JP3431091B2 - Nonwoven laminated net, manufacturing method and product using the same - Google Patents

Nonwoven laminated net, manufacturing method and product using the same

Info

Publication number
JP3431091B2
JP3431091B2 JP4417094A JP4417094A JP3431091B2 JP 3431091 B2 JP3431091 B2 JP 3431091B2 JP 4417094 A JP4417094 A JP 4417094A JP 4417094 A JP4417094 A JP 4417094A JP 3431091 B2 JP3431091 B2 JP 3431091B2
Authority
JP
Japan
Prior art keywords
thermoplastic
elastic resin
resin
woven fabric
fused
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4417094A
Other languages
Japanese (ja)
Other versions
JPH07258953A (en
Inventor
英夫 磯田
靖司 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP4417094A priority Critical patent/JP3431091B2/en
Publication of JPH07258953A publication Critical patent/JPH07258953A/en
Application granted granted Critical
Publication of JP3431091B2 publication Critical patent/JP3431091B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Artificial Filaments (AREA)
  • Multicomponent Fibers (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Nonwoven Fabrics (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、優れたクッション性と
耐熱耐久性及び振動吸収性とを有し、リサイクルが可能
な短繊維硬綿層を積層接合した熱可塑性弾性樹脂と熱可
塑性非弾性樹脂からなる網状体との不織布積層網状体と
製法および不織布積層網状体を用いた布団、家具、ベッ
ド、車両用クッション材等の製品に関する。
BACKGROUND OF THE INVENTION The present invention relates to a thermoplastic elastic resin and a thermoplastic inelastic material which have excellent cushioning properties, heat resistance durability and vibration absorption properties, and which are laminated and joined with a recyclable short fiber hard cotton layer. TECHNICAL FIELD The present invention relates to a non-woven fabric laminated net with a net made of a resin and a manufacturing method, and products such as a futon, furniture, a bed, and a cushioning material for a vehicle using the non-woven fabric net.

【0002】[0002]

【従来の技術】現在、家具、ベッド、電車、自動車等の
クッション材に、発泡ウレタン、非弾性捲縮繊維詰綿、
及び非弾性捲縮繊維を接着した樹脂綿や硬綿などが使用
されている。
2. Description of the Related Art At present, as a cushion material for furniture, beds, trains, automobiles, etc., urethane foam, non-elastic crimped fiber wadding,
In addition, resin cotton or hard cotton to which non-elastic crimped fibers are adhered is used.

【0003】しかしながら、発泡−架橋型ウレタンはク
ッション材としての耐久性は極めて良好だが、透湿透水
性に劣り蓄熱性があるため蒸れやすく、かつ、熱可塑性
では無いためリサイクルが困難となり焼却される場合、
焼却炉の損傷が大きく、かつ、有毒ガス除去に経費が掛
かる。このため埋め立てされることが多くなったが、地
盤の安定化が困難なため埋め立て場所が限定され経費も
高くなっていく問題がある。また、加工性は優れるが製
造中に使用される薬品の公害問題などもある。また、熱
可塑性ポリエステル繊維詰綿では繊維間が固定されてい
ないため、使用時形態が崩れたり、繊維が移動して、か
つ、捲縮のへたりで嵩高性の低下や弾力性の低下が問題
になる。
However, although the foamed-crosslinked urethane has very good durability as a cushioning material, it is inferior in moisture permeability and water permeability and has a heat storage property, so that it easily steams, and since it is not thermoplastic, it is difficult to recycle and incinerated. If
The incinerator is heavily damaged and the cost of removing toxic gas is high. For this reason, landfilling has become more frequent, but it is difficult to stabilize the ground, and there is a problem that landfilling sites are limited and costs increase. Further, although it has excellent processability, it also has a problem of pollution of chemicals used during manufacturing. In addition, since the fibers are not fixed in the thermoplastic polyester fiber wadding, the form may collapse during use, the fibers may move, and the crimp may cause a decrease in bulkiness and elasticity. become.

【0004】ポリエステル繊維を接着剤で接着した樹脂
綿、例えば接着剤にゴム系を用いたものとして特開昭6
0−11352号公報、特開昭61−141388号公
報、特開昭61−141391号公報等がある。又、架
橋性ウレタンを用いたものとして特開昭61−1377
32号公報等がある。これらのクッション材は耐久性に
劣り、且つ、熱可塑性でなく、単一組成でもないためリ
サイクルも出来ない等の問題、及び加工性の煩雑さや製
造中に使用される薬品の公害問題などもある。
As a resin cotton in which polyester fibers are adhered with an adhesive, for example, a rubber-based adhesive is used, Japanese Patent Application Laid-Open No.
0-11352, JP-A 61-141388, JP-A 61-141391 and the like. Further, as a method using a cross-linkable urethane, JP-A-61-1377
No. 32 publication and the like. These cushion materials have inferior durability, and also have problems such as not being recyclable because they are neither thermoplastic nor single composition, and there are problems such as complexity of processability and pollution of chemicals used during manufacturing. .

【0005】ポリエステル硬綿、例えば特開昭58−3
1150号公報、特開平2−154050号公報、特開
平3−220354号公報等があるが、用いている熱接
着繊維の接着成分が脆い非晶性のポリマ−を用いるため
(例えば特開昭58−136828号公報、特開平3−
249213号公報等)接着部分が脆く、使用中に接着
部分が簡単に破壊されて形態や弾力性が低下するなどの
耐久性に劣る問題がある。改良法として、交絡処理する
方法が特開平4−245965号公報等で提案されてい
るが、接着部分の脆さは解決されず弾力性の低下が大き
い問題がある。また、加工時の煩雑さもある。更には接
着部分が変形しにくくソフトなクッション性を付与しに
くい問題もある。このため、接着部分を柔らかい、且つ
ある程度変形しても回復するポリエステルエラストマ−
を用い、芯成分に非弾性ポリエステルを用いた熱接着繊
維が特開平4−240219号公報で、同繊維を用いた
クッション材がWO−91/19032号公報、特開平
5−156561号公報、特開平5−163654号公
報等で提案されている。この繊維構造物に使われる接着
成分がポリエステルエラストマ−のソフトセグメントと
してはポリアルキレングリコ−ルの含有量が30〜50
重量%、ハ−ドセグメントの酸成分にテレフタル酸を5
0〜80モル%含有し、他の酸成分組成として特公昭6
0−1404号公報に記載された繊維と同様にイソフタ
ル酸を含有して非晶性が増すことになり、融点も180
℃以下となり低溶融粘度として熱接着部分の形成を良く
してアメーバー状の接着部を形成しているが塑性変形し
やいため、及び芯成分が非弾性ポリエステルのため、特
に加熱下での塑性変形が著しくなり、耐熱抗圧縮性が低
下する問題点がある。これらの改良法として、特開平5
−163654号公報にシ−ス成分にイソフタル酸を含
有するポリエステルエラストマ−、コア成分に非弾性ポ
リエステルを用いた熱接着複合繊維のみからなる構造体
が提案されているが上述の理由で加熱下での塑性変形が
著しくなり、耐熱抗圧縮性が低下し、クッション材に使
用するには問題がある。他方、硬綿の母材にシリコ−ン
油剤を付与して繊維の摩擦係数を下げて耐久性を向上
し、風合いを良くする方法が特開昭63−158094
号公報で提案されている。が、熱接着繊維の接着性に問
題があり、耐久性が劣るのでクッション材に使用するに
は好ましくない。
Polyester hard cotton, for example, JP-A-58-3
1150, JP-A-2-154050, JP-A-3-220354, etc., but since an amorphous polymer having a brittle adhesive component of the heat-bonding fiber used is used (for example, JP-A-58). -136828, Japanese Patent Application Laid-Open No. 3-
However, there is a problem in that durability is poor such that the bonded portion is brittle and the bonded portion is easily broken during use and the form and elasticity are reduced. As an improved method, a method of entanglement treatment has been proposed in Japanese Patent Laid-Open No. 4-245965, but there is a problem that the brittleness of the bonded portion is not solved and the elasticity is largely reduced. In addition, there is complexity during processing. Further, there is a problem that the bonded portion is hard to be deformed and soft cushioning is hard to be imparted. For this reason, the polyester elastomer that is soft even at the bonded portion and recovers even if it is deformed to some extent
A heat-bonding fiber using a non-elastic polyester as a core component is disclosed in JP-A-4-240219, and a cushion material using the fiber is disclosed in WO-91 / 19032, JP-A-5-155651. It is proposed in Japanese Patent Laid-Open No. 5-163654. The adhesive component used in this fiber structure has a polyalkylene glycol content of 30 to 50 as a soft segment of polyester elastomer.
Wt%, 5% terephthalic acid as the acid component of the hard segment
It contains 0 to 80 mol% and is used as another acid component composition
As in the fiber described in Japanese Patent Publication No. 0-1404, isophthalic acid is contained to increase the amorphous property, and the melting point is 180.
The temperature is below ℃, and the heat-bonded part is well formed with a low melt viscosity to form an ameber-shaped bonded part, but it is easy to plastically deform, and because the core component is an inelastic polyester, plastic deformation especially under heating Becomes remarkable, and there is a problem that the heat resistance and compression resistance are lowered. As an improved method for these, Japanese Patent Laid-Open No.
No. 163654 proposes a structure consisting only of a polyester elastomer containing isophthalic acid as a sheath component and a heat-bonding composite fiber using an inelastic polyester as a core component. Plastic deformation becomes remarkable, the heat resistance and compression resistance deteriorate, and there is a problem in using it as a cushion material. On the other hand, there is a method in which a silicone oil is added to a base material of hard cotton to lower the friction coefficient of fibers to improve durability and improve the texture.
It has been proposed in the publication. However, there is a problem with the adhesiveness of the heat-adhesive fiber and the durability is poor, so it is not preferable for use as a cushioning material.

【0006】土木工事用に使用する熱可塑性のオレフィ
ン網状体が特開昭47−44839号公報に開示されて
いる。が、細い繊維から構成したクッションとは異なり
表面が凸凹でタッチが悪く、素材がオレフィンのため耐
熱耐久性が著しく劣りワディング層やクッション材には
使用ができないものである。また、特公平3−1766
6号公報には繊度の異なる吐出線条を互いに融着してモ
−ル状物を作る方法があるがクッション材には適さない
網状構造体である。特公平3−55583号公報には、
ごく表面のみ冷却前に回転体等の細化装置で細くする方
法が記載されている。この方法では表面をフラット化で
きず、厚みのある細い線条層を作ることできない。した
がって座り心地の良好なクッション材にはならない。特
開平1−207462号公報では、塩化ビニ−ル製のフ
ロアマットの開示があるが、室温での圧縮回復性が悪
く、耐熱性は著しく悪いので、クッション材としては好
ましくないものである。なお、上述構造体は振動減衰に
関する配慮が全くなされていない。
A thermoplastic olefin network used for civil engineering work is disclosed in JP-A-47-44839. However, unlike a cushion made of fine fibers, the surface is uneven and the touch is poor, and since the material is olefin, the heat resistance durability is extremely poor and it cannot be used as a wadding layer or cushion material. In addition, Japanese Patent Publication No. 3-1766
No. 6 discloses a method in which ejection filaments having different fineness are fused to each other to form a mold, but the mesh structure is not suitable as a cushion material. Japanese Examined Patent Publication No. 3-55583 discloses that
A method of thinning only a very surface with a thinning device such as a rotating body before cooling is described. With this method, the surface cannot be flattened and a thick thin linear layer cannot be formed. Therefore, it does not provide a comfortable cushioning material. JP-A-1-207462 discloses a floor mat made of vinyl chloride, but it is not preferable as a cushioning material because it has poor compression recovery at room temperature and remarkably poor heat resistance. Note that no consideration is given to vibration damping in the above-mentioned structure.

【0007】[0007]

【発明が解決しようとする課題】上記問題点を解決し、
振動を遮断し、耐熱耐久性、形態保持性、クッション性
の優れた蒸れ難い、熱可塑性弾性樹脂と熱可塑性非弾性
樹脂からなる短繊維の硬綿を積層接合した熱可塑性弾性
樹脂と熱可塑性非弾性樹脂が複合化した網状体で構成し
たクッション材に最適な不織布積層網状体と製法及び不
織布積層網状体を用いた布団、家具、ベッド、車両用ク
ッション等の製品と製法を提供することを目的とする。
To solve the above problems,
Isolates vibrations and has excellent heat resistance and durability, shape retention and cushioning properties and is resistant to stuffiness. Thermoplastic elastic resin and thermoplastic non-woven resin are made by laminating and joining short cotton fibers made of thermoplastic elastic resin and thermoplastic inelastic resin. An object of the present invention is to provide a non-woven laminate network and a manufacturing method, which are most suitable for a cushioning material composed of a network in which an elastic resin is composited, and a product and a manufacturing method using a non-woven laminate network such as a futon, furniture, bed, and cushion for a vehicle. And

【0008】[0008]

【課題を解決するための手段】上記課題を解決するため
の手段、即ち本発明は、熱可塑性弾性樹脂と熱可塑性非
弾性樹脂が複合化した繊度が100〜10000デニー
ルの連続した複合線条を曲がりくねらせ互いに接触させ
て該接触部の大部分が融着した3次元立体構造体を形成
しており、その両面は、実質的にフラット化されでお
り、その片面に、熱可塑性弾性樹脂と熱可塑性非弾性樹
脂からなる熱接着性複合短繊維が3次元構造化され、接
触部の大部分が熱可塑性弾性樹脂により融着一体化して
おり面が実質的にフラット化された不織布が接合一体化
され、密度が0.01g/cm3 から0.2g/cm3 であ
ることを特徴とする不織布積層網状体、複数のオリフィ
スを持つ多列ノズルより熱可塑性弾性樹脂と熱可塑性非
弾性樹脂を複合化できる様にノズルオリフィスの直前で
分配し、該熱可塑性樹脂の融点より10〜120℃高い
溶融温度で、該ノズルより下方に向けて吐出させ、溶融
状態で互いに接触させて融着させ3次元構造を形成しつ
つ、引取り装置で挟み込み冷却槽で冷却せしめた後、片
面に熱可塑性弾性樹脂と熱可塑性非弾性樹脂からなる熱
接着性複合短繊維を開繊して3次元構造化させたウエッ
ブを積層し、圧縮熱成形により、接触部の大部分を熱可
塑性弾性樹脂により融着一体化する不織布積層網状体の
製法および前記不織布積層網状体を用いた製品である。
[Means for Solving the Problems] Means for solving the above problems, that is, the present invention provides a continuous composite filament having a fineness of 100 to 10,000 denier, which is a composite of a thermoplastic elastic resin and a thermoplastic non-elastic resin. A three-dimensional three-dimensional structure in which most of the contact portions are fused by being bent and brought into contact with each other to form a three-dimensional three-dimensional structure, both surfaces of which are substantially flattened, and a thermoplastic elastic resin is formed on one surface of the three-dimensional structure. Thermoadhesive composite short fibers made of thermoplastic non-elastic resin are three-dimensionally structured, and most of the contact parts are fused and integrated by the thermoplastic elastic resin, and the non-woven fabric whose surface is substantially flat is joined and integrated. And has a density of 0.01 g / cm 3 to 0.2 g / cm 3 , a non-woven laminated network, a thermoplastic elastic resin and a thermoplastic non-elastic resin from a multi-row nozzle having a plurality of orifices. Can be compounded Like above, the liquid is dispensed immediately before the nozzle orifice, and is discharged downward from the nozzle at a melting temperature higher than the melting point of the thermoplastic resin by 10 to 120 ° C., and in a molten state, they are brought into contact with each other and fused to form a three-dimensional structure. After being formed, sandwiched by a take-up device and cooled in a cooling tank, a thermo-adhesive composite short fiber composed of a thermoplastic elastic resin and a thermoplastic non-elastic resin is opened on one side to form a three-dimensional structured web. It is a method for producing a non-woven laminate network in which most of the contact portions are laminated by fusion with a thermoplastic elastic resin by lamination and compression thermoforming, and a product using the non-woven laminate network.

