、接着点での応力集中が大きくなって耐へたり性が
低下するので好ましくない。他方、繊度が細すぎると抗
圧縮性が低下し、容易に大変形を生じ、熱可塑性非弾性
樹脂部分が塑性変形して耐久性が著しく悪くなるので好
ましくない。好ましい短繊維の繊度は1デニ−ル〜10
デニ−ル、より好ましくは3デニ−ル〜6デニ−ルであ
る。該短繊維が開繊されて3次元構造化され、接触部の
大部分が熱接着により融着一体化した(好ましくは接触
点の全てが融着一体化した)面が実質的にフラット化さ
れた不織布とすることで臀部の局部的な圧力を面で受け
止め、圧力分布を均一分散化させると共に、短繊維不織
布の3次元立体構造体を熱接着成分の熱可塑性弾性樹脂
が融着一体化しているので、熱接着繊維と熱接着点が大
変形をしながら構造体全体が変形してエネルギ−変換に
より変形応力を吸収し、変形応力が解除されると熱可塑
性弾性樹脂のゴム弾性で容易に元の形態に回復する機能
があるので耐へたり性が良好である。更には、クッショ
ン層へのダメ−ジを逓減でき、構造体全体の耐へたり性
も向上する。融着一体化されていない場合は形態が保持
できず、局部的な圧力を面で受け止め、圧力分布を均一
分散化できず、更に構造体全体が変形してエネルギ−変
換出来ないので耐久性が劣り好ましくない。熱接着成分
が振動吸収性の良好な熱可塑性弾性樹脂から構成されて
いるので、クッション層で吸収できなかった振動も吸収
して人体の共振部分の振動を遮断する層としての機能も
はたす。熱接着成分が熱可塑性非弾性樹脂からなる場合
は、局部的な変形応力に追随出来ないため、応力集中に
より構造が破壊されていき回復性が劣るので好ましくな
い。また、熱可塑性非弾性樹脂は振動吸収性が悪いので
振動を遮断する層としての機能が劣り好ましくない。短
繊維不織布層の厚みは特には限定されないが、表面層機
能が発現できる3mm〜30mmが好ましく、5mm〜20mm
が特に好ましい。他方、クッション層機能を持つ網状体
は、連続線条が3次元立体構造体を形成し接触部の大部
分で融着一体化された熱可塑性弾性樹脂層と熱可塑性非
弾性樹脂層が積層されて両面が実質的にフラット化され
ており、表面は短繊維不織布と熱可塑性弾性樹脂層面で
接合されているので、外部から与えられた振動を熱可塑
性弾性樹脂の振動吸収機能で大部分の振動を吸収減衰し
て振動遮断層として働く。又、局部的に大きい変形応力
を与えられた場合でも不織布層で分散逓減化した変形応
力を網状体の表面が実質的にフラット化され接触部の大
部分が融着しており、熱可塑性弾性樹脂からなる網状体
の面で変形応力を受け止め変形応力を分散させ、熱可塑
性弾性樹脂層で変形を生じて融着一体化した構造体全体
が変形してエネルギ−変換して大部分の変形応力を吸収
し、熱可塑性弾性樹脂層で吸収出来なかった変形は、熱
可塑性弾性樹脂層を介して融着一体化した3次元網状構
造全体が変形して熱可塑性非弾性樹脂で構成した層での
個々の線条への応力集中を回避できるので熱可塑性非弾
性樹脂線条の弾性限界内でも応力を吸収し易くなり、熱
可塑性非弾性樹脂が抗圧縮性を示しつつ弾性限界を越え
ない範囲で変形し、応力が解除されると熱可塑性非弾性
樹脂線条の層も弾性回復し、熱可塑性弾性樹脂層もゴム
弾性を発現し容易に元の形態に回復するので耐へたり性
が良好であると共に圧縮時の応力に対する変形歪みが直
線的に変化し、座ったとき、低い反発力で臀部を支えつ
つ適度の沈み込みを生じるので床つき感を与えず体型保
持機能を発現する。熱可塑性弾性樹脂のみからなる網状
体では柔らか過ぎて沈み込みがやや大きくなる欠点を本
発明は解決し体型保持機能を向上できた。公知の非弾性
樹脂のみからなる線条で構成した網状体では、表面層で
吸収できない大きい変形を受けるとゴム弾性を持たない
ので圧縮変形により塑性変形を生じて回復しなくなり耐
久性が劣る。網状体の表面が実質的にフラット化されて
ない場合、短繊維不織布から伝達される局部的な外力
は、表面の線条及び接着点部分までに選択的に伝達さ
れ、応力集中が発生する場合があり、このような外力に
対しては応力集中による疲労が発生して耐へたり性が低
下する場合がある。なお、表面層から変形応力を伝達さ
れる層が熱可塑性弾性樹脂からなる場合は3次元構造部
分で構造全体が変形するので応力集中は緩和されるが、
非弾性樹脂のみからなる場合では、そのまま応力が接着
点に集中して構造破壊を生じ回復しなくなる。更には、
表面が実質的にフラット化されてなく凸凹があると座っ
た時臀部に異物感を与えるため座り心地が悪くなり好ま
しくない。なお、線状が連続していない場合は、繊度が
太い網状体では接着点が応力の伝達点となるため接着点
に著しい応力集中が起こり構造破壊を生じ耐熱耐久性が
劣り好ましくない。融着していない場合は、形態保持が
出来ず、構造体が一体で変形しないため、応力集中によ
る疲労現象が起こり耐久性が劣ると同時に、形態が変形
して体型保持ができなくなるので好ましくない。本発明
のより好ましい融着の程度は、線条が接触している部分
の大半が融着した状態であり、もっとも好ましくは接触
部分が全て融着した状態である。かくして、連続線条の
接触部が大部分融着した3次元立体構造体を形成し融着
一体化した振動吸収性と弾性回復性の良い熱可塑性弾性
樹脂の層と抗圧縮性をもつ熱可塑性非弾性樹脂の層が積
層融着し一体化され、表面が実質的にフラット化された
クッション層機能を持つ網状体は、熱接着繊維が熱可塑
性弾性樹脂からなる短繊維不織布で構成する表面層から
伝達される変形応力を面で受け止め応力の分散を良く
し、個々の線状に掛かる応力を少なくして構造全体が変
形して変形応力を吸収し、且つ臀部を支えるクッション
性も向上させ、応力が解除されると回復し、フレ−ムか
ら伝わる振動も振動吸収性と弾性回復性の良い熱可塑性
弾性樹脂部分が吸収して人体の共振部分の振動を遮断す
るため座り心地と耐久性を向上させることができる。こ
の目的から、本発明の網状体を形成する線条の繊度は熱
可塑性弾性樹脂層及び熱可塑性非弾性樹脂層共に100
000デニ−ル以下である。見掛け密度を0.2g/cm
3 以下にした場合、100000デニ−ルを越えると構
成本数が少なくなり、密度斑を生じて部分的に耐久性の
悪い構造ができ、応力集中による疲労が大きくなり耐久
性が低下するので好ましくない。本発明の網状体を構成
する線条の繊度は、繊度が細すぎると抗圧縮性が低くな
り過ぎて変形による応力吸収性が低下するので100デ
ニ−ル以上である。熱可塑性弾性樹脂層の好ましい範囲
は抗圧縮性の効果が出やすい300デニ−ル以上、構成
本数の低下による構造面の緻密性を損なわない5000
0デニ−ル以下である。より好ましくは500デニ−ル
以上、10000デニ−ル以下である。熱可塑性非弾性
樹脂層の好ましい範囲は抗圧縮性の効果が出やすい50
0デニ−ル以上、構成本数の低下による構造面の緻密性
を損なわない50000デニ−ル以下である。より好ま
しくは1000デニ−ル以上、10000デニ−ル以下
である。本発明の網状体の見掛け密度は、熱可塑性弾性
樹脂層及び熱可塑性非弾性樹脂層共に0.005g/cm
3 では反発力が失われ、振動吸収能力や変形応力吸収能
力が不充分となりクッション機能を発現させにくくなる
場合があり、0.25g/cm3 以上では反発力が高すぎ
て座り心地が悪くなる場合があるので、振動吸収能力や
変形応力吸収機能が生かせてクッション体としての機能
が発現されやすい0.01g/cm3 以上0.20g/cm
3 以下が好ましく、より好ましくは0.03g/cm3
上0.08g/cm3 以下である。本発明における網状体
は繊度の異なる線状を見掛け密度との組合せで最適な構
成とする異繊度積層構造とする方法も好ましい実施形態
として選択できる。本発明の網状体の厚みは特に限定さ
れないが、熱可塑性弾性樹脂層の厚みは5mm未満では応
力吸収機能と応力分散機能が低下するので、好ましい厚
みは力の分散をする面機能と振動や変形応力吸収機能が
発現できる厚みとして10mm以上であり、より好ましく
は20mm以上である。熱可塑性非弾性樹脂層の厚みは、
体型保持性が発現できる5mm以上、網状体の厚みが50
mmとした場合、熱可塑性弾性樹脂層の機能が発現できる
厚みを残して30mm以下が好ましく、より好ましくは1
0mm以上、20mm未満である。本発明の網状体と短繊維
不織布が接合一体化された積層構造体としての見掛け密
度は0.01g/cm3 から0.2g/cm3 である。0.
01g/cm3 未満では体型保持や振動吸収などのクッシ
ョン機能が低下するので好ましくない。0.2g/cm3
を越えると反発弾性が大きくなり座り心地が悪くなるの
で好ましくない。好ましい見掛け密度は0.02g/cm
3 〜0.1g/cm3 であり、より好ましくは0.03g
/cm3 〜0.06g/cm3 である。網状体と短繊維不織
布が接合一体化されていない場合は、ずり変形を受ける
と接合一体化していないと、構造全体で変形できないた
め、短繊維不織布が著しいダメ−ジを受け構造が破壊さ
れる場合があり、構造破壊されない場合でも、体型保持
層のサポ−トがないので体型保持が悪くなり好ましくな
い。
The present invention is a thermoplastic elastic resin in which a continuous linear filament having a fineness of 100 to 100,000 denier is bent and brought into contact with each other to form a three-dimensional solid structure in which most of the contact portions are fused. Layer and thermoplastic non-elastic resin layer, both surfaces of which are substantially flattened, and the thermoplastic elastic resin layer surface of the net-like body is opened with short fibers made of thermoplastic elastic resin and thermoplastic non-elastic resin to form a three-dimensional structure. The non-woven fabric, which has been flattened and whose surface where most of the contact portion has been fused and integrated by the thermal adhesive component is substantially flattened, has a density of 0.
It is a multi-layer laminated network of 01 g / cm 3 to 0.2 g / cm 3 . The function of the cushioning material is that the cushioning layer is composed of a layer that thickens the basic fineness and makes it a little harder to support the body shape, and a layer that slightly increases the density with a component with good vibration damping and absorbs vibrations and blocks vibrations. However, the surface layer is a soft layer with a fineness and a large number of constituent fibers, which gives a comfortable touch to the buttocks due to a proper subsidence to evenly disperse the buttocks pressure distribution and vibration that could not be absorbed by the cushion layer. By integrating the layer that absorbs and absorbs the vibration of the resonance part of the human body, the stress and the vibration can be integrally deformed and absorbed to improve the sitting comfort. In the present invention, the function of the cushion layer is given to the net-like body formed with the fused three-dimensional three-dimensional structure composed of the thermoplastic elastic resin layer and the thermoplastic non-elastic resin layer, and the function of the surface layer is changed to the thermoplastic elastic resin. A non-woven fabric (short-fiber non-woven fabric) in which short fibers made of a thermoplastic non-elastic resin are opened to form a three-dimensional structure, and most of contact portions are fused and integrated with the thermoplastic elastic resin to substantially flatten the surface. ), And is joined and integrated to give a preferable cushioning material function. The short fiber non-woven fabric having a surface layer function constituting the laminated laminated network of the present invention provides a comfortable buttocks touch due to an appropriate depression as a soft layer, and therefore the heat-adhesive component is made of a thermoplastic elastic resin (preferably , 40% by weight or more, which can satisfy the vibration absorption function and the deformation stress absorption function, and when it exceeds 70% by weight, the shape retention of the short fibers deteriorates and the subsidence increases, so 70% by weight or less) Short fibers made of thermoplastic non-elastic resin and having a fineness of 20 denier or less are opened to form a three-dimensional structure, and most of the contact parts are substantially flattened by the heat-adhesive component. It is made of a non-woven fabric. The fineness of the thermal bonding fibers 20 denier - To below 0.01 g / cm 3 or more 0.05 g / cm 3 can be imparted over the the preferred surface layer features apparent density of the short fiber nonwoven fabric Le, configuration number is reduced , It is not preferable because it does not show the characteristics as a dense structure and impairs a comfortable touch. In addition, as the fineness of the heat-bonding fiber becomes smaller, the number of constituents decreases, the heat-bonding points decrease, the dispersion of the deformation stress deteriorates, and the stress concentration at the bonding points increases and the sag resistance decreases, which is preferable. Absent. On the other hand, if the fineness is too small, the anti-compression property is lowered, large deformation is easily caused, and the thermoplastic non-elastic resin portion is plastically deformed, resulting in a marked deterioration in durability, which is not preferable. The fineness of the preferred short fibers is 1 denier to 10
Denier, more preferably 3 to 6 denier. The short fibers are opened to form a three-dimensional structure, and the surface where most of the contact portions are fused and integrated by heat bonding (preferably all of the contact points are fused and integrated) is substantially flattened. The non-woven fabric receives the local pressure of the buttocks on the surface and evenly distributes the pressure distribution, and the three-dimensional structure of short fiber non-woven fabric is fused and integrated with the thermoplastic elastic resin of the heat-adhesive component. Since the thermal bonding fibers and thermal bonding points undergo large deformation, the entire structure deforms and absorbs the deformation stress by energy conversion, and when the deformation stress is released, the rubber elasticity of the thermoplastic elastic resin facilitates the deformation. Since it has a function to restore the original form, it has good sag resistance. Further, the damage to the cushion layer can be gradually reduced, and the sag resistance of the entire structure is improved. If they are not fused and integrated, the shape cannot be maintained, the local pressure is received by the surface, the pressure distribution cannot be evenly distributed, and the entire structure is deformed and energy conversion is not possible. Inferior and not preferable. Since the heat-adhesive component is made of a thermoplastic elastic resin having a good vibration absorption property, it also functions as a layer that absorbs vibrations that could not be absorbed by the cushion layer and blocks vibrations at the resonance part of the human body. When the heat-adhesive component is composed of a thermoplastic non-elastic resin, it cannot follow local deformation stress, and the structure is destroyed due to stress concentration and the recoverability is poor, which is not preferable. Further, since the thermoplastic non-elastic resin has a poor vibration absorbing property, it is not preferable because it has a poor function as a layer for blocking vibration. Although the thickness of the short fiber non-woven fabric layer is not particularly limited, it is preferably 3 mm to 30 mm for exhibiting the surface layer function, and 5 mm to 20 mm.
Is particularly preferable. On the other hand, the net-like body having a cushion layer function is formed by laminating a thermoplastic elastic resin layer and a thermoplastic non-elastic resin layer, in which continuous filaments form a three-dimensional three-dimensional structure and are fused and integrated at most of contact portions. Since both surfaces are substantially flattened and the surface is joined with the short fiber non-woven fabric with the thermoplastic elastic resin layer surface, most of the vibration applied from the outside is absorbed by the vibration absorption function of the thermoplastic elastic resin. Acts as a vibration isolation layer by absorbing and damping. Even when a large deformation stress is locally applied, the deformation stress dispersed and reduced in the non-woven fabric layer is substantially flattened on the surface of the netting body and most of the contact portion is fused, resulting in thermoplastic elasticity. The deformation stress is received by the surface of the mesh made of resin and the deformation stress is dispersed, and the thermoplastic elastic resin layer deforms and the fusion-integrated structure deforms as a whole and undergoes energy conversion to convert most of the deformation stress. The deformation that could not be absorbed by the thermoplastic elastic resin layer is due to the deformation of the entire three-dimensional network structure fused and integrated through the thermoplastic elastic resin layer and the layer formed of the thermoplastic inelastic resin. Since it is possible to avoid stress concentration on individual filaments, it becomes easier to absorb stress even within the elastic limit of the thermoplastic non-elastic resin filaments, and within the range where the thermoplastic inelastic resin exhibits anti-compression and does not exceed the elastic limit. Deforms and heats when released from stress The elastic non-elastic resin filament layer also elastically recovers, and the thermoplastic elastic resin layer also develops rubber elasticity and easily recovers to its original form, so it has good sag resistance and deformation strain against stress during compression. It changes linearly, and when sitting, it supports the buttocks with a low repulsive force and causes a certain degree of depression, so it does not give a feeling of being on the floor and develops a body shape retention function. The present invention has solved the problem that the net-like body made of only the thermoplastic elastic resin is too soft and causes a slight depression, and the body shape holding function can be improved. A known net-like body composed of filaments made only of non-elastic resin does not have rubber elasticity when subjected to a large deformation that cannot be absorbed by the surface layer, and therefore plastic deformation due to compressive deformation does not occur and recovery is inferior. When the surface of the reticulate body is not substantially flattened, the local external force transmitted from the short fiber non-woven fabric is selectively transmitted to the filaments and bonding points of the surface, resulting in stress concentration. There is a possibility that fatigue due to stress concentration may occur due to such external force and the sag resistance may deteriorate. When the layer to which the deformation stress is transmitted from the surface layer is made of thermoplastic elastic resin, the entire structure is deformed in the three-dimensional structure portion, so the stress concentration is relieved.
In the case of using only the non-elastic resin, the stress concentrates on the bonding point as it is, causing structural destruction and not recovering. Furthermore,
If the surface is not substantially flattened and has irregularities, the buttocks feel a foreign substance when sitting, which is unfavorable because the sitting comfort is poor. When the linear shape is not continuous, the adhesive point becomes a stress transmission point in a net having a large fineness, so that remarkable stress concentration occurs at the adhesive point, resulting in structural destruction and poor heat resistance and durability. If they are not fused, the shape cannot be maintained and the structure does not deform integrally, resulting in a fatigue phenomenon due to stress concentration and poor durability, and at the same time deforming the shape and making it impossible to maintain the body shape, which is not preferable. . The more preferable degree of fusion in the present invention is that most of the portions where the filaments are in contact are fused, and most preferably all the contact portions are in fusion. Thus, a thermoplastic elastic resin layer having good vibration absorption and elastic recovery, which is formed by forming a three-dimensional three-dimensional structure in which the contact portions of continuous filaments are mostly fused, and fusion-bonded, and a thermoplastic having anti-compression The net-like body having a cushion layer function in which the layers of the non-elastic resin are laminated and fusion-bonded to each other and the surface is substantially flattened is a surface layer composed of a short fiber non-woven fabric whose thermo-adhesive fiber is a thermoplastic elastic resin. The deformation stress transmitted from is received on the surface, the distribution of stress is improved, the stress applied to each line is reduced, the entire structure is deformed to absorb the deformation stress, and the cushioning property to support the buttocks is also improved. It recovers when the stress is released, and the vibrations transmitted from the frame are absorbed by the thermoplastic elastic resin part, which has good vibration absorption and elastic recovery, and blocks the vibration of the resonance part of the human body, thus providing comfort and durability. Can be improved. For this purpose, the fineness of the filaments forming the mesh body of the present invention is 100 for both the thermoplastic elastic resin layer and the thermoplastic non-elastic resin layer.
It is less than 000 denier. Apparent density 0.2g / cm
When it is less than 3, the number of constituents is reduced when it exceeds 100,000 denier, a structure with poor durability is partially formed due to density unevenness, fatigue due to stress concentration increases and durability is reduced, which is not preferable. . The fineness of the filaments constituting the reticulated body of the present invention is 100 denier or more because if the fineness is too thin, the anti-compression property becomes too low and the stress absorbability due to deformation is lowered. The preferred range of the thermoplastic elastic resin layer is 300 denier or more, where the effect of anti-compression property is likely to be exhibited, and 5000 is not impaired in the denseness of the structural surface due to the decrease in the number of constituents.
It is 0 denier or less. More preferably, it is at least 500 denier and at most 10,000 denier. The preferable range of the thermoplastic non-elastic resin layer is that the effect of anti-compression property is easily obtained.
It is 0 denier or more and 50,000 denier or less, which does not impair the denseness of the structural surface due to the decrease in the number of constituents. More preferably, it is not less than 1000 denier and not more than 10,000 denier. The apparent density of the reticulate body of the present invention is 0.005 g / cm for both the thermoplastic elastic resin layer and the thermoplastic non-elastic resin layer.
In 3 , the repulsive force is lost, and the vibration absorbing ability and the deformation stress absorbing ability are insufficient, and it may be difficult to develop the cushioning function. At 0.25 g / cm 3 or more, the repulsive force is too high and the sitting comfort becomes poor In some cases, the vibration absorbing ability and the deformation stress absorbing function can be fully utilized to easily develop the function as a cushioning body 0.01 g / cm 3 or more 0.20 g / cm
It is preferably 3 or less, more preferably 0.03 g / cm 3 or more and 0.08 g / cm 3 or less. As a preferred embodiment, a method in which the reticulate body in the present invention has a different fineness laminated structure in which a linear shape having a different fineness is combined with an apparent density to have an optimum configuration can be selected. The thickness of the reticulate body of the present invention is not particularly limited, but if the thickness of the thermoplastic elastic resin layer is less than 5 mm, the stress absorbing function and the stress dispersing function are deteriorated. Therefore, the preferable thickness is a surface function for dispersing force and vibration or deformation. The thickness capable of exhibiting the stress absorbing function is 10 mm or more, and more preferably 20 mm or more. The thickness of the thermoplastic inelastic resin layer is
5mm or more, which can maintain body shape, and reticulate thickness is 50
In the case of mm, it is preferably 30 mm or less, more preferably 1 mm or less, leaving a thickness capable of exhibiting the function of the thermoplastic elastic resin layer.
It is 0 mm or more and less than 20 mm. The apparent density of the laminated structure in which the mesh body and the short fiber nonwoven fabric of the present invention are integrally bonded is 0.01 g / cm 3 to 0.2 g / cm 3 . 0.
If it is less than 01 g / cm 3 , the cushioning function such as body shape retention and vibration absorption is deteriorated, which is not preferable. 0.2 g / cm 3
If it exceeds, the impact resilience becomes large and the sitting comfort becomes poor, which is not preferable. Preferred apparent density is 0.02g / cm
3 to 0.1 g / cm 3 , more preferably 0.03 g
/ Cm 3 to 0.06 g / cm 3 . If the mesh body and the short fiber non-woven fabric are not joined and integrated with each other, if they are not joined and integrated by shear deformation, the entire structure cannot be deformed, so that the short fiber non-woven fabric is significantly damaged and the structure is destroyed. In some cases, even if the structure is not destroyed, there is no support for the body shape-retaining layer, which is not preferable because the body shape-holding is poor.