【0009】本発明における熱可塑性弾性樹脂とは、ソ
フトセグメントとして分子量300〜5000のポリエ
−テル系グリコ−ル、ポリエステル系グリコ−ル、ポリ
カ−ボネ−ト系グリコ−ルまたは長鎖の炭化水素末端を
カルボン酸または水酸基にしたオレフィン系化合物等を
ブロック共重合したポリエステル系エラストマ−、ポリ
アミド系エラストマ−、ポリウレタン系エラストマ−、
ポリオレフィン系エラストマ−などが挙げられる。熱可
塑性弾性樹脂とすることで、再溶融により再生が可能と
なるため、リサイクルが容易となる。例えば、ポリエス
テル系エラストマ−としては、熱可塑性ポリエステルを
ハ−ドセグメントとし、ポリアルキレンジオ−ルをソフ
トセグメントとするポリエステルエ−テルブロック共重
合体、または、脂肪族ポリエステルをソフトセグメント
とするポリエステルエステルブロック共重合体が例示で
きる。ポリエステルエ−テルブロック共重合体のより具
体的な事例としては、テレフタル酸、イソフタル酸、ナ
フタレン2・6ジカルボン酸、ナフタレン2・7ジカル
ボン酸、ジフェニル4・4’ジカルボン酸等の芳香族ジ
カルボン酸、1・4シクロヘキサンジカルボン酸等の脂
環族ジカルボン酸、琥珀酸、アジピン酸、セバチン酸ダ
イマ−酸等の脂肪族ジカルボン酸または、これらのエス
テル形成性誘導体などから選ばれたジカルボン酸の少な
くとも1種と、1・4ブタンジオ−ル、エチレングリコ
−ル、トリメチレングリコ−ル、テトレメチレングリコ
−ル、ペンタメチレングリコ−ル、ヘキサメチレングリ
コ−ル等の脂肪族ジオ−ル、1・1シクロヘキサンジメ
タノ−ル、1・4シクロヘキサンジメタノ−ル等の脂環
族ジオ−ル、またはこれらのエステル形成性誘導体など
から選ばれたジオ−ル成分の少なくとも1種、および平
均分子量が約300〜5000のポリエチレングリコ−
ル、ポリプロピレングリコ−ル、ポリテトラメチレング
リコ−ル、エチレンオキシド−プロピレンオキシド共重
合体からなるグリコ−ル等のポリアルキレンジオ−ルの
うち少なくとも1種から構成される三元ブロック共重合
体である。ポリエステルエステルブロック共重合体とし
R>ては、上記ジカルボン酸とジオ−ル及び平均分子量が
約300〜5000のポリラクトン等のポリエステルジ
オ−ルのうち少なくとも各1種から構成される三元ブロ
ック共重合体である。熱接着性、耐加水分解性、伸縮
性、耐熱性等を考慮すると、ジカルボン酸としてはテレ
フタル酸、または、及びナフタレン2・6ジカルボン
酸、ジオ−ル成分としては1・4ブタンジオ−ル、ポリ
アルキレンジオ−ルとしてはポリテトラメチレングリコ
−ルの3元ブロック共重合体または、ポリエステルジオ
−ルとしてポリラクトンの3元ブロック共重合体が特に
好ましい。特殊な例では、ポリシロキサン系のソフトセ
グメントを導入したものも使うこたができる。また、上
記エラストマ−に非エラストマ−成分をブレンドされた
もの、共重合したもの、ポリオレフィン系成分をソフト
セグメントにしたもの等も本発明の熱可塑性弾性樹脂に
包含される。ポリアミド系エラストマ−としては、ハ−
ドセグメントにナイロン6、ナイロン66、ナイロン6
10、ナイロン612、ナイロン11、ナイロン12等
及びそれらの共重合ナイロンを骨格とし、ソフトセグメ
ントには、平均分子量が約300〜5000のポリエチ
レングリコ−ル、ポリプロピレングリコ−ル、ポリテト
ラメチレングリコ−ル、エチレンオキシド−プロピレン
オキシド共重合体からなるグリコ−ル等のポリアルキレ
ンジオ−ルのうち少なくとも1種から構成されるブロッ
ク共重合体を単独または2種類以上混合して用いてもよ
い。更には、非エラストマ−成分をブレンドされたも
の、共重合したもの等も本発明に使用できる。ポリウレ
タン系エラストマ−としては、通常の溶媒(ジメチルホ
ルムアミド、ジメチルアセトアミド等)の存在または不
存在下に、(A)数平均分子量1000〜6000の末
端に水酸基を有するポリエ−テル及び又はポリエステル
と(B)有機ジイソシアネ−トを主成分とするポリイソ
シアネ−トを反応させた両末端がイソシアネ−ト基であ
るプレポリマ−に、(C)ジアミンを主成分とするポリ
アミンにより鎖延長したポリウレタンエラストマ−を代
表例として例示できる。(A)のポリエステル、ポリエ
−テル類としては、平均分子量が約1000〜600
0、好ましくは1300〜5000のポリブチレンアジ
ペ−ト共重合ポリエステルやポリエチレングリコ−ル、
ポリプロピレングリコ−ル、ポリテトラメチレングリコ
−ル、エチレンオキシド−プロピレンオキシド共重合体
からなるグリコ−ル等のポリアルキレンジオ−ルが好ま
しく、(B)のポリイソシアネ−トとしては、従来公知
のポリイソシアネ−トを用いることができるが、ジフェ
ニルメタン4・4’ジイソシアネ−トを主体としたイソ
シアネ−トを用い、必要に応じ従来公知のトリイソシア
ネ−ト等を微量添加使用してもよい。(C)のポリアミ
ンとしては、エチレンジアミン、1・2プロピレンジア
ミン等公知のジアミンを主体とし、必要に応じて微量の
トリアミン、テトラアミンを併用してもよい。これらの
ポリウレタン系エラストマ−は単独又は2種類以上混合
して用いてもよい。なお、本発明の熱可塑性弾性樹脂の
融点は耐熱耐久性が保持できる140℃以上が好まし
く、160℃以上のものを用いると耐熱耐久性が向上す
るのでより好ましい。なお、必要に応じ、抗酸化剤や耐
光剤等を添加して耐久性を向上させることができる。本
発明の目的である振動や応力の吸収機能をもたせる成分
を構成する熱可塑性弾性樹脂のソフトセグメント含有量
は好ましくは15重量%以上、より好ましくは30重量
%以上であり、耐熱耐へたり性からは80重量%以下が
好ましく、より好ましくは70重量%以下である。即
ち、本発明の不織布積層網状体の振動や応力の吸収機能
をもたせる成分のソフトセグメント含有量は好ましくは
15重量%以上80重量%以下であり、より好ましくは
30重量%以上70重量%以下である。
The thermoplastic elastic resin in the present invention means, as the soft segment, an ether type glycol, a polyester type glycol, a polycarbonate type glycol or a long chain hydrocarbon having a molecular weight of 300 to 5,000. Polyester elastomer obtained by block-copolymerizing an olefinic compound having a carboxylic acid or a hydroxyl group at the terminal, a polyamide elastomer, a polyurethane elastomer,
Examples include polyolefin elastomers. By using a thermoplastic elastic resin, it becomes possible to regenerate by remelting, and thus recycling becomes easy. For example, as the polyester elastomer, a polyester ether block copolymer having a thermoplastic polyester as a hard segment and a polyalkylenediol as a soft segment, or a polyester ester having an aliphatic polyester as a soft segment A block copolymer can be illustrated. More specific examples of the polyester ether block copolymer include aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid, naphthalene 2.6 dicarboxylic acid, naphthalene 2.7 dicarboxylic acid, and diphenyl 4.4'dicarboxylic acid. At least one of alicyclic dicarboxylic acids such as 1,4-cyclohexanedicarboxylic acid, aliphatic dicarboxylic acids such as succinic acid, adipic acid, sebacic acid dimer acid, and dicarboxylic acids selected from ester-forming derivatives thereof Seeds and aliphatic diols such as 1.4 butanediol, ethylene glycol, trimethylene glycol, tetremethylene glycol, pentamethylene glycol and hexamethylene glycol, 1.1 cyclohexane Alicyclic diols such as dimethanol and 1,4-cyclohexane dimethanol, or these Of at least one diole component selected from the ester-forming derivatives thereof and polyethylene glycol having an average molecular weight of about 300 to 5,000.
Is a ternary block copolymer composed of at least one kind of polyalkylenediol such as glycol, polypropylene glycol, polytetramethylene glycol, and glycol made of ethylene oxide-propylene oxide copolymer. . As polyester ester block copolymer
R> is a ternary block copolymer composed of at least one of the above dicarboxylic acids, diol, and polyester diol such as polylactone having an average molecular weight of about 300 to 5,000. Considering heat adhesion, hydrolysis resistance, stretchability, heat resistance, etc., terephthalic acid as dicarboxylic acid, or naphthalene 2.6 dicarboxylic acid, 1.4 butanediol as diole component, and poly The alkylene diol is particularly preferably a terpolymer block copolymer of polytetramethylene glycol or the terpolymer block copolymer of polylactone as the polyester diol. In a special case, it is possible to use the one in which a polysiloxane-based soft segment is introduced. Also, the thermoplastic elastomer resin of the present invention includes those obtained by blending the above elastomer with a non-elastomer component, those obtained by copolymerization, those obtained by softening the polyolefin component, and the like. As a polyamide elastomer,
Nylon 6, nylon 66, nylon 6 for the segment
10, Nylon 612, Nylon 11, Nylon 12, etc. and their copolymerized nylon as the skeleton, and the soft segment has an average molecular weight of about 300 to 5,000 polyethylene glycol, polypropylene glycol, polytetramethylene glycol. A block copolymer composed of at least one kind of polyalkylenediol such as glycol made of ethylene oxide-propylene oxide copolymer may be used alone or in combination of two or more kinds. Furthermore, blends of non-elastomer components and copolymers thereof can be used in the present invention. Examples of the polyurethane elastomer include (A) a polyester and / or a polyester having a hydroxyl group at the terminal with a number average molecular weight of 1000 to 6000 in the presence or absence of a usual solvent (dimethylformamide, dimethylacetamide, etc.). ) A typical example is a polyurethane elastomer obtained by reacting a polyisocyanate containing an organic diisocyanate as a main component with a prepolymer having isocyanate groups at both ends and (C) extending the chain with a polyamine containing a diamine as a main component. Can be illustrated as As the polyester (A) and the polyethers, the average molecular weight is about 1000 to 600.
0, preferably 1300 to 5000 polybutylene adipate copolyester or polyethylene glycol,
Polyalkylenediols such as polypropylene glycol, polytetramethylene glycol, and glycols composed of ethylene oxide-propylene oxide copolymer are preferred, and the polyisocyanate of (B) is a conventionally known polyisocyanate. However, it is also possible to use an isocyanate mainly composed of diphenylmethane 4,4′-diisocyanate, and to add a trace amount of conventionally known triisocyanate or the like, if necessary. As the polyamine (C), known diamines such as ethylenediamine and 1.2 propylenediamine are mainly used, and if necessary, trace amounts of triamine and tetraamine may be used in combination. These polyurethane elastomers may be used alone or in combination of two or more. The melting point of the thermoplastic elastic resin of the present invention is preferably 140 ° C. or higher at which heat resistance and durability can be maintained, and it is more preferable to use a resin having a melting point of 160 ° C. or higher because heat resistance and durability are improved. If necessary, an antioxidant, a light-proofing agent or the like may be added to improve durability. The soft segment content of the thermoplastic elastic resin constituting the component having the function of absorbing vibration and stress, which is the object of the present invention, is preferably 15% by weight or more, more preferably 30% by weight or more, and heat resistance and sag resistance Therefore, it is preferably 80% by weight or less, and more preferably 70% by weight or less. That is, the soft segment content of the component having the function of absorbing vibrations and stress of the nonwoven fabric laminated network of the present invention is preferably 15% by weight or more and 80% by weight or less, more preferably 30% by weight or more and 70% by weight or less. is there.

【0010】本発明の不織布積層網状体を構成する熱可
塑性弾性樹脂からなる成分は、示差走査型熱量計にて測
定した融解曲線において、融点以下に吸熱ピ−クを有す
るのが好ましい。融点以下に吸熱ピ−クを有するもの
は、耐熱耐へたり性が吸熱ピ−クを有しないものより著
しく向上する。例えば、本発明の好ましいポリエステル
系熱可塑性樹脂として、ハ−ドセグメントの酸成分に剛
直性のあるテレフタル酸やナフタレン2・6ジカルボン
酸などを90モル%以上含有するもの、より好ましくは
テレフタル酸やナフタレン2・6ジカルボン酸の含有量
は95モル%以上、特に好ましくは100モル%とグリ
コ−ル成分をエステル交換後、必要な重合度まで重合
し、次いで、ポリアルキレンジオ−ルとして、好ましく
は平均分子量が500以上5000以下、特に好ましく
は1000以上3000以下のポリテトラメチレングリ
コ−ルを15重量%以上70重量%以下、より好ましく
は30重量%以上60重量%以下共重合量させた場合、
ハ−ドセグメントの酸成分に剛直性のあるテレフタル酸
やナフタレン2・6ジカルボン酸の含有量が多いとハ−
ドセグメントの結晶性が向上し、塑性変形しにくく、か
つ、耐熱抗へたり性が向上するが、溶融熱接着後更に融
点より少なくとも10℃以上低い温度でアニ−リング処
理するとより耐熱抗へたり性が向上する。圧縮歪みを付
与してからアニ−リングすると更に耐熱抗へたり性が向
上する。このような処理をした不織布積層網状体を示差
走査型熱量計で測定した融解曲線に室温以上融点以下の
温度で吸熱ピークをより明確に発現する。なおアニ−リ
ングしない場合は融解曲線に室温以上融点以下に吸熱ピ
−クを発現しない。このことから類推するに、アニ−リ
ングにより、ハ−ドセグメントが再配列され、疑似結晶
化様の架橋点が形成され、耐熱抗へたり性が向上してい
るのではないかとも考えられる。(この処理を疑似結晶
化処理と定義する)この疑似結晶化処理効果は、ポリア
ミド系弾性樹脂やポリウレタン系弾性樹脂にも有効であ
る。
The component comprising the thermoplastic elastic resin constituting the nonwoven fabric laminated network of the present invention preferably has an endothermic peak below the melting point in the melting curve measured by a differential scanning calorimeter. Those having an endothermic peak below the melting point have significantly improved heat resistance and sag resistance than those having no endothermic peak. For example, a preferable polyester-based thermoplastic resin of the present invention contains 90 mol% or more of terephthalic acid or naphthalene 2.6 dicarboxylic acid having rigidity in the acid component of the hard segment, more preferably terephthalic acid or The content of naphthalene 2.6 dicarboxylic acid is 95 mol% or more, particularly preferably 100 mol%, and after transesterification of the glycol component, polymerization is carried out to a required degree of polymerization, and then, as a polyalkylene diol, preferably When the average molecular weight of polytetramethylene glycol having an average molecular weight of 500 or more and 5000 or less, particularly preferably 1000 or more and 3000 or less, is copolymerized in an amount of 15% by weight or more and 70% by weight or less, more preferably 30% by weight or more and 60% by weight or less,
If the content of terephthalic acid or naphthalene 2.6 dicarboxylic acid, which has rigidity in the acid component of the hard segment, is high,
The crystallinity of the de-segment is improved, plastic deformation is less likely to occur, and the heat resistance and fatigue resistance are improved, but if heat treatment is performed at a temperature lower than the melting point by at least 10 ° C or more after annealing by heat, the heat resistance and fatigue resistance will be further improved. The property is improved. If annealing is performed after applying compressive strain, heat resistance and sag resistance are further improved. An endothermic peak is more clearly expressed at a temperature of room temperature or higher and melting point or lower in the melting curve of the nonwoven fabric laminated network treated as described above measured by a differential scanning calorimeter. If annealing is not performed, no endothermic peak appears in the melting curve above room temperature and below the melting point. By analogy with this, it is considered that the annealing causes rearrangement of the hard segments and formation of pseudo-crystallization-like cross-linking points to improve the heat resistance and sag resistance. (This treatment is defined as pseudo crystallization treatment.) This pseudo crystallization treatment effect is also effective for polyamide elastic resin and polyurethane elastic resin.

【0011】本発明における熱可塑性非弾性樹脂とは、
ポリエステル、ポリアミド、ポリオレフィン等が例示で
きる。なお、本発明ではガラス転移点温度が少なくとも
40℃以上のものを使用するのが好ましい。例えば、ポ
リエステルでは、ポリエチレンテレフタレ−ト(PE
T)、ポリエチレンナフタレ−ト(PEN)、ポリシク
ロヘキシレンジメチレンテレフタレ−ト(PCHD
T)、ポリシクロヘキシレンジメチレンナフタレ−ト
(PCHDN)、ポリブチレンテレフタレ−ト(PB
T)、ポリブチレンナフタレ−ト(PBN)、ポリアリ
レ−ト等、及びそれらの共重合ポリエステル等が例示で
きる。ポリアミドでは、ポリカプロラクタム(NY
6)、ポリヘキサメチレンアジパミド(NY66)、ポ
リヘキサメチレンセバカミド(NY6−10)等が例示
できる。ポリオレフィンとしては、ポリプロピレン(P
P)、ポリブテン・1(PB・1)等が例示できる。本
発明に用いる熱可塑性非弾性樹脂としては、クッション
材の側地にポリエステルを用いる場合が多いので、廃棄
する場合に分離せずにリサイクルが可能なクッション素
材として、耐熱性も良好なPET、PEN、PBN、P
CHDT等のポリエステルが特に好ましい。更には、P
ET、PEN、PBN、PCHDT等と重縮合して燐含
有エステル形成性化合物を共重合または燐含有難燃剤を
含有してなる難燃性ポリエステル(以下難燃性ポリエス
テルと略す)が好ましく、例えば、特開昭51−823
92号公報、特開昭55−7888号公報、特公昭55
−41610号公報等に例示されたものが挙げられる。
なお、塩化ビニ−ルは自己消火性を有するが燃焼すると
有毒ガスを多く発生するので本発明に用いるのは好まし
くない。
The thermoplastic non-elastic resin in the present invention means
Examples thereof include polyester, polyamide and polyolefin. In the present invention, it is preferable to use one having a glass transition temperature of 40 ° C. or higher. For example, for polyester, polyethylene terephthalate (PE
T), polyethylene naphthalate (PEN), polycyclohexylene dimethylene terephthalate (PCHD
T), polycyclohexylene dimethylene naphthalate (PCHDN), polybutylene terephthalate (PB)
Examples thereof include T), polybutylene naphthalate (PBN), polyarylate, and copolymerized polyesters thereof. For polyamide, polycaprolactam (NY
6), polyhexamethylene adipamide (NY66), polyhexamethylene sebacamide (NY6-10) and the like. As polyolefin, polypropylene (P
P), polybutene-1 (PB-1) and the like can be exemplified. As the thermoplastic non-elastic resin used in the present invention, polyester is often used for the side material of the cushion material, and therefore PET and PEN having good heat resistance can be used as a cushion material that can be recycled without being separated when discarded. , PBN, P
Polyesters such as CHDT are particularly preferred. Furthermore, P
A flame-retardant polyester (hereinafter abbreviated as flame-retardant polyester) obtained by polycondensation with ET, PEN, PBN, PCHDT or the like to copolymerize a phosphorus-containing ester forming compound or containing a phosphorus-containing flame retardant is preferable. JP-A-51-823
92, JP-A-55-7888, JP-B-55
-41610 and the like are exemplified.
Although vinyl chloride has a self-extinguishing property, it produces a large amount of toxic gas when it is burned, so that it is not preferable to use it in the present invention.