【0013】本発明の網状体の線条の断面形状は特には
限定されないが、中空断面や異形断面にすることで好ま
しい抗圧縮性(反発力)やタッチを付与することができ
るので特に好ましい。抗圧縮性は繊度や用いる素材のモ
ジュラスにより調整して、繊度を細くしたり、柔らかい
素材では中空率や異形度を高くし初期圧縮応力の勾配を
調整できるし、繊度をやや太くしたり、ややモジュラス
の高い素材では中空率や異形度を低くして座り心地が良
好な抗圧縮性を付与する。中空断面や異形断面の他の効
果として中空率や異形度を高くすることで、同一の抗圧
縮性を付与した場合、より軽量化が可能となり、自動車
等の座席に用いると省エネルギ−化ができ、布団などの
場合は、上げ下ろし時の取扱性が向上する。好ましい抗
圧縮性(反発力)やタッチを付与することができる他の
好ましい方法として、本発明の網状体の線条を複合構造
とする方法がある。複合構造としては、シ−スコア構造
またはサイドバイサイド構造及びそれらの組合せ構造な
どが挙げられる。が、特には熱可塑性弾性樹脂層が大変
形してもエネルギ−変換できない振動や変形応力をエネ
ルギ−変換して回復できる立体3次元構造とするために
線状の表面の50%以上を柔らかい熱可塑性弾性樹脂が
占めるシ−スコア構造またはサイドバイサイド構造及び
それらの組合せ構造などが挙げられる。すなわち、シ−
スコア構造ではシ−ス成分は振動や変形応力をエネルギ
−変換が容易なソフトセグメント含有量が多い熱可塑性
弾性樹脂とし、コア成分はソフトセグメント含有量の少
ない熱可塑性弾性樹脂とし、抗圧縮性を付与することで
適度の沈み込みによる臀部への快適なタッチを与えるこ
とができる。サイドバイサイド構造では振動や変形応力
をエネルギ−変換が容易なソフトセグメント含有量が多
い熱可塑性弾性樹脂の溶融粘度を抗圧縮性を示すソフト
セグメント含有量の少ない熱可塑性弾性樹脂の溶融粘度
より低くして線状の表面を占めるソフトセグメント含有
量が多い熱可塑性弾性樹脂の割合を多くした構造(比喩
的には偏芯シ−ス・コア構造のシ−スに熱可塑性弾性樹
脂を配した様な構造)として線状の表面を占めるソフト
セグメント含有量が多い熱可塑性弾性樹脂の割合を80
%以上としたものが特に好ましく、最も好ましくは線状
の表面を占めるソフトセグメント含有量が多い熱可塑性
弾性樹脂の割合を100%としたシ−スコアである。ソ
フトセグメント含有量が多い熱可塑性弾性樹脂の線状の
表面を占める割合が多くなると、溶融して融着するとき
の流動性が高いので接着が強固になる効果があり、構造
が一体で変形する場合、接着点の応力集中に対する耐疲
労性が向上し、耐熱性や耐久性がより向上する。
The cross-sectional shape of the filaments of the reticulate body of the present invention is not particularly limited, but a hollow cross-section or a deformed cross-section is particularly preferable because it can impart preferable anti-compression property (repulsive force) and touch. The anti-compression property can be adjusted by the fineness and the modulus of the material used to make the fineness fine, or in the soft material the hollowness and the irregularity can be increased to adjust the gradient of the initial compression stress, and the fineness can be made slightly thicker or slightly. A material with a high modulus lowers the hollow ratio and the degree of irregularity to provide anti-compression property with a comfortable sitting feeling. As another effect of the hollow cross section and the irregular cross section, by increasing the hollow ratio and the degree of irregularity, if the same anti-compression property is given, the weight can be further reduced, and the energy saving can be achieved when it is used for the seat of an automobile or the like. If it is a futon or the like, it will be easier to handle when raising and lowering. As another preferable method for imparting preferable anti-compression property (repulsive force) and touch, there is a method of forming the filament of the reticulated body of the present invention into a composite structure. Examples of the composite structure include a score core structure, a side-by-side structure, and a combination structure thereof. However, in particular, 50% or more of the linear surface is softly heat-treated in order to form a three-dimensional three-dimensional structure capable of energy-converting and recovering vibration and deformation stress that cannot be energy-converted even if the thermoplastic elastic resin layer is largely deformed. Examples thereof include a sheath core structure or a side-by-side structure occupied by a plastic elastic resin, and a combination thereof. That is, see
In the score structure, the sheath component is a thermoplastic elastic resin with a large soft segment content that facilitates energy conversion of vibrations and deformation stresses, and the core component is a thermoplastic elastic resin with a small soft segment content to provide anti-compression properties. By giving it, it is possible to give a comfortable touch to the buttocks due to a proper depression. In the side-by-side structure, the melt viscosity of a thermoplastic elastic resin with a high soft segment content that facilitates energy conversion of vibration and deformation stress is made lower than that of a thermoplastic elastic resin with a low soft segment content that exhibits anti-compressibility. A structure in which the proportion of thermoplastic elastic resin occupying a linear surface and having a large amount of soft segment is increased (metaphorically, a structure in which a thermoplastic elastic resin is arranged in an eccentric sheath-core structure) ), The proportion of the thermoplastic elastic resin occupying the linear surface and having a large soft segment content is 80
% Or more is particularly preferable, and most preferably, it is a sheath core in which the proportion of the thermoplastic elastic resin having a large soft segment content occupying the linear surface is 100%. When the proportion of the thermoplastic elastic resin with a large soft segment content that occupies the linear surface is large, the flowability when melting and fusing is high, so there is the effect of strengthening the adhesion, and the structure deforms as a unit. In this case, the fatigue resistance against stress concentration at the bonding points is improved, and the heat resistance and durability are further improved.