【0012】本発明は、繊度が100000デニ−ル以
下の熱可塑性弾性樹脂と熱可塑性非弾性樹脂からなる連
続した線条を曲がりくねらせ互いに接触させて該接触部
の大部分が融着した3次元立体構造体を形成し、両面が
実質的にフラット化された網状体の片面に熱可塑性弾性
樹脂と熱可塑性非弾性樹脂からなる短繊維が3次元構造
化され、接触部の大部分が熱可塑性弾性樹脂により融着
一体化した面が実質的にフラット化された不織布が接合
一体化された密度が0.01g/cm3 から0.2g/cm
3 の不織布積層網状体である。クッション材の機能は、
クッション層は基本の繊度を太くして少し硬くして体型
保持を受け持つ層と振動減衰性の良い成分で密度を少し
高くし振動を吸収して振動を遮断する層で構成し、表面
層は繊度を細くし構成繊維本数を多くした柔らかな層と
して適度の沈み込みにより快適な臀部のタッチを与えて
臀部の圧力分布を均一分散化させると共にクッション層
で吸収できなかった振動を吸収して人体の共振部分の振
動を遮断する層が一体化されることで、応力や振動を一
体で変形し吸収させ座り心地を向上させることができ
る。本発明では、クッション層の機能を熱可塑性弾性樹
脂からなる融着した3次元立体構造体を形成した網状体
に持たせ、表面層の機能を熱可塑性弾性樹脂と熱可塑性
非弾性樹脂からなる短繊維が3次元構造化され、接触部
の大部分が熱可塑性弾性樹脂により融着一体化した面が
実質的にフラット化された不織布(短繊維不織布)に持
たせ、接合一体化して好ましいクッション材の機能を付
与できる不織布積層網状体である。本発明の不織布積層
網状体を構成する表面層機能を持つ短繊維不織布は柔ら
かな層として適度の沈み込みにより快適な臀部のタッチ
を与えるため、熱接着成分が熱可塑性弾性樹脂からなる
(好ましくは、振動吸収機能と変形応力吸収機能が充足
できる40重量%以上、70重量%を越えると短繊維の
形態保持性が低下し、沈み込みが大きくなるので70重
量%以下)と繊維形態保持機能を持たせる熱可塑性非弾
性樹脂からなる繊度が20デニ−ル以下の短繊維が3次
元構造化され、接触部の大部分が熱接着成分により融着
一体化した面が実質的にフラット化された不織布で構成
する。短繊維の繊度が20デニ−ルを越えると短繊維不
織布の見掛け密度を好ましい表面層機能を付与できる
0.01g/cm3 以上0.05g/cm3 以下にする場
合、構成本数が少なくなり、緻密な構造体としての特徴
が出ず快適なタッチを損なうので好ましくない。また、
繊度が太くなるほど構成本数が少なくなり、熱接着点が
減少して変形応力の分散が悪くなり、接着点での応力集
中が大きくなって耐へたり性が低下するので好ましくな
い。他方、繊度が細すぎると抗圧縮性が低下し容易に大
変形を生じ、熱可塑性非弾性樹脂部分が塑性変形して耐
久性が著しく低下するので好ましくない。好ましい短繊
維の繊度は1デニ−ル〜10デニ−ル、より好ましくは
3デニ−ル〜6デニ−ルである。該短繊維が3次元構造
化され、接触部の大部分が熱可塑性弾性樹脂により融着
一体化した(好ましくは接触点の全てが融着一体化し
た)面が実質的にフラット化された不織布とすることで
臀部の局部的な圧力を面で受け止め、圧力分布を均一分
散化させると共に、短繊維不織布の3次元立体構造体を
熱接着成分の熱可塑性弾性樹脂が融着一体化しているの
で、熱接着点が大変形をしながら構造体全体が変形して
エネルギ−変換により変形応力を吸収し、変形応力が解
除されると熱可塑性弾性樹脂のゴム弾性で容易に元の形
態に回復する機能があるので耐へたり性が良好である。
更には、クッション層へのダメ−ジを逓減でき、構造体
全体の耐へたり性も向上する。融着一体化されていない
場合は形態が保持できず、局部的な圧力を面で受け止
め、圧力分布を均一分散化できず、更に構造体全体が変
形してエネルギ−変換出来ないので耐久性が劣り好まし
くない。熱接着繊維が振動吸収性の良好な熱可塑性弾性
樹脂から構成されているので、クッション層で吸収でき
なかった振動も吸収して人体の共振部分の振動を遮断す
る層としての機能もはたす。熱接着成分が熱可塑性非弾
性樹脂からなる場合は、局部的な変形応力に追随出来な
いため、応力集中により構造が破壊されていき回復性が
劣るので好ましくない。また、熱可塑性非弾性樹脂は振
動吸収性が悪いので振動を遮断する層としての機能が劣
り好ましくない。短繊維不織布層の厚みは特には限定さ
れないが、表面層機能が発現できる3mm〜30mmが好ま
しく、5mm〜20mmが特に好ましい。他方、クッション
層機能を持つ網状体は熱可塑性弾性樹脂と熱可塑性非弾
性樹脂で複合化した連続線条が3次元立体構造体を形成
し接触部の大部分で融着一体化され、両面が実質的にフ
ラット化されており、外部から与えられた振動を熱可塑
性弾性樹脂の振動吸収機能で大部分の振動を吸収減衰
し、局部的に大きい変形応力を与えられた場合でも網状
体の表面が実質的にフラット化され接触部の大部分が融
着しており、表面は短繊維不織布と面で接合されている
ので、網状体の面で変形応力を受け止め変形応力を分散
させ、熱可塑性弾性樹脂と熱可塑性非弾性樹脂で複合化
した線状が3次元立体構造体を形成し融着一体化されて
いるので、熱可塑性非弾性樹脂が抗圧縮性を示しつつ弾
性限界を越えない範囲で変形し、熱可塑性弾性樹脂が熱
可塑性非弾性樹脂が弾性限界を越える前に部分的に大変
形を生じて融着一体化した構造体全体が変形してエネル
ギ−変換により変形応力を吸収し、変形応力が解除され
ると熱可塑性非弾性樹脂は弾性回復し、熱可塑性弾性樹
脂もゴム弾性を発現し容易に元の形態に回復するので耐
へたり性が良好であると共に圧縮時の応力に対する変形
歪みが直線的に変化し、座ったとき、低い反発力で臀部
を支えつつ適度の沈み込みを生じるので床つき感を与え
ず体型保持機能を発現する。熱可塑性弾性樹脂のみから
なる網状体では柔らか過ぎて沈み込みがやや大きくなる
欠点を本発明は解決し体型保持機能を向上できた。公知
の非弾性樹脂のみからなる線条で構成した網状体では、
表面層で吸収できない大きい変形を受けるとゴム弾性を
持たないので圧縮変形により塑性変形を生じて回復しな
くなり耐久性が劣る。網状体の表面が実質的にフラット
化されてない場合、短繊維不織布から伝達される局部的
な外力は、表面の線条及び接着点部分までに選択的に伝
達され、応力集中が発生する場合があり、このような外
力に対しては応力集中による疲労が発生して耐へたり性
が低下する場合がある。なお、該線条が熱可塑性弾性樹
脂からなる場合及び熱可塑性弾性樹脂と熱可塑性非弾性
樹脂とが複合化されている場合は3次元構造部分で構造
全体が変形するので応力集中は緩和されるが、非弾性樹
脂のみからなる場合では、そのまま応力が接着点に集中
して構造破壊を生じ回復しなくなる。更には、表面が実
質的にフラット化されてなく凸凹があると座った時臀部
に異物感を与えるため座り心地が悪くなり好ましくな
い。なお、線状が連続していない場合は、繊度が太い網
状体では接着点が応力の伝達点となるため接着点に著し
い応力集中が起こり構造破壊を生じ耐熱耐久性が劣り好
ましくない。融着していない場合は、形態保持が出来
ず、構造体が一体で変形しないため、応力集中による疲
労現象が起こり耐久性が劣ると同時に、形態が変形して
体型保持ができなくなるので好ましくない。本発明のよ
り好ましい融着の程度は、線条が接触している部分の大
半が融着した状態であり、もっとも好ましくは接触部分
が全て融着した状態である。かくして、振動吸収性と弾
性回復性の良い熱可塑性弾性樹脂を複合化された連続線
条の接触部が大部分融着した3次元立体構造体を形成し
融着一体化され表面が実質的にフラット化されたクッシ
ョン層機能を持つ網状体は、熱可塑性弾性樹脂からなる
短繊維不織布で構成する表面層から伝達される変形応力
を面で受け止め応力の分散を良くし、個々の線状に掛か
る応力を少なくして構造全体が変形して変形応力を吸収
し、且つ臀部を支えるクッション性も向上させ、応力が
解除されると回復し、フレ−ムから伝わる振動も振動吸
収性と弾性回復性の良い熱可塑性弾性樹脂部分が吸収し
て人体の共振部分の振動を遮断するため座り心地と耐久
性を向上させることができる。この目的から、本発明の
網状体を形成する線条の繊度は100000デニ−ル以
下である。見掛け密度を0.2g/cm3 以下にした場
合、100000デニ−ルを越えると構成本数が少なく
なり、密度斑を生じて部分的に耐久性の悪い構造がで
き、応力集中による疲労が大きくなり耐久性が低下する
ので好ましくない。本発明の網状体を構成する線条の繊
度は、繊度が細すぎると抗圧縮性が低くなり過ぎて変形
による応力吸収性が低下するので100デニ−ル以上で
あり、構成本数の低下による構造面の緻密性を損なわな
い50000デニ−ル以下である。より好ましくは50
0デニ−ル以上、10000デニ−ル以下である。本発
明の網状体の見掛け密度は、0.005g/cm3 では反
発力が失われ、振動吸収能力や変形応力吸収能力が不充
分となりクッション機能を発現させにくくなる場合があ
り、0.25g/cm3 以上では反発力が高すぎて座り心
地が悪くなる場合があるので、振動吸収能力や変形応力
吸収機能が生かせてクッション体としての機能が発現さ
れやすい0.01g/cm3 以上0.20g/cm3 以下が
好ましく、より好ましくは0.03g/cm3 以上0.0
8g/cm3 以下である。本発明における網状体は繊度の
異なる線状を見掛け密度との組合せで最適な構成とする
異繊度積層構造とする方法も好ましい実施形態として選
択できる。本発明の網状体の厚みは特に限定されない
が、厚みが5mm未満では応力吸収機能と応力分散機能が
低下するので、好ましい厚みは力の分散をする面機能と
振動や変形応力吸収機能が発現できる厚みとして10mm
以上であり、より好ましくは20mm以上である。本発明
の網状体と短繊維不織布が接合一体化された積層構造体
としての見掛け密度は0.01g/cm3 から0.2g/
cm3 である。0.01g/cm3 未満では体型保持や振動
吸収などのクッション機能が低下するので好ましくな
い。0.2g/cm3 を越えると反発弾性が大きくなり座
り心地が悪くなるので好ましくない。好ましい見掛け密
度は0.02g/cm3 〜0.1g/cm3 であり、より好
ましくは0.03g/cm3 〜0.06g/cm3 である。
網状体と短繊維不織布が接合一体化されていない場合
は、ずり変形を受けると接合一体化していないと、構造
全体で変形できないため、短繊維不織布が著しいダメ−
ジを受け構造が破壊される場合があり、構造破壊されな
い場合でも、体型保持層のサポ−トがないので体型保持
が悪くなり好ましくない。
According to the present invention, continuous filaments made of a thermoplastic elastic resin and a thermoplastic non-elastic resin having a fineness of 100,000 denier or less are bent and brought into contact with each other, and most of the contact portions are fused. A three-dimensional structure is formed, and short fibers made of thermoplastic elastic resin and thermoplastic non-elastic resin are three-dimensionally structured on one side of a net-like body whose both sides are substantially flattened. Non-woven fabric whose fusion-melted and integrated surface is substantially flattened by plastic elastic resin is joined and integrated to have a density of 0.01 g / cm 3 to 0.2 g / cm
3 is a non-woven laminated network. The function of the cushion material is
The cushion layer is made up of a layer that thickens the basic fineness and makes it a little harder to support the body shape, and a layer that slightly increases the density with a component with good vibration damping properties to absorb the vibration and block the vibration, and the surface layer is the fineness As a soft layer with a narrower number of constituent fibers, it gives a comfortable touch to the buttocks by a proper subduction and evenly distributes the pressure distribution in the buttocks and absorbs vibrations that could not be absorbed by the cushion layer and By integrating the layer that blocks the vibration of the resonance portion, it is possible to integrally deform and absorb stress and vibration, and improve the sitting comfort. In the present invention, the function of the cushion layer is provided to the net-like body formed by the fused three-dimensional structure made of thermoplastic elastic resin, and the function of the surface layer is made of thermoplastic elastic resin and thermoplastic non-elastic resin. A preferred cushioning material in which fibers are three-dimensionally structured, and most of the contact portions are fused and integrated with a thermoplastic elastic resin into a non-woven fabric (short-fiber non-woven fabric) whose surface is substantially flattened to be joined and integrated. It is a non-woven fabric laminated network capable of imparting the function of. The short fiber non-woven fabric having a surface layer function constituting the non-woven fabric laminated network of the present invention provides a comfortable buttocks touch due to an appropriate subsidence as a soft layer, so that the heat-adhesive component is made of a thermoplastic elastic resin (preferably , 40% by weight or more, which is sufficient for absorbing vibration and deformation stress, and 70% by weight or more, the shape retention of short fibers deteriorates and the subsidence increases. A short fiber having a fineness of 20 denier or less, which is made of a thermoplastic non-elastic resin to be held, has a three-dimensional structure, and the surface where most of the contact portion is fused and integrated by the heat-adhesive component is substantially flattened. Composed of non-woven fabric. Fineness of the short fibers is 20 denier - To below 0.01 g / cm 3 or more 0.05 g / cm 3 exceeding Le and the apparent density of the short fiber nonwoven fabric can impart desirable surface layer functions, configuration number is reduced, It is not preferable because it does not show the characteristics as a dense structure and impairs a comfortable touch. Also,
As the fineness increases, the number of constituents decreases, the thermal bonding points decrease, the dispersion of deformation stress deteriorates, the stress concentration at the bonding points increases, and the sag resistance decreases, which is not preferable. On the other hand, if the fineness is too small, the anti-compression property is lowered and large deformation easily occurs, and the thermoplastic non-elastic resin portion is plastically deformed, and durability is remarkably lowered, which is not preferable. The fineness of the short fibers is preferably 1 denier to 10 denier, and more preferably 3 denier to 6 denier. A non-woven fabric in which the short fibers have a three-dimensional structure, and the surface of the contact portion where most of the contact portions are fused and integrated with a thermoplastic elastic resin (preferably all of the contact points are fused and integrated) is substantially flattened. As a result, the local pressure of the buttocks is received on the surface, the pressure distribution is evenly distributed, and the three-dimensional structure of the short fiber nonwoven fabric is fused and integrated with the thermoplastic elastic resin of the heat bonding component. , While the thermal bonding point is largely deformed, the entire structure is deformed to absorb the deformation stress by energy conversion, and when the deformation stress is released, the rubber elasticity of the thermoplastic elastic resin easily restores the original form. Good sag resistance due to its function.
Further, the damage to the cushion layer can be gradually reduced, and the sag resistance of the entire structure is improved. If they are not fused and integrated, the shape cannot be maintained, the local pressure is received by the surface, the pressure distribution cannot be evenly distributed, and the entire structure is deformed and energy conversion is not possible. Inferior and not preferable. Since the heat-adhesive fiber is made of a thermoplastic elastic resin having a good vibration absorption property, it also functions as a layer that absorbs the vibration that could not be absorbed by the cushion layer and blocks the vibration of the resonance part of the human body. When the heat-adhesive component is composed of a thermoplastic non-elastic resin, it cannot follow local deformation stress, and the structure is destroyed due to stress concentration and the recoverability is poor, which is not preferable. Further, since the thermoplastic non-elastic resin has a poor vibration absorbing property, it is not preferable because it has a poor function as a layer for blocking vibration. The thickness of the short fiber non-woven fabric layer is not particularly limited, but is preferably 3 mm to 30 mm and particularly preferably 5 mm to 20 mm so that the surface layer function can be exhibited. On the other hand, in the mesh body having a cushion layer function, continuous filaments made of a thermoplastic elastic resin and a thermoplastic non-elastic resin form a three-dimensional three-dimensional structure, and most of the contact portions are fused and integrated, and both sides are It is substantially flattened, and the vibration absorption function of the thermoplastic elastic resin absorbs and attenuates most of the vibrations given from the outside, and the surface of the reticulate body even when a large deformation stress is locally applied. Is substantially flattened and most of the contact part is fused, and the surface is joined with the short fiber non-woven fabric at the surface, so the surface of the mesh receives the deformation stress and disperses the deformation stress, and the thermoplastic Since the linear composite of elastic resin and thermoplastic non-elastic resin forms a three-dimensional structure and is fused and integrated, the thermoplastic non-elastic resin exhibits anti-compressibility and does not exceed the elastic limit. It deforms and the thermoplastic elastic resin heats up. The elastic non-elastic resin undergoes a large deformation before the elastic limit is exceeded, and the entire fused and integrated structure is deformed and absorbs the deformation stress by energy conversion, and when the deformation stress is released, it becomes thermoplastic. The non-elastic resin elastically recovers, and the thermoplastic elastic resin also exhibits rubber elasticity and easily recovers to its original form, so that it has good sag resistance and the deformation strain linearly changes with respect to the stress at the time of compression. When sitting, it supports the buttocks with a low repulsive force and causes a certain amount of subsidence, so it exerts a body shape retention function without giving a feeling of being on the floor. The present invention has solved the problem that the net-like body made of only the thermoplastic elastic resin is too soft and causes a slight depression, and the body shape holding function can be improved. In the net-like body composed of the filaments made only of the known inelastic resin,
When subjected to a large deformation that cannot be absorbed by the surface layer, it does not have rubber elasticity, so plastic deformation occurs due to compressive deformation and recovery does not occur, resulting in poor durability. When the surface of the reticulate body is not substantially flattened, the local external force transmitted from the short fiber non-woven fabric is selectively transmitted to the filaments and bonding points of the surface, resulting in stress concentration. There is a possibility that fatigue due to stress concentration may occur due to such external force and the sag resistance may deteriorate. When the filaments are made of thermoplastic elastic resin or when the thermoplastic elastic resin and the thermoplastic non-elastic resin are combined, the entire structure is deformed in the three-dimensional structure portion, so stress concentration is relieved. However, in the case of only the non-elastic resin, the stress concentrates at the bonding point as it is, causing structural destruction and not recovering. Furthermore, if the surface is not substantially flattened and has irregularities, the buttocks feel a foreign substance when sitting, which is unfavorable for sitting. When the linear shape is not continuous, the adhesive point becomes a stress transmission point in a net having a large fineness, so that remarkable stress concentration occurs at the adhesive point, resulting in structural destruction and poor heat resistance and durability. If they are not fused, the shape cannot be maintained and the structure does not deform integrally, resulting in a fatigue phenomenon due to stress concentration and poor durability, and at the same time deforming the shape and making it impossible to maintain the body shape, which is not preferable. . The more preferable degree of fusion in the present invention is that most of the portions where the filaments are in contact are fused, and most preferably all the contact portions are in fusion. Thus, the contact portion of the continuous filaments, which is a composite of thermoplastic elastic resin having good vibration absorption and elastic recovery, is fused to form a three-dimensional three-dimensional structure which is fused and integrated so that the surface is substantially The reticulated body with the flattened cushion layer function receives the deformation stress transmitted from the surface layer composed of the short fiber non-woven fabric made of thermoplastic elastic resin on the surface, improves the dispersion of the stress, and is applied to each linear shape. The stress is reduced and the entire structure deforms to absorb the deformation stress, and also improves the cushioning property that supports the buttocks, recovers when the stress is released, and the vibration transmitted from the frame is also vibration absorption and elastic recovery. Since the good thermoplastic elastic resin portion absorbs the vibration of the resonance portion of the human body, the sitting comfort and durability can be improved. For this purpose, the fineness of the filaments forming the mesh body of the present invention is 100,000 denier or less. When the apparent density is 0.2 g / cm 3 or less, the number of constituents decreases when the density exceeds 100,000 denier, and uneven density occurs to form a partially inferior structure, and fatigue due to stress concentration increases. It is not preferable because the durability is lowered. The fineness of the filaments constituting the reticulate body of the present invention is 100 denier or more, because if the fineness is too thin, the anti-compression property becomes too low and the stress absorbability due to deformation decreases. It is 50,000 denier or less so as not to impair the denseness of the surface. More preferably 50
It is 0 denier or more and 10,000 denier or less. When the apparent density of the reticulate body of the present invention is 0.005 g / cm 3 , the repulsive force is lost, and the vibration absorbing ability and the deformation stress absorbing ability become insufficient, which may make it difficult to develop the cushion function. If it is cm 3 or more, the repulsive force may be too high and the sitting comfort may be poor, so it is easy to develop the function as a cushion body by utilizing the vibration absorption capacity and the deformation stress absorption function. 0.01 g / cm 3 or more 0.20 g / Cm 3 or less is preferable, more preferably 0.03 g / cm 3 or more and 0.0
It is 8 g / cm 3 or less. As a preferred embodiment, a method in which the reticulate body in the present invention has a different fineness laminated structure in which a linear shape having a different fineness is combined with an apparent density to have an optimum configuration can be selected. The thickness of the reticulate body of the present invention is not particularly limited, but if the thickness is less than 5 mm, the stress absorbing function and the stress dispersing function are deteriorated. 10mm thickness
It is above, more preferably 20 mm or more. The apparent density as a laminated structure in which the mesh body and the short fiber non-woven fabric of the present invention are integrally bonded is 0.01 g / cm 3 to 0.2 g /
It is cm 3 . If it is less than 0.01 g / cm 3 , the cushioning function such as body shape retention and vibration absorption is deteriorated, which is not preferable. If it exceeds 0.2 g / cm 3 , the impact resilience becomes large and the sitting comfort becomes poor, which is not preferable. Preferred apparent density is 0.02g / cm 3 ~0.1g / cm 3 , more preferably 0.03g / cm 3 ~0.06g / cm 3 .
If the mesh body and the short fiber non-woven fabric are not joined and integrated, they will not be deformed in the entire structure unless they are joined and integrated under shear deformation.
There is a case where the structure is destroyed due to the heat treatment, and even when the structure is not destroyed, the body shape-retaining layer has no support, so that the body shape is not well maintained, which is not preferable.