【0014】熱可塑性弾性樹脂層と熱可塑性非弾性樹脂
層とが積層融着した網状体と短繊維不織布が接合一体化
されて、実質的に両面がフラット化された多層積層網状
体であるので、他の網状体、不織布、編織物、硬綿、フ
イルム、発泡体、金属等の被熱接着体とを接着するの
に、他の熱接着成分(熱接着不織布、熱接着繊維、熱接
着フィルム、熱接着レジン等)や接着剤等を用いて一体
積層構造体化し、車両用座席、船舶用座席、車両用、船
舶用、病院用等の業務用及び家庭用ベット、家具用椅
子、事務用椅子、布団類等の製品を得る場合、被接着体
面との接触面積を広くできるので、接着面積が広くなり
強固に接着した接着耐久性も良好な製品を得ることがで
きる。なお、網状体及び積層網状体形成段階から製品化
される任意の段階で上述の疑似結晶化処理を施すことに
より、多層積層網状体中の熱可塑性弾性樹脂からなる成
分を示差走査型熱量計で測定した融解曲線に室温以上融
点以下の温度に吸熱ピークを持つようにすると製品の耐
熱耐久性が格段に向上するのでより好ましい。本発明の
多層積層網状体を形成する網状体の裏面も熱可塑性弾性
樹脂層として熱接着機能を付与し、補強材等を熱接着一
体構造化ができる。熱接着成分は、振動や変形応力をエ
ネルギ−変換が容易なソフトセグメント含有量が多い熱
可塑性弾性樹脂を用いることによりより好ましい熱接着
層の機能が付与できる。また、本発明の多層積層網状体
の表面層の短繊維不織布は熱接着繊維で構成されてお
り、その儘熱接着層として使用できるが、好ましくは熱
接着成分をソフトセグメント含有量が多い低融点の熱可
塑性弾性樹脂とすることで、振動や変形応力のエネルギ
−変換を良好とできると共に良好な熱接着機能も付与で
きる。熱接着機能を発現させるに好ましい多層積層網状
体中の線条または繊維を形成する熱接着成分の融点は高
融点成分の融点より15℃から80℃低い融点であり、
より好ましくは20℃から60℃低い融点である。熱接
着機能を持つ本発明の多層積層網状体は実質的に表面が
フラット化されて、接触部の大部分が融着していること
で、網状体、不織布、編織物、硬綿、フイルム、発泡
体、金属等の被熱接着体面との接触面積を広くできるの
で、熱接着面積が広くなり、強固に熱接着した新たな成
形体及び車両用座席、船舶用座席、車両用、船舶用、病
院用等の業務用及び家庭用ベット、家具用椅子、事務用
椅子、布団類になった製品を得ることができる。なお、
新たな成形体及び製品が製品化されるまでの任意の段階
で疑似結晶化処理を施すことにより、構造体中の熱可塑
性弾性樹脂からなる線条を示差走査型熱量計で測定した
融解曲線に室温以上融点以下の温度に吸熱ピークを持つ
ようにすると製品の耐熱耐久性が格段に向上したものを
提供できるのでより好ましい。熱接着時に被接着体を伸
張した状態で接着すると、被接着体は接着層のゴム弾性
で伸張された状態が緩和しないので張りのある、皺にな
りにくい成形体とすることもできる。
Since a net-like body in which a thermoplastic elastic resin layer and a thermoplastic non-elastic resin layer are laminated and fused and a short fiber non-woven fabric are joined and integrated to form a multilayer laminated net body in which both sides are substantially flattened. Other heat-bonding components (heat-bonding non-woven fabric, heat-bonding fiber, heat-bonding film) for bonding with other materials to be heat-bonded such as other reticulate body, non-woven fabric, knitted fabric, hard cotton, film, foam and metal. , Heat-bonding resin, etc.) or adhesive to form an integrated laminated structure, for vehicle seats, ship seats, vehicle seats, ship seats, hospital beds, etc. for business and household beds, furniture chairs, office work When obtaining products such as chairs and duvets, the contact area with the surface to be adhered can be widened, so that a product having a wide adhesive area and firmly adhered can also be obtained with good durability. In addition, by performing the above-mentioned pseudo crystallization treatment at any stage from the step of forming the net and the laminated net to the product, the component composed of the thermoplastic elastic resin in the multilayer net is measured by a differential scanning calorimeter. It is more preferable that the measured melting curve has an endothermic peak at a temperature of room temperature or higher and melting point or lower because the heat resistance and durability of the product is remarkably improved. The back surface of the reticulate body forming the multi-layer laminated reticulate body of the present invention can also be provided with a thermal adhesive function as a thermoplastic elastic resin layer, and a reinforcing material or the like can be integrated into the thermal adhesive structure. As the heat-adhesive component, a more preferable function of the heat-adhesive layer can be imparted by using a thermoplastic elastic resin having a large content of soft segments, which is easy to energy-convert vibration and deformation stress. Further, the short-fiber non-woven fabric of the surface layer of the multilayer laminated network of the present invention is composed of a heat-bonding fiber, and can be used as the heat-bonding layer thereof, but preferably the heat-bonding component has a high soft segment content and low melting point. By using the thermoplastic elastic resin of (1), it is possible to improve the energy conversion of vibration and deformation stress, and also to impart a good thermal adhesive function. The melting point of the heat-adhesive component forming the filaments or fibers in the multilayer laminated network preferable for exhibiting the heat-adhesion function is 15 ° C. to 80 ° C. lower than the melting point of the high-melting component,
More preferably, the melting point is 20 ° C. to 60 ° C. lower. The multilayer laminated reticulate body of the present invention having a heat-bonding function has a substantially flat surface, and most of the contact portions are fused to form a reticulate body, a nonwoven fabric, a knitted fabric, a hard cotton, a film, Since it is possible to increase the contact area with the surface of the foam, metal, etc. to be heat-bonded, the heat-bonding area becomes wider, and a new heat-bonded new molded body and vehicle seat, ship seat, vehicle, ship, You can get products such as beds for business and home use such as hospitals, furniture chairs, office chairs, and futons. In addition,
By performing pseudo-crystallization treatment at any stage until new molded products and products are commercialized, the lines made of thermoplastic elastic resin in the structure are converted into melting curves measured with a differential scanning calorimeter. Having an endothermic peak at a temperature of room temperature or higher and melting point or lower is more preferable because a product with significantly improved heat resistance and durability can be provided. When the adherend is adhered in a stretched state at the time of heat-bonding, the adhered body does not relax the stretched state due to the rubber elasticity of the adhesive layer, so that the adherend can be a molded body having tension and less likely to wrinkle.