【0013】本発明の網状体の線条の断面形状は特には
限定されないが、中空断面や異形断面にすることで好ま
しい抗圧縮性(反発力)やタッチを付与することができ
るので特に好ましい。抗圧縮性は繊度や用いる素材のモ
ジュラスにより調整して、繊度を細くしたり、柔らかい
素材では中空率や異形度を高くし初期圧縮応力の勾配を
調整できるし、繊度をやや太くしたり、ややモジュラス
の高い素材では中空率や異形度を低くして座り心地が良
好な抗圧縮性を付与する。中空断面や異形断面の他の効
果として中空率や異形度を高くすることで、同一の抗圧
縮性を付与した場合、より軽量化が可能となり、自動車
等の座席に用いると省エネルギ−化ができ、布団などの
場合は、上げ下ろし時の取扱性が向上する。好ましい抗
圧縮性(反発力)やタッチを付与することができる他の
好ましい方法として、本発明の網状体の線条を複合構造
とする方法がある。複合構造としては、シ−スコア構造
またはサイドバイサイド構造及びそれらの組合せ構造な
どが挙げられる。が、特にはクッション層が大変形して
もエネルギ−変換できない振動や変形応力をエネルギ−
変換して回復できる立体3次元構造とするために線状の
表面の50%以上を柔らかい熱可塑性弾性樹脂が占める
シ−スコア構造またはサイドバイサイド構造及びそれら
の組合せ構造などが挙げられる。すなわち、シ−スコア
構造ではシ−ス成分は振動や変形応力をエネルギ−変換
が容易なソフトセグメント含有量が多い熱可塑性弾性樹
脂とし、コア成分は抗圧縮性を示す熱可塑性非弾性樹脂
で構成し適度の沈み込みによる臀部への快適なタッチを
与えることができる。サイドバイサイド構造では振動や
変形応力をエネルギ−変換が容易なソフトセグメント含
有量が多い熱可塑性弾性樹脂の溶融粘度を抗圧縮性を示
す熱可塑性非弾性樹脂の溶融粘度より低くして線状の表
面を占めるソフトセグメント含有量が多い熱可塑性弾性
樹脂の割合を多くした構造(比喩的には偏芯シ−ス・コ
ア構造のシ−スに熱可塑性弾性樹脂を配した様な構造)
として線状の表面を占めるソフトセグメント含有量が多
い熱可塑性弾性樹脂の割合を80%以上としたものが特
に好ましく、最も好ましくは線状の表面を占めるソフト
セグメント含有量が多い熱可塑性弾性樹脂の割合を10
0%としたシ−スコアである。ソフトセグメント含有量
が多い熱可塑性弾性樹脂の線状の表面を占める割合が多
くなると、溶融して融着するときの流動性が高いので接
着が強固になる効果があり、構造が一体で変形する場
合、接着点の応力集中に対する耐疲労性が向上し、耐熱
性や耐久性がより向上する。
The cross-sectional shape of the filaments of the reticulate body of the present invention is not particularly limited, but a hollow cross-section or a deformed cross-section is particularly preferable because it can impart preferable anti-compression property (repulsive force) and touch. The anti-compression property can be adjusted by the fineness and the modulus of the material used to make the fineness fine, or in the soft material the hollowness and the irregularity can be increased to adjust the gradient of the initial compression stress, and the fineness can be made slightly thicker or slightly. A material with a high modulus lowers the hollow ratio and the degree of irregularity to provide anti-compression property with a comfortable sitting feeling. As another effect of the hollow cross section and the irregular cross section, by increasing the hollow ratio and the degree of irregularity, if the same anti-compression property is given, the weight can be further reduced, and the energy saving can be achieved when it is used for the seat of an automobile or the like. If it is a futon or the like, it will be easier to handle when raising and lowering. As another preferable method for imparting preferable anti-compression property (repulsive force) and touch, there is a method of forming the filament of the reticulated body of the present invention into a composite structure. Examples of the composite structure include a score core structure, a side-by-side structure, and a combination structure thereof. However, especially when the cushion layer is largely deformed, the energy and
In order to obtain a three-dimensional three-dimensional structure that can be converted and restored, a sheath-core structure or a side-by-side structure in which 50% or more of the linear surface is occupied by a soft thermoplastic elastic resin, and a combination thereof are mentioned. That is, in the sheath core structure, the sheath component is a thermoplastic elastic resin having a large content of soft segments that can easily convert energy into vibration and deformation stress, and the core component is composed of a thermoplastic inelastic resin exhibiting anti-compression properties. It can give a comfortable touch to the buttocks due to moderate depression. With the side-by-side structure, it is possible to easily convert the vibration and deformation stress into energy, and the melt viscosity of the thermoplastic elastic resin with many soft segment contents is made lower than the melt viscosity of the thermoplastic non-elastic resin showing anti-compressive property to form a linear surface. A structure in which the proportion of the thermoplastic elastic resin that occupies a large amount of the soft segment is increased (metaphorically, a structure in which the thermoplastic elastic resin is arranged in the eccentric sheath-core structure)
It is particularly preferable that the proportion of the thermoplastic elastic resin occupying the linear surface in the large amount of the soft segment is 80% or more, and most preferably the thermoplastic elastic resin occupying the linear surface in the large amount of the soft segment content. Ratio 10
It is the score of 0%. When the proportion of the thermoplastic elastic resin with a large soft segment content that occupies the linear surface is large, the flowability when melting and fusing is high, so there is the effect of strengthening the adhesion, and the structure deforms as a unit. In this case, the fatigue resistance against stress concentration at the bonding points is improved, and the heat resistance and durability are further improved.

【0014】熱可塑性弾性樹脂と熱可塑性非弾性樹脂が
複合化した線状からなる網状体と短繊維不織布が接合一
体化されて、実質的に両面がフラット化された不織布積
層網状体であるので、他の網状体、不織布、編織物、硬
綿、フイルム、発泡体、金属等の被熱接着体とを接着す
るのに、他の熱接着成分(熱接着不織布、熱接着繊維、
熱接着フィルム、熱接着レジン等)や接着剤等を用いて
一体積層構造体化し、車両用座席、船舶用座席、車両
用、船舶用、病院用等の業務用及び家庭用ベット、家具
用椅子、事務用椅子、布団類等の製品を得る場合、被接
着体面との接触面積を広くできるので、接着面積が広く
なり強固に接着した接着耐久性も良好な製品を得ること
ができる。なお、網状体及び積層網状体形成段階から製
品化される任意の段階で上述の疑似結晶化処理を施すこ
とにより、不織布積層網状体中の熱可塑性弾性樹脂から
なる成分を示差走査型熱量計で測定した融解曲線に室温
以上融点以下の温度に吸熱ピークを持つようにすると製
品の耐熱耐久性が格段に向上するのでより好ましい。本
発明の不織布積層網状体を形成する網状体の線条を複合
構造とした場合、不織布積層網状体の裏面に熱接着機能
も付与でき、補強材等を熱接着一体構造化ができる。例
えば、シ−スコア構造ではシ−ス成分の振動や変形応力
をエネルギ−変換が容易なソフトセグメント含有量が多
い熱可塑性弾性樹脂を熱接着成分とし、コア成分の抗圧
縮性を示す熱可塑性非弾性樹脂を網状形態の保持機能を
もたせるための高融点成分とする構成で、熱接着成分の
融点を高融点樹脂の融点より10℃以上低くしたものを
用いることにより熱接着層の機能も付与できる。また、
本発明の不織布積層網状体の表面層の短繊維不織布は熱
可塑性弾性樹脂で熱接着されており、その儘熱接着層と
して使用できるが、好ましくは熱接着成分をソフトセグ
メント含有量が多い低融点の熱可塑性弾性樹脂とするこ
とで、振動や変形応力のエネルギ−変換を良好とできる
と共に良好な熱接着機能も付与できる。熱接着機能を発
現させるに好ましい不織布積層網状体中の線条または繊
維を形成する熱接着成分の融点は高融点成分の融点より
15℃から80℃低い融点であり、より好ましくは20
℃から60℃低い融点である。熱接着機能を持つ本発明
の不織布積層網状体は実質的に表面がフラット化され
て、接触部の大部分が融着していることで、網状体、不
織布、編織物、硬綿、フイルム、発泡体、金属等の被熱
接着体面との接触面積を広くできるので、熱接着面積が
広くなり、強固に熱接着した新たな成形体及び車両用座
席、船舶用座席、車両用、船舶用、病院用等の業務用及
び家庭用ベット、家具用椅子、事務用椅子、布団類にな
った製品を得ることができる。なお、新たな成形体及び
製品が製品化されるまでの任意の段階で疑似結晶化処理
を施すことにより、構造体中の熱可塑性弾性樹脂からな
る線条を示差走査型熱量計で測定した融解曲線に室温以
上融点以下の温度に吸熱ピークを持つようにすると製品
の耐熱耐久性が格段に向上したものを提供できるのでよ
り好ましい。熱接着時に被接着体を伸張した状態で接着
すると、被接着体は接着層のゴム弾性で伸張された状態
が緩和しないので張りのある、皺になりにくい成形体と
することもできる。
Since a linear net-like body in which a thermoplastic elastic resin and a thermoplastic non-elastic resin are composited and a short fiber non-woven fabric are joined and integrated, a non-woven fabric laminated net body in which both surfaces are substantially flattened is provided. Other heat-adhesive components (heat-bonded non-woven fabric, heat-bonded fiber, heat-bonded non-woven fabric, knitted fabric, hard cotton, film, foam, metal, etc.
Heat-adhesive film, heat-adhesive resin, etc.) and adhesives are used to make a monolithic laminated structure, and seats for vehicles, seats for ships, vehicles, ships, hospital beds, etc. When obtaining products such as office chairs and duvets, the contact area with the surface to be adhered can be widened, so that the adhesive area can be widened and a product with strong adhesion and good adhesion durability can be obtained. In addition, by performing the above-mentioned pseudo crystallization treatment at any stage of commercialization from the mesh and the laminated mesh formation step, the component composed of the thermoplastic elastic resin in the nonwoven laminated mesh is analyzed by a differential scanning calorimeter. It is more preferable that the measured melting curve has an endothermic peak at a temperature of room temperature or higher and melting point or lower because the heat resistance and durability of the product is remarkably improved. When the filaments of the reticulated body forming the non-woven fabric laminated network of the present invention have a composite structure, the back surface of the non-woven fabric reticulated body can also be provided with a heat-bonding function, and the reinforcing material and the like can be integrated into the heat-bonding structure. For example, in the sheath core structure, a thermoplastic elastic resin containing a large amount of soft segments, which facilitates energy conversion of vibration and deformation stress of the sheath component, is used as a heat-adhesive component, and a thermoplastic non-compressive material having a compressive property of the core component is used. The function of the heat-bonding layer can also be imparted by using a structure in which the elastic resin has a high melting point component for providing the function of holding the net shape, and the melting point of the heat-bonding component is lower than the melting point of the high-melting resin by 10 ° C. or more. . Also,
The short fiber non-woven fabric of the surface layer of the non-woven fabric laminated network of the present invention is heat-bonded with a thermoplastic elastic resin, and can be used as the heat-bonding layer thereof, but preferably the heat-bonding component has a high soft segment content and a low melting point. By using the thermoplastic elastic resin of (1), it is possible to improve the energy conversion of vibration and deformation stress, and also to impart a good thermal adhesive function. The melting point of the heat-bonding component forming the filaments or fibers in the non-woven laminate network preferable for exhibiting the heat-bonding function is 15 ° C. to 80 ° C. lower than the melting point of the high-melting component, and more preferably 20.
The melting point is lower by 60 ° C to 60 ° C. The non-woven laminate network of the present invention having a heat-bonding function has a substantially flat surface, and most of the contact portions are fused to form a network, a non-woven fabric, a knitted fabric, a hard cotton, a film, Since it is possible to increase the contact area with the surface of the foam, metal, etc. to be heat-bonded, the heat-bonding area becomes wider, and a new heat-bonded new molded body and vehicle seat, ship seat, vehicle, ship, You can get products such as beds for business and home use such as hospitals, furniture chairs, office chairs, and futons. In addition, by performing pseudo crystallization at any stage until new molded products and products are commercialized, the filaments made of the thermoplastic elastic resin in the structure are melted by a differential scanning calorimeter. It is more preferable to make the curve have an endothermic peak at a temperature of room temperature or higher and melting point or lower because a product with significantly improved heat resistance and durability can be provided. When the adherend is adhered in a stretched state at the time of heat-bonding, the adhered body does not relax the stretched state due to the rubber elasticity of the adhesive layer, so that the adherend can be a molded body having tension and less likely to wrinkle.