【0015】次に本発明の製法を述べる。複数のオリフ
ィスを持つ多列ノズルより熱可塑性弾性樹脂と熱可塑性
非弾性樹脂を各層になるように各ノズルオリフィスに分
配し、該熱可塑性樹脂の融点より10℃以上高く、12
0℃未満高い溶融温度で、該ノズルより下方に向けて吐
出させ、溶融状態で互いに接触させて融着させ3次元構
造を形成しつつ、引取り装置で挟み込み冷却槽で冷却せ
しめた後、熱可塑性弾性樹脂層面に熱可塑性弾性樹脂と
熱可塑性非弾性樹脂からなる短繊維を開繊して3次元構
造化させたウエッブを積層し、圧縮熱成形により、接触
部の大部分を熱接着成分により融着一体化する多層積層
網状体の製法である。網状体は、一般的な多成分押出機
を用い、熱可塑性弾性樹脂と熱可塑性非弾性樹脂を各単
独成分毎に別々に溶融し、ノズル背面で熱可塑性弾性樹
脂を網状体の片面又は両面を構成するように分配し、熱
可塑性非弾性樹脂を他の部分に分配してオリフィスより
下方へ吐出する。シ−スコアでは、コア成分を中心から
供給し、その回りからシ−ス成分を合流させ吐出する。
サイドバイサイドでは左右又は前後から各成分を合流さ
せ吐出する。本発明の好ましい実施形態では、例えば、
長手方向の有効幅50mm、ノズルの幅方向の列の孔間ピ
ッチは10mm一定、列間のピッチが5mm一定の丸断面の
オリフィス形状の場合、熱可塑性弾性樹脂層を、片面に
配する場合は1列目〜7列目、両面に配する場合は1列
目〜6列目と10列目〜11列目に分配し、熱可塑性非
弾性樹脂を他の列に分配して、好ましくは、各成分の融
点より10℃以上、120℃以下の同一の溶融温度で、
各成分の層が所望の見掛け密度になる吐出量、例えば、
単孔吐出量は、熱可塑性弾性樹脂層の部分は2.5g/
分、熱可塑性非弾性樹脂層となる部分は2g/分のよう
に、好ましくは、各成分を各ギヤポンプにてノズルへ溶
融状態の熱可塑性樹脂を送り、下方に向けて各オリフィ
スより吐出させる。この時の溶融温度は、熱可塑性樹脂
の融点より10℃〜120℃高い温度である。低融点成
分の融点より120℃を越える高い溶融温度にすると熱
分解が著しくなり熱可塑性樹脂の特性が低下するので好
ましくない。他方、高融点成分の融点より10℃以上高
くしないとメルトフラクチャ−を発生し正常な線条形成
が出来なくなり、また、吐出後ル−プ形成しつつ接触さ
せ融着させる際、線条の温度が低下して線条同士が融着
しなくなり接着が不充分な網状体となる場合があり好ま
しくない。好ましい溶融温度は低融点成分の融点より2
0℃から100℃高い温度、より好ましくは融点より3
0℃から80℃高い温度であり、高融点成分の融点より
15℃から40℃高い温度、より好ましくは融点より2
0℃から30℃高い温度となる同一の溶融温度で吐出す
る。複合紡糸の場合は合流直前の溶融温度差は10℃以
下にしないと異常流動を発生し複合形態の形成が損なわ
れる場合がある。オリフィスの形状は特に限定されない
が、中空断面(例えば三角中空、丸型中空、突起つきの
中空等となるよう形状)及び、又は異形断面(例えば三
角形、Y型、星型等の断面二次モ−メントが高くなる形
状)とすることで前記効果以外に溶融状態の吐出線条が
形成する3次元構造が流動緩和し難くし、逆に接触点で
の流動時間を長く保持して接着点を強固にできるので特
に好ましい。特開平1−2075号公報に記載の接着の
ための加熱をする場合、3次元構造が緩和し易くなり平
面的構造化し、3次元立体構造化が困難となるので好ま
しくない。網状体の特性向上効果としては、見掛けの嵩
を高くでき軽量化になり、また抗圧縮性が向上し、弾発
性も改良できへたり難くなる。中空断面では中空率が8
0%を越えると断面が潰れ易くなるので、好ましくは軽
量化の効果が発現できる10%以上70%以下、より好
ましくは20%以上60%以下である。オリフィスの孔
間ピッチは線状が形成するル−プが充分接触できるピッ
チとする必要がある。緻密な構造にするには孔間ピッチ
を短くし、粗密な構造にするには孔間ピッチを長くす
る。本発明の孔間ピッチは好ましくは3mm〜20mm、よ
り好ましくは5mm〜10mmである。本発明のより好まし
い実施形態からは、構成本数を熱可塑性弾性樹脂層で増
やす場合、例えば、1列目から6列目の孔間ピッチを5
mm、10列目と11列目の孔間ピッチを6.67mmに変
更して各成分の全吐出量を同一で吐出させれば、熱可塑
性弾性樹脂層の見掛け密度を0.055g/cm3 、及び
0.067g/cm3 、熱可塑性非弾性樹脂層の見掛け密
度を0.041g/cm3 のまま変えずに構成本数を2
倍、及び約1.5倍に増加させた緻密な熱可塑性弾性樹
脂層にできる。勿論、熱可塑性非弾性樹脂層の特定部分
の孔密度をかえて、クッション特性を最適化することが
できる。本発明では所望に応じ異密度化や異繊度化もで
きる。列間のピッチ又は孔間のピッチも変えた構成、及
び列間と孔間の両方のピッチも変える方法などで異密度
層を形成できる。また、オリフィスの断面積を変えて吐
出時の圧力損失差を付与すると、溶融した熱可塑性樹脂
を同一ノズルから一定の圧力で押し出される吐出量が圧
力損失の大きいオリフィスほど少なくなる原理を用いる
と列内、列間で異繊度線条からなる網状構造体も製造で
きる。例えば上述のように7列目から9列目に熱可塑性
非弾性樹脂を分配する場合、7列目から8列目のオリフ
ィス径を0.7mm、孔間ピッチを5mmとし、他の列のオ
リフィス径を1.0mmとすることで非弾性樹脂の層を2
層形成して座り心地や変形応力の分散を良くすることが
できる。次いで、該ノズルより下方に向けて吐出させ、
ル−プを形成させつつ溶融状態で互いに接触させて融着
させ3次元構造を形成しつつ、引取りネットで挟み込
み、網状体の表面の溶融状態の曲がりくねった吐出線条
を45°以上折り曲げて変形させて表面をフラット化す
ると同時に曲げられていない吐出線条との接触点を接着
して構造を形成後、連続して冷却媒体(通常は室温の水
を用いるのが冷却速度を早くでき、コスト面でも安くな
るので好ましい)で急冷して本発明の3次元立体網状構
造体化した網状体を得る。ノズル面と引取り点の距離は
少なくとも40cm以下にすることで吐出線条が冷却され
接触部が融着しなくなることを防ぐのが好ましい。吐出
線条の吐出量5g/分孔以上と多い場合は10cm〜40
cmが好ましく、吐出線条の吐出量5g/分孔未満と少な
い場合は5cm〜20cmが好ましい。網状体の厚みは溶融
状態の3次元立体構造体両面を挟み込む引取りネットの
開口幅(引取りネット間の間隔)で決まる。本発明では
上述の理由から引取りネットの開口幅は5mm以上とす
る。次いで水切り乾燥するが冷却媒体中に界面活性剤等
を添加すると、水切りや乾燥がしにくくなったり、熱可
塑性弾性樹脂が膨潤することもあり好ましくない。尚、
ノズル面と樹脂を固化させる冷却媒体上に設置した引取
りコンベアとの距離、樹脂の溶融粘度、オリフィスの孔
径と吐出量などにより所望のループ径や線径をきめられ
る。冷却媒体上に設置した間隔が調整可能な一対の引取
りコンベアで溶融状態の吐出線条を挟み込み停留させる
ことで互いに接触した部分を融着させつつ、連続して冷
却媒体中に引込み固化させ網状体を形成する時、上記コ
ンベアの間隔を調整することで、融着した網状体が溶融
状態でいる間で厚み調節が可能となり、所望の厚みのも
のが得られる。コンベア速度も速すぎると、接触点の形
成が不充分になったり、融着点が充分に形成されるまで
に冷却され、接触部の融着が不充分になる場合がある。
また、速度が遅過ぎると溶融物が滞留し過ぎ、密度が高
くなるので、所望の見掛け密度に適したコンベア速度を
設定する必要がある。次いで本発明では、表面層の機能
を持たせる熱接着繊維からなる短繊維不織布と接合一体
化する。熱可塑性弾性樹脂と熱可塑性非弾性樹脂からな
る繊度が20デニ−ル以下の熱接着繊維は、低融点の熱
可塑性弾性樹脂と高融点の熱可塑性非弾性樹脂とを個々
に溶融し、公知の複合紡糸により紡糸し、延伸して完成
糸を得らあれる。が、この方法では、熱接着成分の融点
が低いので、延伸時に高温で熱セットできないため収縮
率が30%から80%と高いものしか得られないので、
ウエッブを熱成形する際ウエッブ収縮による成形寸法不
良を生じる。本発明ではこの問題を解決するため、30
00m/分以上の高速紡糸により収縮率を10%以下に
低収縮化して一気に完成糸にする方法で得るのが好まし
い。次いで、巻縮を付与し、所望のカット長に切断して
熱接着繊維を得る。本発明に使用する熱接着繊維の複合
形態は特には限定されないが、熱接着繊維としての機能
が必要なのでサイドバイサイドまたはシ−スコアで、低
融点成分が繊維の表面の50%以上を占めるのが好まし
く、低融点成分が繊維の表面の100%以上を占めるの
がより好ましい。次いで熱接着繊維はオ−プナ−等で予
備開繊した後カ−ド等で開繊し、3次元化構造とした開
繊ウエッブを、該網状体の表面に積層圧縮して熱成形に
より接合一体化するか、一旦単独で開繊ウエッブのみを
積層圧縮して熱成形により構造体化して短繊維不織布を
作成し、次いで該網状体と短繊維不織布を接合一体化す
ることもできる。この場合、熱接着層又は接着剤を別途
該網状体と短繊維不織布間に使用して接合一体化しても
よく、該網状体または該短繊維不織布の熱接着機能を使
って接合一体化してもよい。本発明の好ましい方法とし
ては、該網状体を一旦冷却後、又は一体成形して得られ
た多層積層網状体を製品化に至る任意の工程で熱可塑性
弾性樹脂の融点より少なくとも10℃以下の温度でアニ
−リングよる疑似結晶化処理を行い多層積層網状体又は
製品を得るのがより好ましい製法である。疑似結晶化処
理温度は、少なくとも融点(Tm)より10℃以上低
く、Tanδのα分散立ち上がり温度(Tαcr)以上
で行う。この処理で、融点以下に吸熱ピ−クを持ち、疑
似結晶化処理しないもの(吸熱ピ−クを有しないもの)
より耐熱耐へたり性が著しく向上する。本発明の好まし
い疑似結晶化処理温度は(Tαcr+10℃)から(T
m−20℃)である。単なる熱処理により疑似結晶化さ
せると耐熱耐へたり性が向上する。が更には、10%以
上の圧縮変形を付与してアニ−リングすることで耐熱耐
へたり性が著しく向上するのでより好ましい。また、該
網状体を一旦冷却後、乾燥工程を経する場合、乾燥温度
をアニ−リング温度とすることで同時に疑似結晶化処理
を行うができる。また、製品化する工程で別途疑似結晶
化処理を行うができる。次いで所望の長さまたは形状に
切断してクッション材に用いる。
Next, the manufacturing method of the present invention will be described. A thermoplastic elastic resin and a thermoplastic non-elastic resin are distributed to each nozzle orifice so as to form each layer from a multi-row nozzle having a plurality of orifices, and the melting point of the thermoplastic resin is higher by 10 ° C. or more.
After being discharged downward from the nozzle at a melting temperature higher than 0 ° C., and in a molten state, they are brought into contact with each other and fused to form a three-dimensional structure, sandwiched by a take-up device and cooled in a cooling tank, and then heated. A web in which short fibers made of a thermoplastic elastic resin and a thermoplastic non-elastic resin are spread on the surface of the plastic elastic resin layer to form a three-dimensional structure, and most of the contact portion is bonded by a heat-adhesive component by compression thermoforming. This is a method for producing a multi-layer laminated network body that is fused and integrated. The reticulated body uses a general multi-component extruder to melt the thermoplastic elastic resin and the thermoplastic non-elastic resin separately for each individual component, and the thermoplastic elastic resin is applied to one or both sides of the reticulated body on the back surface of the nozzle. The thermoplastic inelastic resin is distributed to other parts and discharged downward from the orifice. In the sheath core, the core component is supplied from the center, and the sheath component is merged and discharged from around the core component.
On the side-by-side, the components are merged and discharged from the left and right or the front and back. In a preferred embodiment of the invention, for example,
When the effective width in the longitudinal direction is 50 mm, the pitch between the holes in the row in the width direction of the nozzle is 10 mm, and the pitch between the rows is 5 mm, the orifice shape has a circular cross section. 1st to 7th rows, in the case of arranging on both sides, it is distributed to 1st to 6th rows and 10th to 11th rows, and the thermoplastic non-elastic resin is distributed to other rows, preferably, At the same melting temperature of 10 ° C to 120 ° C below the melting point of each component,
Discharge rate at which the layer of each component has a desired apparent density, for example,
The single hole discharge rate is 2.5 g / for the thermoplastic elastic resin layer.
As for the portion which becomes the thermoplastic non-elastic resin layer, preferably, each component is fed with the molten thermoplastic resin to the nozzle by each gear pump and discharged downward from each orifice. The melting temperature at this time is 10 ° C. to 120 ° C. higher than the melting point of the thermoplastic resin. When the melting temperature is higher than the melting point of the low-melting point component and exceeds 120 ° C., thermal decomposition is remarkable and the characteristics of the thermoplastic resin are deteriorated, which is not preferable. On the other hand, unless the temperature is higher than the melting point of the high-melting point component by 10 ° C. or more, melt fracture occurs and normal filament formation becomes impossible, and the temperature of the filament when contacting and fusing while forming loop after discharge. May decrease, and the filaments may not be fused to each other, resulting in a network with insufficient adhesion, which is not preferable. The preferred melting temperature is 2 than the melting point of the low melting point component.
0 ° C to 100 ° C higher, more preferably 3 above melting point
The temperature is 0 ° C. to 80 ° C. higher, 15 ° C. to 40 ° C. higher than the melting point of the high melting point component, and more preferably 2 ° C. higher than the melting point.
Discharging is carried out at the same melting temperature, which is 0 ° C. to 30 ° C. higher. In the case of composite spinning, unless the difference in melting temperature immediately before joining is 10 ° C. or less, abnormal flow may occur and the formation of composite morphology may be impaired. The shape of the orifice is not particularly limited, but may be a hollow cross section (for example, a triangular hollow shape, a round hollow shape, a shape with a protrusion, etc.) and / or an irregular cross section (for example, a triangular, Y-shaped, star-shaped cross-section secondary mode). In addition to the above effects, it is difficult for the three-dimensional structure formed by the discharge filaments in the molten state to relax the flow, and on the contrary, the flow time at the contact point is maintained for a long time to strengthen the adhesion point. It is particularly preferable because it can be When heating for adhesion as described in Japanese Patent Application Laid-Open No. 1-2075, the three-dimensional structure is easily relaxed, a planar structure is formed, and a three-dimensional three-dimensional structure becomes difficult, which is not preferable. As an effect of improving the properties of the reticulate body, the apparent bulk can be increased, the weight can be reduced, the anti-compression property can be improved, and the elasticity can be improved, which is difficult to obtain. The hollow section has a hollow ratio of 8
If it exceeds 0%, the cross section tends to be crushed, so that it is preferably 10% or more and 70% or less, more preferably 20% or more and 60% or less so that the effect of weight reduction can be exhibited. The pitch between the holes of the orifice needs to be a pitch with which the loop formed by the line can sufficiently contact. The pitch between holes is shortened for a dense structure, and the pitch between holes is lengthened for a coarse structure. The pitch between the holes of the present invention is preferably 3 mm to 20 mm, more preferably 5 mm to 10 mm. According to a more preferred embodiment of the present invention, when the number of constituents is increased by the thermoplastic elastic resin layer, for example, the inter-hole pitch in the first to sixth rows is set to 5
mm, the pitch between the holes in the 10th and 11th rows was changed to 6.67 mm, and the total discharge amount of each component was the same, and the apparent density of the thermoplastic elastic resin layer was 0.055 g / cm 3 , And 0.067 g / cm 3 , and the number of components is 2 without changing the apparent density of the thermoplastic non-elastic resin layer to 0.041 g / cm 3.
It is possible to obtain a dense thermoplastic elastic resin layer that is doubled and increased about 1.5 times. Of course, the cushion characteristics can be optimized by changing the pore density of a specific portion of the thermoplastic non-elastic resin layer. In the present invention, different densities and different fineness can be obtained as desired. The different density layer can be formed by a configuration in which the pitch between rows or the pitch between holes is also changed, or a method in which the pitch between both rows and holes is also changed. In addition, if the difference in pressure loss at the time of discharge is given by changing the cross-sectional area of the orifice, the discharge amount of the molten thermoplastic resin extruded from the same nozzle at a constant pressure will decrease as the orifice with the larger pressure loss is used. It is also possible to manufacture a net-like structure composed of filaments of different fineness between the rows. For example, when the thermoplastic inelastic resin is distributed in the 7th to 9th rows as described above, the orifice diameters in the 7th to 8th rows are 0.7 mm, the hole pitch is 5 mm, and the orifices in the other rows are By setting the diameter to 1.0 mm, 2 layers of inelastic resin can be used.
By forming layers, it is possible to improve sitting comfort and dispersion of deformation stress. Then, discharge downward from the nozzle,
While forming a loop, they are brought into contact with each other in a molten state and fused to form a three-dimensional structure, and are sandwiched by a take-up net, and the winding winding filaments in the molten state on the surface of the mesh body are bent by 45 ° or more. After deforming to flatten the surface and at the same time form a structure by adhering the contact points with the discharge line that is not bent, a cooling medium (usually using room temperature water can increase the cooling rate, It is preferable because it is cheap in terms of cost), and is rapidly cooled to obtain the three-dimensional three-dimensional net-structured net-like body of the present invention. The distance between the nozzle surface and the take-off point is preferably at least 40 cm or less to prevent the discharge filament from being cooled and the contact portion not being fused. If the discharge amount of the discharge line is 5g / hole or more, 10cm-40
cm is preferable, and 5 cm to 20 cm is preferable when the discharge amount of the discharge filament is less than 5 g / hole. The thickness of the net-like body is determined by the opening width (interval between the take-up nets) of the take-up net sandwiching both surfaces of the three-dimensional structure in the molten state. In the present invention, the opening width of the take-up net is set to 5 mm or more for the above reason. Next, it is drained and dried, but if a surfactant or the like is added to the cooling medium, draining and drying may be difficult, or the thermoplastic elastic resin may swell, which is not preferable. still,
The desired loop diameter and wire diameter can be determined by the distance between the nozzle surface and the take-up conveyor installed on the cooling medium that solidifies the resin, the melt viscosity of the resin, the hole diameter of the orifice and the discharge amount, and the like. A pair of take-up conveyors with adjustable spacing installed on the cooling medium sandwiches and holds the melted discharge filaments to fuse the portions that are in contact with each other and continuously draw in the cooling medium to solidify. By adjusting the distance between the conveyors when forming the body, the thickness can be adjusted while the fused net-like body is in a molten state, and a desired thickness can be obtained. If the conveyor speed is too high, the formation of contact points may be insufficient, or the contact point may be cooled until the fusion point is sufficiently formed, resulting in insufficient fusion of the contact portion.
Further, if the speed is too slow, the melt will stay too much and the density will increase, so it is necessary to set the conveyor speed suitable for the desired apparent density. Next, in the present invention, it is joined and integrated with a short-fiber non-woven fabric made of a heat-bonding fiber having a surface layer function. Thermoadhesive fibers having a fineness of 20 denier or less, which are composed of a thermoplastic elastic resin and a thermoplastic non-elastic resin, are obtained by individually melting a low-melting thermoplastic elastic resin and a high-melting thermoplastic non-elastic resin. The composite yarn is spun and stretched to obtain a finished yarn. However, in this method, since the melting point of the heat-adhesive component is low, heat setting at a high temperature at the time of stretching cannot be performed, so that only a high shrinkage rate of 30% to 80% can be obtained.
When the web is thermoformed, shrinkage of the web causes defective molding. In the present invention, in order to solve this problem,
It is preferable to obtain it by a method in which the shrinkage rate is reduced to 10% or less by high-speed spinning at a speed of 00 m / min or more and the finished yarn is obtained all at once. Next, crimping is applied and cut into a desired cut length to obtain a heat-bonded fiber. The composite form of the heat-adhesive fiber used in the present invention is not particularly limited, but it is preferable that the low melting point component occupies 50% or more of the surface of the fiber in a side-by-side or sheath core since the function as the heat-adhesive fiber is required. More preferably, the low melting point component occupies 100% or more of the surface of the fiber. Next, the heat-bonded fibers are pre-opened with an opener or the like and then opened with a card or the like, and an open web having a three-dimensional structure is laminated and compressed on the surface of the mesh body and bonded by thermoforming. It is also possible to integrate them, or to form a short-fiber non-woven fabric by laminating and compressing only the open webs and thermoforming to form a short-fiber non-woven fabric, and then joining and integrating the net body and the short-fiber non-woven fabric. In this case, a thermal adhesive layer or an adhesive may be separately used between the reticulate body and the short fiber non-woven fabric for bonding and integration, or the thermal rebonding function of the reticulate body or the short fiber non-woven fabric may be used for bonding and integration. Good. As a preferred method of the present invention, a temperature of at least 10 ° C. or lower than the melting point of the thermoplastic elastic resin is used in any step leading to commercialization of the multilayer laminated network obtained by once cooling the network or integrally molding. It is a more preferable production method to obtain a multilayer laminated network or product by carrying out pseudo-crystallization treatment by annealing. The pseudo-crystallization treatment temperature is at least 10 ° C. lower than the melting point (Tm), and is higher than the α dispersion rising temperature (Tαcr) of Tan δ. This treatment has an endothermic peak below the melting point and does not have pseudo-crystallization treatment (no endothermic peak)
The heat resistance and sag resistance are remarkably improved. The preferred pseudo-crystallization treatment temperature of the present invention is from (Tαcr + 10 ° C.) to (Tαcr + 10 ° C.).
m-20 ° C). If it is pseudo-crystallized by simple heat treatment, heat resistance and sag resistance are improved. However, it is more preferable to impart compressive deformation of 10% or more and anneal to significantly improve the heat resistance and sag resistance. Further, when the reticulate body is once cooled and then subjected to a drying step, the pseudo crystallization treatment can be simultaneously performed by setting the drying temperature to the annealing temperature. Also, a pseudo crystallization treatment can be separately performed in the process of commercialization. Then, it is cut into a desired length or shape and used as a cushion material.