【0015】次に本発明の製法を述べる。複数のオリフ
ィスを持つ多列ノズルより熱可塑性弾性樹脂と熱可塑性
非弾性樹脂を複合化できるように、各オリフィス前で分
配し、熱可塑性樹脂の融点より10℃以上高く120℃
未満高い溶融温度で、該ノズルより下方に向けて吐出さ
せ、溶融状態で互いに接触させて融着させ3次元構造を
形成しつつ、引取り装置で挟み込み冷却槽で冷却せしめ
た後、片面に熱可塑性弾性樹脂と非弾性樹脂からなる短
繊維を開繊して3次元構造化させたウエッブを積層し、
圧縮熱成形により、接触部の大部分を熱接着成分により
融着一体化する不織布積層網状体の製法である。網状体
は、熱可塑性弾性樹脂と熱可塑性非弾性樹脂を一般的な
溶融押出機を用いて別々に溶融し、一般的な複合紡糸の
方法と同様にオリフィス直前で複合化するように分配合
流させオリフィスより下方へ吐出する。シ−スコアで
は、コア成分を中心から供給し、その回りからシ−ス成
分を合流させ吐出する。サイドバイサイドでは左右又は
前後から各成分を合流させ吐出する。この時の溶融温度
は、熱可塑性樹脂の融点より10℃〜120℃高い温度
である。低融点成分の融点より120℃を越える高い溶
融温度にすると熱分解が著しくなり熱可塑性樹脂の特性
が低下するので好ましくない。他方、高融点成分の融点
より10℃以上高くしないとメルトフラクチャ−を発生
し正常な線条形成が出来なくなり、また、吐出後ル−プ
形成しつつ接触させ融着させる際、線条の温度が低下し
て線条同士が融着しなくなり接着が不充分な網状体とな
る場合があり、サイドバイサイドの場合は線状の接着が
不良になる場合もあり好ましくない。好ましい溶融温度
は低融点成分の融点より20℃から100℃高い温度、
より好ましくは融点より30℃から80℃高い温度であ
り、高融点成分の融点より15℃から40℃高い温度、
より好ましくは融点より20℃から30℃高い温度とな
る同一の溶融温度で合流させ吐出する。合流直前の溶融
温度差は10℃以下にしないと異常流動を発生し複合形
態の形成が損なわれる場合がある。オリフィスの形状は
特に限定されないが、中空断面(例えば三角中空、丸型
中空、突起つきの中空等となるよう形状)及び、又は異
形断面(例えば三角形、Y型、星型等の断面二次モ−メ
ントが高くなる形状)とすることで前記効果以外に溶融
状態の吐出線条が形成する3次元構造が流動緩和し難く
し、逆に接触点での流動時間を長く保持して接着点を強
固にできるので特に好ましい。特開平1−2075号公
報に記載の接着のための加熱をする場合、3次元構造が
緩和し易くなり平面的構造化し、3次元立体構造化が困
難となるので好ましくない。網状体の特性向上効果とし
ては、見掛けの嵩を高くでき軽量化になり、また抗圧縮
性が向上し、弾発性も改良できへたり難くなる。中空断
面では中空率が80%を越えると断面が潰れ易くなるの
で、好ましくは軽量化の効果が発現できる10%以上7
0%以下、より好ましくは20%以上60%以下であ
る。オリフィスの孔間ピッチは線状が形成するル−プが
充分接触できるピッチとする必要がある。緻密な構造に
するには孔間ピッチを短くし、粗密な構造にするには孔
間ピッチを長くする。本発明の孔間ピッチは好ましくは
3mm〜20mm、より好ましくは5mm〜10mmである。本
発明では所望に応じ異密度化や異繊度化もできる。列間
のピッチ又は孔間のピッチも変えた構成、及び列間と孔
間の両方のピッチも変える方法などで異密度層を形成で
きる。また、オリフィスの断面積を変えて吐出時の圧力
損失差を付与すると、溶融した熱可塑性樹脂を同一ノズ
ルから一定の圧力で押し出される吐出量が圧力損失の大
きいオリフィスほど少なくなる原理を使って長手方向の
区間でオリフィスの断面積が異なる列を少なくとも複数
有するノズルを用い異繊度線条からなる網状構造体を製
造することができる。次いで、該ノズルより下方に向け
て吐出させ、ル−プを形成させつつ溶融状態で互いに接
触させて融着させ3次元構造を形成しつつ、引取りネッ
トで挟み込み、網状体の表面の溶融状態の曲がりくねっ
た吐出線条を45°以上折り曲げて変形させて表面をフ
ラット化すると同時に曲げられていない吐出線条との接
触点を接着して構造を形成後、連続して冷却媒体(通常
は室温の水を用いるのが冷却速度を早くでき、コスト面
でも安くなるので好ましい)で急冷して本発明の3次元
立体網状構造体化した網状体を得る。ノズル面と引取り
点の距離は少なくとも40cm以下にすることで吐出線条
が冷却され接触部が融着しなくなることを防ぐのが好ま
しい。吐出線条の吐出量5g/分孔以上と多い場合は1
0cm〜40cmが好ましく、吐出線条の吐出量5g/分孔
未満と少ない場合は5cm〜20cmが好ましい。網状体の
厚みは溶融状態の3次元立体構造体両面を挟み込む引取
りネットの開口幅(引取りネット間の間隔)で決まる。
本発明では上述の理由から引取りネットの開口幅は5mm
以上とする。次いで水切り乾燥するが冷却媒体中に界面
活性剤等を添加すると、水切りや乾燥がしにくくなった
り、熱可塑性弾性樹脂が膨潤することもあり好ましくな
い。尚、ノズル面と樹脂を固化させる冷却媒体上に設置
した引取りコンベアとの距離、樹脂の溶融粘度、オリフ
ィスの孔径と吐出量などにより所望のループ径や線径を
きめられる。冷却媒体上に設置した間隔が調整可能な一
対の引取りコンベアで溶融状態の吐出線条を挟み込み停
留させることで互いに接触した部分を融着させつつ、連
続して冷却媒体中に引込み固化させ網状体を形成する
時、上記コンベアの間隔を調整することで、融着した網
状体が溶融状態でいる間で厚み調節が可能となり、所望
の厚みのものが得られる。コンベア速度も速すぎると、
接触点の形成が不充分になったり、融着点が充分に形成
されるまでに冷却され、接触部の融着が不充分になる場
合がある。また、速度が遅過ぎると溶融物が滞留し過
ぎ、密度が高くなるので、所望の見掛け密度に適したコ
ンベア速度を設定する必要がある。次いで本発明では、
表面層の機能を持たせる短繊維不織布と接合一体化す
る。熱可塑性弾性樹脂と熱可塑性非弾性樹脂からなる短
繊維は、好ましくは熱接着成分の熱可塑性弾性樹脂を低
融点、熱可塑性非弾性樹脂を高融点の組成を選択し、個
々に溶融し、公知の複合紡糸により紡糸し、延伸して完
成糸を得られる。が、この方法では、熱接着成分の融点
が低いので、延伸時に高温で熱セットできないため収縮
率が30%から80%と高いものしか得られないので、
ウエッブを熱成形する際ウエッブ収縮による成形寸法不
良を生じる。本発明ではこの問題を解決するため、30
00m/分以上の高速紡糸により収縮率を10%以下に
低収縮化して一気に完成糸にする方法で得るのが好まし
い。次いで、巻縮を付与し、所望のカット長に切断して
短繊維を得る。本発明に使用する短繊維の複合形態は特
には限定されないが、熱接着繊維としての機能が必要な
のでサイドバイサイドまたはシ−スコアで、低融点成分
が繊維の表面の50%以上を占めるのが好ましく、低融
点成分が繊維の表面の100%以上を占めるのがより好
ましい。かくして得られた短繊維はオ−プナ−等で予備
開繊した後カ−ド等で開繊し、3次元化構造としたウエ
ッブを、該網状体の表面に積層圧縮して熱成形により接
合一体化するか、一旦単独で開繊ウエッブのみを積層圧
縮して熱成形により構造体化して短繊維不織布を作成
し、次いで該網状体と短繊維不織布を接合一体化するこ
ともできる。この場合、熱接着層又は接着剤を別途該網
状体と短繊維不織布間に使用して接合一体化してもよ
く、該網状体または該短繊維不織布の熱接着機能を使っ
て接合一体化してもよい。本発明の好ましい方法として
は、該網状体を一旦冷却後、又は一体成形して得られた
不織布積層網状体を製品化に至る任意の工程で熱可塑性
弾性樹脂の融点より少なくとも10℃以下の温度でアニ
−リングよる疑似結晶化処理を行い不織布積層網状体又
は製品を得るのがより好ましい製法である。疑似結晶化
処理温度は、少なくとも融点(Tm)より10℃以上低
く、Tanδのα分散立ち上がり温度(Tαcr)以上
で行う。この処理で、融点以下に吸熱ピ−クを持ち、疑
似結晶化処理しないもの(吸熱ピ−クを有しないもの)
より耐熱耐へたり性が著しく向上する。本発明の好まし
い疑似結晶化処理温度は(Tαcr+10℃)から(T
m−20℃)である。単なる熱処理により疑似結晶化さ
せると耐熱耐へたり性が向上する。が更には、10%以
上の圧縮変形を付与してアニ−リングすることで耐熱耐
へたり性が著しく向上するのでより好ましい。また、該
網状体を一旦冷却後、乾燥工程を経する場合、乾燥温度
をアニ−リング温度とすることで同時に疑似結晶化処理
を行うができる。また、製品化する工程で別途疑似結晶
化処理を行うができる。次いで所望の長さまたは形状に
切断してクッション材に用いる。
Next, the manufacturing method of the present invention will be described. The thermoplastic elastic resin and the thermoplastic inelastic resin are distributed in front of each orifice so that the thermoplastic elastic resin and the thermoplastic inelastic resin can be compounded from a multi-row nozzle having a plurality of orifices, and the melting point of the thermoplastic resin is higher than the melting point of the thermoplastic resin by 120 ° C or more.
It is discharged downward from the nozzle at a melting temperature higher than less than, and in a molten state, they are brought into contact with each other and fused to form a three-dimensional structure, sandwiched by a take-up device and cooled in a cooling tank, and then heated on one side. Laminating webs that are three-dimensionally structured by opening short fibers made of plastic elastic resin and inelastic resin,
This is a method for producing a non-woven fabric laminated network in which most of the contact portion is fused and integrated with a thermal adhesive component by compression thermoforming. The reticulated body is prepared by separately melting the thermoplastic elastic resin and the thermoplastic non-elastic resin by using a general melt extruder, and mixing and mixing so as to form a composite just before the orifice as in a general composite spinning method. Discharge downward from the orifice. In the sheath core, the core component is supplied from the center, and the sheath component is merged and discharged from around the core component. On the side-by-side, the components are merged and discharged from the left and right or the front and back. The melting temperature at this time is 10 ° C. to 120 ° C. higher than the melting point of the thermoplastic resin. When the melting temperature is higher than the melting point of the low-melting point component and exceeds 120 ° C., thermal decomposition is remarkable and the characteristics of the thermoplastic resin are deteriorated, which is not preferable. On the other hand, unless the temperature is higher than the melting point of the high-melting point component by 10 ° C. or more, melt fracture occurs and normal filament formation becomes impossible, and the temperature of the filament when contacting and fusing while forming loop after discharge. May decrease, and the filaments may not be fused to each other, resulting in a network having insufficient adhesion. In the case of side-by-side, the linear adhesion may be poor, which is not preferable. The preferred melting temperature is 20 to 100 ° C. higher than the melting point of the low melting point component,
More preferably, the temperature is 30 ° C. to 80 ° C. higher than the melting point, and the temperature is 15 ° C. to 40 ° C. higher than the melting point of the high melting point component,
More preferably, they are combined and discharged at the same melting temperature that is 20 ° C. to 30 ° C. higher than the melting point. Unless the melting temperature difference immediately before joining is 10 ° C. or less, abnormal flow may occur and the formation of the composite morphology may be impaired. The shape of the orifice is not particularly limited, but may be a hollow cross section (for example, a triangular hollow shape, a round hollow shape, a shape with a protrusion, etc.) and / or an irregular cross section (for example, a triangular, Y-shaped, star-shaped cross-section secondary mode). In addition to the above effects, it is difficult for the three-dimensional structure formed by the discharge filaments in the molten state to relax the flow, and on the contrary, the flow time at the contact point is maintained for a long time to strengthen the adhesion point. It is particularly preferable because it can be When heating for adhesion as described in Japanese Patent Application Laid-Open No. 1-2075, the three-dimensional structure is easily relaxed, a planar structure is formed, and a three-dimensional three-dimensional structure becomes difficult, which is not preferable. As an effect of improving the properties of the reticulate body, the apparent bulk can be increased, the weight can be reduced, the anti-compression property can be improved, and the elasticity can be improved, which is difficult to obtain. In the case of a hollow cross section, if the hollow ratio exceeds 80%, the cross section tends to be crushed.
It is 0% or less, and more preferably 20% or more and 60% or less. The pitch between the holes of the orifice needs to be a pitch with which the loop formed by the line can sufficiently contact. The pitch between holes is shortened for a dense structure, and the pitch between holes is lengthened for a coarse structure. The pitch between the holes of the present invention is preferably 3 mm to 20 mm, more preferably 5 mm to 10 mm. In the present invention, different densities and different fineness can be obtained as desired. The different density layer can be formed by a configuration in which the pitch between rows or the pitch between holes is also changed, or a method in which the pitch between both rows and holes is also changed. In addition, if the cross-sectional area of the orifice is changed to give a pressure loss difference at the time of discharge, the melted thermoplastic resin is extruded from the same nozzle with a constant pressure, and the discharge amount decreases as the orifice loses more pressure. It is possible to manufacture a net-like structure composed of filaments of different fineness by using a nozzle having at least a plurality of rows having different cross-sectional areas of orifices in a section in the direction. Then, the liquid is discharged downward from the nozzle, and while forming a loop, they are brought into contact with each other in a molten state to be fused to form a three-dimensional structure, and are sandwiched by a take-up net to melt the surface of the net-like body. Bending the twisted discharge line of 45 degrees or more to deform it to flatten the surface and at the same time bond the contact points with the unbent discharge line to form a structure, and then continuously cool the medium (usually at room temperature). It is preferable to use the water of (1) because the cooling rate can be increased and the cost can be reduced). The distance between the nozzle surface and the take-off point is preferably at least 40 cm or less to prevent the discharge filament from being cooled and the contact portion not being fused. 1 if the discharge rate of discharge line is 5g / hole or more
0 cm to 40 cm is preferable, and 5 cm to 20 cm is preferable when the discharge amount of the discharge filament is less than 5 g / hole. The thickness of the net-like body is determined by the opening width (interval between the take-up nets) of the take-up net sandwiching both surfaces of the three-dimensional structure in the molten state.
In the present invention, the opening width of the take-up net is 5 mm for the above reason.
That is all. Next, it is drained and dried, but if a surfactant or the like is added to the cooling medium, draining and drying may be difficult, or the thermoplastic elastic resin may swell, which is not preferable. The desired loop diameter and wire diameter can be determined by the distance between the nozzle surface and the take-up conveyor installed on the cooling medium for solidifying the resin, the melt viscosity of the resin, the orifice hole diameter and the discharge amount, and the like. A pair of take-up conveyors with adjustable spacing installed on the cooling medium sandwiches and holds the melted discharge filaments to fuse the portions that are in contact with each other and continuously draw in the cooling medium to solidify. By adjusting the distance between the conveyors when forming the body, the thickness can be adjusted while the fused net-like body is in a molten state, and a desired thickness can be obtained. If the conveyor speed is too fast,
In some cases, the contact points may be insufficiently formed, or the contact points may be cooled by sufficient cooling until the fusion points are sufficiently formed. Further, if the speed is too slow, the melt will stay too much and the density will increase, so it is necessary to set the conveyor speed suitable for the desired apparent density. Then in the present invention,
It is joined and integrated with a short fiber non-woven fabric that has the function of a surface layer. A short fiber composed of a thermoplastic elastic resin and a thermoplastic non-elastic resin is preferably a composition in which the thermoplastic elastic resin of the heat-adhesive component has a low melting point and the thermoplastic non-elastic resin has a high melting point, which are individually melted The finished yarn can be obtained by spinning and stretching with the composite spinning of. However, in this method, since the melting point of the heat-adhesive component is low, heat setting at a high temperature at the time of stretching cannot be performed, so that only a high shrinkage rate of 30% to 80% can be obtained.
When the web is thermoformed, shrinkage of the web causes defective molding. In the present invention, in order to solve this problem,
It is preferable to obtain it by a method in which the shrinkage rate is reduced to 10% or less by high-speed spinning at a speed of 00 m / min or more and the finished yarn is obtained all at once. Next, crimping is applied and cut into a desired cut length to obtain short fibers. Although the composite form of the short fibers used in the present invention is not particularly limited, it is preferable that the low melting point component occupies 50% or more of the surface of the fiber in the side-by-side or the score, since the function as the heat-bonding fiber is required. More preferably, the low melting point component occupies 100% or more of the surface of the fiber. The short fibers thus obtained are pre-opened with an opener or the like and then opened with a card or the like, and a web having a three-dimensional structure is laminated and compressed on the surface of the reticulated body and bonded by thermoforming. It is also possible to integrate them, or to form a short-fiber non-woven fabric by laminating and compressing only the open webs and thermoforming to form a short-fiber non-woven fabric, and then joining and integrating the net body and the short-fiber non-woven fabric. In this case, a thermal adhesive layer or an adhesive may be separately used between the reticulate body and the short fiber non-woven fabric for bonding and integration, or the thermal rebonding function of the reticulate body or the short fiber non-woven fabric may be used for bonding and integration. Good. As a preferred method of the present invention, a temperature of at least 10 ° C. or lower than the melting point of the thermoplastic elastic resin is used in any step leading to commercialization of the nonwoven fabric laminated network obtained by once cooling the network or integrally molding. It is a more preferable production method to obtain a non-woven fabric laminated network or product by performing pseudo crystallization treatment by annealing. The pseudo-crystallization treatment temperature is at least 10 ° C. lower than the melting point (Tm), and is higher than the α dispersion rising temperature (Tαcr) of Tan δ. This treatment has an endothermic peak below the melting point and does not have pseudo-crystallization treatment (no endothermic peak)
The heat resistance and sag resistance are remarkably improved. The preferred pseudo-crystallization treatment temperature of the present invention is from (Tαcr + 10 ° C.) to (Tαcr + 10 ° C.).
m-20 ° C). If it is pseudo-crystallized by simple heat treatment, heat resistance and sag resistance are improved. However, it is more preferable to impart compressive deformation of 10% or more and anneal to significantly improve the heat resistance and sag resistance. Further, when the reticulate body is once cooled and then subjected to a drying step, the pseudo crystallization treatment can be simultaneously performed by setting the drying temperature to the annealing temperature. Also, a pseudo crystallization treatment can be separately performed in the process of commercialization. Then, it is cut into a desired length or shape and used as a cushion material.