【0016】本発明の多層積層網状体をクッション用い
る場合、その使用目的、使用部位により使用する樹脂、
繊度、ル−プ径、嵩密度を選択する必要がある。例え
ば、ソフトなタッチと適度の沈み込みと張りのある膨ら
みを付与するためには、やや高密度で細い繊度の緻密な
構造が好ましく、中層のクッション機能を発現させるに
は、共振振動数を低くし、適度の硬さと圧縮時のヒステ
リシスを直線的に変化させて体型保持性を良くし、耐久
性を保持させるために、中密度で太い繊度、やや大きい
ル−プ径の層と低密度で細い繊度、細かいル−プ径の層
を積層一体化した構造にするのが好ましい。本発明の多
層積層網状体は表面層とクッション層の機能を同時に有
するので、3次元構造を損なわない程度に成形型等を用
いて使用目的にあった形状に成形して側地を被せるのみ
で車両用座席、船舶用座席、ベット、椅子、家具等に用
いることができる。勿論、用途との関係で要求性能に合
うべき他の素材、例えば、異なる網状体、短繊維集合体
からなる硬綿クッション材、不織布等と組合せて用いる
ことも可能である。また、樹脂製造過程以外でも性能を
低下させない範囲で製造過程から成形体に加工し、製品
化する任意の段階で難燃化、防虫抗菌化、耐熱化、撥水
撥油化、着色、芳香等の機能付与を薬剤添加等の処理加
工ができる。
When the multilayer laminated network of the present invention is used as a cushion, a resin used depending on its purpose and site of use,
It is necessary to select the fineness, the loop diameter, and the bulk density. For example, in order to give a soft touch, moderate depression and bulging with tension, a dense structure with a slightly high density and fine fineness is preferable, and in order to exert the cushion function of the middle layer, the resonance frequency is low. However, in order to improve the body shape retention by linearly changing the appropriate hardness and hysteresis at the time of compression, in order to maintain durability, medium density, thick fineness, a layer with a slightly larger loop diameter and low density It is preferable to have a structure in which layers having a fine fineness and a fine loop diameter are laminated and integrated. Since the multi-layer laminate network of the present invention has the functions of both the surface layer and the cushion layer at the same time, it can be formed into a shape suitable for the purpose of use by using a molding die or the like to the extent that the three-dimensional structure is not impaired and the side cloth is covered. It can be used for vehicle seats, boat seats, beds, chairs, furniture and the like. Of course, it is also possible to use it in combination with another material that should meet the required performance in relation to the application, for example, a different mesh body, a hard cotton cushion material composed of a short fiber aggregate, a non-woven fabric, or the like. In addition, other than the resin manufacturing process, the molded product is processed from the manufacturing process to the extent that performance is not deteriorated, and at any stage of commercialization, it becomes flame retardant, insecticidal, antibacterial, heat resistant, water / oil repellent, colored, aroma, etc. It is possible to perform the processing such as the addition of chemicals to add the function.

【0017】[0017]

【実施例】以下に実施例で本発明を詳述する。EXAMPLES The present invention will be described in detail below with reference to examples.

【0018】なお、実施例中の評価は以下の方法で行っ
た。 融点(Tm)および融点以下の吸熱ピ−ク 島津製作所製TA50,DSC50型示差熱分析計を使
用し、昇温速度20℃/分で測定した吸発熱曲線から吸
熱ピ−ク(融解ピ−ク)温度を求めた。 Tαcr ポリマ−を融点+10℃に加熱して、厚み約300μm
のフイルムを作成して、オリエンテック社製バイブロン
DDVII型を用い、110Hz、昇温速度1℃/分で測
定したTanδ(虚数弾性率M”と弾性率の実数部分
M’との比M”/M’)のゴム弾性領域から融解領域へ
の転移点温度に相当するα分散の立ち上がり温度。 見掛け密度 試料を15cm×15cmの大きさに切断し、4か所の高さ
を測定し、体積を求め試料の重さを体積で徐した値で示
す。(n=4の平均値) 線条の繊度 試料を10箇所から各線条部分を切り出し、アクリル樹
脂で包埋して断面を削り出し切片を作成して断面写真を
得る。各部分の断面写真より各部の断面積(Si)を求
める。また、同様にして得た切片をアセトンでアクリル
樹脂を溶解し、真空脱泡して密度勾配管を用いて40℃
にて測定した比重(SGi)を求める。ついで次式より
線状の9000mの重さを求める。(単位cgs) 繊度=〔(1/n)ΣSi×SGi〕×900000 融着 試料を目視判断で融着しているか否かを接着している繊
維同士を手で引っ張って外れないか否かで外れないもの
を融着していると判断する。 耐熱耐久性(70℃残留歪) 試料を15cm×15cmの大きさに切断し、50%圧縮し
て70℃乾熱中22時間放置後冷却して圧縮歪みを除き
1日放置後の厚み(b)を求め、処理前の厚み(a)か
ら次式、即ち(a−b)/a×100より算出する。
(単位%) 繰返し圧縮歪 試料を15cm×15cmの大きさに切断し、島津製作所製
サ−ボパルサ−にて、25℃65%RH室内にて50%
の厚みまで1Hzのサイクルで圧縮回復を繰り返し2万
回後の試料を1日放置後の厚み(b)を求め、処理前の
厚み(a)から次式、即ち(a−b)/a×100より
算出する。(単位%) 座り心地 バケットシ−トの形状に切断成形した多層積層網状体の
表面層側に東洋紡績製ハイムからなるポリエステルモケ
ットの側地を被って、座席用フレ−ムにセットして座部
は4か所、背部は6か所の側地止めを入れた座席を作成
し、30℃RH75%室内で作成した座席にパネラ−を
座らせ以下の評価をおこなった。(n=5) (1) 床つき感:座ったときの「どすん」と床に当たった
感じの程度を感覚的に定性評価した。感じない;◎、殆
ど感じない;○、やや感じる;△、感じる;× (2) 蒸れ感:2時間座っていて、臀部やふと股の内側の
座席と接する部分が蒸れた感じを感覚的に定性評価し
た。殆ど感じない:◎、僅かに蒸れを感じる;○、やや
蒸れを感じる;△、蒸れを著しく感じる;× (3) 8時間以内でどの程度我慢して座席に座っていられ
るか:1時間以内;×、2時間以内;△、4時間以内;
○、4時間以上;◎ (4) 4時間座席に座らせたときの腰の疲れ程度を感覚的
に定性評価した。無し;◎、殆ど疲れない;○、やや疲
れる;△、非常に疲れる;× (5) 総合評価: (1)から(4) までの評価の◎を4点、○
を3点、△を2点、×を1点として12点以上で△を含
まないもの;非常に良い(◎)、12点以上で△を含む
もの;良い(○)、10点以上で×を含まないもの;や
や悪い(△)、×を含むもの;悪い(×)として評価し
た。
The evaluations in the examples were carried out by the following methods. Melting point (Tm) and endothermic peak below melting point TA50, DSC50 type differential thermal analyzer manufactured by Shimadzu Corporation was used, and the endothermic peak (melting peak) was measured from the endothermic curve measured at a temperature rising rate of 20 ° C./min. ) The temperature was determined. Tαcr polymer is heated to the melting point + 10 ° C and the thickness is about 300 μm.
Film was prepared and measured using a Vibron DDVII type manufactured by Orientec Co., Ltd. at a rate of 110 Hz and a heating rate of 1 ° C./min. Tan δ (the ratio of the imaginary elastic modulus M ″ to the real part M ′ of the elastic modulus M ″ / The rising temperature of α dispersion corresponding to the transition temperature from the rubber elastic region to the melting region of M ′). The apparent density sample is cut into a size of 15 cm × 15 cm, the heights at four locations are measured, the volume is determined, and the weight of the sample is divided by the volume. (Average value of n = 4) Each fine line sample is cut out from 10 places of fine line fineness, embedded with an acrylic resin, a cross section is cut out, and a section is prepared to obtain a cross section photograph. The cross-sectional area (Si) of each part is obtained from the cross-sectional photograph of each part. In addition, a piece obtained in the same manner was dissolved in acrylic resin with acetone, degassed in vacuum, and a density gradient tube was used to 40 ° C.
Determine the specific gravity (SGi) measured in. Then, a linear weight of 9000 m is obtained from the following equation. (Unit: cgs) Fineness = [(1 / n) ΣSi × SGi] × 900000 Whether or not the fusion-bonded sample is fused by visual judgment is determined by whether or not the fibers adhering to each other can be pulled out by hand and removed. It is determined that something that does not come off is fused. Heat resistance and durability (residual strain at 70 ° C) Cut a sample into a size of 15 cm x 15 cm, compress it by 50%, leave it in dry heat at 70 ° C for 22 hours, then cool to remove compression strain and leave it for 1 day (b) Is calculated, and is calculated from the thickness (a) before processing by the following equation, that is, (ab) / a × 100.
(Unit:%) Cyclic compressive strain sample is cut into a size of 15 cm x 15 cm, and it is 50% in a RH chamber at 25 ° C and 65% with a Shimadzu Servo Pulsar.
The thickness (b) after leaving the sample for 20,000 times after repeating compression recovery at a cycle of 1 Hz up to the thickness of 1 is calculated from the thickness (a) before the treatment, that is, (ab) / ax Calculated from 100. (Unit:%) Sit comfort Cover the surface of the multi-layer laminated network cut into the shape of a bucket sheet with the side of polyester moquette made of Toyobo Co., Ltd. and set on the seat frame to set the seat. 4 seats and 6 seats on the back were provided with side ground stoppers, and a paneler was seated on the seats prepared in a room at 30 ° C RH75% and the following evaluation was performed. (N = 5) (1) Feeling on the floor: The degree of "dosun" when sitting and the feeling of hitting the floor were qualitatively and qualitatively evaluated. Not felt; ◎, hardly felt; ○, slightly felt; △, felt; × (2) Feeling of stuffiness: Feeling stuffy when sitting for 2 hours and the buttocks and the part of the crotch that contacts the seat inside the crotch Qualitatively evaluated. Almost no feeling: ◎, slightly stuffy; ○, slightly stuffy; △, significantly stuffy; × (3) How long you can sit in the seat within 8 hours: within 1 hour; × within 2 hours; △ within 4 hours;
○ 4 hours or more; ◎ (4) A qualitative qualitative evaluation was performed on the degree of waist fatigue when the user sat in the seat for 4 hours. None; ◎, hardly tired; ○, slightly tired; △, very tired; × (5) Overall evaluation: 4 points from ◎ of the evaluations from (1) to (4), ○
3 points, △ is 2 points, × is 1 point and does not include Δ with 12 points or more; very good (⊚), that with 12 points or more; Good (○), 10 points or more is x It was evaluated as those which did not contain; those which were somewhat bad (Δ) and those which contained x; bad (x).

【0019】実施例1 ポリエステル系エラストマ−として、ジメチルテレフタ
レ−ト(DMT)又は、ジメチルナフタレ−ト(DM
N)と1・4ブタンジオ−ル(1・4BD)を少量の触
媒と仕込み、常法によりエステル交換後、ポリテトラメ
チレングリコ−ル(PTMG)を添加して昇温減圧しつ
つ重縮合せしめポリエ−テルエステルブロック共重合エ
ラストマ−を生成させ、次いで抗酸化剤2%を添加混合
練込み後ペレット化し、50℃48時間真空乾燥して得
られた熱可塑性弾性樹脂原料の処方を表1に示す。
Example 1 As a polyester elastomer, dimethyl terephthalate (DMT) or dimethyl naphthalate (DM) was used.
N) and 1.4 butanediol (1.4 BD) were charged with a small amount of a catalyst, and after transesterification by a conventional method, polytetramethylene glycol (PTMG) was added and polycondensation was performed while heating and depressurizing. -Formation of terester block copolymer elastomer, then addition and mixing of 2% of antioxidant, kneading, pelletizing, and vacuum drying at 50 ° C for 48 hours are shown in Table 1. .

【0020】[0020]

【表1】 [Table 1]

【0021】幅50cm、長さ5cmのノズル有効面に幅方
向の孔間ピッチを1列から6列を5mm、7列から9列を
10mm,10列と11列を6.67mmとし、長さ方向の
孔間ピッチ5mmの千鳥配列としたオリフィス形状は外径
2mm、内径1.6mmでトリプルブリッジの中空形成性断
面としたノズルに、得られた熱可塑性弾性樹脂原料(A
−1)と相対粘度1.0のPBTとを別々の押出機にて
溶融し、A−1を1列目から6列目と10列目と11列
目に分配し、PBTを7列目から9列目に分配し、溶融
温度260℃にて、1列目から6列目の吐出量を758
g/分、7列目から9列目の吐出量を304g/分、1
0列目と11列目の吐出量を253g/分にてノズル下
方に吐出させ、ノズル面10cm下に冷却水を配し、幅6
0cmのステンレス製エンドレスネットを平行に5cm間隔
で一対の引取りコンベアを水面上に一部出るように配し
て、該溶融状態の吐出線状を曲がりくねらせル−プを形
成して接触部分を融着させつつ3次元網状構造を形成
し、該溶融状態の網状体の両面を引取りコンベア−で挟
み込みつつ毎分1mの速度で25℃の冷却水中へ引込み
固化させ両面をフラット化した後、所定の大きさに切断
して得た表面側の熱可塑性弾性樹脂層の網状体は断面形
状が三角おむすび型の中空断面で中空率が38%、繊度
が5600デニ−ルの線条で形成しており、平均の見掛
け密度が0.055g/cm3 、裏面側の熱可塑性弾性樹
脂層の網状体は断面形状が三角おむすび型の中空断面で
中空率が38%、繊度が7500デニ−ルの線条で形成
しており、平均の見掛け密度が0.067g/cm3 、中
間の熱可塑性非弾性樹脂層の網状体は断面形状が三角お
むすび型の中空断面で中空率が40%、繊度が9000
デニ−ルの線条で形成しており、平均の見掛け密度が
0.041g/cm3 で、融着一体化した網状体全体の平
均見掛け密度は0.053g/cm3 であった。別途に、
常法により公知の複合紡糸機にて、熱可塑性弾性樹脂A
−1をシ−ス成分、PBTをコア成分となるように個々
に溶融してオリフィス直前で分配し、各吐出量を50/
50重量比で、単孔当たり1.6g/分孔(0.8g/
分:0.8g/分)として紡糸温度265℃にて吐出
し、紡糸速度3500m/分にて得た繊度が4.1デニ
−ル、乾熱160℃での収縮率4%の糸を収束してトウ
状でクリンパ−にて機械巻縮を付与し、64mmに切断し
てシ−スコア断面の熱可塑性弾性樹脂からなる熱接着繊
維を得た。得られた熱接着繊維をオ−プナ−で予備開繊
した後カ−ドで開繊して得たウエッブを目付け1000
g/m2 に積層し、該網状体に積層し、見掛け密度が
0.05g/cm3 となるように圧縮し、180℃の熱風
にて5分間熱処理後冷却して両面がフラットな多層積層
網状体を得た。次いで厚みの10%圧縮して、100℃
の熱風にて20分疑似結晶化処理して得た本発明の多層
積層網状体の特性を表2に示す。表2で明らかなごと
く、実施例1は柔らかい弾性樹脂の特性が生かせた多層
積層網状体のため耐熱性、常温での耐久性に優れ、体型
保持性が改善された座り心地の優れたクッション材であ
った。評価用に作成した座席も性能が優れていることが
判る。
On the effective surface of the nozzle having a width of 50 cm and a length of 5 cm, the pitch between the holes in the width direction is set to 5 mm for 1 to 6 rows, 10 mm for 7 to 9 rows, and 6.67 mm for 10 and 11 rows. The orifice shape of the staggered arrangement with the hole-to-hole pitch of 5 mm in the direction of 2 mm is the outer diameter of 2 mm and the inner diameter is 1.6 mm.
-1) and PBT having a relative viscosity of 1.0 are melted by separate extruders, A-1 is distributed to the 1st to 6th rows, 10th and 11th rows, and PBT is the 7th row. To the 9th row, and at a melting temperature of 260 ° C., the discharge amount of the 1st to 6th rows is 758
g / min, discharge amount of 7th to 9th rows is 304 g / min, 1
The discharge rate of the 0th and 11th rows was 253 g / min, and was discharged below the nozzle. Cooling water was placed 10 cm below the nozzle surface, and the width was 6
A pair of take-up conveyors with 0 cm stainless steel endless nets arranged in parallel at intervals of 5 cm are arranged so as to partly come out above the water surface, and the melted discharge line is bent to form a loop to form a contact portion. After forming a three-dimensional network structure by fusing, the two sides of the molten network are sandwiched by a take-up conveyor and drawn into cooling water at 25 ° C. at a speed of 1 m / min to be solidified and then flattened. The net-like body of the thermoplastic elastic resin layer on the surface side obtained by cutting into a predetermined size is formed by a linear cross section having a triangular rice ball type hollow cross section with a hollow ratio of 38% and a fineness of 5,600 denier. The average apparent density is 0.055 g / cm 3 , and the net-like body of the thermoplastic elastic resin layer on the back side has a triangular cross-sectional hollow section with a hollow ratio of 38% and a fineness of 7,500 denier. The average appearance Density 0.067 g / cm 3, the mesh-like body of the intermediate thermoplastic non-elastic resin layer hollow ratio of 40% cross-sectional shape hollow cross section of the triangular rice ball type, fineness 9000
Denier - forms Le striatum, the apparent density of the average at 0.041 g / cm 3, the average apparent density of the whole mesh body fused integral was 0.053 g / cm 3. Separately,
The thermoplastic elastic resin A is produced by a conventional composite spinning machine by a conventional method.
-1 is melted individually as a sheath component and PBT as a core component and distributed just before the orifice, and each discharge amount is 50 /
At a weight ratio of 50, 1.6 g / minute hole (0.8 g / hole)
Min: 0.8 g / min), the yarn was discharged at a spinning temperature of 265 ° C., and a yarn having a fineness of 4.1 denier and a shrinkage rate of 4% at a dry heat of 160 ° C. was converged at a spinning speed of 3500 m / min. Then, mechanical crimping was applied with a crimper in a tow shape and cut into 64 mm to obtain a heat-bonded fiber made of a thermoplastic elastic resin having a cross section of sheath core. The resulting heat-bonded fiber was pre-opened with an opener and then opened with a card, and a web was obtained.
g / m 2 , laminated on the net, compressed to an apparent density of 0.05 g / cm 3 , heat-treated with hot air at 180 ° C. for 5 minutes and then cooled to form a multi-layered laminate having flat surfaces. A reticulate body was obtained. Then compress 10% of the thickness to 100 ° C
Table 2 shows the characteristics of the multilayer laminated network of the present invention obtained by performing pseudo-crystallization for 20 minutes with the hot air. As is clear from Table 2, Example 1 is a cushioning material having excellent heat resistance and durability at room temperature, which is a multilayered reticulated body that takes advantage of the characteristics of the soft elastic resin, and which has an improved body retention and is comfortable to sit on. Met. It can be seen that the seat created for evaluation also has excellent performance.

【0022】[0022]

【表2】 [Table 2]

【0023】実施例2 ジメチルイソフタレ−ト(DMI)20モル%とDMT
80モル%及び1・4ブタンジオ−ル(1・4BD)を
少量の触媒と仕込み、実施例1の方法と同様にして得た
ポリエステル系熱可塑性弾性樹脂の処方を表1に示す。
オリフィスの孔形状を孔径φ1mmの丸断面とし、幅方向
の孔間ピッチを10mm、長さ方向の孔間ピッチを5mmの
千鳥配列としたノズルを用い、熱可塑性弾性樹脂にA−
2を用い、1列目から7列目に分配し吐出量710g/
分にて吐出し、熱可塑性非弾性樹脂としてPBTを用い
て8列目から11列目に分配し、吐出量410g/分に
て吐出した以外実施例1と同様にして得たA−2層の網
状体は中実丸断面で繊度9000デニ−ル、平均の見掛
け密度が0.044g/cm3 で、PBT層の網状体は中
実丸断面で繊度9100デニ−ル、平均の見掛け密度が
0.047g/cm3で、融着一体化した網状体の平均の
見掛け密度は0.045g/cm3 であった。次いで実施
例1と同様にして得た多層積層網状体の特性を表2に示
す。表2で明らかなごとく、実施例2は耐熱性と常温で
の耐久性は実用上使用可能で、体型保持性が改善され、
座り心地の優れたクッション材であり、評価用に作成し
た座席も優れていることが判る。
Example 2 20 mol% of dimethyl isophthalate (DMI) and DMT
Table 1 shows the formulation of the polyester-based thermoplastic elastic resin obtained in the same manner as in Example 1 by charging 80 mol% and 1.4-butanediol (1.4-BD) with a small amount of a catalyst.
The orifice shape has a round cross section with a hole diameter of 1 mm, the nozzle pitch is 10 mm in the width direction, and the hole pitch in the length direction is 5 mm.
No. 2 is used and the discharge amount is 710 g /
A-2 layer obtained in the same manner as in Example 1 except that PBT was used as the thermoplastic inelastic resin, PBT was used for distribution in the 8th to 11th columns, and the discharge rate was 410 g / min. Of the solid round cross section has a fineness of 9,000 denier and an average apparent density of 0.044 g / cm 3 , while the PBT layer reticulate has a solid round cross section of a fineness of 9,100 denier and an average apparent density of At 0.047 g / cm 3 , the average apparent density of the fusion-bonded and integrated reticulate body was 0.045 g / cm 3 . Next, Table 2 shows the characteristics of the multilayer laminated network obtained in the same manner as in Example 1. As is clear from Table 2, in Example 2, the heat resistance and the durability at room temperature were practically usable, and the body shape retention was improved.
It is clear that the cushioning material is comfortable to sit on, and the seat created for evaluation is also excellent.

【0024】実施例3 ポリウレタン系エラストマ−として、4・4’ジフェニ
ルメタンジイソシアネ−ト(MDI)とPTMG及び鎖
延長剤として1・4BDを添加して重合し次いで抗酸化
剤2%を添加混合練込み後ペレット化し真空乾燥してポ
リエ−テル系ウレタンポリマ−の処方を表3に示す。
Example 3 As a polyurethane elastomer, 4,4'-diphenylmethane diisocyanate (MDI), PTMG and 1.4BD as a chain extender were added and polymerized, and then 2% of an antioxidant was added and mixed. Table 3 shows the formulation of the polyether urethane polymer after kneading, pelletizing and vacuum drying.

【0025】[0025]

【表3】 [Table 3]

【0026】得られた熱可塑性弾性樹脂(B−1)を用
いた以外実施例1と同様にして得たB−1層の表面側は
線条の断面形状が三角おむすび型の中空断面で中空率4
0%、繊度が6200デニ−ル、平均の見掛け密度が
0.055g/cm3 で、裏面側は線条の断面形状が三角
おむすび型の中空断面で中空率40%、繊度が8300
デニ−ル、平均の見掛け密度が0.066g/cm3 で、
中間のPBT層は繊度が9000デニ−ル、平均の見掛
け密度が0.041g/cm3 で、融着一体化した網状体
全体の平均の見掛け密度が0.053g/cm3 であっ
た。他方、B−1をシ−ス成分に、PBTをコア成分と
し、紡糸温度を265℃とした以外実施例1と同様にし
て得た熱接着繊維の特性は、繊度が4.5デニ−ル、1
50℃での収縮率が4%であった。この熱接着繊維を実
施例1と同様にして1000g/m2の積層ウエッブに
し、該網状体と積層し、160℃の熱風にて5分間熱処
理後冷却して両面がフラットな多層積層網状体を得た。
次いで厚みの10%圧縮して、100℃の熱風にて20
分疑似結晶化処理して得た本発明の多層積層網状体の特
性を表2に示す。実施例3は柔らかいウレタンの特性を
生かした多層積層網状体で耐熱性、常温での耐久性、体
型保持もよい座り心地ともに優れたクッション材であっ
た。評価用に作成した座席も優れていることが判る。
On the surface side of the B-1 layer obtained in the same manner as in Example 1 except that the obtained thermoplastic elastic resin (B-1) was used, the linear cross section of the layer was a triangular rice ball type hollow cross section. Rate 4
0%, fineness is 6200 denier, average apparent density is 0.055 g / cm 3 , and the back side has a triangular cross-section of filaments with a hollow cross section of 40% hollowness and fineness of 8300.
Denier, with an average apparent density of 0.066 g / cm 3 ,
Intermediate PBT layer fineness 9000 denier - le, the apparent density of the average at 0.041 g / cm 3, the average apparent density of the whole mesh body fused integral was 0.053 g / cm 3. On the other hand, the characteristics of the heat-bonded fiber obtained in the same manner as in Example 1 except that B-1 was used as the sheath component, PBT as the core component, and the spinning temperature was 265 ° C, the fineness was 4.5 denier. 1
The shrinkage ratio at 50 ° C. was 4%. This heat-bonded fiber was made into a laminated web of 1000 g / m 2 in the same manner as in Example 1, laminated with the mesh, heat-treated with hot air at 160 ° C. for 5 minutes and then cooled to obtain a multilayer laminated mesh having flat both sides. Obtained.
Then, compress it by 10% of its thickness, and heat it with hot air at 100 ° C for 20
Table 2 shows the characteristics of the multilayer laminated network of the present invention obtained by the minute pseudo crystallization treatment. Example 3 was a cushioning material which was a multilayer laminated network utilizing the characteristics of soft urethane and which was excellent in heat resistance, durability at room temperature, good shape retention and comfortable sitting. It can be seen that the seat created for evaluation is also excellent.