【0016】本発明の不織布積層網状体をクッション用
いる場合、その使用目的、使用部位により使用する樹
脂、繊度、ル−プ径、嵩密度を選択する必要がある。例
えば、ソフトなタッチと適度の沈み込みと張りのある膨
らみを付与するためには、やや高密度で細い繊度の緻密
な構造が好ましく、中層のクッション機能を発現させる
には、共振振動数を低くし、適度の硬さと圧縮時のヒス
テリシスを直線的に変化させて体型保持性を良くし、耐
久性を保持させるために、中密度で太い繊度、やや大き
いル−プ径の層と低密度で細い繊度、細かいル−プ径の
層を積層一体化した構造にするのが好ましい。本発明の
不織布積層網状体は表面層とクッション層の機能を同時
に有するので、3次元構造を損なわない程度に成形型等
を用いて使用目的にあった形状に成形して側地を被せる
のみで車両用座席、船舶用座席、ベット、椅子、家具等
に用いることができる。勿論、用途との関係で要求性能
に合うべき他の素材、例えば、異なる網状体、短繊維集
合体からなる硬綿クッション材、不織布等と組合せて用
いることも可能である。また、樹脂製造過程以外でも性
能を低下させない範囲で製造過程から成形体に加工し、
製品化する任意の段階で難燃化、防虫抗菌化、耐熱化、
撥水撥油化、着色、芳香等の機能付与を薬剤添加等の処
理加工ができる。
When the non-woven fabric laminated network of the present invention is used as a cushion, it is necessary to select the resin to be used, the fineness, the loop diameter and the bulk density depending on the purpose of use and the site of use. For example, in order to give a soft touch, moderate depression and bulging with tension, a dense structure with a slightly high density and fine fineness is preferable, and in order to exert the cushion function of the middle layer, the resonance frequency is low. However, in order to improve the body shape retention by linearly changing the appropriate hardness and hysteresis at the time of compression, in order to maintain durability, medium density, thick fineness, a layer with a slightly larger loop diameter and low density It is preferable to have a structure in which layers having a fine fineness and a fine loop diameter are laminated and integrated. Since the nonwoven fabric-laminated network of the present invention has the functions of both the surface layer and the cushion layer at the same time, it can be formed into a shape suitable for the purpose of use using a molding die or the like so as not to impair the three-dimensional structure, and the side cloth is covered. It can be used for vehicle seats, boat seats, beds, chairs, furniture and the like. Of course, it is also possible to use it in combination with another material that should meet the required performance in relation to the application, for example, a different mesh body, a hard cotton cushion material composed of a short fiber aggregate, a non-woven fabric, or the like. In addition, other than the resin manufacturing process, it is processed into a molded product from the manufacturing process within a range that does not deteriorate the performance,
Flame retardant, insect repellent antibacterial, heat resistant, at any stage of commercialization
Water and oil repellency, coloring, aroma and other functions can be processed by adding chemicals.

【0017】[0017]

【実施例】以下に実施例で本発明を詳述する。EXAMPLES The present invention will be described in detail below with reference to examples.

【0018】なお、実施例中の評価は以下の方法で行っ
た。 融点(Tm)および融点以下の吸熱ピ−ク 島津製作所製TA50,DSC50型示差熱分析計を使
用し、昇温速度20℃/分で測定した吸発熱曲線から吸
熱ピ−ク(融解ピ−ク)温度を求めた。 Tαcr ポリマ−を融点+10℃に加熱して、厚み約300μm
のフイルムを作成して、オリエンテック社製バイブロン
DDVII型を用い、110Hz、昇温速度1℃/分で測
定したTanδ(虚数弾性率M”と弾性率の実数部分
M’との比M”/M’)のゴム弾性領域から融解領域へ
の転移点温度に相当するα分散の立ち上がり温度。 見掛け密度 試料を15cm×15cmの大きさに切断し、4か所の高さ
を測定し、体積を求め試料の重さを体積で徐した値で示
す。(n=4の平均値) 線条の繊度 試料を10箇所から各線条部分を切り出し、アクリル樹
脂で包埋して断面を削り出し切片を作成して断面写真を
得る。各部分の断面写真より各部の断面積(Si)を求
める。また、同様にして得た切片をアセトンでアクリル
樹脂を溶解し、真空脱泡して密度勾配管を用いて40℃
にて測定した比重(SGi)を求める。ついで次式より
線状の9000mの重さを求める。(単位cgs) 繊度=〔(1/n)ΣSi×SGi〕×900000 融着 試料を目視判断で融着しているか否かを接着している繊
維同士を手で引っ張って外れないか否かで外れないもの
を融着していると判断する。 耐熱耐久性(70℃残留歪) 試料を15cm×15cmの大きさに切断し、50%圧縮し
て70℃乾熱中22時間放置後冷却して圧縮歪みを除き
1日放置後の厚み(b)を求め、処理前の厚み(a)か
ら次式、即ち(a−b)/a×100より算出する。単
位%(n=3の平均値) 繰返し圧縮歪 試料を15cm×15cmの大きさに切断し、島津製作所製
サ−ボパルサ−にて、25℃65%RH室内にて50%
の厚みまで1Hzのサイクルで圧縮回復を繰り返し2万
回後の試料を1日放置後の厚み(b)を求め、処理前の
厚み(a)から次式、即ち(a−b)/a×100より
算出する。単位%(n=3の平均値) 座り心地 バケットシ−トの形状に切断成形した不織布積層網状体
の表面層側に東洋紡績製ハイムからなるポリエステルモ
ケットの側地を被って、座席用フレ−ムにセットして座
部は4か所、背部は6か所の側地止めを入れた座席を作
成し、30℃RH75%室内で作成した座席にパネラ−
を座らせ以下の評価をおこなった。(n=5) (1) 床つき感:座ったときの「どすん」と床に当たった
感じの程度を感覚的に定性評価した。感じない;◎、殆
ど感じない;○、やや感じる;△、感じる;× (2) 蒸れ感:2時間座っていて、臀部やふと股の内側の
座席と接する部分が蒸れた感じを感覚的に定性評価し
た。殆ど感じない:◎、僅かに蒸れを感じる;○、やや
蒸れを感じる;△、蒸れを著しく感じる;× (3) 8時間以内でどの程度我慢して座席に座っていられ
るか:1時間以内;×、2時間以内;△、4時間以内;
○、4時間以上;◎ (4) 4時間座席に座らせたときの腰の疲れ程度を感覚的
に定性評価した。無し;◎、殆ど疲れない;○、やや疲
れる;△、非常に疲れる;× (5) 総合評価: (1)から(4) までの評価の◎を4点、○
を3点、△を2点、×を1点として12点以上で△を含
まないもの;非常に良い(◎)、12点以上で△を含む
もの;良い(○)、10点以上で×を含まないもの;や
や悪い(△)、×を含むもの;悪い(×)として評価し
た。
The evaluations in the examples were carried out by the following methods. Melting point (Tm) and endothermic peak below melting point TA50, DSC50 type differential thermal analyzer manufactured by Shimadzu Corporation was used, and the endothermic peak (melting peak) was measured from the endothermic curve measured at a temperature rising rate of 20 ° C./min. ) The temperature was determined. Tαcr polymer is heated to the melting point + 10 ° C and the thickness is about 300 μm.
Film was prepared and measured using a Vibron DDVII type manufactured by Orientec Co., Ltd. at a rate of 110 Hz and a heating rate of 1 ° C./min. Tan δ (the ratio of the imaginary elastic modulus M ″ to the real part M ′ of the elastic modulus M ″ / The rising temperature of α dispersion corresponding to the transition temperature from the rubber elastic region to the melting region of M ′). The apparent density sample is cut into a size of 15 cm × 15 cm, the heights at four locations are measured, the volume is determined, and the weight of the sample is divided by the volume. (Average value of n = 4) Each fine line sample is cut out from 10 places of fine line fineness, embedded with an acrylic resin, a cross section is cut out, and a section is prepared to obtain a cross section photograph. The cross-sectional area (Si) of each part is obtained from the cross-sectional photograph of each part. In addition, a piece obtained in the same manner was dissolved in acrylic resin with acetone, degassed in vacuum, and a density gradient tube was used to 40 ° C.
Determine the specific gravity (SGi) measured in. Then, a linear weight of 9000 m is obtained from the following equation. (Unit: cgs) Fineness = [(1 / n) ΣSi × SGi] × 900000 Whether or not the fusion-bonded sample is fused by visual judgment is determined by whether or not the fibers adhering to each other can be pulled out by hand and removed. It is determined that something that does not come off is fused. Heat resistance and durability (residual strain at 70 ° C) Cut a sample into a size of 15 cm x 15 cm, compress it by 50%, leave it in dry heat at 70 ° C for 22 hours, then cool to remove compression strain and leave it for 1 day (b) Is calculated, and is calculated from the thickness (a) before processing by the following equation, that is, (ab) / a × 100. Unit% (average value of n = 3) Cyclic compression strain sample is cut into a size of 15 cm x 15 cm, and is 50% in a RH room at 25 ° C and 65% in a Shimadzu Servo Pulser.
The thickness (b) after leaving the sample for 20,000 times after repeating compression recovery at a cycle of 1 Hz up to the thickness of 1 is calculated from the thickness (a) before the treatment, that is, (ab) / ax Calculated from 100. Unit% (average value of n = 3) Seating comfort A non-woven fabric laminate sheet cut into a sheet shape is covered with a polyester moquette hem made of Toyobo Co., Ltd. on the surface layer side to form a seat frame. Set the seats to 4 seats and 6 seats on the back, and create side seats.
The following evaluations were performed. (N = 5) (1) Feeling on the floor: The degree of "dosun" when sitting and the feeling of hitting the floor were qualitatively and qualitatively evaluated. Not felt; ◎, hardly felt; ○, slightly felt; △, felt; × (2) Feeling of stuffiness: Feeling stuffy when sitting for 2 hours and the buttocks and the part of the crotch that contacts the seat inside the crotch Qualitatively evaluated. Almost no feeling: ◎, slightly stuffy; ○, slightly stuffy; △, significantly stuffy; × (3) How long you can sit in the seat within 8 hours: within 1 hour; × within 2 hours; △ within 4 hours;
○ 4 hours or more; ◎ (4) A qualitative qualitative evaluation was performed on the degree of waist fatigue when the user sat in the seat for 4 hours. None; ◎, hardly tired; ○, slightly tired; △, very tired; × (5) Overall evaluation: 4 points from ◎ of the evaluations from (1) to (4), ○
3 points, △ is 2 points, × is 1 point and does not include Δ with 12 points or more; very good (⊚), that with 12 points or more; Good (○), 10 points or more is x It was evaluated as those which did not contain; those which were somewhat bad (Δ) and those which contained x; bad (x).

【0019】実施例1 ポリエステル系エラストマ−として、ジメチルテレフタ
レ−ト(DMT)又は、ジメチルナフタレ−ト(DM
N)と1・4ブタンジオ−ル(1・4BD)を少量の触
媒と仕込み、常法によりエステル交換後、ポリテトラメ
チレングリコ−ル(PTMG)を添加して昇温減圧しつ
つ重縮合せしめポリエ−テルエステルブロック共重合エ
ラストマ−を生成させ、次いで抗酸化剤2%を添加混合
練込み後ペレット化し、50℃48時間真空乾燥して得
られた熱可塑性弾性樹脂原料の処方を表1に示す。
Example 1 As a polyester elastomer, dimethyl terephthalate (DMT) or dimethyl naphthalate (DM) was used.
N) and 1.4 butanediol (1.4 BD) were charged with a small amount of a catalyst, and after transesterification by a conventional method, polytetramethylene glycol (PTMG) was added and polycondensation was performed while heating and depressurizing. -Formation of terester block copolymer elastomer, then addition and mixing of 2% of antioxidant, kneading, pelletizing, and vacuum drying at 50 ° C for 48 hours are shown in Table 1. .