【0027】比較例1〜2 比較例1は実施例1で用いたPBTを1列目から7列目
に、固有粘度0.63のPETを8列目から11列目に
分配し、溶融温度280℃にて吐出し、比較例2はメル
トインデクス5のポリエチレンを1列目から7列目に、
メルトインデックス12のPPを8列目から11列目に
分配し、溶融温度を240℃とした以外、実施例2と同
様にして得た比較例1に用いる網状体は、PBT層の網
状体は中実丸断面で繊度8900デニ−ル、平均の見掛
け密度が0.044g/cm3 で、PET層の網状体は中
実丸断面で繊度9000デニ−ル、平均の見掛け密度が
0.047g/cm3 で、融着一体化した網状体の平均の
見掛け密度は0.045g/cm3 であった。比較例2に
用いる網状体は、PE層の網状体は中実丸断面で繊度2
1000デニ−ル、平均の見掛け密度が0.043g/
cm3 で、PP層の網状体は中実丸断面で繊度25000
デニ−ル、平均の見掛け密度が0.046g/cm3 で、
融着一体化した網状体の平均の見掛け密度は0.045
g/cm3 であった。次いで、疑似結晶化処理しなかった
以外、実施例2と同様にして得た多層積層網状体の特性
を表2に示す。比較例1は非弾性ポリエステルからなる
網状体のため耐熱耐久性が悪く、熱接着成分が熱可塑性
弾性樹脂からなる熱接着繊維を用いた短繊維不織布を表
面層に使用しているにも係わらず、硬くて座り心地の悪
いクッション材である。比較例2は繊度がやや太い非弾
性オレフィンからなる網状体のため、及び熱接着成分が
熱可塑性弾性樹脂からなる熱接着繊維を用いた短繊維不
織布がポリエステルのため、表面層と網状体が熱接着し
なかったのでウレタン系接着材で接着したが、耐熱耐久
性が悪く、座り心地の悪いクッション材であった。
Comparative Examples 1 and 2 In Comparative Example 1, the PBT used in Example 1 was distributed to the 1st to 7th rows, and the PET having an intrinsic viscosity of 0.63 was distributed to the 8th to 11th rows. The mixture was discharged at 280 ° C., and in Comparative Example 2, polyethylene of melt index 5 was used in the first to seventh rows,
The mesh used in Comparative Example 1 obtained in the same manner as in Example 2 except that PP having a melt index of 12 was distributed to the 8th to 11th rows and the melting temperature was 240 ° C. The solid round cross section has a fineness of 8900 denier and an average apparent density of 0.044 g / cm 3 , and the PET layer mesh has a solid round cross section of a fineness of 9000 denier and an average apparent density of 0.047 g / cm 3. In cm 3 , the average apparent density of the fusion-bonded reticulated body was 0.045 g / cm 3 . In the mesh used in Comparative Example 2, the PE layer mesh has a solid round cross section and a fineness of 2
1000 denier, average apparent density 0.043 g /
In cm 3, fineness reticulated body solid round cross-section of the PP layer 25000
Denier, with an average apparent density of 0.046 g / cm 3 ,
The average apparent density of the reticulated body fused and integrated is 0.045.
It was g / cm 3 . Next, Table 2 shows the characteristics of the multilayer laminate network obtained in the same manner as in Example 2 except that the pseudo crystallization treatment was not performed. Comparative Example 1 has a poor heat resistance and durability because it is a reticulated body made of non-elastic polyester, and despite the fact that a short fiber non-woven fabric using a heat-bonding fiber whose thermo-bonding component is a thermoplastic elastic resin is used for the surface layer. It is a hard and uncomfortable cushioning material. In Comparative Example 2, the surface layer and the reticulate body are heat-resistant because the fine fiber is a reticulate body made of non-elastic olefin, and the heat-bonding component is a short fiber non-woven fabric made of a thermoplastic adhesive resin and made of polyester. Since it did not adhere, it was adhered with a urethane adhesive, but it was a cushioning material that had poor heat resistance and durability and was uncomfortable to sit on.

【0028】比較例3 ノズル面60cm下に引取りコンベアネットを配して引き
取ったあと疑似結晶化処理をしなかった以外、実施例2
と同様の方法で得た網状体の特性の一部を表2に示す。
なお、接着状態が不良で形態保持が悪いため、不織布積
層網状体にはできなかったので、50%圧縮時反発力、
見掛け密度、補強効果、70℃残留歪、繰返圧縮歪み、
及び座り心地の評価はしていない。比較例3は形態が固
定されていないのでクッション材に適さない例である。
Comparative Example 3 Example 2 was repeated except that a take-up conveyor net was placed 60 cm below the nozzle surface and no pseudo crystallization treatment was performed after the take-up conveyor net was taken out.
Table 2 shows a part of the properties of the reticulate body obtained by the same method as described above.
In addition, since the non-woven fabric laminated network could not be formed due to poor adhesion and poor shape retention, repulsive force at 50% compression,
Apparent density, reinforcement effect, residual strain at 70 ℃, repeated compression strain,
Also, the sitting comfort is not evaluated. Comparative Example 3 is an example that is not suitable for a cushioning material because its shape is not fixed.

【0029】比較例4 疑似結晶化処理しない以外、実施例2と同様にして得た
線条は繊度9100デニ−ル、平均の見掛け密度は0.
045g/cm3 の網状体と、熱接着繊維に熱可塑性非弾
性樹脂を熱接着成分とした東洋紡績社製4−44−EE
7を用いて疑似結晶化処理しない以外、実施例1と同様
にして作成した短繊維不織布を表面層に積層し、接合一
体化した多層積層網状体の特性を表2に示す。比較例4
は座り心地は良いが、耐熱性と耐久性がやや不良なクッ
ション材であった。
Comparative Example 4 A filament obtained in the same manner as in Example 2 except that the pseudo crystallization treatment was not performed had a fineness of 9100 denier and an average apparent density of 0.
4-45-EE manufactured by Toyobo Co., Ltd., which uses 045 g / cm 3 of reticulate body and thermoplastic non-elastic resin as a thermal bonding component in thermal bonding fiber
Table 2 shows the characteristics of the multilayer laminated network obtained by laminating the short fiber non-woven fabric prepared in the same manner as in Example 1 on the surface layer except that no pseudo crystallization treatment was performed using No. Comparative Example 4
Was a cushioning material that was comfortable to sit on, but had slightly poor heat resistance and durability.

【0030】比較例5 幅50cm、長さ5cmのノズル有効面に幅方向の孔間ピッ
チ20mm、長さ方向の孔間ピッチ10mmの千鳥配列とし
たオリフィス径φ2mmとしたノズルを用いて、A−2を
1列目から3列目、PBTを4列目から6列目に分配
し、A−2を吐出量1925g/分、PBTを吐出量1
900g/分にて吐出させて、ノズル面30cm下に引取
りコンベアネットを配して1m/分にて引き取った以
外、実施例2と同様にして得た線条の繊度はA−2成分
及びPBT成分とも112000デニ−ルで、A−2層
及びPBT層とも平均の見掛け密度は0.154g/cm
3 の網状体を用い、疑似結晶化処理しない以外実施例2
と同様にして作成した多層積層網状体の特性を表2に示
す。比較例5は繊度が著しく太く密度斑のある多層積層
網状体のため、耐熱耐久性が悪くなり、座り心地もやや
悪くなるクッション材であった。
COMPARATIVE EXAMPLE 5 A nozzle having a diameter of 2 mm and having a staggered arrangement with a hole-to-hole pitch of 20 mm in the width direction and a hole-to-hole pitch of 10 mm on the effective surface of a nozzle having a width of 50 cm and a length of 5 cm was used. 2 is distributed from the first row to the third row, PBT is distributed from the fourth row to the sixth row, and the discharge amount of A-2 is 1925 g / min and the discharge amount of PBT is 1
The fineness of the filament obtained in the same manner as in Example 2 except that the filament was discharged at 900 g / min, a take-up conveyor net was placed under the nozzle surface of 30 cm, and the filament was taken at 1 m / min, was A-2 component and The PBT component is 112,000 denier, and the average apparent density of both the A-2 layer and the PBT layer is 0.154 g / cm.
Example 2 except that the reticulate body of 3 was used and no pseudo-crystallization treatment was performed.
Table 2 shows the characteristics of the multilayer laminated network produced in the same manner as in (1). Comparative Example 5 was a cushioning material having a remarkably fineness and a multi-layer laminated netting having a density unevenness, and thus the heat resistance and durability were poor and the sitting comfort was slightly poor.

【0031】比較例6 引取りコンベアネットの間隔(開口幅)を15cmとした
以外、実施例2と同様にして得たA−2層の網状体は中
実丸断面で繊度9000デニ−ル、平均の見掛け密度が
0.038g/cm3 で、PBT層の網状体は中実丸断面
で繊度9100デニ−ル、平均の見掛け密度が0.03
6g/cm3 で、融着一体化した網状体の平均の見掛け密
度は0.037g/cm3 の表面が実質的にフラット化さ
れていない網状体を用い、疑似結晶化処理しない以外実
施例2と同様にして作成した多層積層網状体の特性を表
2に示す。比較例6は網状体の表面が凹凸になっている
ため、見掛け密度が低いのに耐久性が劣り、熱接着が不
充分になり、少し異物感を感じる座り心地のやや劣るク
ッション材であった。
Comparative Example 6 An A-2 layer reticulate body obtained in the same manner as in Example 2 except that the spacing (opening width) of the take-up conveyor net was 15 cm was a solid round cross section with a fineness of 9000 denier. The average apparent density is 0.038 g / cm 3 , the PBT layer mesh has a solid round cross section with a fineness of 9100 denier and an average apparent density of 0.03.
The average apparent density of the reticulated body fused and integrated at 6 g / cm 3 was 0.037 g / cm 3 , and the reticulated body whose surface was not substantially flattened was used. Table 2 shows the characteristics of the multilayer laminated network produced in the same manner as in (1). Comparative Example 6 was a cushioning material with a slightly inferior durability because of its low apparent density due to the uneven surface of the reticulate body, insufficient thermal bonding, and a slightly inferior sitting comfort with a feeling of foreign matter. .

【0032】比較例7 単孔当たりの吐出量3g/分にて吐出させ、引取りコン
ベアネットの速度を0.3m/分とし、疑似結晶化処理
しなかった以外実施例2と同様して得たA−2層は線条
繊度が13000デニ−ル、見掛け密度が0.22g/
cm3 、PBT層は線条繊度が13000デニ−ル、見掛
け密度が0.23g/cm3 で、融着一体化した網状体の
平均の見掛け密度が0.22g/cm3 を用い、疑似結晶
化処理しない以外実施例2と同様にして作成した多層積
層網状体の特性を表2に示す。比較例7は見掛け密度が
高いため、タッチは良好だが座り心地がやや劣り、耐熱
性、耐久性が不充分なクッション材であった。
Comparative Example 7 Obtained in the same manner as in Example 2 except that the amount of discharge per single hole was 3 g / min, the speed of the take-up conveyor net was 0.3 m / min, and no pseudo-crystallization treatment was performed. The A-2 layer has a filament fineness of 13,000 denier and an apparent density of 0.22 g /
cm 3, PBT layer streak fineness 13000 denier - le, with an apparent density of 0.23 g / cm 3, an apparent density of the average of the fused integral net-like body with a 0.22 g / cm 3, pseudo-crystalline Table 2 shows the characteristics of the multilayer laminated network produced in the same manner as in Example 2 except that the chemical treatment was not performed. Since Comparative Example 7 had a high apparent density, it was a cushioning material having a good touch but a little inferior sitting comfort, and insufficient heat resistance and durability.

【0033】比較例8 幅50cm、長さ5cmのノズル有効面に幅方向の孔間ピッ
チ4mm、長さ方向の孔間ピッチ3mmの千鳥配列としたオ
リフィス径φ0.5mmとしたノズルを用いてA−2を1
列目から10列目に27g/分供給し、PBTを11列
目から18列目に22g/分供給して吐出させ、ノズル
面5cm下に引取りコンベアネットを配して0.15m/
分にて引き取った以外、実施例2と同様にして得たA−
2層は繊度が97デニール、見掛け密度が0.013g
/cm3 、PBT層は繊度が98デニール、見掛け密度が
0.014g/cm3 で、融着一体化した平均の見掛け密
度が0.013g/cm3 の網状体を用いて、積層積層網
状体の見掛け密度を0.015g/cm3 となるように圧
縮した以外、比較例7と同様にして作成した不織布積層
網状体の特性を表2に示す。比較例8はタッチが良好で
緻密な網状体をクッション層にした場合でも、線状の繊
度が細過ぎて沈み込みが大きくなり床つき感が大きくな
り座り心地のやや劣るクッション材であった。
Comparative Example 8 A nozzle having a width of 50 cm and a length of 5 cm and having a staggered arrangement of 4 mm pitch between holes in the width direction and 3 mm pitch between holes in the length direction and having an orifice diameter of 0.5 mm was used. -2 to 1
27 g / min is supplied from the 10th to the 10th lines, 22 g / min of PBT is supplied from the 11th to 18th lines to be discharged, and a take-up conveyor net is arranged 5 cm below the nozzle surface to provide 0.15 m / min.
A-obtained in the same manner as in Example 2 except that
The second layer has a fineness of 97 denier and an apparent density of 0.013 g.
/ Cm 3 , the PBT layer has a fineness of 98 denier, an apparent density of 0.014 g / cm 3 , and a fusion-integrated average apparent density of 0.013 g / cm 3 is used. Table 2 shows the characteristics of the non-woven fabric-laminated network produced in the same manner as in Comparative Example 7 except that the apparent density was compressed to 0.015 g / cm 3 . Comparative Example 8 was a cushioning material which was slightly inferior in sitting comfort because the linear fineness was too fine and the depression was large and the feeling of flooring was large even when a fine mesh-like body was used as the cushioning layer.

【0034】比較例9 A−2を1列目から7列目に220g/分供給し、比較
例1に用いたPETを8列目から11列目に125g/
分供給して溶融温度280℃にて吐出させ、引取りコン
ベアネットを配して1.6m/分にて引き取った以外、
実施例2と同様にして得たA−2層は繊度が2800デ
ニール、見掛け密度が0.008g/cm 3 、PBT層は
繊度が2600デニール、見掛け密度が0.009g/
cm3 で、融着一体化した平均の見掛け密度が0.009
g/cm3 の網状体を用いて、積層積層網状体の見掛け密
度を0.008g/cm3 となるように圧縮した以外、比
較例7と同様にして作成した多層積層網状体の特性を表
2に示す。比較例9は見掛け密度が低過ぎて沈み込みが
大きくなり床つき感が大きくなり座り心地のやや劣るク
ッション材であった。
Comparative Example 9 220 g / min of A-2 is supplied from the 1st to the 7th rows for comparison
The PET used in Example 1 was 125 g / in the 8th to 11th rows.
Minute supply and discharge at a melting temperature of 280 ° C.
Bare net is arranged and collected at 1.6m / min.
The A-2 layer obtained in the same manner as in Example 2 had a fineness of 2800 data.
Neil, apparent density 0.008g / cm 3, PBT layer is
Fineness of 2600 denier, apparent density of 0.009 g /
cm3And the average apparent density after fusion bonding is 0.009.
g / cm3Using the reticulated body of
Degree is 0.008g / cm3Except that it was compressed to
The characteristics of the multi-layer laminated network produced in the same manner as in Comparative Example 7 are shown.
2 shows. In Comparative Example 9, the apparent density was too low and the subduction occurred.
It becomes bigger and the feeling of being on the floor becomes larger and the comfort of sitting is slightly inferior.
It was a cushion material.