【0020】[0020]

【表1】 [Table 1]

【0021】幅50cm、長さ5cmのノズル有効面に幅方
向の孔間ピッチ5mm、長さ方向の孔間ピッチ10mmの千
鳥配列としたオリフィス形状は外径2mm、内径1.6mm
でトリプルブリッジの中空形成性断面としたノズルに、
得られた熱可塑性弾性樹脂原料を別々の押出機にて溶融
し、A−1をシ−ス成分に、相対粘度1.0のPBTを
コア成分となるようにオリフィス直前で分配し、溶融温
度260℃にて単孔当たりの吐出量2.0g/分(A−
1:1g/分、PBT:1g/分)にてノズル下方に吐
出させ、ノズル面12cm下に冷却水を配し、幅60cmの
ステンレス製エンドレスネットを平行に5cm間隔で一対
の引取りコンベアを水面上に一部出るように配して、該
溶融状態の吐出線状を曲がりくねらせル−プを形成して
接触部分を融着させつつ3次元網状構造を形成し、該溶
融状態の網状体の両面を引取りコンベア−で挟み込みつ
つ毎分1mの速度で25℃の冷却水中へ引込み固化させ
両面をフラット化した後、所定の大きさに切断して得た
網状体は断面形状がシ−スコア構造の三角おむすび型の
中空断面で中空率が40%、繊度が9000デニ−ルの
線条で形成しており、平均の見掛け密度が0.046g
/cm3 であった。別途に、常法により公知の複合紡糸機
にて、熱可塑性弾性樹脂A−1をシ−ス成分、PBTを
コア成分となるように個々に溶融してオリフィス直前で
分配し、各吐出量を50/50重量比で、単孔当たり
1.6g/分孔(0.8g/分:0.8g/分)として
紡糸温度265℃にて吐出し、紡糸速度3500m/分
にて得た繊度が4.1デニ−ル、乾熱160℃での収縮
率4%の糸を収束してトウ状でクリンパ−にて機械巻縮
を付与し、64mmに切断してシ−スコア断面の熱可塑性
弾性樹脂からなる熱接着繊維を得た。得られた熱接着繊
維をオ−プナ−にて予備開繊した後カ−ドで開繊して得
たウエッブを目付け1000g/m2 に積層し、該網状
体に積層し、見掛け密度が0.05g/cm3 となるよう
に圧縮し、180℃の熱風にて5分間熱処理後冷却して
両面がフラットな不織布積層網状体を得た。次いで厚み
の10%圧縮して、100℃の熱風にて20分疑似結晶
化処理して得た本発明の不織布積層網状体の特性を表2
に示す。表2で明らかなごとく、実施例1は柔らかい弾
性樹脂の特性が生かせた不織布積層網状体のため耐熱
性、常温での耐久性に優れ、座り心地ともに優れたクッ
ション材であった。評価用に作成した座席も性能が優れ
ていることが判る。
Orifice shapes having a staggered arrangement with a hole-to-hole pitch of 5 mm in the width direction and a hole-to-hole pitch of 10 mm in the length direction on an effective surface of a nozzle having a width of 50 cm and a length of 5 cm have an outer diameter of 2 mm and an inner diameter of 1.6 mm.
With a nozzle with a triple bridge hollow forming cross section,
The obtained thermoplastic elastic resin raw materials are melted by different extruders, A-1 is distributed as a sheath component, and PBT having a relative viscosity of 1.0 is distributed just before the orifice so as to become a core component, and the melting temperature is changed. Discharge rate per single hole at 260 ° C: 2.0 g / min (A-
(1: 1 g / min, PBT: 1 g / min), and the cooling water is placed 12 cm below the nozzle surface, and stainless steel endless nets with a width of 60 cm are arranged in parallel with a pair of take-up conveyors at intervals of 5 cm. It is arranged so that it partially appears on the surface of the water, and the discharge line in the molten state is bent to form a loop, and the contact portion is fused to form a three-dimensional network structure. While sandwiching both sides of the body with a take-up conveyor, the body was drawn into cooling water at 25 ° C. at a speed of 1 m / min to be solidified and flattened on both sides, and then cut into a predetermined size. -It has a triangular cross section with a score structure and a hollow cross section with a hollowness of 40% and a fineness of 9000 denier, and an average apparent density of 0.046 g.
It was / cm 3 . Separately, the thermoplastic elastic resin A-1 is melted individually by a conventional method so that the thermoplastic elastic resin A-1 becomes the sheath component and the PBT becomes the core component and distributed immediately before the orifice. 50/50 weight ratio, 1.6g / min per hole (0.8g / min: 0.8g / min) was discharged at a spinning temperature of 265 ° C, and the fineness obtained at a spinning speed of 3500m / min. 4.1 denier, 4% shrinkage at 160 ° C dry heat is converged, crimped in a tow shape and mechanically crimped, cut into 64 mm and thermoplastic elasticity of sheath core cross section A heat-bonded fiber made of resin was obtained. The resulting heat-bonded fiber was pre-opened with an opener and then opened with a card to obtain a web, which was laminated to a basis weight of 1000 g / m 2 and laminated on the reticulated body to give an apparent density of 0. It was compressed to 0.05 g / cm 3 , heat-treated for 5 minutes with hot air at 180 ° C., and then cooled to obtain a nonwoven fabric laminated mesh body having flat both sides. Next, the characteristics of the nonwoven fabric laminated network of the present invention obtained by compressing 10% of the thickness and performing pseudo-crystallization treatment with hot air of 100 ° C. for 20 minutes are shown in Table 2.
Shown in. As is clear from Table 2, Example 1 was a cushioning material having excellent heat resistance and durability at room temperature and excellent sitting comfort because it was a nonwoven fabric laminated reticulate body which made the best use of the characteristics of the soft elastic resin. It can be seen that the seat created for evaluation also has excellent performance.

【0022】[0022]

【表2】 [Table 2]

【0023】実施例2 ジメチルイソフタレ−ト(DMI)20モル%とDMT
80モル%及び1・4ブタンジオ−ル(1・4BD)を
少量の触媒と仕込み、実施例1の方法と同様にして得た
ポリエステル系熱可塑性弾性樹脂の処方を表−1に示
す。オリフィスの孔形状を孔径φ1mmの丸断面としたノ
ズルを用い、A−3をシ−ス成分に用いた以外実施例1
と同様にして得た網状体は中実丸断面で繊度9000デ
ニ−ルの線条から形成されており、平均の見掛け密度が
0.045g/cm3 であった。次いで実施例1と同様に
して得た不織布積層網状体の特性を表2に示す。表2で
明らかなごとく、実施例2は耐熱性と常温での耐久性は
実用上使用可能で、座り心地の優れたクッション材であ
り、評価用に作成した座席も優れていることが判る。
Example 2 20 mol% of dimethyl isophthalate (DMI) and DMT
Table 1 shows the formulation of the polyester-based thermoplastic elastic resin obtained in the same manner as in Example 1 by charging 80 mol% and 1.4-butanediol (1.4-BD) with a small amount of a catalyst. Example 1 except that a nozzle having a circular cross section with a hole diameter of 1 mm was used as the orifice and A-3 was used as the sheath component.
The reticulate body obtained in the same manner as in (1) had a solid round cross section and was formed from filaments having a fineness of 9000 denier, and had an average apparent density of 0.045 g / cm 3 . Next, Table 2 shows the characteristics of the nonwoven fabric laminated network obtained in the same manner as in Example 1. As is clear from Table 2, it can be seen that Example 2 is a cushioning material which is practically usable in terms of heat resistance and durability at room temperature and has an excellent sitting comfort, and the seat prepared for evaluation is also excellent.

【0024】実施例3 ポリウレタン系エラストマ−として、4・4’ジフェニ
ルメタンジイソシアネ−ト(MDI)とPTMG及び鎖
延長剤として1・4BDを添加して重合し次いで抗酸化
剤2%を添加混合練込み後ペレット化し真空乾燥してポ
リエ−テル系ウレタンポリマ−の処方を表3に示す。
Example 3 As a polyurethane elastomer, 4,4'-diphenylmethane diisocyanate (MDI), PTMG and 1.4BD as a chain extender were added and polymerized, and then 2% of an antioxidant was added and mixed. Table 3 shows the formulation of the polyether urethane polymer after kneading, pelletizing and vacuum drying.

【0025】[0025]

【表3】 [Table 3]

【0026】得られた熱可塑性弾性樹脂(シ−ス成分:
B−1)を用いた以外実施例1と同様にして得た網状体
の線条のシ−スコア構造の断面形状が三角おむすび型の
中空断面で中空率40%、繊度が9800デニ−ル、平
均の見掛け密度が0.047g/cm3 であった。他方、
B−1をシ−ス成分に、PBTをコア成分とし、紡糸温
度を265℃とした以外実施例1と同様にして得た熱接
着繊維の特性は、繊度が4.5デニ−ル、150℃での
収縮率が9%であった。この熱接着繊維と実施例1で得
た母材をを実施例1と同様にして1000g/m2 の積
層ウエッブにし、該網状体と積層し、160℃の熱風に
て5分間熱処理後冷却して両面がフラットな不織布積層
網状体を得た。次いで厚みの10%圧縮して、100℃
の熱風にて20分疑似結晶化処理して得た本発明の不織
布積層網状体の特性を表2に示す。実施例3は柔らかい
ウレタンの特性を生かした不織布積層網状体で耐熱性、
常温での耐久性、座り心地ともに優れたクッション材で
あった。評価用に作成した座席も優れていることが判
る。
The thermoplastic elastic resin thus obtained (seed component:
In the same manner as in Example 1 except that B-1) was used, the cross-sectional shape of the linear filaments of the linear filaments was a triangular rice ball type hollow cross section with a hollow ratio of 40% and a fineness of 9800 denier. The average apparent density was 0.047 g / cm 3 . On the other hand,
The characteristics of the heat-bonded fiber obtained in the same manner as in Example 1 except that B-1 was used as the sheath component, PBT was used as the core component, and the spinning temperature was 265 ° C., the fineness was 4.5 denier, 150 The shrinkage percentage at 9 ° C was 9%. This heat-bonded fiber and the base material obtained in Example 1 were made into a laminated web of 1000 g / m 2 in the same manner as in Example 1, laminated with the mesh, heat treated with hot air at 160 ° C. for 5 minutes, and then cooled. As a result, a non-woven fabric laminated reticulate body having flat both sides was obtained. Then compress 10% of the thickness to 100 ° C
Table 2 shows the characteristics of the non-woven fabric laminated network of the present invention obtained by performing the pseudo crystallization treatment for 20 minutes with hot air. Example 3 is a non-woven laminate reticulate body that takes advantage of the characteristics of soft urethane, and has heat resistance.
It was a cushioning material with excellent durability and comfort at room temperature. It can be seen that the seat created for evaluation is also excellent.

【0027】比較例1〜2 実施例1で用いたPBTをシ−ス成分に、固有粘度0.
63のPETをコア成分及びメルトインデクス5のポリ
エチレンをシ−ス成分に、メルトインデックス12のP
Pをコア成分にして、溶融温度を280℃及び240℃
とした以外、実施例2と同様にして得た比較例1に用い
る網状体は、繊度が8700デニ−ル、見掛け密度が
0.047g/cm3 、比較例2に用いる網状体の繊度は
24000デニ−ルで、見掛け密度が0.047g/cm
3 であった。次いで、疑似結晶化処理しなかった以外、
実施例2と同様にして得た不織布積層網状体の特性を表
2に示す。比較例1は非弾性ポリエステルからなる網状
体のため耐熱耐久性が悪く、熱接着成分が熱可塑性弾性
樹脂からなる熱接着繊維を用いた短繊維不織布を表面層
に使用しているにも係わらず、硬くて座り心地も悪いク
ッション材である。比較例2は繊度がやや太い非弾性オ
レフィンからなる網状体のため、及び熱接着成分が熱可
塑性弾性樹脂からなる熱接着繊維を用いた短繊維不織布
がポリエステルのため、表面層と網状体が熱接着しなか
ったのでウレタン系接着材で接着したが、耐熱耐久性が
悪く、座り心地の悪いクッション材であった。
Comparative Examples 1 and 2 The PBT used in Example 1 was used as a sheath component and an intrinsic viscosity of 0.
PET of 63 is the core component and polyethylene of melt index 5 is the sheath component, and P of melt index 12 is used.
With P as the core component, the melting temperature is 280 ° C and 240 ° C.
Except that, the reticulate body used in Comparative Example 1 obtained in the same manner as in Example 2 has a fineness of 8700 denier and an apparent density of 0.047 g / cm 3 , and the reticulate body used in Comparative Example 2 has a fineness of 24000. Denier with an apparent density of 0.047 g / cm
Was 3 . Then, except that the pseudo crystallization treatment was not performed
Table 2 shows the characteristics of the nonwoven fabric-laminated network obtained in the same manner as in Example 2. Comparative Example 1 has a poor heat resistance and durability because it is a reticulated body made of non-elastic polyester, and despite the fact that a short fiber non-woven fabric using a heat-bonding fiber whose thermo-bonding component is a thermoplastic elastic resin is used for the surface layer. , A cushion material that is hard and uncomfortable to sit on. In Comparative Example 2, the surface layer and the reticulate body are heat-resistant because the fine fiber is a reticulate body made of non-elastic olefin, and the heat-bonding component is a short fiber non-woven fabric made of a thermoplastic adhesive resin and made of polyester. Since it did not adhere, it was adhered with a urethane adhesive, but it was a cushioning material that had poor heat resistance and durability and was uncomfortable to sit on.

【0028】比較例3 ノズル面60cm下に引取りコンベアネットを配して引き
取ったあと疑似結晶化処理をしなかった以外、実施例2
と同様の方法で得た網状体の特性の一部を表2に示す。
なお、接着状態が不良で形態保持が悪いため、不織布積
層網状体にはできなかったので、50%圧縮時反発力、
見掛け密度、補強効果、70℃残留歪、繰返圧縮歪み、
及び座り心地の評価はしていない。比較例3は形態が固
定されていないのでクッション材に適さない例である。
Comparative Example 3 Example 2 was repeated except that a take-up conveyor net was placed 60 cm below the nozzle surface and no pseudo crystallization treatment was performed after the take-up conveyor net was taken out.
Table 2 shows a part of the properties of the reticulate body obtained by the same method as described above.
In addition, since the non-woven fabric laminated network could not be formed due to poor adhesion and poor shape retention, repulsive force at 50% compression,
Apparent density, reinforcement effect, residual strain at 70 ℃, repeated compression strain,
Also, the sitting comfort is not evaluated. Comparative Example 3 is an example that is not suitable for a cushioning material because its shape is not fixed.

【0029】比較例4 疑似結晶化処理しない以外、実施例2と同様にして得た
線条は繊度9100デニ−ル、平均の見掛け密度は0.
045g/cm3 の網状体と、熱接着繊維に熱可塑性非弾
性樹脂を熱接着成分とした東洋紡績社製4−44−EE
7を用いて疑似結晶化処理しない以外、実施例1と同様
にして作成した短繊維不織布を表面層に積層し、接合一
体化した不織布積層網状体の特性を表2に示す。比較例
4は座り心地は良いが、耐熱性と耐久性がやや不良なク
ッション材であった。
Comparative Example 4 A filament obtained in the same manner as in Example 2 except that the pseudo crystallization treatment was not performed had a fineness of 9100 denier and an average apparent density of 0.
4-45-EE manufactured by Toyobo Co., Ltd., which uses 045 g / cm 3 of reticulate body and thermoplastic non-elastic resin as a thermal bonding component in thermal bonding fiber
Table 2 shows the characteristics of the nonwoven fabric laminated network in which the short fiber nonwoven fabric prepared in the same manner as in Example 1 was laminated on the surface layer except that no pseudo crystallization treatment was performed using 7. Comparative Example 4 was a cushioning material which was comfortable to sit on but had slightly poor heat resistance and durability.

【0030】比較例5 幅50cm、長さ5cmのノズル有効面に幅方向の孔間ピッ
チ10mm、長さ方向の孔間ピッチ20mmの千鳥配列とし
たオリフィス径φ2mmとしたノズルを用いて、単孔当た
りの吐出量25g/分にて吐出させて、ノズル面30cm
下に引取りコンベアネットを配して1m/分にて引き取
った以外、実施例2と同様にして得た線条の繊度は11
2000デニ−ルで、平均の見掛け密度は0.154g
/cm3 の網状体を用い、疑似結晶化処理しない以外実施
例2と同様にして作成した不織布積層網状体の特性を表
2に示す。比較例5は繊度が著しく太く密度斑のある不
織布積層網状体のため、耐熱耐久性が悪くなり、座り心
地もやや悪くなるクッション材であった。
Comparative Example 5 A nozzle having a width of 50 cm and a length of 5 cm and having a staggered arrangement of holes with a pitch of 10 mm in the width direction and a pitch of 20 mm between the holes in the length direction was used as a nozzle having a diameter of 2 mm to form a single hole. Discharge at a rate of 25 g / min per nozzle, nozzle surface 30 cm
The fineness of the filament obtained in the same manner as in Example 2 was 11 except that a take-up conveyor net was arranged below and the take-up was carried out at 1 m / min.
At 2000 denier, the average apparent density is 0.154 g.
Table 2 shows the properties of the non-woven fabric laminated network prepared in the same manner as in Example 2 except that the net-like network of 1 cm 3 / cm 3 was used and no pseudo-crystallization treatment was performed. Comparative Example 5 was a cushioning material having a remarkably fineness and a non-woven fabric laminated network having unevenness in density, resulting in poor heat resistance and a little uncomfortable sitting comfort.

【0031】比較例6 引取りコンベアネットの間隔(開口幅)を5cmとした以
外、実施例2と同様にして得た線条繊度が9000デニ
−ルで、網状体の平均見掛け密度が0.043g/cm3
の表面が実質的にフラット化されていない網状体を用
い、疑似結晶化処理しない以外実施例2と同様にして作
成した不織布積層網状体の特性を表2に示す。比較例6
は網状体の表面が凹凸になっているため、見掛け密度が
低いのに耐久性が劣り、熱接着が不充分になり、少し異
物感を感じる座り心地のやや劣るクッション材であっ
た。
Comparative Example 6 The filament fineness obtained in the same manner as in Example 2 was 9000 denier, and the average apparent density of the reticulate body was 0. 0, except that the spacing (opening width) of the take-up conveyor net was 5 cm. 043 g / cm 3
Table 2 shows the characteristics of the non-woven fabric laminated network produced in the same manner as in Example 2 except that the network whose surface was not substantially flattened was used and the pseudo crystallization treatment was not performed. Comparative Example 6
Since the surface of the net-like body was uneven, the apparent density was low, but the durability was poor, the thermal adhesion was insufficient, and the cushioning material was a little inferior in sitting comfort with a feeling of foreign matter.