【0035】実施例5 実施例1で得た多層積層弾性網状体を長さ120cmに切
断して、厚み5cm、幅120cm、長さ50cm毎にキルテ
ィングした幅120cm、長さ200cmの側地に入れマッ
トレスを作成した。このマットレスをベッドに設置し、
25℃RH65%室内にてパネラ−4人に7時間使用さ
せて寝心地を官能評価した。なお、ベットにはシ−ツを
掛け、掛け布団は1.8kgのダウン/フェザ−:90/
10を中綿にしたもの、枕はパネラ−が毎日使用してい
るものを着用させた。評価結果は、床つき感がなく、沈
み込みが適度で、蒸れを感じない快適な寝心地のベット
であった。比較のため、密度0.04g/cm3 で厚み1
0cmの発泡ウレタン板状体で同様のマットレスを作成
し、ベットに設置して寝心地を評価した結果、床つき感
は少ないが沈み込みが大きくやや蒸れを感じる寝心地の
悪いベットであった。
Example 5 The multilayer laminated elastic network obtained in Example 1 was cut into a length of 120 cm and put into a side cloth having a width of 120 cm and a length of 200 cm which was quilted every 5 cm in thickness, 120 cm in width and 50 cm in length. Created a mattress. Place this mattress on the bed,
The panel comfort was sensory-evaluated by allowing 4 panelists to use it in a room at 25 ° C RH 65% for 7 hours. The bed is covered with sheets, and the comforter is 1.8 kg down / feather: 90 /
10 was used as the batting, and the pillow was worn by the paneler, which is used every day. As a result of the evaluation, the bed was a bed which had no feeling of flooring, had a moderate depression, and did not feel stuffy and had a comfortable sleeping comfort. For comparison, a density of 0.04 g / cm 3 and a thickness of 1
A similar mattress was made from a 0 cm urethane foam plate, and the mattress was placed on a bed and the sleeping comfort was evaluated. As a result, it was a bed with a small feeling of flooring but a large sinking and a slight stuffiness, which was uncomfortable to sleep.

【0036】実施例6 実施例1で得た多層積層網状体を幅38cm、長さ40cm
でコ−ナ−をア−ル10cmとした形状に切断し、座り心
地評価用に用いたポリエステルモケットを側地にして事
務椅子フレ−ムに設置し、市販のポリウレタンをクッシ
ョンに使用した事務椅子と対比させて、座り心地を4時
間座らせ評価した結果、蒸れ感、床つき感、座ったまま
我慢できる時間は、本発明の多層積層網状体を用いたも
のが著しく優れていた。
Example 6 The multilayer laminated net body obtained in Example 1 was prepared to have a width of 38 cm and a length of 40 cm.
The corner was cut into a shape with an arc of 10 cm, and the polyester moquette used for sitting comfort evaluation was installed on the office chair frame with the side ground, and a commercial polyurethane chair was used as a cushion. In comparison with the above, the sitting comfort was evaluated by sitting for 4 hours. As a result, the feeling of stuffiness, the feeling of flooring, and the time that the patient can endure while sitting was significantly excellent in the one using the multilayer laminated reticulate body of the present invention.

【0037】[0037]

【発明の効果】振動や応力吸収性の良い熱可塑性弾性樹
脂と体型保持性を向上させる熱可塑性非弾性樹脂が多層
積層化された線条が3次元立体構造を形成し融着一体化
した表面が実質的にフラット化された網状体をクッショ
ン層とし、熱接着成分を振動や応力吸収性の良い熱可塑
性弾性樹脂とし、熱可塑性非弾性樹脂を形態保持成分と
した短繊維不織布を表面層として接合一体化した本発明
の多層積層網状体は、振動遮断性、耐熱耐久性、嵩高
性、体型保持が改善された座り心地の良好な、蒸れにく
いクッション材であり、そのまま側地を被せて又は、他
の素材との併用して、上記の好ましい特性を付与した車
両用座席、船舶用座席、車両用、船舶用、病院やホテル
等の業務用ベット、家具用クッション、寝装用品等の製
品を提供できる。更には、車両用や建築資材としての内
装材や断熱材等にも有用である。
EFFECTS OF THE INVENTION A surface in which a filament in which a thermoplastic elastic resin having good vibration and stress absorption and a thermoplastic non-elastic resin for improving body-holding property are laminated in multiple layers forms a three-dimensional structure and is fused and integrated. Is a flattened reticulate body as a cushion layer, a thermal adhesive component as a thermoplastic elastic resin with good vibration and stress absorption, and a short fiber non-woven fabric with a thermoplastic non-elastic resin as a shape-retaining component as a surface layer. The multilayer laminated reticulate body of the present invention, which is joined and integrated, is a cushioning material having good vibration comfortability, heat resistance durability, bulkiness, and sitting comfort with improved body shape retention, and which is covered with the side fabric as it is or , Products such as vehicular seats, marine seats, vehicular seats, vehicular seats, commercial beds for hospitals and hotels, furniture cushions, bedding products, etc., which are used in combination with other materials. Can be provided. Furthermore, it is also useful as an interior material and a heat insulating material for vehicles and building materials.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI // D01F 6/00 D01F 6/00 A 6/62 303 6/62 303D 6/86 301 6/86 301B (56)参考文献 特開 昭55−17527(JP,A) 特開 平1−213454(JP,A) 特開 昭58−109670(JP,A) 特開 昭58−149362(JP,A) 実開 平1−16326(JP,U) 実開 平2−18300(JP,U) 実開 平2−18371(JP,U) (58)調査した分野(Int.Cl.7,DB名) D04H 1/00 - 18/00 B68G 1/00 - 15/00 B32B 1/00 - 35/00 D01D 1/00 - 13/02 D01F 1/00 - 13/04 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI // D01F 6/00 D01F 6/00 A 6/62 303 303 6/62 303D 6/86 301 6/86 301B (56) References JP 55-17527 (JP, A) JP 1-213454 (JP, A) JP 58-109670 (JP, A) JP 58-149362 (JP, A) SAIHAI 1-16326 (JP, U) Actual development 2-18300 (JP, U) Actual development 2-18371 (JP, U) (58) Fields investigated (Int.Cl. 7 , DB name) D04H 1 / 00-18 / 00 B68G 1/00-15/00 B32B 1/00-35/00 D01D 1/00-13/02 D01F 1/00-13/04

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 繊度が100〜100000デニ−ルの
連続線条を曲がりくねらせ互いに接触させて該接触部の
大部分が融着して3次元立体構造体を形成した熱可塑性
弾性樹脂層と熱可塑性非弾性樹脂層とが積層融着してお
り、表面が実質的にフラット化された積層網状体を形成
しており、該積層網状体の熱可塑性弾性樹脂層面に熱可
塑性弾性樹脂と熱可塑性非弾性樹脂とからなる熱接着性
短繊維が開繊されて3次元構造化され、接触部の大部分
が熱接着成分により融着一体化し、かつ面が実質的にフ
ラット化された不織布が接合一体化されている密度が
0.01g/cm3 から0.2g/cm3 の多層積層網状
体。
1. A thermoplastic elastic resin layer in which continuous filaments having a fineness of 100 to 100,000 denier are bent and brought into contact with each other, and most of the contact portions are fused to form a three-dimensional solid structure. A thermoplastic non-elastic resin layer is laminated and fusion-bonded to each other to form a laminated network having a substantially flat surface. The thermoplastic elastic resin layer and the thermoplastic elastic resin are formed on the thermoplastic elastic resin layer surface of the laminated network. A non-woven fabric in which thermo-adhesive short fibers made of a plastic non-elastic resin are opened to form a three-dimensional structure, and most of the contact portions are fused and integrated by a thermo-adhesive component and the surface is substantially flattened. multilayer laminate meshwork of 0.2 g / cm 3 density that is integrally joined from 0.01 g / cm 3.
【請求項2】 該線条の断面形状が中空断面又は及び異
形断面である請求項1記載の多層積層網状体。
2. The multilayer laminated net body according to claim 1, wherein the cross-sectional shape of the filament is a hollow cross section and / or a modified cross section.
【請求項3】 連続線条を構成する熱可塑性弾性樹脂が
示差走査型熱量計で測定した融解曲線に室温以上融点以
下の温度に吸熱ピークを有する請求項1記載の多層積層
網状体。
3. The multilayer laminated network according to claim 1, wherein the thermoplastic elastic resin forming the continuous filament has an endothermic peak at a temperature of room temperature or higher and melting point or lower in a melting curve measured by a differential scanning calorimeter.
【請求項4】 複数のオリフィスを持つ多列ノズルより
熱可塑性弾性樹脂と熱可塑性非弾性樹脂を各層になるよ
うに各ノズルオリフィスに分配し、該熱可塑性樹脂の融
点より10〜120℃高い溶融温度で、該ノズルより下
方に向けて吐出させ、溶融状態で互いに接触させて融着
させ3次元構造を形成しつつ、引取り装置で挟み込み冷
却槽で冷却せしめた後、片面に熱可塑性弾性樹脂と熱可
塑性非弾性樹脂からなる熱接着性短繊維を開繊して3次
元構造化させた開繊したウエッブを積層し、圧縮熱成形
により、接触部の大部分を熱接着成分により融着一体化
する多層積層網状体の製法。
4. A thermoplastic elastic resin and a thermoplastic inelastic resin are distributed to each nozzle orifice so as to form each layer from a multi-row nozzle having a plurality of orifices, and the melting point is 10 to 120 ° C. higher than the melting point of the thermoplastic resin. It is discharged downward from the nozzle at a temperature, and in a molten state, they are brought into contact with each other and fused to form a three-dimensional structure, sandwiched by a take-up device and cooled in a cooling tank, and then thermoplastic elastic resin is applied to one side. And heat-adhesive short fibers made of thermoplastic non-elastic resin are spread to form a three-dimensional structured open web, and most of the contact parts are fused and integrated by compression thermoforming by compression thermoforming. A method for producing a multi-layer laminated netting material.
【請求項5】 冷却後から一体成形して製品化に至る工
程で熱可塑性弾性樹脂の融点より少なくとも10℃以下
の温度でアニ−リングする請求項4に記載の多層積層網
状体の製法。
5. The method for producing a multi-layer laminate network according to claim 4, wherein annealing is performed at a temperature of at least 10 ° C. or lower than the melting point of the thermoplastic elastic resin in the step of integrally molding after cooling and commercialization.
【請求項6】 請求項1に記載の多層積層網状体を用い
た車両用座席、船舶用座席、車両用、船舶用、病院用等
の業務用及び家庭用ベット、家具用椅子、事務用椅子お
よび布団のいずれかに記載の製品。
6. A vehicle seat, a ship seat, a vehicle, a ship, a hospital bed, etc. for commercial and household beds, furniture chairs, office chairs, and the like, which use the multilayer laminated mesh according to claim 1. And the product described in any of the futons.
JP8483794A 1994-04-22 1994-04-22 Multilayer laminated net, manufacturing method and product using the same Expired - Lifetime JP3444372B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8483794A JP3444372B2 (en) 1994-04-22 1994-04-22 Multilayer laminated net, manufacturing method and product using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8483794A JP3444372B2 (en) 1994-04-22 1994-04-22 Multilayer laminated net, manufacturing method and product using the same

Publications (2)

Publication Number Publication Date
JPH07300755A JPH07300755A (en) 1995-11-14
JP3444372B2 true JP3444372B2 (en) 2003-09-08

Family

ID=13841912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8483794A Expired - Lifetime JP3444372B2 (en) 1994-04-22 1994-04-22 Multilayer laminated net, manufacturing method and product using the same

Country Status (1)

Country Link
JP (1) JP3444372B2 (en)

Also Published As

Publication number Publication date
JPH07300755A (en) 1995-11-14

Similar Documents

Publication Publication Date Title
JP3454373B2 (en) Elastic network, manufacturing method and products using the same
JP3473710B2 (en) Mixed fineness reticulated body, manufacturing method and products using it
JP3431097B2 (en) Multilayer laminated net, manufacturing method and product using the same
JP3444375B2 (en) Multilayer net, manufacturing method and products using the same
JP3430444B2 (en) Netting structure for cushion, manufacturing method thereof and cushion product
JP3444374B2 (en) Multilayer laminated net, manufacturing method and product using the same
JP3454375B2 (en) Nonwoven laminated structure, manufacturing method and product using the same
JP3444368B2 (en) Nonwoven laminated net, manufacturing method and product using the same
JP2002000408A (en) Vehicle seat
JP3430445B2 (en) Composite net, its manufacturing method and products using it
JP3444372B2 (en) Multilayer laminated net, manufacturing method and product using the same
JP3430449B2 (en) Nonwoven laminated net, manufacturing method and product using the same
JP3431090B2 (en) Nonwoven laminated net, manufacturing method and product using the same
JP3430448B2 (en) Laminated structure, manufacturing method and products using the same
JP3430447B2 (en) Laminated elastic structure, manufacturing method and product using the same
JP3444371B2 (en) Multilayer laminated net, manufacturing method and product using the same
JP3431098B2 (en) Flame-retardant reinforced mesh, manufacturing method and products using the same
JP3444370B2 (en) Multilayer laminated net, manufacturing method and product using the same
JP3430446B2 (en) Composite elastic network, its production method and products using it
JP3431096B2 (en) Nonwoven laminated net, manufacturing method and product using the same
JP3431091B2 (en) Nonwoven laminated net, manufacturing method and product using the same
JP3431092B2 (en) Nonwoven laminated net, manufacturing method and product using the same
JP3444369B2 (en) Laminated net, manufacturing method and product using the same
JP3454374B2 (en) Laminated net, manufacturing method and product using the same
JP3351490B2 (en) Nonwoven laminated net, manufacturing method and product using the same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080627

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20080627

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090627

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20090627

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100627

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100627

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110627

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120627

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20130627

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20130627

EXPY Cancellation because of completion of term