【0032】比較例7 単孔当たりの吐出量3g/分にて吐出させ、引取りコン
ベアネットの速度を0.3m/分とし、疑似結晶化処理
しなかった以外実施例2と同様して得た線条繊度が13
000デニ−ルで、網状体の平均見掛け密度が0.21
g/cm3 の網状体を用い、疑似結晶化処理しない以外実
施例2と同様にして作成した不織布積層網状体の特性を
表2に示す。比較例7は見掛け密度が高いため、タッチ
は良好だが座り心地がやや劣り、耐熱性、耐久性が不充
分なクッション材であった。
Comparative Example 7 Obtained in the same manner as in Example 2 except that the amount of discharge per single hole was 3 g / min, the speed of the take-up conveyor net was 0.3 m / min, and no pseudo-crystallization treatment was performed. Streak fineness of 13
000 denier, the average apparent density of the reticulate body is 0.21.
Table 2 shows the characteristics of the non-woven fabric-laminated network prepared in the same manner as in Example 2 except that the network of g / cm 3 was used and the pseudo-crystallization treatment was not performed. Since Comparative Example 7 had a high apparent density, it was a cushioning material having a good touch but a little inferior sitting comfort, and insufficient heat resistance and durability.

【0033】比較例8 幅50cm、長さ5cmのノズル有効面に幅方向の孔間ピッ
チ4mm、長さ方向の孔間ピッチ3mmの千鳥配列としたオ
リフィス径φ1mmとしたノズルを用いて単孔当たりの吐
出量0.012g/分にて吐出させて、ノズル面5cm下
に引取りコンベアネットを配して1.5m/分にて引き
取った以外、実施例2と同様にして得た線条の繊度が4
0デニール、見掛け密度が0.008g/cm3 の網状体
を用いて、不織布積層網状体の見掛け密度を0.009
g/cm3 となるように圧縮した以外、比較例7と同様に
して作成した不織布積層網状体の特性を表2に示す。比
較例8は線状の繊度が細い緻密な網状体をクッション層
にした場合もで、見掛け密度が低すぎて沈み込みが大き
くなり床つき感が大きくなり座り心地のやや劣るクッシ
ョン材であった。
COMPARATIVE EXAMPLE 8 A nozzle having a width of 50 cm and a length of 5 cm and having a staggered arrangement of 4 mm pitch between holes in the width direction and 3 mm pitch between holes in the length direction and having an orifice diameter of 1 mm was used for each single hole. Of a filament obtained in the same manner as in Example 2 except that the discharge rate was 0.012 g / min, a take-up conveyor net was placed 5 cm below the nozzle surface, and the rate was 1.5 m / min. Fineness is 4
The net density of the non-woven fabric laminated net is 0.009 by using the net of 0 denier and the apparent density of 0.008 g / cm 3.
Table 2 shows the characteristics of the non-woven fabric-laminated network produced in the same manner as in Comparative Example 7 except that the composition was compressed to have g / cm 3 . Comparative Example 8 is a cushion material having a fine mesh with a fine linear fineness as a cushion layer, and the apparent density is too low to cause a large sinking, a large floor feeling, and a slightly inferior sitting comfort. .

【0034】実施例5 実施例1で得た不織布積層弾性網状体を長さ120cmに
切断して、厚み5cm、幅120cm、長さ50cm毎にキル
ティングした幅120cm、長さ200cmの側地に入れマ
ットレスを作成した。このマットレスをベッドに設置
し、25℃RH65%室内にてパネラ−4人に7時間使
用させて寝心地を官能評価した。なお、ベットにはシ−
ツを掛け、掛け布団は1.8kgのダウン/フェザ−:9
0/10を中綿にしたもの、枕はパネラ−が毎日使用し
ているものを着用させた。評価結果は、床つき感がな
く、沈み込みが適度で、蒸れを感じない快適な寝心地の
ベットであった。比較のため、密度0.04g/cm3
厚み10cmの発泡ウレタン板状体で同様のマットレスを
作成し、ベットに設置して寝心地を評価した結果、床つ
き感は少ないが沈み込みが大きくやや蒸れを感じる寝心
地の悪いベットであった。
Example 5 The nonwoven laminated elastic mesh obtained in Example 1 was cut into a length of 120 cm and put in a side cloth having a width of 120 cm and a length of 200 cm which was quilted every 5 cm in thickness, 120 cm in width and 50 cm in length. Created a mattress. This mattress was placed on a bed, and a paneler-4 person used it for 7 hours in a room at 25 ° C. RH 65% to sensory-evaluate the sleeping comfort. In addition, the bet is
The quilt is hung and the comforter is 1.8kg down / feather: 9
0/10 batting was used, and the pillow was worn by the paneler every day. As a result of the evaluation, the bed was a bed which had no feeling of flooring, had a moderate depression, and did not feel stuffy and had a comfortable sleeping comfort. For comparison, a similar mattress was prepared from a urethane foam plate with a density of 0.04 g / cm 3 and a thickness of 10 cm, and the mattress was placed on a bed and the sleeping comfort was evaluated. It was a bed that made me feel stuffy and didn't feel comfortable to sleep.

【0035】実施例6 実施例1で得た不織布積層網状体を幅38cm、長さ40
cmでコ−ナ−をア−ル10cmとした形状に切断し、座り
心地評価用に用いたポリエステルモケットを側地にして
事務椅子フレ−ムに設置し、市販のポリウレタンをクッ
ションに使用した事務椅子と対比させて、座り心地を4
時間座らせ評価した結果、蒸れ感、床つき感、座ったま
ま我慢できる時間は、本発明の不織布積層網状体を用い
たものが著しく優れていた。
Example 6 The non-woven fabric laminated net body obtained in Example 1 has a width of 38 cm and a length of 40.
The corner was cut into a shape with 10 cm of the corner, and the polyester moquette used for sitting comfort evaluation was set on the side of the office chair frame, and the commercially available polyurethane was used for the cushion. Compared to a chair, it provides a comfortable sitting 4
As a result of evaluation by sitting for a while, the stuffy feeling, the feeling of flooring, and the time to be able to stand while sitting were significantly excellent in those using the nonwoven fabric laminated reticulate body of the present invention.

【0036】[0036]

【発明の効果】振動や応力吸収性の良い熱可塑性弾性樹
脂と体型保持性を向上させる熱可塑性非弾性樹脂が複合
化された線条が3次元立体構造を形成し融着一体化した
表面が実質的にフラット化された網状体をクッション層
とし、振動や応力吸収性の良い熱可塑性弾性樹脂を熱接
着成分とし、熱可塑性非弾性樹脂を繊維形態保持成分と
した短繊維を熱接着一体化した不織布を表面層として接
合一体化した本発明の不織布積層網状体は、振動遮断
性、耐熱耐久性、嵩高性、座り心地のより改善された、
蒸れにくいクッション材であり、そのまま側地を被せて
又は、他の素材との併用して、上記の好ましい特性を付
与した車両用座席、船舶用座席、車両用、船舶用、病院
やホテル等の業務用ベット、家具用クッション、寝装用
品等の製品を提供できる。更には、車両用や建築資材と
しての内装材や断熱材等にも有用である。
EFFECTS OF THE INVENTION The surface formed by fusion-bonding the filament formed by combining the thermoplastic elastic resin having good vibration and stress absorption property and the thermoplastic non-elastic resin improving the body-holding property forms a three-dimensional structure. A substantially flat mesh body is used as a cushion layer, a thermoplastic elastic resin with good vibration and stress absorption is used as a heat-adhesive component, and a thermoplastic inelastic resin is used as a fiber shape-retaining component for short-fiber heat-adhesive integration. The nonwoven fabric laminated network of the present invention in which the above nonwoven fabric is bonded and integrated as a surface layer is improved in vibration isolation, heat resistance durability, bulkiness, and sitting comfort.
It is a cushioning material that does not get stuffy easily, and it is covered with a side material as it is, or is used in combination with other materials, so that the seats for vehicles, seats for boats, seats for boats, for vehicles, boats, hospitals, hotels, etc. Products such as commercial beds, furniture cushions, and bedding can be provided. Furthermore, it is also useful as an interior material and a heat insulating material for vehicles and building materials.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI D01F 8/04 D01F 8/04 Z // D01F 6/00 6/00 A 6/62 303 6/62 303D 6/86 301 6/86 301B (56)参考文献 特開 昭55−17527(JP,A) 特開 平1−213454(JP,A) 特開 昭58−109670(JP,A) 特開 昭58−149362(JP,A) 実開 平1−16326(JP,U) 実開 平2−18300(JP,U) 実開 平2−18371(JP,U) (58)調査した分野(Int.Cl.7,DB名) D04H 1/00 - 18/00 B68G 1/00 - 15/00 B32B 1/00 - 35/00 D01D 1/00 - 13/02 D01F 1/00 - 13/04 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI D01F 8/04 D01F 8/04 Z // D01F 6/00 6/00 A 6/62 303 303 6/62 303D 6/86 301 6 / 86 301B (56) Reference JP-A 55-17527 (JP, A) JP-A 1-213454 (JP, A) JP-A 58-109670 (JP, A) JP-A 58-149362 (JP, A) Actual Kai 1-18326 (JP, U) Actual Kai 2-18300 (JP, U) Actual Kai 2-18371 (JP, U) (58) Fields surveyed (Int.Cl. 7 , DB name) ) D04H 1/00-18/00 B68G 1/00-15/00 B32B 1/00-35/00 D01D 1/00-13/02 D01F 1/00-13/04

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 熱可塑性弾性樹脂と熱可塑性非弾性樹脂
が複合化した繊度が100〜100000デニ−ルの連
続した複合線条を曲がりくねらせ互いに接触させて該接
触部の大部分が融着した3次元立体構造体を形成してお
り、その両面は、実質的にフラット化されており、その
片面に、熱可塑性弾性樹脂と熱可塑性非弾性樹脂からな
る熱接着性複合短繊維が3次元構造化され、接触部の大
部分が熱可塑性弾性樹脂により融着一体化しており面が
実質的にフラット化された不織布が接合一体化され、密
度が0.01g/cm3 から0.2g/cm3 であることを
特徴とする不織布積層網状体。
1. A continuous composite filament having a fineness of 100 to 100,000 denier, which is a composite of a thermoplastic elastic resin and a thermoplastic non-elastic resin, is made to meander and is brought into contact with each other, and most of the contact portion is fused. Is formed into a three-dimensional three-dimensional structure, both sides of which are substantially flattened, and one side of the three-dimensional thermoadhesive composite short fibers made of a thermoplastic elastic resin and a thermoplastic inelastic resin is three-dimensionally formed. Non-woven fabric that is structured and most of the contact parts are fused and integrated with thermoplastic elastic resin and the surface of which is substantially flat is joined and integrated, and the density is 0.01 g / cm 3 to 0.2 g / A non-woven fabric laminated network characterized by having a size of cm 3 .
【請求項2】 連続した複合線条の断面形状が中空断面
又は及び異形断面である請求項1記載の不織布積層網状
体。
2. The nonwoven fabric laminated reticulate body according to claim 1, wherein the cross-sectional shape of the continuous composite filaments is a hollow cross section and / or a modified cross section.
【請求項3】 積層網状を構成する熱可塑性弾性樹脂か
らなる成分を示差走査型熱量計で測定した融解曲線に室
温以上融点以下の温度に吸熱ピークを有する請求項1記
載の不織布積層網状体。
3. The nonwoven fabric laminated reticulated body according to claim 1, which has an endothermic peak at a temperature of not less than room temperature and not more than the melting point in a melting curve measured by a differential scanning calorimeter of a component made of a thermoplastic elastic resin constituting a laminated reticulate structure.
【請求項4】 複数のオリフィスを持つ多列ノズルより
熱可塑性弾性樹脂と熱可塑性非弾性樹脂を複合化できる
様に各ノズルオリフィス前で分配し、該熱可塑性樹脂の
融点より10〜120℃高い溶融温度で、該ノズルより
下方に向けて吐出させ、溶融状態で互いに接触させて融
着させ3次元構造を形成しつつ、引取り装置で挟み込み
冷却槽で冷却せしめた後、片面に熱可塑性弾性樹脂と熱
可塑性非弾性樹脂からなる熱接着性複合短繊維を開繊し
て3次元構造化させたウエッブを積層し、圧縮熱成形に
より、接触部の大部分を熱可塑性弾性樹脂により融着一
体化することを特徴とする不織布積層網状体の製法。
4. A thermoplastic elastic resin and a thermoplastic non-elastic resin are distributed in front of each nozzle orifice so that they can be compounded from a multi-row nozzle having a plurality of orifices, and the melting point of the thermoplastic resin is higher by 10 to 120 ° C. It is discharged downward from the nozzle at the melting temperature, and while being in contact with each other in a molten state and fused to form a three-dimensional structure, it is sandwiched by a take-up device and cooled in a cooling tank, and then thermoplastic elasticity is applied to one side. Thermo-adhesive composite short fibers made of resin and thermoplastic non-elastic resin are opened to form a three-dimensional structured web, which is laminated by compression thermoforming, and most of the contact parts are fused and integrated with thermoplastic elastic resin. A method for producing a non-woven laminate network, comprising:
【請求項5】 冷却後から一体成形して製品化に至る工
程で熱可塑性弾性樹脂の融点より少なくとも10℃以下
の温度でアニ−リングする請求項4に記載の不織布積層
網状体の製法。
5. The method for producing a non-woven fabric reticulated body according to claim 4, wherein annealing is performed at a temperature of at least 10 ° C. or lower than the melting point of the thermoplastic elastic resin in the step of integrally molding after cooling and commercialization.
【請求項6】 請求項1に記載の不織布積層網状体を用
いた車両用座席、船舶用座席、車両用、船舶用、病院用
等の業務用及び家庭用ベット、家具用椅子、事務用椅子
および布団のいずれかに記載の製品。
6. A vehicle seat, a ship seat, a vehicle, a ship, a hospital bed, etc. for commercial and household beds, furniture chairs, office chairs, etc., which use the nonwoven fabric laminated mesh according to claim 1. And the product described in any of the futons.
JP4417094A 1994-03-15 1994-03-15 Nonwoven laminated net, manufacturing method and product using the same Expired - Lifetime JP3431091B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4417094A JP3431091B2 (en) 1994-03-15 1994-03-15 Nonwoven laminated net, manufacturing method and product using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4417094A JP3431091B2 (en) 1994-03-15 1994-03-15 Nonwoven laminated net, manufacturing method and product using the same

Publications (2)

Publication Number Publication Date
JPH07258953A JPH07258953A (en) 1995-10-09
JP3431091B2 true JP3431091B2 (en) 2003-07-28

Family

ID=12684123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4417094A Expired - Lifetime JP3431091B2 (en) 1994-03-15 1994-03-15 Nonwoven laminated net, manufacturing method and product using the same

Country Status (1)

Country Link
JP (1) JP3431091B2 (en)

Also Published As

Publication number Publication date
JPH07258953A (en) 1995-10-09

Similar Documents

Publication Publication Date Title
JP3454373B2 (en) Elastic network, manufacturing method and products using the same
JP3473710B2 (en) Mixed fineness reticulated body, manufacturing method and products using it
JP3430443B2 (en) Netting structure for cushion, method for producing the same, and cushion product
JP3444375B2 (en) Multilayer net, manufacturing method and products using the same
JP3430444B2 (en) Netting structure for cushion, manufacturing method thereof and cushion product
JP3444368B2 (en) Nonwoven laminated net, manufacturing method and product using the same
JP3454375B2 (en) Nonwoven laminated structure, manufacturing method and product using the same
JP3444374B2 (en) Multilayer laminated net, manufacturing method and product using the same
JP3431097B2 (en) Multilayer laminated net, manufacturing method and product using the same
JP3431090B2 (en) Nonwoven laminated net, manufacturing method and product using the same
JP3430449B2 (en) Nonwoven laminated net, manufacturing method and product using the same
JP3430445B2 (en) Composite net, its manufacturing method and products using it
JP3431091B2 (en) Nonwoven laminated net, manufacturing method and product using the same
JP3430448B2 (en) Laminated structure, manufacturing method and products using the same
JP3430447B2 (en) Laminated elastic structure, manufacturing method and product using the same
JP3430446B2 (en) Composite elastic network, its production method and products using it
JP3431092B2 (en) Nonwoven laminated net, manufacturing method and product using the same
JP3444372B2 (en) Multilayer laminated net, manufacturing method and product using the same
JP3454374B2 (en) Laminated net, manufacturing method and product using the same
JP3431096B2 (en) Nonwoven laminated net, manufacturing method and product using the same
JP3444369B2 (en) Laminated net, manufacturing method and product using the same
JP3444371B2 (en) Multilayer laminated net, manufacturing method and product using the same
JP3431098B2 (en) Flame-retardant reinforced mesh, manufacturing method and products using the same
JP3444370B2 (en) Multilayer laminated net, manufacturing method and product using the same
JPH07300760A (en) Nonwoven fabric laminated network material, its production and product using the same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080523

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20090523

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090523

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100523

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20100523

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20110523

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20110523

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20130523

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 10

EXPY Cancellation because of completion of term